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We first demonstrate theoretically that the computational quantum field theory is equivalent to the
quantum kinetic theory for pair creation in a spatially homogeneous and time-dependent electric field, then
verify numerically their equivalence for pair creation in one-dimensional time-dependent electric fields,
and finally investigate detailedly the effects of the field frequency, spatial width, pulse duration, and relative
phase on dynamically assisted Schwinger pair production in an inhomogeneous two-color electric field. It
is found that the enhancement effect of pair creation is very sensitive to the field frequency and generally
very obvious for a shorter field width, a longer pulse duration, and a relative phase of maximizing the field
strength. These results can provide a significant reference for the optimal control theory of pair creation
which aims to maximize the created pair yield within a given scope of field parameters.
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I. INTRODUCTION

Vacuum pair production is a phenomenon where a
vacuum in the presence of a strong electric field is unstable
and decays into electron-positron pairs [1,2]. It is one of the
most fascinating predictions of quantum electrodynamics
(QED), and has been studied with different methods since
Dirac put forward the relativistic wave equation and pre-
dicted the existence of positrons [3]. Sauter [4] calculated the
transmission coefficient through the energy gap of vacuum
by exactly solving theDirac equation in a static electric field.
Heisenberg and Euler [5] deduced the leading pair produc-
tion rate in a weak electric field from the imaginary part of
one-loop effective Lagrangian for spinor QED, and defined
the critical field strength Ecr ¼ m2c3=jqj, where m is the
particle mass, c is the speed of light, and q is the particle
charge (ℏ ¼ 1 is used throughout the paper). Schwinger [6]
formalized pair creation process in the language of QED
and recovered the pair production rate in a constant field
with the proper-time method, so sometimes the tunneling
pair creation is also called Schwinger pair production or the
Schwinger effect.

In addition to above-mentioned methods, the current
widely used ones include the semiclassical scattering
method related to the Wentzel-Kramers-Brillouin approach
[7–12], the worldline instanton technique [13–17], the
quantum Vlasov equation (QVE) [18–22], the Wigner
function [23–28], the computational quantum field theory
(CQFT) [29–33] and so on. Note that the QVE and the
Wigner function can be collectively called quantum kinetic
theory (QKT), and the Dirac-Heisenberg-Wigner (DHW)
formalism is the Wigner function in spinor QED. In recent
years, the relation between these methods has been
explored, because it can not only be used to mutually
authenticate each other’s results, but also help to under-
stand their results from different perspectives. For instance,
Dumlu [34] proved the equivalence between the QVE and
the semiclassical scattering method in both scalar QED and
spinor QED. Hebenstreit et al. [24] found that the Wigner
function in spinor QED could be reduced to the QVE for a
spatially homogeneous and time-dependent electric field
with one component. Li et al. [28] generalized the above
result to the scalar QED, and found that in this case the
electric field could have three components. Blinne and
Strobel [35] compared the semiclassical scattering method
with the DHW formalism for rotating fields, and found
that the numerical methods of these two approaches are
complementary in terms of computation time as well as
accuracy. Strobel and Xue [36] calculated pair creation
rate for time-dependent electric fields with more than one
component in scalar QED using the semiclassical scatter-
ing method and the worldline instanton technique, and
found that the results obtained from these two methods
agree with each other by expanding the momentum
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spectrum around the zero point of the canonical momen-
tum. A similar work was done in [37]. More recently,
Unger et al. [38] explored the relation between the QVE
and the CQFT, but found that they were not exactly
equivalent. In this paper, we will focus on proving the
equivalence between these two methods.
Based on the Schwinger formula, the pair creation rate

∼ expð−πEcr=EÞ, to create observable electron-positron
pairs the electric field strength E should be comparable
with the critical field strength∼1016 V=cm, corresponding to
laser intensity∼1029 W=cm2. However, the laser intensity in
forthcoming laser facilities [39,40] is expected to reach
1024–1026 W=cm2, which is still much less than the critical
one. So various methods of enhancing pair production are
explored [41–49]. One of the most effective mechanisms is
the dynamically assisted Schwinger pair production
(DASPP), which shows that the pair yield can be greatly
enhanced by superposing a strong but slowly varying Sauter
pulse with a weak but rapidly changing one. Orthaber et al.
[50] further verified this mechanism employing the QVE
instead of the worldline instanton technique and given the
momentum spectra for combined electric fields. Nuriman
et al. [51] studied the DASPP for different combinations of
given electric fields and put forward the idea of optimizing
pair production, which leads to the appearance of an optimal
control theory for time-dependent electric fields [52]. Based
on the QVE, Otto et al. [53] provide a qualitative under-
standing of the DASPP in a bifrequent electric field with
spatial homogeneity. Moreover, although the effect of
spatially inhomogeneity on the DASPP has been more or
less considered in [54–56], the fields are too simple to supply
sufficient information to an optimal theory. In this paper, we
will study in detail the effects of the field frequency, field
width, pulse duration, and relative phase on the DASPP for a
more complex but realistic field, i.e., an inhomogeneous two-
color electric field, and the results may provide a great
amount of firsthand information for perfecting a tentative
optimal theory of pair creation in space-timedependent fields
shown in [57].
This paper is structured as follows: In Sec. II the CQFT is

introduced and compared with the QKT for pair creation in
time-dependent electric fields with or without spatial
inhomogeneity. The equivalence between these two meth-
ods is proved. In Sec. III the effects of the field frequency,
field width, pulse duration, and relative phase on the
DASPP for an inhomogeneous two-color electric field
are investigated in detail. In Sec. IV the conclusions and
discussions are given. To clearly compare the CQFT with
the QKT, the QVE and DHW formalism in QED1þ1 are
shown in Appendixes A and B.

II. THEORETICAL METHODS AND THEIR
EQUIVALENCE

The starting point is the Dirac equation with ℏ ¼ 1,

fiγμ½∂μ þ iqAμðx; tÞ� −mcgΨðx; tÞ ¼ 0; ð1Þ

where ∂μ ¼ ð∂t=c;∇Þ, q and m are the particle charge and
mass, respectively, Aμðx; tÞ ¼ ðφ=c;−A=cÞ is the four-
potential of electromagnetic fields. The Dirac matrices γμ

are represented in Dirac basis as

γ0 ¼
�
12 0

0 −12

�
; γ ¼

�
0 σ

−σ 0

�
; ð2Þ

where 12 is the 2 × 2 identity matrix and σ ¼ ðσx; σy; σzÞ
are the Pauli matrices with

σx¼
�
0 1

1 0

�
; σy¼

�
0 −i
i 0

�
; σz¼

�
1 0

0 −1

�
:

A. Equivalence between the CQFT and QKT
for time-dependent electric fields

In this subsection, we will prove in detail the equivalence
between the CQFT and the QVE in spinor QED for an
uniform and time-dependent electric field with one com-
ponent, and show that the CQFT is equivalent to the QKT
for arbitrary spatially homogeneous and time-dependent
electric fields.
Equation (1) can also be written as

i
∂
∂tΨðx; tÞ ¼ Hðx; tÞΨðx; tÞ; ð3Þ

where the time-dependent Hamiltonian

Hðx; tÞ ¼ cα ·

�
P −

q
c
Aðx; tÞ

�
þ βmc2 þ qφðx; tÞ; ð4Þ

P ¼ −i∇ is the canonical momentum operator, α ¼ γ0γ ¼
ð0σ σ

0
Þ, and β ¼ γ0.
For a spatially homogeneous and time-dependent electric

field with temporal gauge Aμðx; tÞ ¼ ð0;−AðtÞ=cÞ ¼
ð0; 0; 0;−AzðtÞ=cÞ and EzðtÞ ¼ −dAzðtÞ=dt, the canonical
momentum k is a good quantum number and the Dirac
field can be decomposed as

Ψðx; tÞ ¼
Z

d3k
ð2πÞ3ΨkðtÞeik·x; ð5Þ

where ΨkðtÞ are the Fourier modes. Inserting the above
equation into Eq. (3), we have

i
∂
∂tΨkðtÞ ¼ ½cα · pðtÞ þ βmc2�ΨkðtÞ ¼ HpðtÞΨkðtÞ; ð6Þ

where pðtÞ ¼ k − qAðtÞ=c is the kinetic momentum and
HpðtÞ ¼
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0
BBBBB@

mc2 0 cpz cðpx− ipyÞ
0 mc2 cðpxþ ipyÞ −cpz

cpz cðpx− ipyÞ −mc2 0

cðpxþ ipyÞ −cpz 0 −mc2

1
CCCCCA

is the matrix form of the time-dependent Hamiltonian in
momentum space whose eigenvalues and eigenvectors are
�ωp ¼ �½c2p2 þm2c4�1=2 and

