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There have been a number of recent proposals to enhance the performance of machine learning strategies
for collider physics by combining many distinct events into a single ensemble feature. To evaluate the
efficacy of these proposals, we study the connection between single-event classifiers and multievent
classifiers under the assumption that collider events are independent and identically distributed. We show
how one can build optimal multievent classifiers from single-event classifiers, and we also show how to
construct multievent classifiers such that they produce optimal single-event classifiers. This is illustrated for
a Gaussian example as well as for classification tasks relevant for searches and measurements at the Large
Hadron Collider. We extend our discussion to regression tasks by showing how they can be phrased in
terms of parametrized classifiers. Empirically, we find that training a single-event (per-instance) classifier is
more effective than training a multievent (per-ensemble) classifier, as least for the cases we studied, and we
relate this fact to properties of the loss function gradient in the two cases. While we did not identify a clear
benefit from using multievent classifiers in the collider context, we speculate on the potential value of these
methods in cases involving only approximate independence, as relevant for jet substructure studies.

DOI: 10.1103/PhysRevD.103.116013

I. INTRODUCTION

Modern machine learning techniques are being widely
applied to enhance or replace existing analysis techniques
across collider physics [1–6]. These approaches hold great
promise for new particle searches, for Standard Model
measurements, and for high-energy nuclear physics inves-
tigations. A subset of these proposals have advocated for a
multievent strategy whereby a machine-learned function
acts on multiple collision events at the same time [7–14].
This multievent (per-ensemble) strategy contrasts with
more typical single-event (per-instance) machine learning
methods that process one event at a time, although both
strategies make use of many events during the training
process.
Intuitively, an ensemble approach might seem to be a

more promising learning strategy because there is more
information contained inN > 1 collision events than in one
single event. There is, however, an important distinction
between the amount of information contained in a dataset
and the amount of information needed to encode a
machine-learned function. For this reason, there need not

be a gain from using multievent strategies over single-event
strategies in the context of machine learning.
In this paper, we show that when directly compared on

the same task, there is indeed no informational benefit from
training a function that processes multiple events simulta-
neously compared to training a function that processes only
a single event at a time. This fact can be easily understood
from the statistical structure of collision data. To test for a
practical benefit, we perform empirical comparisons of per-
ensemble and per-instance methods on benchmark tasks
relevant for the Large Hadron Collider (LHC), finding that
single-event (per-instance) methods are more effective for
the cases we studied.
To an excellent approximation, collider events are

statistically independent and identically distributed (IID).
In simulation, this is exactly true up to deficiencies in
random number generators. In data, there are some small
time-dependent effects from changing conditions, and there
are also some correlations between events introduced by
detector effects with timescales longer than a typical bunch
crossing. These event-to-event correlations, however, are
truly negligible when considering the set of events typically
used for physics analysis that are selected by triggers. The
probability for two events next to each other in time to be
saved by the triggers is effectively zero, since triggers save
only a tiny fraction of events. The IID nature of collision
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events therefore ensures that the information content is the
same for ensembles of events and for single events drawn
from an ensemble.
In equations, the probability to observe N events xi is

pðfx1;…; xNgjθÞ ¼
YN
i¼1

pðxijθÞ; ð1Þ

where θ represents possible parameters of the generative
model, such as the physics process being studied or
the values of coupling constants. The optimal classifier
to distinguish whether events have been generated
via θA or via θB depends only on the per-ensemble
likelihood ratio [15]:

pðfx1;…; xNgjθAÞ
pðfx1;…; xNgjθBÞ

¼
YN
i¼1

pðxijθAÞ
pðxijθBÞ

; ð2Þ

which by the IID assumption only depends on knowing
the per-instance likelihood ratio pðxijθAÞ=pðxijθBÞ. This
equality explains the informational equivalence of per-
ensemble and per-event learning.
Given the simplicity of Eq. (2), why are we writing a

whole paper on this topic (apart from the opportunity to
invoke a gratuitously Latinate paper title that incorporates
an aspiration for national unity)? The studies in Refs. [7–
14] find that per-ensemble learning is effective for their
respective tasks, in some cases arguing why per-instance
learning is deficient. It is certainly true that a set of events
fx1;…; xNg contains more information than a single event
xi drawn from this set. What we will show in this paper is
that if one carefully combines the per-instance information,
one can recover the per-ensemble benefit, with the potential
for a substantially reduced training cost. We emphasize that
our analysis does not contradict the studies in Refs. [7–14];
rather this work suggests the possibility of achieving the
same or better results by replacing per-ensemble learning
with per-instance learning. There may be specialized
contexts where per-ensemble learning is superior, particu-
larly if the training procedure itself can be made simpler,
such as in the linear regression approach of Ref. [11]. This
paper also gives us a chance to mention some facts about
loss functions that are well known in the statistics literature
but might not be as well appreciated in collider physics.
Moving away from the IID case, we speculate on the
relevance of our analysis for jet substructure tasks where
there is a notion of the approximate independence of
emissions.
The remainder of this paper is organized as follows. In

Sec. II, we provide the formal statistical basis for building
multievent classifiers from single-event classifiers, and vice
versa, under the IID assumption. We also explain how
regression tasks can be translated into the language of per-
instance parametrized classification. In Sec. III, we present

empirical studies that corroborate these analytic results.
Our conclusions are given in Sec. IV.

II. THE STATISTICS OF PER-ENSEMBLE
LEARNING

A. Review of per-instance learning

Suppose that a collider event is represented by features in
E ¼ RM and we are trying to train a binary classifier to
learn a target in [0, 1]. Let c∶E → ½0; 1� be a function that
processes a single event, with the goal of distinguishing
events being generated by θA (c → 1) versus those gen-
erated by θB (c → 0). Such a function can be obtained by
minimizing an appropriate loss functional, such as the
binary cross entropy:

LBCE½c� ¼ −
Z

dxðpðxjθAÞ log cðxÞ

þ pðxjθBÞ logð1 − cðxÞÞÞ; ð3Þ

where pðxjθÞ is the probability density of x ∈ E given class
θ. Here and throughout this discussion, we consider the
infinite statistics limit such that we can replace sums over
events by integrals. We have also dropped the prior factors
pðθiÞ, assuming that one has equal numbers of examples
from the two hypotheses during training. While this is often
true in practice, it is not strictly necessary for our main
conclusions, though it does simplify the notation. It is well-
known [16,17] (also in high-energy physics [18–30]) that
an optimally trained c will have the following property:

cðxÞ
1 − cðxÞ ¼

pðxjθAÞ
pðxjθBÞ

; ð4Þ

such that one learns the per-instance likelihood ratio. By the
Neyman–Pearson lemma [15], this defines the optimal
single-event classifier.
There are many loss functionals that satisfy this property.

