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We perform a systematic study on the interactions of the Σð�Þ
c Dð�Þ systems within the framework of chiral

effective field theory. We introduce the contact term, one-pion-exchange and two-pion-exchange
contributions to describe the short-, long-, and intermediate-range interactions. The low energy constants

of the Σð�Þ
c Dð�Þ systems are estimated from the NN̄ scattering data by introducing a quark level Lagrangian.

With three solutions of LECs, all the Σð�Þ
c Dð�Þ systems with isospin I ¼ 1=2 can form bound states, in

which different inputs of LECs may lead to distinguishable mass spectra. In addition, we also investigate

the interactions of the charmed-bottom Σð�Þ
c B̄ð�Þ, Σð�Þ

b Dð�Þ, and Σð�Þ
b B̄ð�Þ systems. Among the obtained bound

states, the bindings become deeper when the reduced masses of the corresponding systems are heavier.

DOI: 10.1103/PhysRevD.103.116017

I. INTRODUCTION

The existence of the qqqqq̄ pentaquarks are proposed
by Gell-Mann and Zweig [1–3] at the birth of the quark
model in 1964. In 2003, the LEPS group [4] reported a
narrow resonance signal at 1540 MeV with S ¼ þ1, called
Θþð1540Þ, whose quark component should be uudds̄.
Although further experiments did not confirm this state
[5], it triggered extensive theoretical and experimental
studies on possible pentaquark states [6,7].
In 2015, the LHCb Collaboration [8,9] measured the

Λ0
b → J=ψK−p decay process and reported two hidden-

charm pentaquarklike states Pcð4380Þ and Pcð4450Þ in the
J=ψp channel, indicating that these two states have a
minimal quark content of uudcc̄. In 2019, the LHCb
Collaboration announced [10] the observation of three
narrow peaks in the J=ψp invariant mass spectrum.
They found that the Pcð4450Þ is actually composed of
two substructures, the Pcð4440Þ and Pcð4457Þ with 5.4σ
significance. Moreover, they also reported a new state
below the ΣcD̄ threshold, namely the Pcð4312Þ with 7.3σ
significance. Before the discovery of the LHCb

Collaboration in 2015, several groups had predicted
[11–13] the existence of molecular pentaquarks.
The LHCb experiments keep giving us surprise.

Very recently, they reported the first evidence of a char-
monium pentaquark candidate with strangeness in the
Ξ−
b → J=ψΛK− decay process [14]. Its mass and

width are determined to be 4458.8� 2.9þ4.7
−1.1 MeV and

17.3� 6.5þ8.0
−5.7 MeV, respectively. However, its signifi-

cance just exceeds 3σ after considering all systematic
uncertainties. Further studies on the P0

cs pentaquark are
still needed. As the strange partner of the Pc pentaquark
states, it has been predicted in Refs. [11,15–20]. Especially,
the mass predicted from chiral effective field theory agrees
very well with the experimental data [18].
Besides the pentaquarks with hidden-charm quark com-

ponents, the existence of the double-charm pentaquarks is
also an interesting topic (see Refs. [21–27] for reviews
of the exotic hadrons). For the double-charm pentaquarks,
two straightforward configurations are the compact ccqqq̄
pentaquarks and ðcqqÞ − ðcq̄Þ baryon-meson molecular
states. Based on the compact pentaquark configuration,
the mass spectra of the pentaquarks with QQqqq̄ (Q ¼ b,
c, and q ¼ u, d, s) quark components were estimated
systematically in the framework of the color-magnetic
interaction model [28]. The authors of Ref. [29] used
similar approach to estimate possible stable pentaquark
states. In addition, the chiral quark model [30] and QCD
sum rule [31] were exploited to analyze the doubly
charmed pentaquark states. For the case of the latter
configuration, some theoretical calculations were per-
formed in the meson exchange models [32–34]. We can
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qualitatively capture some features of the double-charm
pentaquarks from above works, while a systematic study of

the Σð�Þ
c Dð�Þ systems is still absent.

The chiral effective field theory has achieved great
success in describing the interactions of the NN systems
[35–40]. It is also a very useful tool to study the interactions
of the two-body hadron systems with heavy flavors
[18,41–55]. In the framework of heavy hadron chiral
effective theory, we consider the one-pion-exchange,
two-pion-exchange, and contact contributions to account
for the long-, intermediate-, and short-range interactions of

the Σð�Þ
c Dð�Þ systems, respectively. Among them, the one-

pion-exchange diagrams can be easily calculated with the
standard procedure. For the two-pion-exchange box dia-
grams, Weinberg [56,57] suggested that we should only
consider the contributions from two-particle-irreducible
(2PI) graphs, since the two-particle-reducible (2PR) part
can be recovered by inserting the one-pion-exchange
potentials into the nonperturbative iterative equations.
This treatment can be done with the help of the princi-
ple-value integral method. For the low energy constants
(LECs) associated with the contact terms, generally, they
should be fixed from the experimental scattering data or
lattice QCD simulations. In Refs. [18,53,54], we proposed
an approach which can relate the contact effective poten-
tials derived at the hadron level to those derived at the quark
level, so that the LECs can be determined from the quark
model. For example, to estimate the contributions from

the contact terms in the Σð�Þ
c Dð�Þ systems, we can derive the

contact effective potentials of the Σð�Þ
c Dð�Þ systems at the

quark level, the coupling constants in the contact terms can
be determined from the NN̄ scattering data. Thus, the
contributions from the unknown contact terms can also be
estimated. We have a complete framework to study the

interactions of the Σð�Þ
c Dð�Þ systems, and which is also used

to investigate the interactions of the charmed-bottom

Σð�Þ
c B̄ð�Þ, Σð�Þ

b Dð�Þ, and Σð�Þ
b B̄ð�Þ systems.

This paper is organized as follows. In Sec. II, we present
the effective chiral Lagrangians and the effective potentials.
In Sec. III, we present our numerical results and discus-
sions. In Sec. IV, we conclude this work with a short
summary. Some supplemental materials for loop diagrams
and the results for charmed-bottom systems are given in the
Appendixes A and B, respectively.

II. EFFECTIVE CHIRAL LAGRANGIANS AND
ANALYTICAL EFFECTIVE POTENTIALS

We consider the leading order contact and one-pion-
exchange interactions, and the next-to-leading order two-
pion-exchange contributions to describe the scattering
amplitudes of the ΣcD, Σ�

cD, ΣcD�, and Σ�
cD� systems.

We first briefly introduce the effective Lagrangians for the
pionic and contact interactions.

A. Effective chiral Lagrangians

In the heavy baryon reduction formalism [58], the
leading order nonrelativistic chiral Lagrangians describing
the interactions between the charmed baryons and pion can
be constructed as

LBϕ ¼ Tr½B̄3ðiv ·D − δcÞB3� þ 2g5TrðB̄μ
3�S · uB3�μÞ

− Tr½B̄μ
3� ðiv ·D − δdÞB3�μ� þ 2g1TrðB̄3S · uB3Þ

þ 2g2TrðB̄3S · uB1 þ H:c:Þ þ 1

2
Tr½B̄1ðiv ·DÞB1�

þ g3TrðB̄μ
3�uμB3 þ H:c:Þ þ g4TrðB̄μ

3�uμB1 þ H:c:Þ;
ð1Þ

where Sμ ¼ i
2
γ5σ

μνvν is the operator for spin-1
2
baryon.

The covariant derivative is defined as Dμψ ¼
∂μψ þ Γμψ þ ψΓT

μ , where ΓT
μ is the transposition of Γμ.

The chiral connection Γμ and axial current uμ are defined as

Γμ ¼
1

2
½ξ†; ∂μξ�; uμ ¼

i
2
fξ†; ∂μξg; ð2Þ

with

ξ2 ¼ U ¼ exp

�
iϕ
fπ

�
; ϕ ¼

�
π0

ffiffiffi
2

p
πþffiffiffi

2
p

π− −π0

�
: ð3Þ

Here, fπ ¼ 92.4 MeV is the pion decay constant.