Up;1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ωpðωp − cpzÞ
p

0
BBB@

ωp þmc2 − cpz

−cðpx þ ipyÞ
−ωp þmc2 þ cpz

cðpx þ ipyÞ

1
CCCA;

Up;2 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ωpðωp − cpzÞ
p

0
BBB@

cðpx − ipyÞ
ωp þmc2 − cpz

cðpx − ipyÞ
ωp −mc2 − cpz

1
CCCA;

Vp;1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ωpðωp þ cpzÞ
p

0
BBB@

−ωp þmc2 − cpz

−cðpx þ ipyÞ
ωp þmc2 þ cpz

cðpx þ ipyÞ

1
CCCA;

Vp;2 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ωpðωp þ cpzÞ
p

0
BBB@

cðpx − ipyÞ
−ωp þmc2 − cpz

cðpx − ipyÞ
−ωp −mc2 − cpz

1
CCCA; ð7Þ

where U†
p;rUp;s ¼ V†

p;rVp;s ¼ δrs, U
†
p;rVp;s ¼ V†

p;rUp;s ¼ 0,
and r; s ¼ f1; 2g. Note that the instantaneous eigenvectors
of the time-dependent Hamiltonian are calculated by a
numerical method in the CQFT [30].
The Dirac field operator at time t in momentum space

can be obtained by evolving the field operator of field-free
Dirac Hamiltonian Ψkðt0Þ as

ΨkðtÞ ¼ Uðt; t0ÞΨkðt0Þ; ð8Þ

where Uðt;t0Þ¼T expð−iR t
t0
Hpðt0Þdt0Þ is the time-

evolution operator and T is the time-ordering operator.
Accordingly, the positive and negative energy states
uk;sðtÞeik·x and v−k;sðtÞeik·x, which are the solutions of
Eq. (6), can be calculated by the time evolution of the force-
free positive and negative energy eigenstates uk;sðt0Þeik·x ¼
Up;sðt0Þeiðk·x−ωkt0Þ and v−k;sðt0Þeik·x ¼ Vp;sðt0Þeiðk·xþωkt0Þ

using the numerical split-operator technique [58,59], i.e.,
uk;sðtÞ ¼ Uðt; t0Þuk;sðt0Þ and v−k;sðtÞ ¼ Uðt; t0Þv−k;sðt0Þ.

Therefore, the field operator can be expanded in terms of
the positive and negative energy states and the time-
independent particle annihilation operator bk;s and anti-
particle creation operator d†−k;s,

Ψðx; tÞ ¼
Z

d3k
ð2πÞ3

X2
s¼1

½bk;suk;sðtÞ þ d†−k;sv−k;sðtÞ�eik·x;

ð9Þ

where bk;sjvaci ¼ hvacjd†−k;s ¼ 0, and the creation and
annihilation operators fulfil the standard fermionic anti-
commutation relations. Furthermore, the field operator can
also be expressed by the instantaneous eigenvectors of the
Hamiltonian as

Ψðx; tÞ ¼
Z

d3k
ð2πÞ3

X2
s¼1

½Bk;sðtÞUk;sðtÞ

þD†
−k;sðtÞV−k;sðtÞ�eik·x; ð10Þ

where Bk;sðtÞ and D†
−k;sðtÞ are the time-dependent particle

annihilation operator and antiparticle creation operator,
respectively, which satisfy the standard fermionic anticom-
mutation relations as well. The expression Eq. (10) can
clearly distinguish the positive and negative energy states in
the presence of external fields and give a meaningful
interpretation of particles and antiparticles, because the
Hamiltonian is diagonal. However, since the external fields
are nonvanishing, the created particles should be under-
stood as quasiparticles. The total number density of created
electrons is defined as

N ðx; tÞ ¼
X2
s¼1

hvacjΨ†
þ;sðx; tÞΨþ;sðx; tÞjvaci: ð11Þ

whereΨþ;sðx; tÞ ¼
R

d3k
ð2πÞ3 Bk;sðtÞUk;sðtÞeik·x is the positive

energy portion of the field operator. From Eqs. (9) and (10),
we find that

Bk;sðtÞ¼ bk;sU
†
k;sðtÞuk;sðtÞþd†−k;sU

†
k;sðtÞv−k;sðtÞ;

D†
−k;sðtÞ¼ bk;sV

†
−k;sðtÞuk;sðtÞþd†−k;sV

†
−k;sðtÞv−k;sðtÞ:

ð12Þ

Then according to Eqs. (11) and (12), we obtain

N ðx; tÞ ¼ N ðtÞ ¼
Z

d3k
ð2πÞ3FkðtÞ; ð13Þ

where

FkðtÞ ¼ 2jU†
k;sðtÞv−k;sðtÞj2 ð14Þ
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is the momentum distribution function. Note that here the
spin index s denotes a specific spin. Comparing with
Eqs. (A16) and (A18) in Appendix A, one can clearly see
that although there is a phase difference expð−i R t

t0
ωkðτÞdτÞ

between U†
k;sðtÞ and ũ†k;sðtÞ [cf. Eqs. (7) and (A15) in

Appendix A],FkðtÞ is nothing but the one-particle momen-
tum distribution functionFkðtÞ defined in theQVE, because
the dynamical phase has no effect on the final result.
Therefore, we finally confirm that the CQFT for a spatially
homogeneous and time-dependent electric field with
one component is completely equivalent to the QVE in
spinor QED.
Furthermore, due to the equivalence between the QVE in

spinor QED and the DHW formalism for a time-dependent
electric field with one component [24], the CQFT in spinor
QED is also equivalent to the DHW formalism for this
field, which indicates that the definition of quasiparticles in
the DHW formalism is based on instantaneous energy
eigenstates as well. Similarly, one can verify the equiv-
alence between the CQFTand the Wigner function in scalar
QED, and generalize it to the time-dependent electric field
with three components because for this field the QVE and
the Wigner function in scalar QED are equivalent [28].
Based on these results and given that both the CQFT
presented here and the DHW formalism shown in [60] can
calculate the pair production in a time-dependent electric
field with three components, the equivalence between the
CQFT in spinor QED and the DHW formalism can be
further generalized to time-dependent electric fields with
three components. Though a direct theoretical proof of this
generalization is difficult, a numerical verification is quite
easy to achieve and we no longer show it here.

B. Equivalence between the CQFT and QKT for
one-dimensional time-dependent electric fields

In this subsection, we will show numerically that
the CQFT is equivalent to the DHW formalism for a 1þ1
dimensional (one-dimensional space plus time) electric
field.
Since the CQFT in the scalar potential gauge is equiv-

alent to that in the vector potential gauge and the former
case can save more computing time than the latter one [61],
we only show the CQFT in the scalar potential gauge here.
For a 1þ 1 dimensional electric field Aμðx; tÞ ¼

ðφðz; tÞ; 0Þ where Ezðz; tÞ ¼ −∂φðz; tÞ=∂z, the Dirac equa-
tion (3) becomes

i
∂
∂tΨðz; tÞ ¼ Hðz; tÞΨðz; tÞ ð15Þ

with the one-dimensional time-dependent Hamiltonian
Hðz; tÞ ¼ cαzPz þ βmc2 þ qφðz; tÞ. Considering only a
single spin direction, the four components of the quantum
field operator can be reduced to only two, and the
Hamiltonian is further reduced to

Hðz; tÞ ¼ cσxPz þ σzmc2 þ qφðz; tÞ: ð16Þ

In the scalar potential gauge, the field operator is
expanded in terms of the positive and negative energy
states of the force-free Hamiltonian (In the following
derivation, we omit the subscript z and set t0 ¼ 0),
upðzÞ ¼ eipz

2π
ffiffiffiffiffiffi
2ωp

p ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωp þ mc2

p
sgnðpÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωp − mc2
p ÞT and

vnðzÞ¼ einz

2π
ffiffiffiffiffiffi
2ωn

p ð−sgnðnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωn−mc2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωnþmc2

p ÞT, as

well as the positive and negative energy states upðz; tÞ
and vnðz; tÞwhich are the time evolution of upðzÞ and vnðzÞ
under the whole Hamiltonian (16),