Consider a more general loss functional that depends on a
learnable function f∶E → R (which unlike c may or may
not map to [0, 1]) as well as fixed rescaling functions
A∶R → R and B∶R → R:

L½f� ¼ −
Z

dxðpðxjθAÞAðfðxÞÞ þ pðxjθBÞBðfðxÞÞÞ: ð5Þ

Taking the functional derivative with respect to fðxÞ, the
extremum of L½f� satisfies the property:

−
B0ðfðxÞÞ
A0ðfðxÞÞ ¼

pðxjθAÞ
pðxjθBÞ

: ð6Þ

As long as −B0ðfÞ=A0ðfÞ is a monotonic rescaling of f and
the overall loss functional is convex, then the function fðxÞ
learned by minimizing Eq. (5) defines an optimal classifier.
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In many cases, the minimum value of L½f� itself is
interesting in the context of statistical divergences and
distances [31], and a few examples are shown in Table I.
To simplify the following discussion, we will focus on

the “maximum likelihood classifier” (MLC) loss:

LMLC½f� ¼−
Z

dxðpðxjθAÞ logfðxÞþpðxjθBÞð1−fðxÞÞÞ:

ð7Þ

This is of the general form in Eq. (5) with AðfÞ ¼ log f
and BðfÞ ¼ 1 − f. To our knowledge, the MLC was first
introduced in the collider physics context in Refs. [32,33],
although with an exponential parametrization of fðxÞ. We
call Eq. (7) the MLC loss to distinguish it from the related
maximum likelihood loss that is often used to fit generative
models [34–36]. Using Eq. (6), the minimum of this loss
functional yields directly the likelihood ratio,

argmin
f

LMLC½f� ¼
pðxjθAÞ
pðxjθBÞ

; ð8Þ

which will be useful to simplify later analyses.1 The MLC
loss functional value at the minimum is

−min
f
LMLC½f� ¼

Z
dxpðxjθAÞ log

pðxjθAÞ
pðxjθBÞ

; ð9Þ

which is the Kullback-Leibler (KL) divergence, also known
as the relative entropy from pðxjθBÞ to pðxjθAÞ. See
Appendix for an intuitive derivation of Eq. (7).

B. Per-ensemble binary classification

To move from single-event classification to multievent
classification, we want to learn a classification function fN
that can process N events simultaneously. Here, we are
using fN∶EN → R instead of cN∶EN → ½0; 1� to avoid
algebraic manipulations such as Eq. (4). We will use the
vector notation

x⃗ ¼ fx1;…; xNg ð10Þ
to represent an element of EN . Our goal is to distinguish
whether x⃗ is drawn from pðx⃗jθAÞ (fN → ∞) or from
pðx⃗jθBÞ (fN → 0). Note that we are trying to classify a
pure event ensemble as coming from either θA or θB, which
is a different question than trying to determine the pro-
portion of events drawn from each class in a mixed event
ensemble. For N ¼ 1, f1 is the same as f discussed
in Eq. (5).
If fN is trained optimally, then the classification perfor-

mance of fN evaluated on N > 1 events will be better than
the performance of f1 evaluated on a single event, as
relevant to the discussions in Refs. [7–14]. The key point of
this paper is that one can construct a classifier f1→N that is
built only from f1, acts on N events, and has the same
asymptotic performance as fN .
Using the MLC loss in Eq. (7), but now applied to N

events, we have

LMLC½fN � ¼ −
Z

dNxðpðx⃗jθAÞ log fNðx⃗Þ

þ pðx⃗jθBÞð1 − fNðx⃗ÞÞÞ; ð11Þ
whose minimum is the per-ensemble likelihood ratio

argmin
fN

LMLC½fN � ¼
pðx⃗jθAÞ
pðx⃗jθBÞ

: ð12Þ

By the Neyman-Pearson lemma, this yields the optimal per-
ensemble classifier.
On the other hand, once we have trained a single-event

classifier f1 using Eq. (7), we can build a multievent
classifier f1→N without any additional training:

TABLE I. Examples of loss functionals in the form of Eq. (5), with the associated location and value of the loss minimum, using the
shorthand pi ≡ pðxjθiÞ. We have used the symbol f in all cases to denote the classifier, but some choices require explicit constraints on
f to be either non-negative or in the range [0, 1]. In the last column, we indicate the relation of the loss minimum to statistical
divergences and distances, up to an overall scaling and offset. See Ref. [31] for additional relations.

Loss name AðfÞ BðfÞ argminfL½f� Integrand of −minf L½f� Related divergence/distance

Binary cross entropy log f logð1 − fÞ pA
pAþpB

pA log
pA

pAþpB
þ ðA ↔ BÞ 2ðJensen-Shannon − log 2Þ

Mean squared error −ð1 − fÞ2 −f2 pA
pAþpB

− pApB
pAþpB

1
2
ðTriangular − 1Þ

Square root −1ffiffi
f

p −
ffiffiffi
f

p pA
pB

−2 ffiffiffiffiffiffiffiffiffiffiffi
pApB

p
2ðHellinger2 − 1Þ

Maximum likelihood Cl. log f 1 − f pA
pB

pA log
pA
pB

Kullback-Leibler

1A variation of Eq. (8) holds for AðfÞ ¼ logCðfÞ and
BðfÞ ¼ 1 − CðfÞ, where CðfÞ is any monotonically increasing
function with range that covers ð0;∞Þ. In this case,
CðargminfL½f�Þ ¼ pðxjθAÞ=pðxjθBÞ. This can be useful in prac-
tice if CðfÞ is everywhere positive, since f can take on negative
values and still yield a valid likelihood ratio. See Fig. 10 for an
empirical study of CðfÞ ¼ exp f.
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f1→Nðx⃗Þ≡
YN
i¼1

f1ðxiÞ →
pðx⃗jθAÞ
pðx⃗jθBÞ

; ð13Þ

where in the last step we have combined the solution found
in Eq. (8) with the IID condition in Eq. (2). Whereas
minimizing Eq. (11) requires sampling over EN, construct-
ing f1→N only requires sampling over E, which is a
considerable reduction in the computational burden for
large N. The technical details of carrying out this procedure
are explained in Sec. III. A.
Going in the converse direction, we can learn a single-

event classifier fN→1 starting from a constrained multievent
classifier f̃N. Using weight sharing, we can minimize
Eq. (11) subject to the constraint that f̃N takes the func-
tional form:

f̃Nðfx1;…; xNgÞ ¼
YN
i¼1

fN→1ðxiÞ; ð14Þ

where fN→1ðxÞ is a learnable function. Under the IID
assumption, f̃N can still learn the per-ensemble likelihood
ratio, but the learned fN→1ðxÞ will now be the per-instance
likelihood ratio, at least asymptotically.2 An examination of
this converse construction is presented in Sec. III. B.