The charmed baryons Λc and Σð�Þ
c form the SU(2)

isosinglet and isotriplets, respectively. The spin-1
2

isosinglet is

ψ1 ¼
�

0 Λþ
c

−Λþ
c 0

�
; ð4Þ

the isotriplet with spin-1
2
and spin-3

2
are labeled as ψ3 and

ψμ
3� , respectively. They have the matrix form

ψ3 ¼

0
B@Σþþ

c
Σþ
cffiffi
2

p

Σþ
cffiffi
2

p Σ0
c

1
CA; ψμ

3� ¼

0
B@Σ�þþ

c
Σ�þ
cffiffi
2

p

Σ�þ
cffiffi
2

p Σ�0
c

1
CA

μ

: ð5Þ

The heavy baryon field can be decomposed into the light
and heavy components Bi and Hi, which read

Bi ¼ eiMiv·x
1þ =v
2

ψ i; Hi ¼ eiMiv·x
1 − =v
2

ψ i; ð6Þ

where ψ i denote the heavy baryon fields ψ1, ψ3, and ψ3� .
vμ ¼ ð1; 0Þ is the four-velocity of heavy baryon. The Bi

fields contribute at the leading order, whereas the Hi are
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suppressed by power of 1=mQ. Mi are the masses of the
heavy baryons. In this work, we adopt the following mass
splittings [59]

δa ¼ M3� −M3 ≃ 65 MeV;

δc ¼ M3 −M1 ≃ 168.5 MeV;

δd ¼ M3� −M1 ≃ 233.5 MeV: ð7Þ

In Eq. (1), the couplings g2 ¼ −0.60 and g4 ¼ 1.04
can be calculated from the partial decay widths of the
Σc → Λcπ and Σ�

c → Λcπ processes [59], respectively.
The g1, g3, and g5 can be related to g2 via the quark model

]60–62 ], which read

g1 ¼ 0.98; g3 ¼ 0.85; g5 ¼ −1.47: ð8Þ

The leading order chiral Lagrangians for the interactions
between the charmed mesons and pion are [63]

LHϕ ¼ −hðiv · ∂HÞH̄i þ hHv · ΓH̄i þ ghH=uγ5H̄i

−
1

8
δbhHσμνH̄σμνi; ð9Þ

where δb ¼ mD� −mD ¼ 142.0 MeV [59]. g ¼ −0.59 rep-
resents the axial coupling constant, its value is calculated
from the partial decay width of D�þ → D0πþ process [59]
and its sign is determined from the quark model.
In the above Lagrangian, theH denotes the super-field of

the ðD;D�Þ doublet in the heavy quark limit,

H ¼ 1þ =v
2

ðP�
μγ

μ þ iPγ5Þ;

H̄ ¼ γ0H†γ0 ¼ ðP�†
μ γμ þ iP†γ5Þ

1þ =v
2

;

P ¼ ðD0; DþÞ; P�
μ ¼ ðD�0; D�þÞμ: ð10Þ

Accordingly, the mass splittings for the bottom baryons
and mesons are [59]

δa ¼ mΣ�
b
−mΣb

≃ 20 MeV;

δb ¼ mB� −mB ≃ 45 MeV;

δc ¼ mΣb
−mΛb

≃ 191 MeV;

δd ¼ mΣ�
b
−mΛb

≃ 211 MeV: ð11Þ

In the bottom sector, the axial coupling g ¼ −0.52 is
taken from the lattice QCD calculations [64,65]. g2 ¼
−0.51 and g4 ¼ 0.91 are obtained from the partial decay
widths of the Σb → Λbπ and Σ�

b → Λbπ [59]. Similarly, g1,
g3, and g5 are determined from the quark model [60–62],

g1 ¼ 0.83; g3 ¼ 0.72; g5 ¼ −1.25: ð12Þ

In order to describe the contact interactions of Σð�Þ
c and

Dð�Þ, we construct the following Lagrangians,

LHB ¼ DahHH̄iTrðψ̄μψμÞ
þ iDbϵσμνρvσhHγργ5H̄iTrðψ̄μψνÞ
þ EahHτiH̄iTrðψ̄μτiψμÞ
þ iEbϵσμνρvσhHγργ5τ

iH̄iTrðψ̄μτiψ
νÞ; ð13Þ

where

ψμ ¼ Bμ
3� −

1ffiffiffi
3

p ðγμ þ vμÞγ5B3;

ψ̄μ ¼ B̄μ
3� þ

1

3
B̄3γ

5ðγμ þ vμÞ ð14Þ

denote the superfields of ðB3;B3� Þ doublet [66,67]. TheDa,
Db, Ea, and Eb are the low energy constants that account
for the central potential, spin-spin interaction, isospin-
isospin interaction, and isospin related spin-spin interac-
tion, respectively. In Sec. III, we will use the LECs fitted
from the NN̄ scattering data [68] to estimate the contri-

butions of the leading order contact terms in the Σð�Þ
c Dð�Þ

systems.

B. Effective potentials

To obtain the effective potentials in the momentum
space, we first calculate the scattering amplitude M.
The scattering amplitude M is related to the effective
potential VðqÞ by the following relation

VðqÞ ¼ −
MffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ
4
i¼1 2Mi

p ; ð15Þ

whereMi are the masses of the scattering particles. We can
obtain the effective potential VðrÞ in the coordinate space
via the following Fourier transformation,

VðrÞ ¼
Z

d3q
ð2πÞ3 e

−iq·rVðqÞF ðqÞ: ð16Þ

where a Gaussian regulator F ðqÞ ¼ exp ð−q2n=Λ2nÞ is
introduced to regularize the divergence in this integral.
This type of regulator has been widely used in the NN
andNN̄ systems [37,68–71]. In this work, we use the LECs
fitted from the NN̄ scattering [68] to estimate the LECs

of the Σð�Þ
c Dð�Þ systems, thus we use n ¼ 3 as adopted

in Ref. [68] for consistency, and take a typical cutoff
Λ ¼ 0.4 GeV to suppress the contributions from higher
momenta [54].
The contact and one-pion-exchange interactions contrib-

ute to the leading order effective potentials. The corre-
sponding Feynman diagrams are collected in Fig. 1, where

EXPLORATION OF THE DOUBLY CHARMED MOLECULAR … PHYS. REV. D 103, 116017 (2021)

116017-3



the ΣcD and Σ�
cD systems do not have the one-pion-

exchange diagrams due to the forbidden DDπ vertex. The
explicit expressions of the contact potentials for the ΣcD,
Σ�
cD, ΣcD�, and Σ�

cD� systems are

VX1.1
ΣcD

¼ −Da þ 2ðI1 · I2ÞEa; ð17Þ

VX2.1
Σ�
cD

¼ −Da þ 2ðI1 · I2ÞEa; ð18Þ

VX3.1
ΣcD� ¼ −Da þ 2ðI1 · I2ÞEa

þ 2

3
½−Db þ 2EbðI1 · I2Þ�σ · T; ð19Þ

VX4.1
Σ�
cD� ¼ −Da þ 2ðI1 · I2ÞEa

þ ½−Db þ 2EbðI1 · I2Þ�σrs · T; ð20Þ

where I1 and I2 are the isospin operators of the Σð�Þ
c and

Dð�Þ, respectively. The matrix elements of I1 · I2 can be
obtained via

hI1 · I2i ¼
1

2
½IðI þ 1Þ − I1ðI1 þ 1Þ − I2ðI2 þ 1Þ�; ð21Þ

where I is the total isospin of the Σð�Þ
c Dð�Þ systems. The

cross product of the final and initial polarization vectors for
D� mesons (ε† and ε, respectively) is given in terms of T
operator

−iT ¼ ε† × ε; ð22Þ

where the spin operator Sv of the D� meson can be related
to the T operator via

Sv ¼ −T: ð23Þ

The spin operators Ss of Σc and Srs of Σ�
c are related to the

Pauli matrix σ and σrs via

Ss ¼
1

2
σ; Srs ¼

3

2
σrs: ð24Þ

Then the matrix elements of the σ · T and σrs · T can be
obtained from Eqs. (23)–(24) by

σ · T ¼ −2S1 · S2
¼ −½SðSþ 1Þ − S1ðS1 þ 1Þ − S2ðS2 þ 1Þ�;

σrs · T ¼ −
2

3
S1 · S2

¼ −
1

3
½SðSþ 1Þ − S1ðS1 þ 1Þ − S2ðS2 þ 1Þ�; ð25Þ

where S1 ≡ SsðSrsÞ and S2 ≡ Sv denote the spin operators

of the Σð�Þ
c baryon and D� meson, respectively.