Ψðz; tÞ ¼
X
p

bpðtÞupðzÞ þ
X
n

d†nðtÞvnðzÞ

¼
X
p

bpupðz; tÞ þ
X
n

d†nvnðz; tÞ; ð17Þ

where the only nonvanishing anticommutators of the
creation and annihilation operators are fbpðtÞ; b†p0 ðtÞg ¼
2πδðp − p0Þ, fdnðtÞ; d†n0 ðtÞg ¼ 2πδðn − n0Þ, fbp;b†p0 g¼
2πδðp−p0Þ, fdn; d†n0g ¼ 2πδðn − n0Þ, and bpjvaci ¼
hvacjd†n ¼ 0. Thus,

bpðtÞ ¼
X
p0

bp0Up;p0 ðtÞ þ
X
n

d†nUp;nðtÞ

d†nðtÞ ¼
X
p

bpUn;pðtÞ þ
X
n

d†nUn;n0 ðtÞ; ð18Þ

where the parametersUp;p0 ðtÞ¼R
dzu†pðzÞup0 ðz;tÞ,Up;nðtÞ¼R

dzu†pðzÞvnðz;tÞ, Un;pðtÞ ¼
R
dzv†nðzÞupðz; tÞ, and

Un;n0 ðtÞ ¼
R
dzv†nðzÞvn0 ðz; tÞ are the matrix elements of

the time evolution operator which can be computed by
solving the single-particle Dirac equation with the numerical
split-operator technique. The probability density of created
electrons is defined as

ρðz; tÞ ¼ hvacjΨ†
eðz; tÞΨeðz; tÞjvaci

¼
X
n

����
X
p

Up;nðtÞupðzÞ
����
2

; ð19Þ

where Ψeðz; tÞ ¼
P

p bpðtÞupðzÞ is the electron portion of
the field operator. Then the average number of created
electrons is obtained by integrating the probability density
over space,

NðtÞ ¼
Z

dzρðz; tÞ ¼
X
p

�X
n

jUp;nðtÞj2
�

¼
X
p

ρðp; tÞ; ð20Þ
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where ρðp; tÞ ¼ P
n jUp;nðtÞj2 is called the momentum

distribution function in the CQFT, but it is different from
the definition of that in the DHW formalism fðp; tÞ
(seeAppendixB). The relation between these two definitions
is ρðp; tÞ ¼ fðp; tÞ=L with L denoting the length of the
numerical box.
To better show the equivalence between the CQFT and

the DHW formalism for 1þ 1 dimensional electric fields
numerically, we consider a more complex external field

Eðz; tÞ ¼ E0gðzÞhðtÞ

¼ E0sech2
�
z
λ0

�
exp

�
−

t2

2τ20

�
sinðω0tÞ; ð21Þ

where E0 is the field amplitude, λ0 denotes the field width,
τ0 is the pulse duration, and ω0 is the field frequency.
Figure 1 shows the comparisons of the time evolution of

pair yield and the momentum spectra of created pairs
calculated by three different approaches. The solid red line
is the result of the local density approximation (LDA). The
main idea of this approximation is that when the spatial

variation scale of electric field is much larger than the
Compton wavelength, the pair creation at any spatial point
zi can be considered as occurring in a spatially homo-
geneous and time-dependent electric field EðtÞ with field
strength E0gðziÞ. Therefore, we can calculate the momen-
tum spectra and pair yield of created particles by solving
the QVE repeatedly for the electric field EðtÞ ¼
E0gðziÞhðtÞ at any spatial point zi [25]. However, it should
be noticed that since the result calculated by the LDA is not
the solution of Eqs. (B16)–(B19), it can not give the correct
particle number density in the coordinate space as well as
the charge density. From the momentum spectra at t → ∞
[see Figs. 1(b) and 1(d)] we find that the results of the
CQFT and the DHW formalism coincide completely for
both λ0 ¼ 8=mc and 32=mc. However, the result of the
LDA is in good agreement with those of the other two
methods for λ0 ¼ 32=mc, while is obviously different from
them for λ0 ¼ 8=mc. Similar result can also be seen in
Figs. 1(a) and 1(c). Actually, the LDA is a very good
approximation to study pair production in a quasihomoge-
neous electric field whose spatial width divided by the
speed of light is much greater than the pulse duration.

FIG. 1. Pair yield evolving with time (upper row) and the momentum spectra of created particles (lower row) calculated by three
different methods for λ0 ¼ 8=mc (left column) and λ0 ¼ 32=mc (right column). Other field parameters are E0 ¼ 0.15625Ecr,
ω0 ¼ 1.2mc2, and τ0 ¼ 7.5=mc2.
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Although the momentum spectra at t → ∞ given by the
CQFTand the DHW formalism are the same, we are still not
able to say that these twomethods are completely equivalent,
because the pair yield and the momentum spectra of created
pairs obtained by expanding the Dirac field operator with
different basis are the same when the external field is turned
off but different when the field is still turned on [38,62].
Therefore, we further calculate the time evolution of pair
yield with the CQFTand the DHW formalism [see Figs. 1(a)
and 1(c)]. One can see that the pair yield calculated by these
twomethods are the same at any time. This also holds true for
momentum spectra. To differentiate the numerical results of
the CQFT and the DHW formalism, we plot two insets in
Figs. 1(a) and 1(c), and find that the relative deviation
between these two numerical results jNCQFT − NDHWj=
ðNCQFT þ NDHWÞ is less than or equal to 0.1%. Of course
this relative deviation can be further reduced by improving
the numerical accuracy, because the difference of the
numerical results between the CQFT and the DHW formal-
ism is mainly caused by the accuracy of different numerical
methods (the split-operator technique used in the CQFTand
the spectral method used in the DHW formalism). So the
CQFT is equivalent to the DHW formalism in QED1þ1

within an acceptable deviation. Furthermore, since in the
CQFTwith thevector potential gauge theDirac field operator
is expanded with instantaneous energy eigenstates, we can
deduce that the definition of quasiparticles in the DHW
formalism is also based on the instantaneous eigenstates.

III. NUMERICAL RESULTS

In this section, we mainly study the effect of field
parameters on the dynamically assisted Schwinger pair
production (DASPP). The external electric field we con-
sidered is a combination of a strong low-frequency field
Esðz; tÞ and a weak high-frequency field Ewðz; tÞ, i.e.,
Eðz;tÞ¼Esðz;tÞþEwðz;tÞ

¼Esexp

�
−
z2

2λ2s

�
exp

�
−

t2

2τ2

�
cosðωstÞ

þEwexp

�
−

z2

2λ2w

�
exp

�
−

t2

2τ2

�
cosðωwtþϕÞ; ð22Þ

where Es;w are the field amplitudes, λs;w denote the field
widths, τ is the pulse duration, ωs;w are the field frequen-
cies, and ϕ is the relative phase of these two fields. The
field amplitudes Es ¼ 0.2Ecr and Ew ¼ 0.05Ecr are fixed.
For the sake of analyzing the following results, the Keldysh
adiabaticity parameter, γ ¼ mcω=qE [63], is introduced to
distinguish between tunneling pair production (γ ≪ 1) and
multiphoton pair creation (γ ≫ 1).

A. Effect of the field frequency on DASPP

We depict the contour profiles of the pair yield for
combined electric fields Nsþw (top panel), the sum of the

pair yield for strong fields and weak fieldsNs þ Nw (middle
panel), and the enhancement factor Nsþw=ðNs þ NwÞ (bot-
tom panel) varying with the field frequencies ωs;w in Fig. 2.
The field parameters are chosen as λs ¼ λw ¼ 10=mc,
τ ¼ 10=mc2, and ϕ ¼ 0. Note that we do not show the pair
yield as a function of the field frequency for a single strong

FIG. 2. Contour profiles of the pair yield for combined electric
fields Nsþw (top panel), the sum of the pair yield for strong fields
and weak fields Ns þ Nw (middle panel), and the enhancement
factor Nsþw=ðNs þ NwÞ (bottom panel) varying with the field
frequencies ωs;w. Other field parameters are λs ¼ λw ¼ 10=mc,
τ ¼ 10=mc2, and ϕ ¼ 0.
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field and/or a single weak field, but this information can be
obtained from the middle panel in Fig. 2, because when one
of the field frequencies ωs;w is fixed, the pair yield for the
field corresponding to this frequency does not change with
the other frequency, the trend of the relation between total
pair yield and the other frequency is just that between
pair yield and this frequency when only the corresponding
field exists.
From the top panel in Fig. 2, one can see that when the