C. Comparing the loss gradients

We have shown that the per-ensemble classifier fN and
the composite per-event classifier f1→N have the same
asymptotic information content, but one might wonder if
there is nevertheless a practical performance gain to be had
using per-ensemble learning.
Under the IID assumption, the optimal fN takes the form

of f̃N in Eq. (14), and in our empirical studies, we found no
benefit to letting fN have more functional freedom.
Therefore, to get a sense of the efficacy of per-ensemble
versus per-instance training, we can compare the effective
loss functions for fN→1 and f1. Since the inputs and outputs
of these functions are the same (i.e., E → R), we can do an
apples-to-apples comparison of their behavior under gra-
dient descent. The following analysis assumes that the
neural network training occurs in the vicinity of the global
minimum of the loss function.
For the per-ensemble case, plugging Eq. (14) into

Eq. (11) and using the IID relation in Eq. (1), we find
the effective loss function

LMLC½fN→1� þ 1 ¼ −N
Z

dxpðxjθAÞ log fN→1ðxÞ

þ
�Z

dxpðxjθBÞfN→1ðxÞ
�

N
: ð15Þ

This is to be contrasted with the per-instance loss functional
from Eq. (7), repeated for convenience with the f1 notation
and typeset to be parallel to the above:

LMLC½f1� þ 1 ¼ −
Z

dxpðxjθAÞ log f1ðxÞ

þ
Z

dxpðxjθBÞf1ðxÞ: ð16Þ

To understand the loss gradients, we can Taylor expand the
learned functions about the optimal solution:

fN→1ðxÞ ¼
pðxjθAÞ
pðxjθBÞ

þ ϵðxÞ; ð17Þ

f1ðxÞ ¼
pðxjθAÞ
pðxjθBÞ

þ ϵðxÞ: ð18Þ

Plugging these into their respective loss functionals and
looking at the leading-order variations, we have

δLMLC½fN→1�
N

¼
Z

dx
ðpðxjθBÞϵðxÞÞ2

2pðxjθAÞ

þ N − 1

2

�Z
dxpðxjθBÞϵðxÞ

�
2

; ð19Þ

δLMLC½f1� ¼
Z

dx
ðpðxjθBÞϵðxÞÞ2

2pðxjθAÞ
: ð20Þ

These expressions are quadratic in ϵðxÞ, which means that
we are expanding around the correct minimum.
The expression for δLMLC½f1� involves a single integral

over x, so under gradient descent, the value of ϵðxÞ can be
independently adjusted at each point in phase space to find
the minimum. By contrast, δLMLC½fN→1� has an additional
piece involving an integral squared, so even if at a given
point in phase space x0 we have achieved ϵðx0Þ ¼ 0,
gradient descent will tend to push ϵðx0Þ away from the
correct value until ϵðxÞ ¼ 0 everywhere. This correlated
structure explains the slower convergence of LMLC½fN→1�
compared to LMLC½f1� in our empirical studies. While we
focused on the MLC loss to simplify the algebra, the
appearance of these (typically counterproductive) correla-
tions in the loss gradient appears to be a generic feature of
per-ensemble learning.

D. Per-ensemble regression

While the discussion above focused on binary classi-
fication, the same basic idea applies to regression problems
as well. The goal of regression is to infer parameters θ from
the data x⃗. There are a variety of approaches that can be
used for this task, and each can be connected to para-
metrized per-instance classification.

2In the case that the two samples are composed of mixtures of
two categories, then the learned fN→1ðxÞ will be the ratio of the
mixed sample likelihoods, which is monotonically related to the
optimal pure sample classifier, as discussed in Ref. [37].
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1. Maximum likelihood

Maximum likelihood is the most common strategy
for inference in collider physics. Symbolically, we are
trying to find

θML ¼ argmax
θ

pðx⃗jθÞ: ð21Þ

One way to determine θML is with a two-step approach.
First, one can train a parametrized classifier fðx; θÞ [26,38]
using, e.g., the per-instance MLC loss:

LMLC½f� ¼ −
Z

dxðpðxjθÞpðθÞ log fðx; θÞ

þ pðxjθ0ÞpðθÞð1 − fðx; θÞÞÞ: ð22Þ
The top line corresponds to a synthetic dataset where every
event is generated from pðxjθÞ with different θ values
drawn from the probability density pðθÞ. The bottom line
corresponds to a synthetic dataset where every event is
generated using the same pðxjθ0Þ for fixed θ0 and then
augmented with a value θ that follows from pðθÞ inde-
pendently of x. Minimizing Eq. (22) with respect to fðx; θÞ,
the asymptotic solution is the likelihood ratio

fðx; θÞ ¼ pðxjθÞ
pðxjθ0Þ

; ð23Þ

where the factors of pðθÞ have canceled out. Second, one
can estimate θML by using the IID properties of the event
ensemble to relate likelihoods to the classifier output
fðx; θÞ:

θML ¼ argmin
θ

�
−
XN
i¼1

logpðxijθÞ
�

¼ argmin
θ

�
−
XN
i¼1

log
pðxijθÞ
pðxijθ0Þ

�

≈ argmin
θ

�
−
XN
i¼1

log fðxi; θÞ
�
: ð24Þ

Thus, even though maximum likelihood regression uses
information from the full event ensemble, only a para-
metrized per-instance classifier is required for this
procedure.

2. Classifier loss

Two recent proposals for parameter estimation are
explicitly built on classifiers for regression [18,19]. For
any classifier, one can perform the following optimization3:

θCL ¼ argmax
θ0

�
Loss of a classifier trained

to distinguish θ0 from θdata

�
: ð25Þ

Here, we are imagining that the θ0 samples come from
synthetic datasets. The appearance of a maximum instead
of minimum in Eq. (25) is because, as highlighted in
Table I, it is negative loss functions that correspond to
statistical divergences and distances.
In general, the θCL that minimizes the classifier loss will

be different from the θML that maximizes the likelihood.
For the special case of the MLC loss, though, they are the
same in the asymptotic limit if we set θA ¼ θdata and
θB ¼ θ0. To see this, recall from Eq. (9) that after training,
the value of the MLC loss is related to the KL divergence:

argmax
θ0

fmin
f

LMLC½f�g

¼ argmax
θ0

�
−
Z

dxpðxjθdataÞ log
pðxjθdataÞ
pðxjθ0Þ

�

≈ argmax
θ0

�XN
i¼1

log
pðxijθ0Þ
pðxijθdataÞ

�

¼ argmin
θ0

�
−
XN
i¼1

logpðxijθ0Þ
�

¼ θML; ð26Þ

where the sum is over data events.