The one-pion-exchange diagrams for the ΣcD�
and Σ�

cD� systems are depicted in graphs (H3.1) and
(H4.1) of Fig. 1. The corresponding effective potentials
read

VH3.1
ΣcD� ¼ ðI1 · I2Þ

gg1
2f2π

ðq · σÞðq · TÞ
q2 þm2

π
; ð26Þ

VH4.1
Σ�
cD� ¼ −ðI1 · I2Þ

gg5
2f2π

ðq · σrsÞðq · TÞ
q2 þm2

π
: ð27Þ

One can notice that there is a minus sign between the one-

pion-exchange amplitudes of the Σð�Þ
c D� and Σð�Þ

c D̄� sys-
tems [55]. This minus sign comes from the G-parity
transformation between the (D̄ð�Þ0, Dð�Þ−) and (Dð�Þþ,
Dð�Þ0) doublets. Ref. [72] shows the tensor force in the
spin-triplet NN system plays important role. In
Appendix C, we discuss the influence of the tensor force

to the binding energies of Σð�Þ
c D̄� systems.

The two-pion-exchange diagrams for the ΣcD, Σ�
cD,

ΣcD�, and Σ�
cD� systems are illustrated in Figs. 2, 3, 4,

and 5, respectively. The analytical results for the football
diagrams (Fi:j), triangle diagrams (Ti:j), box diagrams
(Bi:j), and crossed box diagrams (Ri:j) generally have
the following forms,

V
Fi:j
sys ¼ ðI1 · I2Þ

1

f4π
JF22ðmπ; qÞ; ð28Þ

V
Ti;j
sys ¼ ðI1 · I2Þ

C
Ti:j
sys

f4π
½−q2CTi:j

1 ðJT24 þ JT33Þ

þ C
Ti:j

2 JT34�ðmπ; ETi:j ; qÞ; ð29Þ

FIG. 1. The leading order Feynman diagrams for the ΣcD
(X1.1), Σ�

cD (X2.1), ΣcD� (X3.1, H3.1), and Σ�
cD� (X4.1, H4.1)

systems. We use the thick line, heavy-thick line, thin line, double-
thin line, and dashed line to denote the Σc, Σ�

c, D, D�, and π,
respectively.
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V
Bi:j
sys ¼ ð1 − I1 · I2Þ

C
Bi:j
sys

f4π

h
−q2CBi:j

1 JB21

þ q4C
Bi:j

2 ðJB22 þ 2JB32 þ JB43Þ
− q2C

Bi:j

3 ðJB31 þ JB42ÞþC
Bi:j

4 JB41
i
ðmπ; E

Bi:j

1 ; E
Bi:j

2 ; qÞ;
ð30Þ

V
Ri:j
sys ¼ ð1þ I1 · I2Þ

C
Ri:j
sys

f4π

h
−q2CRi:j

1 JR21

þ q4C
Ri:j

2 ðJR22 þ 2JR32 þ JR43Þ
− q2C

Ri:j

3 ðJR31 þ JR42ÞþC
Ri:j

4 JR41
i
ðmπ; E

Ri:j

1 ; E
Ri:j

2 ; qÞ;
ð31Þ

where the subscript “sys” denotes the corresponding

Σð�Þ
c Dð�Þ system. The superscripts Fi:j, Ti:j, Bi:j, and Ri:j

are the labels of Feynman diagrams illustrated in
Figs. 2–5. The JTx , JBx , JRx are scalar loop functions
defined in Appendix A of Ref. [55]. In this work, we
adopt the MS scheme to regularize the loop integrals, one

can refer to Ref. [49] for more details. The E ≡ ETi:j , E
Bi:j

1ð2Þ,

or E
Ri:j

1ð2Þ is the residual energy (the difference between

the incoming hadron energy and the intermediate
hadron mass).
In Ref. [55], we found the contributions of Λc in the

loops of two-pion-exchange diagrams have considerable
corrections to the effective potentials. Along the same line

of studying the Σð�Þ
c D̄ð�Þ systems [55], in this work, we also

consider the contributions from intermediate Λc state, the

contributions of the Σð�Þ
c and Dð�Þ in the loop are also

considered, as illustrated in Figs. 2–5.
The general expressions for the corresponding triangle

diagrams (T̄i:j), box diagrams (B̄i:j), and crossed box
diagrams (R̄i:j) read

FIG. 2. Two-pion-exchange diagrams that account for the effective potentials of the ΣcD system at next-to-leading order. These
diagrams include the football diagram (F1.1), triangle diagrams (T1.i=T̄1.i), box diagrams (B1.i=B̄1.i), and crossed box diagrams
(R1.i=R̄1.i). The T̄1.3, B̄1.1, and R̄1.1 denote the diagrams with Λc as the intermediate state. The notations are the same as those in Fig. 1.

FIG. 3. Two-pion-exchange diagrams for the Σ�
cD system. The notations are the same as those in Fig. 2.

FIG. 4. Two-pion-exchange diagrams for the ΣcD� system. The notations are the same as those in Fig. 2.

EXPLORATION OF THE DOUBLY CHARMED MOLECULAR … PHYS. REV. D 103, 116017 (2021)

116017-5



V
T̄i:j
sys ¼ ðI1 · I2Þ

C
T̄i:j
sys

f4π

h
−q2CT̄i:j

1 ðJT24 þ JT33Þ þ C
T̄i:j

2

i

× ðmπ; ET̄i:j ; qÞ; ð32Þ

V
B̄i:j
sys ¼ ð1 − 2I1 · I2Þ

C
B̄i:j
sys

f4π

h
−q2CB̄i:j

1 JB21

þ q4C
B̄i:j

2 ðJB22 þ 2JB32 þ JB43Þ − q2C
B̄i:j

3 ðJB31 þ JB42Þ
þ C

B̄i:j

4 JB41
i
ðmπ; E

B̄i:j

1 ; E
B̄i:j

2 ; qÞ; ð33Þ

V
R̄i:j
sys ¼ ð1þ 2I1 · I2Þ

C
R̄i:j
sys

f4π

h
−q2CR̄i:j

1 JR21

þ q4C
R̄i:j

2 ðJR22 þ 2JR32 þ JR43Þ − q2C
R̄i:j

3 ðJR31 þ JR42Þ
þ C

R̄i:j

4 JR41
i
ðmπ; E

R̄i:j

1 ; E
R̄i:j

2 ; qÞ: ð34Þ

One can see Appendix A for the explicit values of the
coefficients defined in Eqs. (29)–(34).
We notice the expressions of the two-pion-exchange

diagrams for the Σð�Þ
c Dð�Þ systems are identical to those of

the Σð�Þ
c D̄ð�Þ systems [55]. These interesting results can be

easily understood as follows: the differences between the

two-pion-exchange amplitudes of the Σð�Þ
c Dð�Þ and Σð�Þ

c D̄ð�Þ
systems are completely caused by the pionic coupling of
the charmed and anticharmed mesons. As mentioned
before, the one-pion vertices [from the uμ in Eq. (2)]
between the charmed and anticharmed mesons have a
minus sign difference, but they appear in pairs in the
two-pion-exchange diagrams. Besides, the two-pion verti-
ces [from the Γμ in Eq. (2)] is invariant under the G-parity
transformation.
We have subtracted the 2PR contributions of the box

diagrams in our calculations. This can be achieved by the
principal-value integral method proposed in Ref. [55], in
which a detailed derivation is presented in the Appendix B.