frequency of the strong field ωs is fixed and the frequency
of the weak field ωw ≤ 2.15mc2, the pair yield for the
combined electric field increases monotonically with the
frequency of the weak field, which is different from
the multiphoton peak structures on the relation curve
between pair yield for only a single weak field and the
field frequency (see the middle panel in Fig. 2). This result
can be understood by analyzing the combined Keldysh
parameter γc ¼ mcωw=qEs. For a single weak field, it is
found that the multiphoton peaks corresponding to one-,
two-, and three-photon pair production are present while
the peaks corresponding to l-photon pair production with
l ≥ 4 are absent, which indicates that only when the
Keldysh parameter γw ¼ mcωw=qEw ≥ 0.5=0.05 ¼ 10 ≫
1 (0.5mc2 is a simple estimation of the field frequency
corresponding to four-photon pair creation) does an
obvious multiphoton peak appear. Therefore, there is no
multiphoton peak except the one corresponding to one-
photon pair creation at about ωw ¼ 2.15mc2 because the
combined Keldysh parameter γc changes from 1 to 12.
When ωw > 2.15mc2, the pair yield decreases with increas-
ing the field frequency of the weak high-frequency
field, which is the same as the result obtained in [64]. In
addition, the frequency of strong fields has little effect on
the trend of the relation between pair yield and the
frequency of weak fields.
As the frequency of weak fields ωw is fixed, the pair

yield changes little with the frequency of strong fields ωs

from 0 to 0.2mc2, because the Keldysh parameter for strong
fields γs ¼ mcωs=qEs changes from 0 to 1, the contribu-
tion of strong fields to the pair creation is dominated by the
field intensity rather than the frequency. Furthermore,
the pair yield does not always increase with increasing
the frequency of strong fields, it is also affected by the
frequency of weak fields, and in some cases it decreases
with the increase of the frequency of strong fields.
The bottom panel in Fig. 2 shows that the enhancement

factor basically decreases with the frequency of strong
fields, and oscillates with the frequency of weak fields. For
the latter case, the maximum values of the enhancement
factor appear at ωw ¼ 0.81; 1.66; 2.33mc2, particularly, the
enhancement factor can reach about 2000 at 1.66mc2, and
can reach 200 at 0.81mc2. The minimum values of the
enhancement factor appear at ωw ¼ 1.05; 2.02mc2, espe-
cially at 2.02mc2 the enhancement factor is 0.53 < 1,
which indicates that the increase of field frequency does

not always enhance pair creation and sometimes reduces
the pair yield. Furthermore, the points where the enhance-
ment factor is minimal are exactly the frequencies corre-
sponding to the multiphoton peaks on the relation curve
between the pair yield and the frequency of weak fields.
Intuitively, the reason is that the pair yield for combined
fields increases monotonically with the small frequency of
weak fields, the difference between the pair yield for the
combined fields and the sum of pair yield for a single strong
field and a single weak field at the points of multiphoton
peaks is small.

B. Effect of the field width on DASPP

In this subsection, we mainly study the effect of the field
width on DASPP in three different cases: λs ¼ λw, λs > λw,
and λs < λw.

1. λs = λw
In this case, the reduced pair yield for combined electric

fields Nsþw=λ (red line and squares), strong fields Ns=λ
(blue line and circles), weak fields Nw=λ (yellow line and
triangles), the sum of the reduced pair yield for strong fields
and the weak fields ðNs þ NwÞ=λ (green line and inverted
triangles), and the enhancement factor Nsþw=ðNs þ NwÞ
(black dashed line) as a function of the field width λ
(=λs ¼ λw) are depicted in Fig. 3. Note that since the total
energy of electric fields,

R
dzjEðz; tÞj2=2, is proportional to

the field width, the increase of the field width will increase
the field energy and lead to the growth of pair yield. In
order to eliminate this trivial effect, the reduced pair yield
Nð∞Þ=λ and momentum spectrum fðp;∞Þ=λ are used in
the calculations.

(a) (b)

FIG. 3. (a) Reduced pair yield for combined electric fields
Nsþw=λ (red line and squares), strong fields Ns=λ (blue line
and circles), weak fields Nw=λ (yellow line and triangles), the
sum of the reduced pair yield for strong fields and weak fields
ðNs þ NwÞ=λ (green line and inverted triangles), and the en-
hancement factor Nsþw=ðNs þ NwÞ (black dashed line) as a
function of the field width λ (¼ λs ¼ λw). The right arrow
indicates the axis corresponding to the enhancement factor.
(b) Reduced momentum spectra for the combined electric fields
with λ ¼ 3; 5; 10; 30; 100=mc. Other field parameters are
ωs ¼ 0.02mc2, ωw ¼ 0.5mc2, τ ¼ 10=mc2, and ϕ ¼ 0.
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It can be seen from Fig. 3(a) that for combined fields the
pair yield first increases rapidly and then linearly with the
field width. The variation of pair yield with the field width
for strong low-frequency fields is similar to that for the
combined fields, but when the field width is small enough,
the pair creation will decrease sharply with decreasing the
field width and terminate. This is because for tunneling pair
creation only the work done by the electric field force is
greater than or equal to the vacuum energy gap 2mc2 that it
can pull apart the virtual particle-antiparticle pair in vacuum
to create a pair of real particles. For weak high-frequency
fields, the pair yield changes gently with the increase of
field width, and there is not the phenomenon that the pair
yield drops dramatically with the field width and vanishes.
The reason is that the pair production for a weak high-
frequency field is dominated by multiphoton absorption
process and can occur as long as the total energy of
absorbed photons is greater than or equal to the energy
gap 2mc2. Of course, this requires that the electric field can
provide enough photons. Due to the fact that the number of
photons decreases with decreasing the total energy of
electric field, the multiphoton pair production process
will also terminate once the electric field cannot provide
enough photons.
The study of the enhancement factor finds that with the

increase of field width the enhancement factor decreases
from about 3000 to about 40, i.e., the enhancement effect of
pair creation becomes weaker and weaker with the increase
of field width. In fact, further study shows that when the
field width is small enough, the enhancement factor will
also decrease with decreasing the field width, and there will
be one or two maximum values near the thresholds of field
width corresponding to strong fields and weak fields.
Notice here that the threshold of field width is the critical
value of field width determining the initiation and termi-
nation of pair production. Since pair creation process near
the threshold is very sensitive to the change of total energy
of electric fields, and for a smaller field width the pair yield
decreases sharply with the decrease of the field width and
finally vanishes, the increase of electric field energy near
the threshold of field width can restart the terminated pair
creation and leads to a maximum enhancement of pair
production. However, as the field width continues to
decrease, the pair creation for combined fields also termi-
nates and the enhancement effect vanishes. Our results are
different from those in Fig. 6 of Ref. [56], where the
maximum enhancement factor is less than 2.5 and the
enhancement effect is very limited. This is mainly because
the field types we considered are different and the enhance-
ment effect depends on the choice of field parameters.
Based on this, in order to further improve pair yield, the
field parameters must be optimized.
The reduced momentum spectra for the combined

electric fields with λ ¼ 3; 5; 10; 30; 100=mc are shown in
Fig. 3(b). One can see that with the increase of field width

the reduced momentum spectrum becomes higher and
wider, and its center moves to large momentum. These
change fast for λ < 10=mc and slowly for λ ≥ 10=mc. The
reason for these changes is roughly consistent with the
result of pair creation for only a single strong field with
spatial inhomogeneity in [25]. However, the momentum
spectrum does not show the phenomenon of particle self-
bunching with the change of the field width, which also
holds true for single strong fields with certain parameters.
That is to say, the particle self-bunching phenomenon is not
universal in pair production for a spatially inhomogeneous
electric field, and it is sensitive to the type of electric fields
and field parameters.

2. λs > λw
In Fig. 4(a), we plot the pair yield for combined electric

fields Nsþw (red line and squares), strong fields Ns (blue
line and circles), weak fieldsNw (yellow line and triangles),
the sum of the pair yield for strong fields and weak fields
Ns þ Nw (green line and inverted triangles), and the
enhancement factor Nsþw=ðNs þ NwÞ (black dashed line)
as a function of the field width λs. Note that the field width
of weak fields λw ¼ 3=mc is fixed, and the field width of
strong fields can change. Moreover, the reduced pair yield
and momentum spectrum are not adopted in Fig. 4 as well
as in Fig. 5 because they cannot be well defined, but this
does not affect the comparison of enhancement factors.
As can be seen from Fig. 4(a), although the pair yield for

strong fields grows linearly with increasing the field width
of strong fields for large field width, it is not linear for
combined fields and the pair yield increases more and more
slowly with the field width, because the dynamical assis-
tance only works in the superposition region of weak fields
and strong fields beyond which pair production is severely

(a) (b)

FIG. 4. (a) Pair yield for combined electric fields Nsþw (red line
and squares), strong fields Ns (blue line and circles), weak fields
Nw (yellow line and triangles), the sum of the pair yield for strong
fields and weak fields Ns þ Nw (green line and inverted trian-
gles), and the enhancement factor Nsþw=ðNs þ NwÞ (black
dashed line) as a function of the field width λs. The right arrow
indicates the axis corresponding to the enhancement factor.
(b) Momentum spectra for the combined electric fields with
λs ¼ 5; 10; 20; 30=mc. Other field parameters are λw ¼ 3=mc,
ωs ¼ 0.02mc2, ωw ¼ 0.5mc2, τ ¼ 10=mc2, and ϕ ¼ 0.
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suppressed. When the field width reaches 30=mc, the pair
yield can increase to 7.6 × 10−6, but it is much less than the
pair yield 4 × 10−5 in the case of λs ¼ λw ¼ 30=mc.
Furthermore, with the increase of the field width of strong
fields, the enhancement factor decreases from about 700 to
about 8, which is also always much smaller than the case
that the field widths of weak fields and strong fields are
equal. From Fig. 4(b), it can be seen that the characteristics
of the momentum spectrum are similar to those in the case
of λs ¼ λw. This is because in both cases the strong low-
frequency field plays a dominant role in the pair creation,
and the influence of the weak high-frequency field is
insignificant.