3. Direct regression

In terms of information content, a regression model
trained in the usual way can be built from a parametrized
classification model. Suppose that θ ∈ RQ and gN∶EN →
RQ is a regression model trained with the mean squared
error loss:

LMSE½gN � ¼ −
Z

dnxpðx⃗; θÞðgNðx⃗Þ − θÞ2: ð27Þ

It is well known that the optimally trained gN will be related
to the expectation value of θ:

gNðx⃗Þ ¼ E½θjx⃗� ¼
Z

dθ θpðθjx⃗Þ: ð28Þ

Other loss functions approximate other statistics, as dis-
cussed in Ref. [39]. For example, the mean absolute error
loss approximates the median of θ. Ultimately, all direct
regression methods are functionals of pðθjx⃗Þ.
We can relate pðθjx⃗Þ to a parametrized classifier fNðx⃗; θÞ

trained to distinguish θ from a baseline θ0:

3Note that Ref. [18] used the (nondifferentiable) area under the
curve instead of the classifier loss, as it is not sensitive to
differences in the prior pðθÞ between the two datasets.
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pðθjx⃗Þ ¼ pðx⃗jθÞpðθÞ
pðx⃗Þ ¼ pðx⃗jθÞpðθÞR

dθ0pðx⃗jθ0Þpðθ0Þ

¼
pðx⃗jθÞ
pðx⃗jθ0ÞpðθÞR
dθ0 pðx⃗jθ

0Þ
pðx⃗jθ0Þpðθ0Þ

¼ fNðx⃗; θÞpðθÞR
dθ0fNðx⃗; θ0Þpðθ0Þ

; ð29Þ

where pðθÞ is the probability density of θ used during the
training of gN . Following the same logic as Sec. II. B, the
per-ensemble classifier fNðx⃗; θÞ can be related to a per-
instance classifier f1ðx; θÞ. Therefore, even though gN acts
on N events, it has the same information content as a
parametrized classifier that acts on single events.
Performing regression via Eqs. (28) and (29) is straight-

forward but tedious. In practice, one would train a para-
metrized per-instance classifier f1ðx; θÞ as in Eq. (23),
multiply it to construct fNðx⃗; θÞ ¼

Q
N
i¼1 f1ðxi; θÞ, and then

sample over values of θ to approximate the integrals. We
show examples of the above regression strategies in
Sec. III. C.

E. Beyond regression

In addition to classification and regression, a standard
machine learning task is density estimation. While some
classical machine learning methods such as k-nearest
neighbors [40,41] do require multi-instance information
at prediction time, many of the standard deep learning
solutions to implicit or explicit generative modeling are
built on per-instance functions. Such methods include
generative adversarial networks [42],4 variational autoen-
coders [44], and normalizing flows [45].
One reason for computing explicit densities is to estimate

the distance to a reference density. A common set of tools
for this task are the f-divergences mentioned earlier. As
discussed in Ref. [31] and highlighted in Table I, there is a
direct mapping between the loss value of a per-instance
classification task and a corresponding f-divergence
between the underlying probability densities.
A related quantity is the mutual information between two

random variables X and Y,

IðX; YÞ ¼
Z

dx dypðx; yÞ log pðx; yÞ
pðxÞpðyÞ : ð30Þ

For example, Y could be binary (a class label), and then
IðX; YÞ would encode how much information (in units of
nats) is available in X for doing classification. This can be
helpful in the context of ranking input features and was
studied in the context of quark/gluon jet classification
in Ref. [46].

Naively, Eq. (30) might seem like it requires estimating
the densities pðxÞ, pðyÞ, and pðx; yÞ, which in turn may
require ensemble information (see, e.g., Ref. [47] for a
study in the context of high energy physics). On the other
hand, Eq. (30) takes the same form as the KL divergence in
Eq. (9). Therefore, this quantity can be estimated using a
similar strategy as in earlier sections, by training a classifier
to distinguish data following pðx; yÞ from data following
pðxÞpðyÞ using the MLC loss. The value of the loss at the
minimum will be an estimate of the mutual information.
A simple example of this will be studied in Sec. III. D.

III. EMPIRICAL STUDIES

We now present empirical studies comparing per-in-
stance and per-ensemble data analysis strategies to high-
light the points made in Sec. II. Our analyses are based on
three case studies: a simple two Gaussian example,
searching for dijet resonances, and measuring the top
quark mass.

A. Classifiers: Multievent from Single event

As argued in Sec. II. B, under the IID assumption we can
build multievent classifiers from single-event classifiers.
We now demonstrate how to construct f1→N defined in
Eq. (13), comparing its performance to fN .

1. Two Gaussian example

Our first case study involves one-dimensional Gaussian
random variables. As shown in Fig. 1(a), we consider two
Gaussian distributions X ∼N ð�ϵ; 1Þ, with slightly differ-
ent means (x0 ¼ �ϵ) but the same variance (σ ¼ 1). Here,
the “signal” has positive mean while the “background” has
negative mean, and we take ϵ ¼ 0.1 for concreteness.
Both the per-instance (f1) and per-ensemble (fN) clas-

sifiers are parametrized by neural networks and imple-
mented using KERAS [48] with the TENSORFLOW backend
[49] and optimized with ADAM [50]. We use the binary
cross entropy loss function so Eq. (4) is needed to convert
the classifier output to a likelihood ratio. Each classifier
consists of two hidden layers with 128 nodes per layer.
Rectified linear unit (ReLU) activation functions are used
for the intermediate layers while sigmoid activation is used
for the last layer. The only difference between the per-
instance and per-ensemble networks is that the input layer
has one input for f1 but N inputs for fN.
We train each network with 50,000 events to minimize

the binary cross entropy loss function, and we test the
performance with an additional 50,000 events. For each
network, we train for up to 1000 epochs with a batch size of
10%, which means that the number of batches per epoch is
the same, as is the number of events considered per batch.
The training is stopped if the validation loss does not
decrease for 20 consecutive epochs (early stopping).
For the ensemble network, we take N ¼ 10. We did not

4In the context of adversarial training, it may be beneficial to
use per-ensemble information in the discriminator to mitigate
mode collapse, as utilized in Ref. [13]. This is also the philosophy
behind minibatch discrimination [43].
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do any detailed hyperparameter optimization for these
studies.
In Fig. 1(b), we show the performance of the resulting

classifiers f1 and f10. We checked that the f1 classifier
parametrized by a neural network has essentially the same
performance as an analytic function derived by taking the
ratio of Gaussian probability densities, which means that
the neural network f1 is nearly optimal. As expected, the
per-instance classifier f1 has a worse receiver operating
characteristic (ROC) curve than the per-ensemble classifier
f10. This is not a relevant comparison, however, because
the two are solving different classification tasks (i.e.,
classifying individual events as coming from signal or
background versus classifying an ensemble of N ¼ 10
events as all coming from signal or background). With
Eq. (13), we can use f1 to build a ten-instance classifier
f1→10, whose ROC curve is nearly identical to f10, if not
even slightly better. Thus, as expected from Eq. (2), all of
the information in the ten-instance classifier is contained in
the per-instance classifier.