III. NUMERICAL RESULTS AND DISCUSSIONS

To get the numerical results, we need to determine the
four LECs defined in Eq. (13). At present, there are no
experimental data or lattice QCD simulations for the
possible Pcc states. In Refs. [18,53,54], we proposed to
bridge the LECs determined from the NN (NN̄) scattering
data to the unknown LECs of the dihadron systems via a
quark level contact Lagrangian. In this work, we apply this
approach to estimate the contributions of the contact terms

for the Σð�Þ
c Dð�Þ systems, likewise. Then we search for

binding solutions via solving the Schrödinger equation and
discuss the numerical results.

A. Determining the LECs of the Σð�Þ
c Dð�Þ systems

It is assumed that the contact terms are mimicked by
exchanging heavy mesons through the S-wave interaction
[18,53,54], in which a general quark-level Lagrangian is
constructed as

L ¼ gsq̄Sqþ gaq̄γμγ5Aμq; ð35Þ

where q ¼ ðu; dÞ, cs and ct are two independent coupling
constants. The fictitious scalar (S) and axial-vector (Aμ)
fields with positive parity are introduced to account for the
central potential and spin-spin interaction, respectively.
From Eq. (35), the qq̄ contact potential is obtained as

Vqq̄ ¼ csð1 − 3τ1 · τ2Þ þ ctð1 − 3τ1 · τ2Þσ1 · σ2: ð36Þ

In Table I, we present the quark-level matrix elements
of the operators related to the contact potentials. Based
on the Lagrangian in Eq. (35) and the matrix elements in
Table I, the authors of Ref. [54] derived the contact
potential of the NN̄ system with quantum numbers
I ¼ 1 and 2Sþ1LJ ¼3 S1,

V
3S1
NN̄ ¼ hNN̄jVqq̄jNN̄i ¼ 6cs −

22

3
ct: ð37Þ

FIG. 5. Two-pion-exchange diagrams for the Σ�
cD� system. The notations are the same as those in Fig. 2.
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One can as well obtain the contact potentials of the
½NN̄�I¼1

J¼0, ½NN̄�I¼0
J¼1, and ½NN̄�I¼0

J¼0 systems, accordingly.
Similarly, the ΣcD� contact potential can be obtained

from Eq. (36) and Table I as

VΣcD� ¼ 2cs − 12csI1 · I2 −
4

3
ctσ · T þ 8ctðI1 · I2Þðσ · TÞ:

ð38Þ

Comparing Eq. (19) with Eq. (38) we get

Da¼−2cs; Ea¼−6cs; Db¼2ct; Eb¼6ct: ð39Þ

In Ref. [68], based on the NN̄ scattering data, the LECs
for the I ¼ 0 (J ¼ 0, 1) and I ¼ 1 (J ¼ 0, 1) NN̄ systems
are fitted. With the LECs of these four NN̄ systems, we
obtain six sets of solutions for the cs and ct. Among them,
four sets of cs and ct are consistent with each other in sizes
and signs:

(i) Set 1: cs ¼ −5.84 GeV−2, ct ¼ 2.50 GeV−2;
(ii) Set 2: cs ¼ −8.10 GeV−2, ct ¼ 0.65 GeV−2;
(iii) Set 3: cs ¼ −8.25 GeV−2, ct ¼ 0.52 GeV−2;
(iv) Set 4: cs ¼ −7.71 GeV−2, ct ¼ 0.38 GeV−2.

The remaining two sets of solutions either have the
different signs or are too large, leading to unstable
numerical results in our calculations.
When checking the above four sets of LECs, we notice

that the cs value in Set 1 is smaller than those of other sets,
the input with cs in Set 1 will lead to relatively small central
potentials. On the contrary, the value of ct in Set 1 is larger
than those of other sets, the spin-spin corrections would be
important with this set of LECs. This is the first case
we want to discuss, we label this set of LECs solution as
Case 1. The LECs in Set 2 have been successfully applied
to study the interactions of the Dð�ÞN systems [54], the
small value of ct shows that with this set of solution, the
spin-spin interaction serves as the perturbation to theDð�ÞN
multiplets. The LECs in Sets 3 and 4 are very close to that
of Set 2, and they give very similar results. Thus, we will
use the LECs in Set 2 as our Case 2. In addition, we also use
the least square method to fit a best solution from these four
sets of LECs, the solution are obtained as

cs ¼ −7.46 GeV−2; ct ¼ 1.02 GeV−2: ð40Þ

we label this set of LECs as the Case 3.

B. Numerical results of the effective potentials

We use the LECs in Case 3 to present the effective

potentials of all the Σð�Þ
c Dð�Þ systems. In Fig. 6, we plot the

TABLE I. The quark-level matrix elements of two-body inter-
action operators Oij for the NN̄ and ΣcD� systems.

Oij 1ij τi · τj σi · σj ðτi · τjÞðσi · σjÞ
½NN̄�I¼1

J¼1
9 1 1 25

9

½NN̄�I¼1
J¼0

9 1 −3 − 25
3

½NN̄�I¼0
J¼1

9 −3 1 − 25
3

½NN̄�I¼0
J¼0

9 −3 −3 25

½ΣcD��I¼3
2

J¼3
2

2 2 4
3

4
3

(a) (b)

(d)(c)

FIG. 6. The effective potentials for the ½Σð�Þ
c D�I¼1=2

J systems. Their IðJPÞ numbers are illustrated in each subfigure. The red dashed line
and blue dot-dashed line denote the effective potentials from the contact term and two-pion-exchange, respectively. The black solid line
denote the total effective potential for each system.
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effective potentials of the ΣcD and Σ�
cD systems. The

contact terms of the ΣcD and Σ�
cD are the same in the heavy

quark limit, which can be checked from the line shapes of
the contact effective potentials in Fig. 6.
For the ½ΣcD�I¼1=2

J¼1=2 system, the two-pion-exchange inter-
action provides a weakly repulsive force. The contact
interaction provides a strong attractive force, which is also
true for the ½Σ�

cD�I¼1=2
J¼3=2 system. In the ½Σ�

cD�I¼1=2
J¼3=2 system,

the two-pion-exchange interaction provides a weakly
attractive potential and forms a deeply bound ½Σ�

cD�I¼1=2
J¼3=2

state together with the strong attractive contact term.
From the right panel of Fig. 6, we can see that the two-

pion-exchange interactions provide considerable attractive

force in the ½Σð�Þ
c D�I¼3=2

J systems. However, for the I ¼ 3=2
case, the contact terms provide strong repulsive forces and
the total effective potentials are repulsive, i.e., we can not

find any bound states. This is also true for the ½Σð�Þ
c D��I¼3=2

J
systems. Thus, in the following, we only discuss the

Σð�Þ
c Dð�Þ systems with I ¼ 1=2.
In Fig. 7, we present the effective potentials of the

Σð�Þ
c D� systems. From Fig. 7, we can see that in the

½ΣcD��I¼1=2
J and ½Σ�

cD��I¼1=2
J systems, the contact terms

provide strong attractive force. The one-pion- and two-
pion-exchange interactions supply very weak repulsive
forces in the ½ΣcD��I¼1=2

J¼1=2, ½Σ�
cD��I¼1=2

J¼1=2ð3=2Þ systems. For

the ½ΣcD��I¼1=2
J¼3=2 and ½Σ�

cD��I¼1=2
J¼5=2 systems, the one-pion- and

two-pion-exchange potentials supply comparable attractive
and repulsive forces, respectively. Thus, the total effective
potentials for these two systems are nearly equivalent to
their contact potentials.