3. λs < λw
When the field width of strong fields λs ¼ 3=mc is fixed

and the field width of strong fields changes, the pair yield
for combined electric fields Nsþw (red line and squares),
strong fields Ns (blue line and circles), weak fields Nw
(yellow line and triangles), the sum of the pair yield for
strong fields and weak fields Ns þ Nw (green line and
inverted triangles), and the enhancement factor Nsþw=
ðNs þ NwÞ (black dashed line) as a function of the field
width λw are drawn in Fig. 5(a).
Similar to the result in the case of λs > λw, although the

pair yield increases linearly with the increase of the field
width of weak fields for large field width, the growth of pair
yield for combined fields is not linear and the pair yield
remains nearly constant. In this case, the maximum pair
yield is 1.4 × 10−5 which is still smaller than 4 × 10−5 in
the case of λs ¼ λw ¼ 30=mc, and the enhancement factor
decreases from about 2500 to about 400 with increasing the
field width of weak fields. However, this time the enhance-
ment effect for larger field widths of weak fields is much

stronger than that in the case of λs ¼ λw. And because
when ωs ¼ 0 and λw ¼ 30=mc, the combined field can be
approximately a superposition field of a strong static field
and a spatially uniform but fast oscillating field, it means
that the combination of strong static fields and weak high-
frequency fields with spatial homogeneous is more effec-
tive for enhancing pair production.
The momentum spectrum of created pairs for combined

fields in Fig. 5(b) shows that its maximum value grows
continuously with increasing the field width of weak fields.
For small field widths the maximum value increases
rapidly, while for large field widths the growth slows down
to almost zero, which is consistent with the trend of the
relation between pair yield and the field width of weak
fields. Moreover, the momentum spectrum has only one
peak, and its centre does not change with the field width.
This can be understood as follows. Particles created from
vacuum in the presence of a single weak high-frequency
field can be accelerated in the direction of positive and
negative z-axis and two peaks form in the momentum
spectrum. However, when the weak field combines with a
strong low-frequency field the pair creation will be domi-
nated by the combined field near its maximum values
Eðz ¼ 0; t ¼ 0Þ ¼ 0.25Ecr, and the created particles can
only be accelerated in one direction and only one peak
forms in the momentum spectrum. Since the weak field is
so weak that it has little contribution to the acceleration of
created particles especially beyond the superposition region
of strong fields and weak fields, the center of momentum
spectrum is almost unchanged with the field width. Note
that these results are not a universal phenomenon, and they
are related to the choice of field parameters.
In the above three cases, all the enhancement factors

decrease with the increase of variable field width. When the
field width of weak fields is fixed, the change of field width
of strong fields has a great effect on the enhancement factor
(from 700 to 8). When the field width of strong fields is
fixed, the change of the field width of weak fields has a
little effect on the enhancement factor (from 2500 to 400).
When the field widths of strong and weak fields change at
the same time, the enhancement factor changes between the
above two cases. So a strong static field combines with a
spatially homogeneous and time varying field can better
enhance pair creation process.

C. Effect of the pulse duration on DASPP

To study the effect of pulse durations on DASPP, the pair
yield for combined electric fields Nsþw (red line and
squares), strong fields Ns (blue line and circles), weak
fields Nw (yellow line and triangles), the sum of the pair
yield for strong fields and weak fields Ns þ Nw (green line
and inverted triangles), and the enhancement factor Nsþw=
ðNs þ NwÞ (black dashed line) as a function of the
pulse duration τ are plotted in Fig. 6(a). The momentum

(a) (b)

FIG. 5. Pair yield for combined electric fields Nsþw (red line
and squares), strong fields Ns (blue line and circles), weak fields
Nw (yellow line and triangles), the sum of the pair yield for strong
fields and weak fields Ns þ Nw (green line and inverted trian-
gles), and the enhancement factor Nsþw=ðNs þ NwÞ (black
dashed line) as a function of the field width λw. The right arrow
indicates the axis corresponding to the enhancement factor.
(b) Momentum spectra for the combined electric fields with
λw ¼ 5; 10; 20; 30=mc. Other field parameters are λs ¼ 3=mc,
ωs ¼ 0.02mc2, ωw ¼ 0.5mc2, τ ¼ 10=mc2, and ϕ ¼ 0.
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spectra for the combined electric fields with τ ¼
5; 10; 50; 100=mc2 are shown in Fig. 6(b).
From Fig. 6(a), we find that with the increase of pulse

duration the pair yield for strong, weak, and combined
fields first increases, then decreases and increases again,
which means that there is a maximum value and a minimum
value. The overall trend of the relation between pair
yield and the pulse duration is similar to the result for a
spatially homogeneous and time-dependent Sauter pulse
shown in [52] and the effect of spatial inhomogeneity is not
obvious. Specifically, when τ ≤ 5=mc2, the strong, weak,
and combined fields can be approximately regarded as
spatially uniform and time-varying Sauter fields, so the
trend of the relation between pair yield and the pulse
duration is basically the same as previous results. When
5=mc2 < τ < 30=mc2, despite the effect of spatial inho-
mogeneity, the overall trend is similar to that for Sauter
pulses. When τ ≥ 30=mc2, the pair yield gradually slows
down with the increase of pulse duration and do not meet
the linear relationship found in Fig. 5–10 of Ref. [65],
which is mainly affected by field profiles. Studying the
relation between the enhancement factor and the pulse
duration, it is found that when τ ≤ 1=mc2 the enhancement
factor is less than two and almost does not change with the
pulse duration, because pair creation is dominated by
the pulse duration at this time, and the dynamically
assisted mechanism fails. When 1=mc2 < τ ≤ 10=mc2,
the enhancement factor increases sharply to about 60 with
increasing the pulse duration. When τ > 10=mc2, the trend
becomes slow, reaching about 80 at τ ¼ 100=mc2, and the
pair yield is enhanced by nearly two orders of magnitude.
This means that the increase of pulse width is more
effective to enhance pair production. Moreover, the local
minimum near τ ¼ 18=mc2 is caused by the different pulse

durations corresponding to the minimum values of pair
yield for strong fields and weak fields.
The momentum spectrum in Fig. 6(b) shows that the

trend of the relation between its maximum value and the
pulse duration is similar to that between pair yield and
the pulse duration, that is, it first increases, then decreases
and increases again. In addition, when τ ≤ 30=mc2, the
momentum spectrum shifts continually to the larger
momentum with the increase of the pulse duration. In
particular, when τ ≤ 5=mc2 the center of momentum
spectrum can be determined by qEsτ, because the strong
field, the weak field and the combined field can be
approximately regarded as a spatially homogeneous and
time-dependent Sauter pulse. The reason for the above
finding is that with the increase of the pulse duration, the
duration time of electric fields becomes increasingly long,
and the produced particles will gain a longer time to
accelerate, which finally makes the momentum spectrum
keep shifting to the larger momentum. When τ > 30=mc2,
the center and width of the momentum spectrum is almost
not change with the increase of pulse duration. This result
can be explained as follows. Due to the limitation of the
spatial extent of electric fields, the created particles after
being accelerated for a period of time will run out of the
electric field region, and can no longer be accelerated.
Therefore, even if the duration time of electric fields
increases continuously, particles will not be accelerated
to a larger momentum. Furthermore, for a larger pulse
duration, the acceleration of the particles is basically the
same from the time when the particles are produced at the
maximum field strength to the time when the particles are
accelerated out of the electric field region, so the center and
the width of momentum spectrum almost does not change
with increasing the pulse duration.