2. Dijet resonance search

We now consider an example from collider physics,
motivated by a search for new beyond-the-standard-model
(BSM) particles in a dijet final state. The simulations used
for this study were produced for the LHC Olympics 2020
community challenge [51]. The background process
involves generic quantum chromodynamics (QCD) dijet
events with a requirement of at least one such jet with
transverse momentum pT > 1.3 TeV. The signal process
involves the production of a hypothetical new resonanceW0

with mass mW0 ¼ 3.5 TeV, which decays via W0 → XY to
two hypothetical particles X and Y of masses 500 GeVand
100 GeV, respectively. Each of the X and Y particles decays
promptly into pairs of quarks. Due to the mass hierarchy
between theW0 boson and its decay products, the final state
is characterized by two large-radius jets with two-prong
substructure. The background and signal are generated
using PYTHIA8.219 [52,53]. A detector simulation is per-
formed with DELPHES3.4.1 [54–56] using the default com-
pact muon solenoid (CMS) detector card. Particle flow
objects are used as inputs to jet clustering, implemented
with FASTJET3.2.1 [57,58] and the anti-kt algorithm [59]
using R ¼ 1.0 for the radius parameter. Events are
required to have a reconstructed dijet mass within the
range mJJ < ½3.3; 3.7� GeV.
Four features are used to train our classifiers: the

invariant mass of the lighter jet, the mass difference of
the leading two jets, and the N-subjettiness ratios τ21
[60,61] of the leading two jets. The observable τ21
quantifies the degree to which a jet is characterized by
two subjets or one subjet, with smaller values indicating a
two-prong substructure. The mass features are recorded in
units of TeV so that they are numericallyOð1Þ. Histograms
of the four features for signal and background are shown in
Figs. 2(a) and 2(b). The signal jet masses are localized at
the X and Y masses and the τ21 observables are shifted
toward lower values, indicating that the jets have a two-
prong substructure.
We train a per-instance classifier (f1) and a per-ensemble

classifier (f3) using the same tools as for the Gaussian
example above, again using binary cross entropy for the
loss function. Because signal and background are so well

(a) (b)

FIG. 1. Classification in the two Gaussian example. (a) A histogram of the Gaussian random variable X, for the “signal” (x0 ¼ 0.1)
and background (x0 ¼ −0.1). (b) ROC curves for various binary classifiers. From the single-event classifier f1, we can construct a
multievent classifier f1→10 that matches the performance of a classifier trained on ten events simultaneously (f10).
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separated in this example, we restrict our attention toN ¼ 3
to avoid saturating the performance. Note that this is an
artificially constructed classification problem, since in a
more realistic context one would be trying to estimate the
signal fraction in an event ensemble, not classify triplets of
events as all coming from signal or background.
For f1, the neural network architecture is the same as

Ref. [18] with four hidden layers, each with 64 nodes and
ReLU activation, and an output layer with sigmoid acti-
vation. For f3, the neural network involves 4 × 3 ¼ 12
inputs, and the penultimate hidden layer is adjusted to have
128 nodes, yielding a marginal performance gain. In both
cases, about 100,000 events are used for testing and
training, with roughly balanced classes. All of the networks
are trained for up to 1000 epochs with the same early
stopping condition as in the Gaussian case and with a batch
size of 10%. Following Eq. (13), we construct a trievent
classifier f1→3 from f1.
The ROC curves for f3 and f1→3 are shown in Fig. 2(c),

with f1 also shown for completeness. Interestingly, the
f1→3 classifier trained on single events significantly out-
performs f3 trained on multiple events. There are a variety
of reasons for this, but one important deficiency of the f3
classifier is that it does not respect the permutation
symmetry of its inputs. Because events are IID distributed,
there is no natural ordering of the events, but the fully
connected architecture we are using imposes an artificial
ordering. Inspired by Ref. [11], we can break the permu-
tation symmetry of the inputs by imposing a particular
order on the events. Specifically, we train a network fsort3

where the triplet of events is sorted by their leading jet

mass. Using fsort3 yields a small gain in performance seen in
Fig. 2, but not enough to close the gap with f1→3.
A more powerful way to account for the permutation

symmetry among events is to explicitly build a permuta-
tion-invariant neural network architecture. For this purpose,
we use the deep sets approach [62]. In the particle physics
context, deep sets were first used to construct particle flow
networks (PFNs) [63], where the inputs involve sets of
particles. Here, we are interested in sets of events, though
we will still use the PFN code from the https://energyflow
.network/ package. Following Refs. [62,63], we decompose
our set-based classifier as

fsetN ðx⃗Þ ¼ F

�XN
i¼1

ΦðxiÞ
�
; ð31Þ

where F∶RL → ½0; 1� and Φ∶E → RL are neural networks
that are simultaneously optimized. The network Φ embeds
single events xi into a L-dimensional latent space. The sum
operator in Eq. (31) guarantees that fsetN is invariant under
permutations xσðiÞ for σ ∈ SN, the permutation group acting
onN elements. We use the default parameters from the PFN
code, with L ¼ 128, Φ having two hidden layers with 100
nodes each, and F having three hidden nodes with 100
nodes each. The same learning strategy (up to 1000 epochs,
early stopping, 10% batch size) as the other networks is
used for the PFN.
The performance of fset3 is shown in Fig. 2, which gets

much closer to matching the performance of f1→3. Part of
this improvement is due to enforcing the permutation

(a)

(b) (c)

FIG. 2. Classification in the dijet resonance search example. (a), (b) Histograms of the four jet features for the signal (W0 → XY) and
background (QCD dijet) processes. (c) ROC curves for various binary classifiers. The multievent classifier f1→3 (built from f1)
outperforms three classifiers trained on triplets of events: flist3 with randomly ordered inputs, fsort3 with sorted inputs, and fset3 based on
the deep sets/PFN strategy in Eq. (31) with built-in permutation invariance.
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symmetry, though there is also a potential gain from the fact
the PFN we used for fset3 has more trainable weights than
the fully connected network for fsort3 . All of the f3 variants
were considerably more difficult to train than f1→3, likely
for the reason discussed in Sec. II. C. Thus, we have
empirical evidence for the superiority of single-event
training for multievent classification.