Our calculation shows that the contact terms are impor-

tant to the ½Σð�Þ
c Dð�Þ�I¼1=2

J systems. In our framework, the
fictitious scalar mesons account for the mainly attractive

interactions in the ½Σð�Þ
c Dð�Þ�I¼1=2

J systems, and the
exchange of axial-vector mesons result in mass splittings
in spin multiplets. In Eq. (35), the cs and ct are related to
the strength of the scalar-exchange and axial-vector-
exchange forces, respectively. From Table II, we notice
that the axial-vector-exchange interactions which are
related to the ct provide small corrections to the final
effective potentials in Cases 2 and 3. However, in Case 1,
we have jct=csj ¼ 0.43, this can be regarded as our upper
limit of the jct=csj. The relatively small value of ct can be
traced to the large masses of the axial-vector particles since
their masses exceed 1 GeV [59].

We need to mention that for the Σð�Þ
c D̄ð�Þ systems, the

potentials with and without Λc contributions in the two-
pion-exchange diagrams are discussed in Ref. [55]. In
Sec. II B, we find that the expressions of the two-pion-

exchange diagrams for the Σð�Þ
c Dð�Þ and Σð�Þ

c D̄ð�Þ systems
are the same. Thus, we do not further perform the
discussion of this contribution, which is very similar to
that of the Ref. [55].

C. The binding energies of the Σð�Þ
c Dð�Þ systems

The binding energies, masses, and the root-mean-square
radii in the above three cases are presented in Table II. We
find bound state solutions only for the I ¼ 1=2 channels.

The Rrms are about 1–2 fm for all the considered Σð�Þ
c Dð�Þ

systems, which are the typical sizes of the hadronic
molecules. From Table II, we can see that the binding of

(a)

(c) (d) (e)

(b)

FIG. 7. The effective potentials for the ½Σð�Þ
c D��I¼1=2

J systems. Their IðJPÞ numbers are illustrated in each subfigure. The red dashed
line, green dashed line and blue dot-dashed line denote the effective potentials from the contact term, one-pion- and two-pion-exchange
interactions, respectively. The black solid line denote the total effective potential for each system.
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the ½Σ�
cD�I¼1=2

J¼3=2 system is deeper than that of the ½ΣcD�I¼1=2
J¼1=2

system. In the heavy quark limit, the ½ΣcD�I¼1=2
J¼1=2 and

½Σ�
cD�I¼1=2

J¼3=2 systems share the same contact term. Thus,
the difference of the binding energy is from the contribu-
tions of the two-pion-exchange interactions. Besides, in

Case 1, the Σð�Þ
c D� systems with lower total angular

momentum J are more compact. This situation is very

similar to the Σð�Þ
c D̄� systems [55]. However, the results in

Cases 2 and 3 show that the binding energies for the

different Σð�Þ
c Dð�Þ systems are comparable to each other,

and they have very similar spatial sizes.
The parameters cs and ct are related to the central

potentials and spin-spin interactions, respectively. In
Case 1, jct=csj ¼ 0.43, the spin-spin corrections in contact

terms have considerable contributions in the Σð�Þ
c D� sys-

tems [note that the spin-spin corrections do not contribute

to the Σð�Þ
c D systems, e.g., see Eqs. (17)–(18)]. The spin-

spin corrections are much larger than the contributions
from the one-pion-exchange and two-pion-exchange inter-
actions. Thus, in Case 1, the mass splittings among

different ½Σð�Þ
c D��I¼1=2

J systems are mainly caused by the
corrections of the spin-spin interactions. The results
obtained from the Cases 2 and 3 are close to each other.
In contrast to Case 1, jct=csj ≈ 0.1 in these two cases, i.e.,
the central potentials are dominant and the spin-spin
potentials are small. The contributions from the spin-spin
interactions are comparable to those of the one-pion-
exchange and two-pion-exchange interactions. As shown

in Table II, in these two cases, the Σð�Þ
c D� systems with

higher total angular momenta have deeper binding
energies.

The results for the Σð�Þ
c B̄ð�Þ, Σð�Þ

b Dð�Þ, and Σð�Þ
b B̄ð�Þ

systems are given in Appendix B.

D. Possible decay patterns of the Σð�Þ
c Dð�Þ molecules

The Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ are produced in
the Λ0

b → J=ψK−p decay process and reconstructed in the
J=ψp channel [10]. Similarly, the Pcsð4459Þ is produced in

the Ξ−
b → J=ψK−Λ process and observed in the J=ψΛ

invariant mass spectrum [14]. In this subsection, we discuss
the possible decay patterns of the Pcc states. They may be
considered as the reconstructive channels from the pp
collisions at LHCb.
In Fig. 8, we present the mass spectrum of the Pcc

pentaquarks based on the inputs in Case 3, and some
relevant thresholds. Due to the cc pairs in the Pcc
pentaquarks, the decay behaviors of the Pcc states are
different from that of the hidden-charm pentaquarks. There
exist two types of decay modes for the Pcc states, i.e., the
ðcqqÞ − ðcq̄Þ and ðccqÞ − ðqq̄Þ modes. Note that the Λcπ

and Dπ are the dominant decay channels for the Σð�Þ
c

baryons and D� meson, respectively. For simplicity, we
only consider the ground Λc, D, and π as our decay final
states in the first mode. From Fig. 8, we can see that the
Pccð4296Þ state with JP ¼ 1=2− is near the threshold of
the ΛcDπ. Thus, it is very difficult for this state to decay
into this three-body final state due to the small phase space.

TABLE II. The binding energies, masses and root-mean-square radii for all the ½Σð�Þ
c Dð�Þ�I¼1=2

J systems. The subscript denotes the total
angular momentum of this system. The adopted LECs in Cases 1, 2, and 3 are ðcs ¼ −5.84; ct ¼ 2.50Þ GeV−2,
ðcs ¼ −8.10; ct ¼ 0.65Þ GeV−2, and ðcs ¼ −7.46; ct ¼ 1.02Þ GeV−2, respectively.

½ΣcD�1
2

½Σ�
cD�3

2
½ΣcD��1

2
½ΣcD��3

2
½Σ�

cD��1
2

½Σ�
cD��3

2
½Σ�

cD��5
2

Case 1 BE (MeV) −15.4 −25.0 −31.8 −8.0 −32.8 −18.2 −3.5
Rrms (fm) 1.45 1.25 1.20 1.65 1.20 1.38 1.91

Case 2 BE (MeV) −31.3 −42.9 −30.3 −31.7 −26.6 −25.4 −29.7
Rrms (fm) 1.23 1.11 1.22 1.20 1.26 1.27 1.22

Case 3 BE (MeV) −26.5 −37.7 −29.1 −25.0 −26.4 −22.6 −22.2
Rrms (fm) 1.27 1.14 1.23 1.27 1.26 1.31 1.30

FIG. 8. The mass spectrum of the Pcc pentaquarks. The results
are obtained using the LECs in Case 3. The black solid lines
denote the Pcc pentaquarks. The blue and red dotted lines denote

the thresholds of the Σð�Þ
c Dð�Þ and possible decay channels,

respectively.
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But the Pccð4296Þ can easily decay into ΛcD two-body
final states. Further study on the branching ratio of this
decay process is still needed. The Pccð4350Þ with JP ¼
3=2− can decay into the ΛcDπ via the S-wave, while
decaying into the ΛcD is D-wave suppressed. One can
perform similar analyses for the other five Pcc states.
Now we discuss the ðccqÞ − ðqq̄Þ decay mode, i.e., the

Pcc states decay into the ground Ξcc baryon and a
pseudoscalar or a vector meson. The threshold of Ξccπ
channel is about 3760 MeV, which is much lower than the
Pcc states and is not presented in Fig. 8. The predicted Pcc

states with JP ¼ 1=2− can decay into this channel through
S-wave, thus, this should be an important strong decay
channels for the JP ¼ 1=2− states due to the large phase

spaces. The states that are composed of the Σð�Þ
c andD� can

also decay into the Ξccω and Ξccρ final states. One can also
extract the decay properties for the other Pcc pentaquarks
in Fig. 8.