D. Effect of the relative phase on DASPP

The pair yield for combined electric fields Nsþw (red line
and squares), strong fields Ns (blue line and circles), weak
fields Nw (yellow line and triangles), the sum of the pair
yield for strong fields and weak fields Ns þ Nw (green line
and inverted triangles), and the enhancement factor
Nsþw=ðNs þ NwÞ (black dashed line) as a function of
the relative phase ϕ are given to explore the effect of
the relative phase on DASPP. Note that ϕ is the relative
carrier envelope phase and the initial phase of the strong
field is set to 0, so the pair yield does not change with ϕ for
the strong field. For a single weak field, however, the pair
yield oscillates with ϕ with the period π, but this change is
so small that it can hardly be seen from Fig. 7(a).
For combined fields, it is found that the pair yield is

greatly increased and changes with the relative phase with
the period 2π. It achieves the minimum value 3.6 × 10−6 at
ϕ ¼ π and the maximum value 1.2 × 10−5 at ϕ ¼ 0 or 2π.
Moreover, the enhancement factor also varies with the
relative phase with the period 2π. Its minimum value is

(a) (b)

FIG. 6. Pair yield for combined electric fields Nsþw (red line
and squares), strong fields Ns (blue line and circles), weak fields
Nw (yellow line and triangles), the sum of the pair yield for strong
fields and weak fields Ns þ Nw (green line and inverted trian-
gles), and the enhancement factor Nsþw=ðNs þ NwÞ (black
dashed line) as a function of the pulse duration τ. The right
arrow indicates the axis corresponding to the enhancement
factor. (b) Momentum spectra for the combined electric
fields with τ ¼ 5; 10; 50; 100=mc2. Other field parameters are
λs ¼ λw ¼ 10=mc, ωs ¼ 0.02mc2, ωw ¼ 0.5mc2, and ϕ ¼ 0.
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about 20 achieved at ϕ ¼ π and the maximum value is
about 63 achieved at ϕ ¼ 0 or 2π. This indicates that the
relative phase between strong fields and weak fields has an
obvious enhancement effect on the pair creation process.
Here it is easy to understand that the pair yield and
enhancement factor haveminimumvalues atϕ ¼ π, because
at this time, when the strong fields and weak fields reach
their maximum values respectively, their directions are
opposite and the maximum field strength of the combined
field becomes 0.2 − 0.05 ¼ 0.15Ecr, which makes the pair
creation process as well as its enhancement become weaker
than those for other values of ϕ.
The momentum spectra for combined electric fields with

ϕ ¼ 0; π=2; π; 3π=2; 2π are plotted in Fig. 7(b). It can be
seen that the cycle of the pair creation process varying with
the relative phase is 2π rather than π, because the
momentum spectra for ϕ ¼ π=2 and ϕ ¼ 3π=2 are different
from each other, while for ϕ ¼ 0 and ϕ ¼ 2π they are the
same. Moreover, we also find that the center of the
momentum spectrum is on the right for ϕ ¼ π=2 and on
the left for ϕ ¼ 3π=2 comparing with that for ϕ ¼ 0, and
the momentum spectrum has two peaks for ϕ ¼ π. To
explain this result, we must start from the configuration of
the combined field. When ϕ ¼ π=2, the maximum value of
the combined field appears at t < 0, so the created particles
will be accelerated in the electric field for a long time.
However, when ϕ ¼ 3π=2, the maximum value of the
combined field appears at t > 0, the created particles can
only be accelerated for a short time. This eventually leads to
the deviation of the center of momentum spectrum in
different directions. In the case of ϕ ¼ π, the maximum
values of the combined field are symmetrically distributed
at t < 0 and t > 0, and the particles produced at the

maximum value of t < 0 can be accelerated much longer
than that at t > 0, which forms two peaks in the momentum
spectrum, one on the right and the other on the left. The
reason why the peak value on the right is smaller than that
on the left is mainly due to the influence of the spatial
inhomogeneity of electric fields, which makes the right
peak wider and lower.

IV. CONCLUSIONS AND DISCUSSIONS

In summary, the equivalence between the CQFT and the
QKT for pair creation in arbitrary spatially uniform and
time-varying electric fields is proved theoretically first,
and then it is generalized numerically to one-dimensional
time-dependent electric fields. Finally, the effect of field
parameters on the dynamically assisted Schwinger pair
production in inhomogeneous two-color electric fields is
investigated by employing the CQFT approach.
The study of the effect of field frequencies on the DASPP

shows that the pair production can be enhanced three orders
of magnitude for appropriate field frequency, but some-
times it can also be suppressed. For the effect of field
widths, the enhancement of pair creation increases with the
decrease of variable field width and can be improved three
orders of magnitude as well for small field widths. When
the field width of strong fields is less than that of weak
fields, the enhancement of pair creation has a relatively
small change with increasing the field width and it can still
be improved two orders of magnitude for large field widths.
Note that when the field width becomes very small the
enhancement factor varying with the field width may have
one or two maximum values for some field parameters
due to the existence of threshold widths of strong fields
and weak fields. For the effect of pulse durations, the
enhancement of pair creation grows with the increase of
pulse duration and can be improved nearly two orders of
magnitude. For the effect of relative phases, the enhance-
ment of pair creation increases with the pulse duration
and can also be improved nearly two orders of magnitude,
which indicates that the relative phase is also a significant
field parameter to affect the pair creation process. These
results indicate that the DASPP still holds true for spatially
inhomogeneous electric fields and provide abundant
information for the forthcoming optimal theory which
can globally maximize the pair yield in spatially inhomo-
geneous electric fields within certain range of field
parameters.
The study of the effect of the field width, the pulse

duration, and the relative phase on momentum spectrum of
created pairs further deepens our understanding of impor-
tant characteristics of pair creation in combined fields.
Analyzing the momentum spectrum, it is also found that
there is no obvious multiphoton peak structure in it. This is
mainly due to the limitation of the field strength and the
pulse duration of weak fields. On the one hand, the field
strength of weak high-frequency fields is so small that the

(a) (b)

FIG. 7. Pair yield for combined electric fields Nsþw (red line
and squares), strong fields Ns (blue line and circles), weak
fields Nw (yellow line and triangles), the sum of the pair yield for
strong fields and weak fields Ns þ Nw (green line and inverted
triangles), and the enhancement factor Nsþw=ðNs þ NwÞ (black
dashed line) as a function of the relative phase ϕ. The right
arrow indicates the axis corresponding to the enhancement
factor. (b) Momentum spectra for the combined electric
fields with ϕ ¼ 0; π=2; π; 3π=2; 2π. Other field parameters
are λs ¼ λw ¼ 10=mc, ωs ¼ 0.02mc2, ωw ¼ 0.5mc2, and
τ ¼ 10=mc2.
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pair yield produced by absorbing a larger number of
photons is very low, which is difficult to be reflected.
On the other hand, since the presence of multiphoton peaks
in the momentum spectrum needs enough numbers of
oscillation periods in the electric field envelope, and for a
given field frequency the number of cycles reduces with
decreasing the pulse duration, multiphoton peaks will not
appear for a very small pulse duration. Therefore, the
exploration of the momentum spectrum with multiphoton
peaks in DASPP will be a research focus in our future work.
In addition, due to the fact that the equivalence between

the CQFT and the QKT for pair creation in time-dependent
electric fields and one-dimensional time-varying electric
fields in spinor QED has been proved, and can be easily
generalized to the scalar QED, the generalization of this
equivalence to high-dimensional time-varying electric
fields with or without magnetic fields is a very feasible
work and will also be studied in future.
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APPENDIX A: QUANTUM VLASOV EQUATION

For a spatially homogeneous and time-dependent electric
field with temporal gauge Aμðx; tÞ ¼ ð0;−AðtÞ=cÞ ¼
ð0; 0; 0;−AzðtÞ=cÞ and EzðtÞ ¼ −dAzðtÞ=dt, equation (1)
is reduced to

fiγ0∂t þ iγ · ½c∇ − iqAðtÞ� −mc2gΨðx; tÞ ¼ 0: ðA1Þ

Furthermore, the Dirac field can be expanded into Fourier
modes as

Ψðx; tÞ ¼
Z

d3k
ð2πÞ3ΨkðtÞeik·x; ðA2Þ

where k is the canonical momentum and the Fourier modes
ΨkðtÞ satisfy

½iγ0∂t − γ · cpðtÞ −mc2�ΨkðtÞ ¼ 0; ðA3Þ

where pðtÞ ¼ k − qAðtÞ=c is the kinetic momentum.
Supposing

ΨkðtÞ ¼ ½iγ0∂t − γ · cpðtÞ þmc2�ψkðtÞ; ðA4Þ

and then substituting it into Eq. (A3), we have

½∂2
t þ ω2

kðtÞ þ iqEzðtÞγ0γ3�ψkðtÞ ¼ 0; ðA5Þ

where ωkðtÞ ¼ ½ðck − qAðtÞÞ2 þm2c4�1=2 is the total
energy of particles.
Expanding ψkðtÞ in terms of the eigenvectors of γ0γ3 as