3. Top quark mass measurement

Our third and final example is motivated by the top quark
mass measurement, as recently studied in Refs. [11,18].
Extracting the top quark mass is really a regression
problem, which we investigate in Sec. III. C. Here, we
consider a related classification task to distinguish two
event samples generated with different top quark
masses (172.5 GeV and 175 GeV). This is a realistic
hypothesis testing task that requires full event ensemble
information, though only per-instance training as we
will see.
We use the same dataset as Ref. [18]. Top quark pair

production is generated using PYTHIA8.230 [52,53] and
detector effects are modeled with DELPHES 3.4.1 [54–56]
using the default CMS run card. After the production and
decay steps tt̄ → bWþb̄W−, one of the W bosons is forced
to decay to μþν while the other W boson decays hadroni-
cally. Each event is recorded as a variable-length set of
objects, consisting of jets, muons, and neutrinos. At
simulation level, the neutrino is replaced with the missing
transverse momentum. Generator-level and simulation-
level jets are clustered with the anti-kt algorithm using
R ¼ 0.4, and the simulation-level jet is labeled as b-tagged
if the highest energy parton inside the nearest generator-

level jet (ΔR < 0.5) is a b quark. Jets are required to
have pT > 20 GeV, and they can be b-tagged only if
jηj < 2.5. Furthermore, jets overlapping with the muon
are removed.
Events are saved only if they have at least two b-tagged

jets and at least two additional non-b-tagged jets. The b-jet
closest to the muon in rapidity and azimuth is labeled b1. Of
the remaining b-tagged jets, the highest pT one is labeled
b2. The two highest pT non-b-tagged jets are labeled j1 and
j2, and typically come from theW boson. (Imposing theW
mass constraint on j1 and j2 would yield lower efficiency,
though without significantly impacting the results.) The
four-momentum of the detector-level neutrino (ν) is deter-
mined by solving the quadratic equation for the W boson
mass; if there is no solution, the mass is set to zero, while if
there are two real solutions, the one with the smaller jpzj is
selected. Four observables are formed for performing the
top quark mass extraction, given by the following invariant
masses: mb1μν, mb2μν, mb1j1j2 , and mb2j1j2 . A histogram of
mb1μν is shown for illustration in Fig. 3(a).
We use the same neural network architectures and

training procedure as in the BSM example above, with
1.5 million events per fixed-mass sample. The only differ-
ence is that the batch size is set to 0.1% in order to keep the
number of examples to be Oð1000Þ. For the per-ensemble
classifier, we take N ¼ 20, though, of course, for a realistic
hypothesis testing situation, N would be as large as the
number of top quark events recorded in data. To capture the
permutation invariance of the inputs, we construct fset20

using the deep sets approach in Eq. (31). We also build
a classifier f1→20 from the per-instance classifier f1
using Eq. (13).

(a) (b)

FIG. 3. Classification in the top quark mass example. (a) A histogram of mb1μν for top quark masses of 172.5 GeVand 175 GeV. The
“wgt.” curve is explained later in Sec. III. C. 2, where we test the performance of a likelihood reweighting. (b) The difference in
efficiency for the 172.5 GeV top quark mass sample (true positive) and the 175 GeV top quark mass sample (false positive) as a function
of the true positive rate for various binary classifiers. Once again, a multievent classifier (f1→20) built from the single-event classifier (f1)
has the best performance. For the classifiers trained to process 20 events simultaneously, the deep sets/PFN approach (fset20 ) does better
than sorting the inputs (fsort20 ).
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In Fig. 3(b), we see that f1→20 and fset20 have comparable
performance, though f1→20 is noticeably better. Some of this
improvement may be due to differences in the network
architecture, butwe suspect thatmost of the gain is due to the
more efficient training in the per-instance case. We checked
that very poor performance is obtained for a classifier f20
lacking permutation invariance, with a ROC curve that was
not that much better than f1 alone. Explicitly breaking the
invariance by sorting the inputs based on mb1μν does help a
little, as indicated by the fsort20 curve in Fig. 3(b), but does not
reach the set-based approach.
Given the similar performance of f1→20 and fset20 , it is

interesting to examine which learning strategy is more
computationally efficient. In Fig. 4, we compare the
performance as a function of the training epoch, using
the difference of the true and false positive rates at a fixed
50% signal efficiency. In each epoch, both f1→20 and fset20

see the full ensemble of events, so this is an apples-to-
apples comparison as far as data usage is concerned. In
particular, we plot this information per epoch instead of per
compute time to avoid differences due to the structure of the
neural networks. (There is not an easy way to control for
possible differences in the training time due to the
differences in the network structures, since the underlying
tasks are different.) The f1→20 classifier trains much faster,
in agreement with the analysis in Sec. II. C, even though the
ultimate asymptotic performance is similar for both clas-
sifiers. Once again, we see better empirical behavior from
f1→20 trained on one event at a time version fset20 trained on
multiple events simultaneously.5

B. Classifiers: Single event from Multievent

In general, one cannot take a multievent classifier fN and
extract a single-event classifier f1. It is, however, possible
to construct a special f̃N network such that one can
interpret a subnetwork as a per-event classifier, as discussed
in Sec. II. B. When using the MLC loss function, we can
use the functional form in Eq. (14), where f̃N is a product of
fN→1 terms. Training f̃N , where the only trainable weights
are contained in fN→1, we can learn a single-event classifier
fN→1 from multievent samples.
For the binary cross entropy loss used in our case studies,

where Eq. (4) is needed to convert the classifier to a
likelihood ratio, we have to introduce a slightly different
structure than Eq. (14). Let fsetN be a permutation-invariant
classifier, as defined in Eq. (31) using the deep sets/PFN
strategy. Taking the latent space dimension to be L ¼ 1, the
Φ network can be interpreted as a single-event classifier.