IV. SUMMARY

Inspired by the recently observed Pc [10] and Pcs [14]
pentaquarks, we perform a systematic study on the inter-

actions of the Σð�Þ
c Dð�Þ systems to explore the possible Pcc

states. We include the contact term, one-pion-exchange,
and two-pion-exchange interactions within the framework
of chiral effective field theory.
Due to G-parity transformation law, the expressions

of the one-pion-exchange and two-pion-exchange effective

potentials of the Σð�Þ
c Dð�Þ systems are opposite and identical

to those of the Σð�Þ
c D̄ð�Þ systems [55], respectively. In the

two-pion-exchange diagrams, the contributions of the

intermediate Λc, Σð�Þ
c , and Dð�Þ that considered in

Ref. [55] are also considered in this work. One can refer
to Ref. [55] for a thorough discussion of the two-pion-

exchange potentials for the Σð�Þ
c Dð�Þ (Σð�Þ

c D̄ð�Þ) systems.

In principle, the LECs of the Σð�Þ
c Dð�Þ systems should be

fixed from the experimental data or lattice QCD simula-
tions, which are not available at present. Alternatively, we
introduce a quark level contact Lagrangian to bridge the
LECs [68] determined from the NN̄ scattering data to the

unknown Σð�Þ
c Dð�Þ systems. With the LECs fitted from

the NN̄ scattering data, we obtain four sets of (cs, ct)
parameters describing the contributions of the contact
terms. We present three cases to study the binding energies

of the Σð�Þ
c Dð�Þ systems.

The mass spectrum of the ½Σð�Þ
c Dð�Þ�I¼1=2

J molecules
depend on the values of the LECs. In Case 1, a relatively
small central potential and a large spin-spin interaction are
introduced. The obtained Pcc mass spectrum is very similar

to that of the Σð�Þ
c D̄ð�Þ systems. However, the mass spectra

obtained in Cases 2 and 3 are different from that of the
Case 1.

In this work, to estimate the binding energies of the Pcc
pentaquarks, we only consider the S-wave interactions

between Σð�Þ
c and Dð�Þ. The S −D wave mixing is not

included in this work. On the one hand, the LECs
introduced from the short-range contact tensor term can
not be estimated at present, we only consider the leading
order contact terms for cutting down the unknown param-
eters. Thus, the S −D tensor force from the leading order
one-pion-exchange (two-pion-exchange) is neglected for
consistency. On the other hand, as presented in Figs. 6–7,
the S-wave contact interactions are dominant in all the

Σð�Þ
c Dð�Þ systems, the off-diagonal components from the

one-pion-exchange (two-pion-exchange) interactions give
little corrections to the obtained binding energies due to the
large diagonal components from the contact terms (see the
discussions in Appendix C).

From the effective potentials of the ½Σð�Þ
c Dð�Þ�I¼1=2

J
systems, we find that the attractive force between the

Σð�Þ
c and Dð�Þ arises mainly from the short-range inter-

actions. Although this short-range-interaction-dominant
mechanism is consistent with our understanding of the
Pc [73], Zc (Zb) [51], and Xð3872Þ [74] states, these
phenomenologically determined LECs still need further
support from experimental data or lattice QCD simulations.
We determine the couplings g, g2, and g4 [59] by

calculating the partial decay widths of the D�, Σc, and

Σð�Þ
c systems, the other axial couplings g1, g3, and g5 can be

correspondingly obtained in the framework of the quark

model [60–62]. Thus, the width effects of the Σð�Þ
c and Dð�Þ

are partly encoded in these parameters. However, it is
difficult to introduce widths into the Schrödinger equation

when we solve the binding energies of the Σð�Þ
c Dð�Þ

systems. The present method can only provide rough
positions to the considered Pcc pentaquark.
We briefly discuss the strong decay behaviors of the Pcc

pentaquarks. The ðcqqÞ − ðcq̄Þ and ðccqÞ − ðqq̄Þ are the
two types of decay modes. Correspondingly, the ΛcD,
ΛcDπ, and Ξccπ are expected to be important channels to

search for these ½Σð�Þ
c Dð�Þ�I¼1=2

J molecules.

We also study the interactions of the Σð�Þ
c B̄ð�Þ, Σð�Þ

b Dð�Þ,
and Σð�Þ

b B̄ð�Þ to search for possible Pcb, Pbc, and Pbb

pentaquarks. The corresponding systems with I ¼ 1=2 can
also form molecular states. In addition, among the studied
systems, the binding becomes deeper when the reduced
masses of the systems are heavier.
Because the uncertainties from the quark model assump-

tions cannot be quantified, thus the Σð�Þ
c Dð�Þ systems still

need further study. If lattice QCD calculations are per-
formed to extract physical observable quantities in the
future, we can fit the lattice results to extrapolate to the

physical pion mass to obtain the LECs for the Σð�Þ
c Dð�Þ

systems. The width effects and the S −D wave mixing
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effects can also be studied by solving the corresponding
Lippmann-Schwinger equations.
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APPENDIX A: SUPPLEMENTS FOR THE TWO-
PION-EXCHANGE EXPRESSIONS

In Sec. II B, we present the general expressions for the
football diagrams (Fi:j), triangle diagrams (Ti:j), (T̄i:j), box
diagrams (Bi:j), (B̄i:j) and crossed box diagrams ðRi:jÞ,
(R̄i:j) in Eqs. (28)–(34). In this appendix, we give their
explicit coefficients defined in Eqs. (28)–(34).

TABLE III. The coefficients C
Ti:j
sys (C

T̄i:j
sys ), C

ðB=RÞi:j
sys (C

ðB̄=R̄Þi:j
sys ) defined in Eqs. (29)–(34). The superscripts denote the corresponding

diagrams illustrated in Figs. 2, 3, 4, and 5, respectively.

CTi:1
sys CTi:2

sys CTi:3
sys CTi:4

sys CðB=RÞi:1sys CðB=RÞi:2sys CðB=RÞi:3sys CðB=RÞi:4sys CT̄i:3
sys CðB̄=R̄Þi:1sys CðB̄=R̄Þi:2sys CðB̄=R̄Þi:3sys CðB̄=R̄Þi:4sys

ΣcD g2 g2
3

4

g2
1

4
� � � g2g2

1

8

g2g2
3

8
� � � � � � g2

2

2

g2g2
2

8
� � � � � � � � �

Σ�
cD g2 5g2

5

36

g2
3

4
� � � 5g2g2

5

72

g2g2
3

8
� � � � � � g2

4

2
� � � g2g2

4

8
� � � � � �

ΣcD� g2 g2 g2
1

4

g2
3

4

g2g2
1

8

g2g2
1

8

g2g2
3

8

g2g2
3

24

g2
2

2

g2g2
2

8

g2g2
2

8
� � � � � �

Σ�
cD� g2 g2 g2

3

4

5g2
5

36

g2g2
5

24

g2g2
5

24

g2g2
3

32

g2g2
3

32

g2
4

2
� � � � � � g2g2

4

32

g2g2
4

32

TABLE IV. The coefficients C
Ti:j
m (C

T̄i:j
m ) and ETi:j (ET̄i:j ) defined in Eqs. (29) and (32). The superscript denotes the corresponding

diagrams illustrated in Figs. 2, 3, 4, and 5, respectively.