ψkðtÞ ¼
X4
s¼1

χskðtÞRs; ðA6Þ

where R1 ¼ 1ffiffi
2

p ð1 0 1 0ÞT, R2 ¼ 1ffiffi
2

p ð0 1 0 − 1ÞT, R3 ¼
1ffiffi
2

p ð1 0 − 1 0ÞT, and R4 ¼ 1ffiffi
2

p ð0 1 0 1ÞT are the eigenvectors
and satisfy γ0γ3Rs¼f1;2g ¼ þ1Rs¼f1;2g, γ0γ3Rs¼f3;4g ¼
−1Rs¼f3;4g and R†

rRs ¼ δrs, and inserting the above equa-
tion into Eq. (A5), we obtain

½∂2
t þ ω2

kðtÞ þ iqEzðtÞ�χs¼f1;2g
k ðtÞ ¼ 0;

½∂2
t þ ω2

kðtÞ − iqEzðtÞ�χs¼f3;4g
k ðtÞ ¼ 0: ðA7Þ

These four equations are overdetermined and can be
removed by choosing s¼f1;2g or s ¼ f3; 4g. Here we
use the former one and redefine χþk ðtÞ ¼ χ1kðtÞ and χ−kðtÞ ¼
χ2kðtÞ.
Then the field operator at time t can be expressed as

Ψðx; tÞ ¼
Z

d3k
ð2πÞ3

X2
s¼1

½bk;suk;sðtÞ þ d†−k;sv−k;sðtÞ�eik·x;

ðA8Þ
by virtue of the time-independent annihilation operator of
particles bk;s and creation operator of antiparticles d†−k;s,
which fulfil the standard fermionic anticommutation rela-
tions, where

uk;sðtÞ ¼ ½iγ0∂t − γ · cpðtÞ þmc2�χþk ðtÞRs;

v−k;sðtÞ ¼ ½iγ0∂t − γ · cpðtÞ þmc2�χ−kðtÞRs; ðA9Þ

are positive and negative energy states, respectively. Note
that Eqs. (A8) and (A9) can be obtained by the time
evolution of the force-free positive and negative energy
states

uk;sðt0Þ ¼ ½γ0ωk − γ · ckþmc2�e−iωkt0Rs;

v−k;sðt0Þ ¼ ½−γ0ωk − γ · ckþmc2�eþiωkt0Rs; ðA10Þ
according to the Dirac equation for spatially homogeneous
electric fields Eq. (A3).
Calculating the Hamiltonian from the energy-momentum

tensor, it is found that the Hamiltonian in the presence
of an electric field is off-diagonal, which indicates that
the interpretation of particles and antiparticles is not
feasible because of the mixture of positive and negative
energy modes. In order to give a meaningful interpreta-
tion of particles and antiparticles, one can diagonalize
the Hamiltonian by a time-dependent Bogoliubov
transformation,
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b̃k;sðtÞ ¼ αkðtÞbk;s − β�kðtÞd†−k;s;
d̃†−k;sðtÞ ¼ βkðtÞbk;s þ α�kðtÞd†−k;s; ðA11Þ

with the only nonzero anticommutators fb̃k;rðtÞ;b̃†k0;sðtÞg¼
fd̃k;rðtÞ;d̃†k0;sðtÞg¼ð2πÞ3δrsδðk−k0Þ and jαkðtÞj2 þ
jβkðtÞj2 ¼ 1. This transformation is equivalent to expand-
ing the field operator in the adiabatic basis, ũk;sðtÞ and
ṽ−k;sðtÞ, i.e.,

Ψðx;tÞ¼
Z

d3k
ð2πÞ3

X2
s¼1

½b̃k;sðtÞũk;sðtÞþ d̃†−k;sðtÞṽ−k;sðtÞ�eik·x;

ðA12Þ
where

ũk;sðtÞ ¼ ½γ0ωkðtÞ − γ · cpðtÞ þmc2�χ̃þk ðtÞRs;

ṽ−k;sðtÞ ¼ ½−γ0ωkðtÞ − γ · cpðtÞ þmc2�χ̃−kðtÞRs; ðA13Þ

with the adiabatic mode functions

χ̃�k ðtÞ ¼
e∓iΘkðt0;tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðtÞ½ωkðtÞ ∓ cpzðtÞ�
p ; ðA14Þ

the dynamical phase Θkðt0; tÞ ¼
R
t
t0
dτωkðτÞ, and

ũ†k;rðtÞũk;sðtÞ ¼ ṽ†−k;rðtÞṽ−k;sðtÞ ¼ δrs, ũ†k;rðtÞṽ−k;sðtÞ ¼
ṽ†−k;rðtÞũk;sðtÞ ¼ 0. For convenience, we also show the
matrix form of the adiabatic basis,

ũk;1ðtÞ ¼
1ffiffiffi
2

p

0
BBB@

ωkðtÞ þmc2 − cpzðtÞ
−cðpx þ ipyÞ

−ωkðtÞ þmc2 þ cpzðtÞ
cðpx þ ipyÞ

1
CCCAχ̃þk ðtÞ;

ũk;2ðtÞ ¼
1ffiffiffi
2

p

0
BBB@

cðpx − ipyÞ
ωkðtÞ þmc2 − cpzðtÞ

cðpx − ipyÞ
ωkðtÞ −mc2 − cpzðtÞ

1
CCCAχ̃þk ðtÞ;

ṽ−k;1ðtÞ ¼
1ffiffiffi
2

p

0
BBB@

−ωkðtÞ þmc2 − cpzðtÞ
−cðpx þ ipyÞ

ωkðtÞ þmc2 þ cpzðtÞ
cðpx þ ipyÞ

1
CCCAχ̃−kðtÞ;

ṽ−k;2ðtÞ ¼
1ffiffiffi
2

p

0
BBB@

cðpx − ipyÞ
−ωkðtÞ þmc2 − cpzðtÞ

cðpx − ipyÞ
−ωkðtÞ −mc2 − cpzðtÞ

1
CCCAχ̃−kðtÞ: ðA15Þ

Therefore, the particle number density of created pairs for
a given canonical momentum k can be defined as

FkðtÞ ¼ lim
V→∞

X2
s¼1

hvacjb̃†k;sðtÞb̃k;sðtÞjvaci
V

¼ 2jβkðtÞj2;

ðA16Þ

which is also the definition of the one-particle distribution
function. Note that the simple sum over both spin indices
is based on the fact that there is no spin preference in the
system with vanishing magnetic fields.
The next thing is to determine the Bogoliubov trans-

formation coefficient βkðtÞ. Inserting Eq. (A11) into
Eq. (A12) and comparing with Eq. (A8), we obtain

uk;sðtÞ ¼ αkðtÞũk;sðtÞ þ βkðtÞṽ−k;sðtÞ;
v−k;sðtÞ ¼ −β�kðtÞũk;sðtÞ þ α�kðtÞṽ−k;sðtÞ: ðA17Þ

Substituting Eqs. (A9) and (A15) into the above equations,
it finds

αkðtÞ ¼ ũ†k;sðtÞuk;sðtÞ ¼ ½ṽ†−k;sðtÞv−k;sðtÞ��
¼ iϵ⊥χ̃−kðtÞ½∂t − iωkðtÞ�χþk ðtÞ;

βkðtÞ ¼ ṽ†−k;sðtÞuk;sðtÞ ¼ −½ũ†k;sðtÞv−k;sðtÞ��
¼ −iϵ⊥χ̃þk ðtÞ½∂t þ iωkðtÞ�χþk ðtÞ; ðA18Þ

where s denotes a specific spin here and ϵ⊥ ¼ðc2k2⊥þ
m2c4Þ1=2 ¼ ½c2ðk2xþk2yÞþm2c4�1=2 is the transverse energy.
Then the time derivatives of the Bogoliubov coefficients are

_αkðtÞ ¼
1

2
WkðtÞβkðtÞe2iΘkðt0;tÞ;

_βkðtÞ ¼ −
1

2
WkðtÞαkðtÞe−2iΘkðt0;tÞ: ðA19Þ

where dot denotes the total time derivative and WkðtÞ ¼
cqEzðtÞϵ⊥=2ω2

kðtÞ.
With the help of the adiabatic particle correlation

function

CkðtÞ ¼ lim
V→∞

X2
s¼1

hvacjd̃†−k;sðtÞb̃†k;sðtÞjvaci
V

¼ 2α�kðtÞβkðtÞ; ðA20Þ

one can derive the quantum Vlasov equation in integral-
differential form,

_FkðtÞ ¼ WkðtÞ
Z

t

t0

dt0Wkðt0Þ½1 − Fkðt0Þ� cos½2Θkðt0; tÞ�;