Because the Φ network outputs are pooled via summation,
we can build an optimal multievent classifier ifΦ learns the
logarithm of the likelihood ratio; cf. Eq. (2). With this
insight, we can fix the F function to achieve the same
asymptotic performance as a trainable F by setting

Fðx⃗Þ ¼ expðPN
i¼1 ΦðxiÞÞ

1þ expðPN
i¼1ΦðxiÞÞ

: ð32Þ

Using Eq. (4), one can check that this F is monotonically
related to the ensemble likelihood ratio. Similarly,Φwill be
monotonically related to the optimal f1, which we call
fN→1 for the remainder of this discussion.
This construction is demonstrated in Fig. 5 for the

Gaussian example. We see that the deep sets architecture
with the fixed form of Eq. (32) (f̃set10 ) has the same or better
performance as the ten-instance fully connected classifier
with more network capacity (f10). Similarly, theΦ function
used as a single-event classifier (f10→1) has nearly the same
performance as an independently trained single-event
classifier (f1).
The same conclusion holds for the BSM classification

task, shown in Fig. (6). The only difference between the set-
based architectures f̃set3 and fset3 is that the former uses the
fixed functional form in Eq. (32). The fact that they achieve
nearly the same performance is ensured by the IID relation in
Eq. (2). The per-instance f3→1 network extracted from f̃set3 is
not quite as powerful as the f1 network trained independ-
ently on single events, as expected from the gradient issue
discussed in Sec. II. C. While we found no benefit to
extracting a single-event classifier from a multievent clas-
sifier, it is satisfying to see these IID-derived theoretical
predictions borne out in these empirical examples.

FIG. 4. Computational performance of single-event versus
multievent training. Shown is the efficiency for the 175 GeV
sample (false positive) for a fixed 50% efficiency for the
172.5 GeV sample (true positive), plotted as a function of
training epoch. Single-event training (f1→20) outperforms multi-
event training (fset20 ), where both methods go through the full
dataset per epoch.

5Away from the asymptotic limit, one could try to improve the
empirical per-ensemble performance through data augmentation.
Data augmentation is a generic strategy to help neural networks
learn symmetries, and the IID structure can be reinforced by
showing the network new ensembles built from sampling
instances from the existing ensembles.
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C. Comparison of regression strategies

We now consider the regression methods introduced in
Sec. II. D. For classification, the mapping between per-
instance and per-ensemble information is relatively
straightforward. For regression, though, per-ensemble

regression is structurally dissimilar from per-instance
regression because of the need to integrate over priors
on the regression parameters. Nevertheless, we can perform
per-ensemble regression by first mapping the problem to
per-instance parametrized classification.
We compare three different regression strategies for our

empirical studies. The first method is a maximum-like-
lihood analysis, using the form in Eq. (24) based on the
single-event parametrized classifier in Eq. (23). The second
method is per-instance direct regression, using the con-
struction in Eqs. (28) and (29) based on the same classifier
as above. The third method is per-ensemble direct regres-
sion, based on minimizing the mean squared error loss
in Eq. (27).

1. Gaussian mean example

Our first regression study is based on the same one-
dimensional Gaussian distributions as Sec. III. A 1. The
prior distribution for the Gaussian means is taken to be
uniform with μ ∈ ½−0.5; 0.5�, while the variance is fixed at
σ ¼ 1. A training dataset is created from 100 examples
each from 10,000 values of the Gaussian mean, for a total
of one million training data points. For the reference sample
pðxjθ0Þ needed to build the single-event parametrized
classifier fðx; μÞ in Eq. (23), we create a second dataset
with one million examples drawn from a standard normal
distribution (i.e., μ ¼ 0). To implement the pðθÞ term in the
second line of Eq. (22), each example xi from the reference
dataset is assigned a random mean value picked from the
variable-mean dataset.
We train a parametrized neural network to distinguish the

variable-mean datasets from the reference dataset. This
network takes as input two features: one component of x⃗
and the random mean value μ. The architecture consists of
three hidden layers with (64,128,64) nodes per layer and
ReLU activation. The output layer has a single node and
sigmoid activation. Binary cross entropy is used to train the
classifier, and Eq. (4) is used to convert it to the likelihood
ratio form fðx; μÞ. The model is trained for 1000 epochs
with early stopping and a batch size of 10% of the training
statistics.
The same learned function fðx; μÞ is used for both the

maximum likelihood analysis and the per-instance direct
regression. For the maximum-likelihood analysis, the
optimization in Eq. (24) is performed over a fixed grid
with 20 evenly spaced values in μ ∈ ½−0.5; 0.5�. For per-
instance direct regression, the function fNðx⃗; μÞ in Eq. (29)
is constructed by taking a product of fðx; μÞ outputs over
all 100 examples in a given ensemble data point x⃗. The
integrals in Eqs. (28) and (29) are approximated by
evaluating fNðx⃗; μÞ at 20 evenly spaced μ values between
−0.5 and 0.5 and then adding their values; this is possible
because the prior is uniform.
The per-ensemble direct regression approach uses a

neural network gN that takes as input 100 values (i.e.,

FIG. 6. Revisiting the ROC curves for the dijet resonance
search example in Fig. 2(c). The set-based multievent classifiers
f̃set3 and fset3 have similar performance, but we can use the former
to construct a single-event classifier f3→1. This construction is not
as effective as performing single-event training directly (f1).

FIG. 5. Revisiting the ROC curves for the two Gaussian
example from Fig. 1(b). The multievent classifier f̃10 with the
restricted functional form in Eq. (32) has the same performance as
f10 with no restrictions. Using f̃10, we can construct a single-
event classifier f̃10→1 with the same performance as f1 trained
directly.
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all of x⃗) and predicts a single mean value. This network has
the same architecture as fðx; μÞ, except it directly takes as
input x⃗ and has linear (instead of a sigmoid) activation for
the output layer, since the predicted mean can be both
positive or negative. It is trained to minimize the mean
squared error loss in Eq. (27).
In Fig. 7, we see that all three approaches give nearly the

same results in terms of bias and variance. Strictly speak-
ing, maximum likelihood and direct regression are different
tasks so their behavior could be different. For per-instance
and per-ensemble direct regression, they are constructed to
yield the same asymptotic behavior, but there will be
differences due to, e.g., the finite approximations to the
integrals. Note that maximum likelihood and per-instance
direct regression only use neural networks that process per-
instance inputs; information about the rest of the events is
used only through the training procedure. Thus, we have
empirical evidence that per-ensemble regression can be
accomplished via per-instance training.