CTi:1
1 CTi:1

2
ETi:1 CTi:2

1 CTi:2
2

ETi:2 CTi:3
1 CTi:3

2
ETi:3 CTi:4

1 CTi:4
2

ETi:4 CT̄i:3
1 CT̄i:3

2
ET̄i:3

ΣcD 1 3 E − δb 2
3

2 E − δa 1 3 E � � � � � � � � � 1 3 E þ δc
Σ�
cD 1 3 E − δb 1 3 E 1

3
1 E þ δa � � � � � � � � � 1

3
1 E þ δd

ΣcD� 2
3

2 E 1
3

1 E þ δb 1 3 E 2
3

2 E − δa 1 3 E þ δc
Σ�
cD� 2

3
2 E 1

3
1 E þ δb 1

3
1 E þ δa 1 3 E 1

3
1 E þ δd

TABLE V. The coefficients C
Bi:j
m , C

Ri:j
m and E

ðB=RÞi:j
n defined in Eqs. (30) and (31). The superscripts denote the corresponding diagrams

illustrated in Figs. 2, 3, 4, and 5, respectively.

CBi:1
1 CRi:1

1 CðB=RÞi:12 CðB=RÞi:13 CðB=RÞi:14 EðB=RÞi:1
1 EðB=RÞi:1

2

ΣcD 1 1 1 10 15 E E − δb
Σ�
cD 1 1 1 10 15 E E − δb

ΣcD� 2þA
3

2−A
3

2
3

20
3

10 E E
Σ�
cD� B2 3B2−2B

3
10
9

20þ12B2−4B
3

10þ 6B2 − 2B E E

CBi:2
1 CRi:2

1 CðB=RÞi:22 CðB=RÞi:23 CðB=RÞi:24 EðB=RÞi:2
1 EðB=RÞi:2

1

ΣcD 2
3

2
3

2
3

20
3

10 E − δa E − δb
Σ�
cD 1

3
1
3

1
3

10
3

5 E þ δa E − δb
ΣcD� 1þA

3
1−A
3

1
3

10
3

5 E E þ δb
Σ�
cD� 5−3B2þ2B

3
5−3B2

3
5
9

15−6B2þ2B
3

15 − 6B2 þ 2B E E þ δb

CBi:3
1 CRi:3

1 CðB=RÞi:32 CðB=RÞi:33 CðB=RÞi:34 EðB=RÞi:3
1 EðB=RÞi:3

1

ΣcD� 4−A
9

4þA
9

4
9

40
9

20
3

E − δa E
Σ�
cD� 2 − B2 þ B 2 − B2 − B

3
8
9

40−12B2þ4B
3

20 − 6B2 þ 2B E þ δa E

CBi:4
1 CRi:4

1 CðB=RÞi:42 CðB=RÞi:43 CðB=RÞi:44 EðB=RÞi:4
1 EðB=RÞi:4

1

ΣcD� 2−A
3

2þA
3

2
3

20
3

10 E − δa E þ δb
Σ�
cD� 3B2þB−2

3
3B2−3B−2

3
4
9

12B2−4B
3

6B2 − 2B E þ δa E þ δb
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Specifically, we collect the coefficients C
Ti:j
sys (C

T̄i:j
sys ),

C
ðB=RÞi:j
sys (C

ðB̄=R̄Þi:j
sys ) in Table III, the coefficients of triangle

diagrams C
Ti:j
m (C

T̄i:j
m ) and ETi:j (ET̄i:j) in Table IV, the

coefficients of box and crossed box diagrams C
Bi:j
m , C

Ri:j
m

and E
ðB=RÞi:j
n in Table V, and the coefficients of box

and crossed box diagrams C
B̄i:j
m , C

R̄i:j
m and E

ðB̄=R̄Þi:j
n in

Table VI.

APPENDIX B: THE BINDING ENERGIES OF THE

Σð�Þ
c B̄ð�Þ, Σð�Þ

b Dð�Þ, AND Σð�Þ
b B̄ð�Þ SYSTEMS

We also study the interactions of the Σð�Þ
c B̄ð�Þ, Σð�Þ

b Dð�Þ,
and Σð�Þ

b B̄ð�Þ systems with the three cases of LECs. The

results for the possible Pcb (Σð�Þ
c B̄ð�Þ), Pbc (Σð�Þ

b Dð�Þ), and
Pbb (Σ

ð�Þ
b B̄ð�Þ) pentaquarks are collected in Tables VII, VIII,

and IX, respectively.

TABLE VI. The coefficients C
B̄i:j
m , C

R̄i:j
m and E

ðB̄=R̄Þi:j
n defined in Eqs. (33) and (34). The superscripts denote the corresponding diagrams

illustrated in Figs. 2, 3, 4, and 5, respectively.

CB̄1.1
1 CR̄1.1

1 CðB̄=R̄Þ1.12 CðB̄=R̄Þ1.13 CðB̄=R̄Þ1.14 EðB̄=R̄Þ1.1
1 EðB̄=R̄Þ1.1

2

ΣcD 1 1 1 10 15 E þ δc E − δb
CB̄2.2
1 CR̄2.2

1 CðB̄=R̄Þ2.22 CðB̄=R̄Þ2.23 CðB̄=R̄Þ2.24 EðB̄=R̄Þ2.2
1 EðB̄=R̄Þ2.2

2

Σ�
cD 1

3
1
3

1
3

10
3

5 E þ δd E − δb

CB̄3.1
1 CR̄3.1

1 CðB̄=R̄Þ3.12 CðB̄=R̄Þ3.13 CðB̄=R̄Þ3.14 EðB̄=R̄Þ3.1
1 EðB̄=R̄Þ3.1

2

ΣcD� 2þA
3

2−A
3

2
3

20
3

10 E þ δc E

CB̄3.2
1 CR̄3.2

1 CðB̄=R̄Þ3.22 CðB̄=R̄Þ3.23 CðB̄=R̄Þ3.24 EðB̄=R̄Þ3.2
1 EðB̄=R̄Þ3.2

2

ΣcD� 1þA
3

1−A
3

1
3

10
3

5 E þ δc E þ δb

CB̄4.3
1 CR̄4.3

1 CðB̄=R̄Þ4.32 CðB̄=R̄Þ4.33 CðB̄=R̄Þ4.34 EðB̄=R̄Þ4.3
1 EðB̄=R̄Þ4.3

2

Σ�
cD� 2 − B2 þ B 2 − B2 − B

3
8
9

40−12B2þ4B
3

20 − 6B2 þ 2B E þ δd E

CB̄4.4
1 CR̄4.4

1 CðB̄=R̄Þ4.42 CðB̄=R̄Þ4.43 CðB̄=R̄Þ4.44 EðB̄=R̄Þ4.4
1 EðB̄=R̄Þ4.4

2

Σ�
cD� 3B2þB−2

3
3B2−3B−2

3
4
9

3B2−B
3

6B2 − 2B E þ δd E þ δb

TABLE VII. The binding energies and root-mean-equare radii for all the ½Σð�Þ
c B̄ð�Þ�I¼1=2

J systems. The adopted LECs in Cases 1, 2, and
3 are ðcs ¼ −5.84; ct ¼ 2.50Þ GeV−2, ðcs ¼ −8.10; ct ¼ 0.65Þ GeV−2, and ðcs ¼ −7.46; ct ¼ 1.02Þ GeV−2, respectively.