ðA21Þ

with Θkðt0; tÞ ¼
R
t
t0 dτωkðτÞ and the vacuum initial con-

dition Fkð−∞Þ ¼ 0.
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The total number of density of created pairs is

N ðtÞ ¼
Z

d3k
ð2πÞ3 FkðtÞ: ðA22Þ

From the derivation of QVE, it is found that any
complete basis of spinors that can diagonalize the
Hamiltonian is able to give a definition of particles, which
leads to that the definition of particles during the existence
of external electric fields is not unique and has no clear
physical meaning. So all of the particles defined during the
interaction time are interpreted as quasiparticles which are a
mixture of real particles and virtual particles. However, no
matter how to define the quasiparticles, all of them will
become real particles and give the same and definite
number density of created pairs when the electric fields
vanishes at t → þ∞ [38,62]. Therefore, the application of
QVE is not limited by adiabatic conditions though the
adiabatic basis is used in its derivation. However, if the
instantaneous energy of particles ωkðtÞ varies slowly,
the definition in Eq. (A16) can have an interpretation of
adiabatic particle number during the interaction time,
otherwise it should be interpreted as quasiparticle number.

APPENDIX B: DHW FORMALISM IN QED1 + 1

In this appendix, we briefly derive the equal-time DHW
formalism in QED1þ1 from that in QED3þ1.
For a one-dimensional time-dependent electromagnetic

field with temporal gauge Aμðx; tÞ ¼ ð0;−Aðx; tÞ=cÞ, the
electric and magnetic fields are

Eðx; tÞ¼−
1

c
∂
∂tAðx; tÞ; Bðx; tÞ¼∇×Aðx; tÞ: ðB1Þ

The Wigner function is defined as the vacuum expectation
value of the Wigner operator which is the Fourier transform
of the equal-time commutator of two Dirac field operators
in the Heisenberg picture Cðx; r; tÞ with respect to the
relative coordinate r,

Wðx;p; tÞ¼
Z

d3re−ip·rCðx;r; tÞ

¼
Z

d3re−ip·re
−iqc

R
1=2

−1=2
dξAðxþξr;tÞ·r

×

�
vac

����12
�
Ψ̄
�
x−

r
2
; t

�
;Ψ

�
xþ r

2
; t

������vac
	
:

ðB2Þ

where x is the center-of-mass coordinate. The second
exponential function in the integrand on the right hand
side of Eq. (B2) is called Wilson line factor which is
introduced to keep gauge invariance. Furthermore, a
straight line is chosen as the integration path in this factor
to introduce a well defined kinetic momentum p. Note that

a Hartree approximation is used here, so the electromag-
netic field is treated as a C-number field instead of a
Q-number one.
Taking the time derivative of Eq. (B2) and applying the

Dirac equation Eq. (A1) with AðtÞ replaced by Aðx; tÞ, we
can obtain the equation of motion for the Wigner function

DtW ¼ −
c
2
D · ½γ0γ;W� − icΠ · fγ0γ;Wg − imc2½γ0;W�;

ðB3Þ

whereDt,D andΠ denote the pseudo-differential operators

Dt ¼ ∂t þ q
Z

1=2

−1=2
dξEðxþ iξ∂p; tÞ · ∂p;

D ¼ ∇þ q
Z

1=2

−1=2
dξBðxþ iξ∂p; tÞ × ∂p;

Π ¼ p − iq
Z

1=2

−1=2
dξξBðxþ iξ∂p; tÞ × ∂p: ðB4Þ

The Wigner function Wðx;p; tÞ can be expanded in
terms of a complete basis set f1; γ5; γμ; γμγ5; σμν ≕
i
2
½γμ; γν�g and 16 irreducible components (DHW functions),

scalar sðx;p; tÞ, pseudoscalar pðx;p; tÞ, vector vμðx;p; tÞ,
axialvector aμðx;p; tÞ and tensor tμνðx;p; tÞ as

Wðx;p; tÞ ¼ 1

4
ð1sþ iγ5pþ γμvμ þ γμγ5aμ þ σμνtμνÞ:

ðB5Þ

Substituting the above decomposition into Eq. (B3), we
obtain a partial differential equation system for the 16
DHW functions as

Dts − 2cΠ · t1 ¼ 0 ðB6Þ

Dtpþ 2cΠ · t2 ¼ 2mc2a0 ðB7Þ

Dtv0 þ cD · v ¼ 0 ðB8Þ

Dta0 þ cD · a ¼ 2mc2p ðB9Þ

Dtv þ cDv0 þ 2cΠ × a ¼ −2mc2t1 ðB10Þ

Dtaþ cDa0 þ 2cΠ × v ¼ 0 ðB11Þ

Dtt1 þ cD × t2 þ 2cΠs ¼ 2mc2v ðB12Þ

Dtt2 − cD × t1 − 2cΠp ¼ 0 ðB13Þ

with

ðt1Þi ¼ 2ti0 ¼ 2t0i; ðt2Þi ¼ ϵijktjk: ðB14Þ
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For a 1þ 1 dimensional electromagnetic field with
vanishing magnetic field Aμðx; tÞ ¼ ð0; 0; 0;−Azðz; tÞ=cÞ
where Ezðz; tÞ ¼ −∂Azðz; tÞ=ðc∂tÞ, there are only two
4 × 4 Dirac gamma matrices, γ0 and γ1. Thus, the decom-
position Eq. (B5) is reduced to

Wðz; pz; tÞ ¼
1

4
ð1sþ γ0v0 þ γ1vz þ iγ0γ1t1zÞ: ðB15Þ

Correspondingly, the DHW functions p, a0, a and t2 in
Eqs. (B6)–(B13) vanish. So we obtain the DHW formalism
in QED1þ1,

Dts − 2cpzt1z ¼ 0; ðB16Þ

Dtv0 þ c∂zvz ¼ 0; ðB17Þ

Dtvz þ c∂zv0 ¼ −2mc2t1z; ðB18Þ

Dtt1z þ 2cpzs ¼ 2mc2vz; ðB19Þ

where

Dt ¼ ∂t þ q
Z

1=2

−1=2
dξEzðzþ iξ∂pz

; tÞ∂pz
ðB20Þ

is the reduced nonlocal operator and the vacuum initial
conditions are

svacðpzÞ ¼ −
2mc2

ωðpzÞ
; vvacz ðpzÞ ¼ −

2cpz

ωðpzÞ
; ðB21Þ

with ωðpzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2p2

z þm2c4
p

. Furthermore, the 4 × 4
Wigner function in QED1þ1 can be further reduced to a
2 × 2 one, and the only changes are Eqs. (B15) and (B21).
They become

Wðz; pz; tÞ ¼
1

2
ð1sþ σzv0 þ iσyvz þ iσxt1zÞ; ðB22Þ

and

svacðpzÞ ¼ −
mc2

ωðpzÞ
; vvacz ðpzÞ ¼ −

cpz

ωðpzÞ
: ðB23Þ

The particle number density in the coordinate space and
the momentum space is defined as

fðz; tÞ ¼
Z

dpz

2π
fðz; pz; tÞ;

fðpz; tÞ ¼
Z

dzfðz; pz; tÞ ðB24Þ

with the phase space distribution function

fðz; pz; tÞ ¼
1

ωðpzÞ
fmc2½sðz; pz; tÞ − svacðpzÞ�

þ cpz½vzðz; pz; tÞ − vvacz ðpzÞ�g: ðB25Þ
Note that this definition is based on the 2 × 2 Wigner
function [see Eqs. (B22) and (B23)]. If one prefers to use
the 4 × 4Wigner function, then the phase space distribution
function should be divided by two.
The total number of created particles is

NðtÞ ¼
Z

dpz

2π
fðpz; tÞ ¼

Z
dzfðz; tÞ: ðB26Þ

Finally, the particle number density and pair yield can be
obtained by numerically solving Eqs. (B16)–(B19) with the
vacuum initial conditions Eq. (B23) employing spectral
methods [65–67]. In addition, it should be noted that in
order to compare with the CQFT where only one spin
direction is considered, we divide the particle number
density in momentum space and the total number of created
particles by two in our final results, because the particle
number density defined in Eq. (B24) includes electrons as
well as positrons.
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