½ΣcB̄�1
2

½Σ�
cB̄�3

2
½ΣcB̄��1

2
½ΣcB̄��3

2
½Σ�

cB̄��1
2

½Σ�
cB̄��3

2
½Σ�

cB̄��5
2

Case 1 BE (MeV) −24.3 −24.8 −39.8 −13.0 −47.6 −32.7 −11.0
Rrms (fm) 1.16 1.15 1.04 1.35 1.00 1.08 1.38

Case 2 BE (MeV) −43.5 −44.0 −38.0 −40.9 −40.3 −41.5 −44.1
Rrms (fm) 1.01 1.01 1.06 1.03 1.04 1.03 1.01

Case 3 BE (MeV) −37.9 −44.9 −36.8 −33.3 −40.1 −38.1 −35.3
Rrms (fm) 1.05 1.00 1.06 1.08 1.04 1.05 1.06

TABLE VIII. The binding energies and root-mean-equare radii for all the ½Σð�Þ
b Dð�Þ�I¼1=2

J systems. The adopted LECs in Cases 1, 2,
and 3 are ðcs ¼ −5.84; ct ¼ 2.50Þ GeV−2, ðcs ¼ −8.10; ct ¼ 0.65Þ GeV−2, and ðcs ¼ −7.46; ct ¼ 1.02Þ GeV−2, respectively.

½ΣbD�1
2

½Σ�
bD�3

2
½ΣbD��1

2
½ΣbD��3

2
½Σ�

bD
��1

2
½Σ�

bD
��3

2
½Σ�

bD
��5

2

Case 1 BE (MeV) −23.2 −21.2 −37.3 −11.5 −43.0 −28.0 −7.8
Rrms (fm) 1.21 1.25 1.09 1.42 1.05 1.16 1.55

Case 2 BE (MeV) −41.7 −39.3 −35.6 −38.4 −36.0 −36.5 −38.6
Rrms (fm) 1.06 1.08 1.10 1.07 1.10 1.10 1.07

Case 3 BE (MeV) −36.3 −34.0 −34.4 −31.0 −35.8 −33.2 −30.2
Rrms (fm) 1.10 1.12 1.11 1.13 1.10 1.12 1.13
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In our calculation, we have already adopted the
approach developed in Ref. [55] to keep the effects from
the mass splittings in the (Σ�

b, Σb, Λb) baryons and (B̄�, B)
mesons.

We find binding solutions for all the ½Σð�Þ
c B̄ð�Þ�I¼1=2

J ,

½Σð�Þ
b Dð�Þ�I¼1=2

J , and ½Σð�Þ
b B̄ð�Þ�I¼1=2

J systems. The mass
spectra of the possible Pcb, Pbc, and Pbb pentaquarks

are similar to those of the Σð�Þ
c Dð�Þ systems.

We also notice that among the ½Σð�Þ
c Dð�Þ�I¼1=2

J ,

½Σð�Þ
c B̄ð�Þ�I¼1=2

J , ½Σð�Þ
b Dð�Þ�I¼1=2

J , and ½Σð�Þ
b B̄ð�Þ�I¼1=2

J systems,
the absolute values of the binding energies generally have
the following relation,

jEPcc
j < jEPcb

j ≈ jEPbc
j < jEPbb

j: ðB1Þ

APPENDIX C: DISCUSSIONS ON THE TENSOR
FORCES IN ONE-PION-EXCHANGE

POTENTIALS

We take the ½ΣcD��I¼1=2
J¼1=2 system as an example to discuss

the role of tensor term in the one-pion-exchange potential.
To calculate the one-pion-exchange potential for the ΣcD�
in Eq. (26), we define the following Fourier transformations
(denoted by FT ),

FT

�
1

q⃗2 þm2
π
exp ð−q2n=Λ2nÞ

�
≡ YðΛ; mπ; rÞ; ðC1Þ

FT

�
q⃗2

q⃗2 þm2
π
exp ð−q2n=Λ2nÞ

�
≡ ZðΛ; mπ; rÞ: ðC2Þ

And the TðΛ; mπ; rÞ function is defined as

TðΛ; mπ; rÞ ¼ r∂r

�
1

r
∂rYðΛ; mπ; rÞ

�
: ðC3Þ

Then, the one-pion-exchange potential in the coordinate
space can be written as

VH3.1
ΣcD� ðrÞ ¼ ðI1 · I2Þ

gg1
2f2π

�
−
1

3
∇2YðΛ; mπ; rÞσ · T

−
1

3
Sðr̂;T; σÞTðΛ; mπ; rÞ

�
; ðC4Þ

where Sðr̂;T; σÞ ¼ 3ðr̂ · TÞðr̂ · σÞ − σ · T is the tensor force
operator (with r̂ ¼ r⃗=jr⃗j). According to h2S0þ1L0

J0 jΩij2Sþ1LJi,
with Ω1 ≡ σ · T and Ω2 ¼ Sðr̂;T; σÞ, we obtain the follow-
ing matrix expressions for J ¼ 1=2 case.

Ω1 ¼
�
2 0

0 −1

�
; Ω2 ¼

�
0 −

ffiffiffi
2

p

−
ffiffiffi
2

p
−2

�
: ðC5Þ

We still use the LECs in Cases 1, 2, and 3 as our inputs
and include the S −D wave mixing in the one-pion-
exchange potential. After solving the coupled-channel
Schrödinger equation, we find that in all these three cases,
the binding energy shifts due to the one-pion-exchange
tensor forces are within 0.1 MeV. The S −D wave mixing
gives tiny correction to the total effective potential of the
½ΣcD��I¼1=2

J¼1=2 system.
In Fig. 9, we plot the spatial wave functions for the

S- and D-waves obtained from Case 3, our calculation

TABLE IX. The binding energies and root-mean-square radii for all the ½Σð�Þ
b B̄ð�Þ�I¼1=2

J systems. The adopted LECs in Cases 1, 2, and 3
are ðcs ¼ −5.84; ct ¼ 2.50Þ GeV−2, ðcs ¼ −8.10; ct ¼ 0.65Þ GeV−2, and ðcs ¼ −7.46; ct ¼ 1.02Þ GeV−2, respectively.

½ΣbB̄�1
2

½Σ�
bB̄�3

2
½ΣbB̄��1

2
½ΣbB̄��3

2
½Σ�

bB̄
��1

2
½Σ�

bB̄
��3

2
½Σ�

bB̄
��5

2

Case 1 BE (MeV) −33.2 −30.5 −53.0 −20.0 −60.0 −41.8 −15.1
Rrms (fm) 0.97 0.99 0.87 1.09 0.85 0.92 1.16

Case 2 BE (MeV) −54.8 −53.5 −51.0 −52.2 −51.5 −51.7 −52.5
Rrms (fm) 0.86 0.87 0.88 0.87 0.88 0.87 0.87

Case 3 BE (MeV) −48.5 −46.7 −49.5 −43.6 −51.3 −47.9 −42.7
Rrms (fm) 0.88 0.89 0.89 0.91 0.88 0.89 0.91

FIG. 9. The S- and D-wave spatial wave functions obtained
from Case 3.

EXPLORATION OF THE DOUBLY CHARMED MOLECULAR … PHYS. REV. D 103, 116017 (2021)

116017-13



shows that the S-wave component is 99% of the total
wave function.
From Eq. (C5), we can see that the off-diagonal

components of tensor operator have considerable contri-
butions to the ΣcD� one-pion-exchange interaction.
However, since the one-pion-exchange interaction is
much weaker than the short-range contact interaction,
the total effective potential is dominated by the diagonal
components.

In principle, to discuss the effects of S −D wave mixing,
we should also include the tensor terms from the contact
and two-pion-exchange interactions. However, to perform
such calculations, we need to introduce more LECs to the
contact term, which can not be determined at present. For
the corrections induced from two-pion-exchange tensor
forces, we expect that they play similar role to the one-pion-
exchange tensor forces, since in this case, the contact terms
are still dominant.
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