2. Top quark mass measurement

As a physics example of regression, we consider
extracting the top quark mass. Here, the top quark mass
is the regression target and the setup is similar to the
Gaussian example above. We use the same event generation
as Sec. III. A. 3, but now with top quark mass parameters
sampled uniformly at random in mt ∈ ½170; 180� GeV. As
with the Gaussian example, a variable-mass dataset is

created. In this case, we have 100 events for each of
100,000 sampled top quark mass values. The reference
sample uses a top quark mass of 172.5 GeV. Due to event
selection effects, the actual number of events for each top
quark mass value varies from set to set, with a mean of
about 40 events. Because this event selection has a slight
top quark mass dependence, this yields an effective
nonuniform prior on mt, which we account for when
assigning dummy mass values to the reference sample.
The parametrized classifier now takes five inputs: the

four mass features from Sec. III. A. 3 (mb1μν,mb2μν,mb1j1j2 ,
and mb2j1j2) plus the top quark mass used for event
generation. The neural network has three hidden layers
with 50 nodes per layer and ReLU activation, and a single
node output layer with sigmoid activation. We train 100
models and take the median as the classifier output, using
Eq. (4) to convert it to the likelihood ratio fðx;mtÞ. Each
model is trained for 1000 epochs with early stopping with a
patience of 20 epochs and a batch size of 0.1%. To test the
fidelity of the training, we extract the estimated likelihood
ratio of mt ¼ 175 GeV over mt ¼ 172.5 GeV and use it to
reweight the 172.5 GeV sample. From Fig. 3(a), we see that
we achieve good reweighting performance despite the
relatively limited training data.
The maximum likelihood analysis is performed by scan-

ning the learned log likelihood estimate over a fixed grid
with 100 uniformly spaced steps inmt ∈ ½170; 180� GeV. In
Fig. 8(a), we show this scanwhere the target data come from
the high statistics 172.5 GeV and 175 GeV samples from
Sec. III. A. 3. As desired, the minimum of the parabolic
shapes are near the input top quark masses.
For the per-instance direct regression, we follow the

same strategy as in the Gaussian case to convert fðx;mtÞ
into an estimate of E½mtjx⃗�. The integrals in Eqs. (28) and
(29) are approximated by sampling 50 random top quark
masses per set of 100 following the probability density
from the training dataset. Because 40 events are insufficient
to make a precision measurement of the top quark mass, we
find a noticeable bias between the estimated and true top
mass values, which is exacerbated by edge effects at the
ends of the training range. For this reason, we do not show a
direct analog to Fig. 7, though this bias could be overcome
with much larger training datasets with many more than
100 examples per mass value.
For the per-ensemble direct regression, we use the deep

sets approach in Eq. (31) to handle the permutation-
invariance of the inputs. This approach is also well suited
to handle the large variation in the number of events in each
set due to the event selection effect. We again use PFNs for
our practical implementation. We use the default PFN
hyperparameters from the https://energyflow.network/
package, except we use linear activation in the output
layer and the mean squared error loss function. We found
that it was important for the model accuracy to standardize
both the inputs and the outputs of the network. Note that

FIG. 7. Comparison of regression methods with the Gaussian
example, with the predicted value of the mean plotted against the
true value of the mean. The regression involves analyzing 100
instances drawn from the same Gaussian distribution. Bands are
the standard deviation of the predictions over 10,000 generated
samples. The per-instance direct regression uses single-event
training, yet achieves comparable performance to per-ensemble
direct regression that processes 100 events simultaneously.
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this is a different per-ensemble direct regression setup than
used in Ref. [11], which found excellent performance using
linear regression on sorted inputs.
In Fig. 8(b), we compare the output of per-ensemble

direct regression to the output of per-instance direct
regression. We find a very strong correlation between these
two very different approaches to computing the same
quantity E½mtjx⃗�. The band in Fig. 8(b) is the standard
deviation over datasets with a true mass in the same one of
the 100 bins that are evenly spaced between 170 and
180 GeV. A key advantage of the per-instance approach is
that it does not need to be retrained if more events are
acquired. By contrast, the per-ensemble approach is only
valid for event samples that have the same sizes as were
used during training.

D. Beyond regression example

As remarked in Sec. II. E, the ideas discussed above
apply to learning tasks beyond just standard classification
and regression. As one simple example to illustrate this, we
consider the Gaussian classification task from Sec. III. A. 1
and compute the mutual information between the Gaussian
feature and the label. This quantifies howmuch information
is available in the feature for classification and can be
directly compared with other features and other classifi-
cation tasks.
For this illustration, 105 events are generated each from

two Gaussian distributions with means�jϵj for fixed ϵ. The
mutual information is estimated using a per-instance
classifier as described in Sec. II. E and also computed

analytically via Eq. (30). For the per-instance classifier, we
use a neural network that processes two inputs (label and
feature), has two hidden layers with ReLU activation, and
has a single node sigmoid output. The classification task is
to distinguish the nominal dataset from one where the
labels are assigned uniformly at random to the features. The
value of the MLC loss yields an estimate of the mutual
information.
The mutual information results are presented in Fig. (9),

as a function of ϵ. As expected, the neural network strategy

(a) (b)

FIG. 8. Regression in the top quark mass example. (a) An estimate of the log likelihood for samples generated with 172.5 and 175 GeV
top quark masses. The vertical axis has been shifted such that the minimum value is at zero. Note that the axis represents the average log
likelihood which is a factor of Nevents different from the total log likelihood. (b) Correlation between the per-instance predicted mass and
the per-ensemble predicted mass in the context of direct regression. The per-ensemble mass values are put in bins of 0.1 GeV width, and
the bands represent the standard deviation of the per-instance mass values in each bin.

FIG. 9. Mutual information between a Gaussian feature and a
label, where the “signal” (x0 ¼ ϵ) and “background” (x0 ¼ −ϵ)
have opposite means. The estimate using the MLC loss approach
shows good agreement with the exact analytic expression.
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yields an excellent approximation to the analytic calcu-
lation. Note that this strategy does require any binning and
naturally extends to high-dimensional data, since the core
component is a neural network classifier. We leave an
investigation of this approach in the particle physics context
to future work.

IV. CONCLUSIONS

We have demonstrated a connection between classifiers
trained on single events and those that process multiple
events at the same time. One can take a generic single-event
classifier and build an N-event classifier using simple
arithmetic operations. Such classifiers tend to out-perform
generic N-event classifiers, since we can enforce the IID
assumptions into the learning task. This performance gap
can be mostly recovered by deploying a classifier that
respects the permutation invariance of the set of N events.
We used the deep sets/PFN architecture [62,63] for this
purpose, but other set-based architectures such as graph
neural networks [64,65] would also be appropriate.
An amusing feature of the deep sets approach is that we

can use it to reverse engineer a single-event classifier from a
multievent classifier by restricting the latent space to be
one-dimensional and fixing a static output function. Even
after enforcing these additional structures, though, we
found both theoretically and empirically that the loss
function gradients are better behaved for single-event
classifiers than multievent classifiers. Going beyond clas-
sification, we explained how various regression tasks can
be phrased in terms of per-instance parametrized classi-
fication, yielding similar performance to per-ensemble
direct regression. We also mentioned how to compute
distances and divergences between probability densities
without requiring explicit density estimation. These results
hold for any data sample satisfying the IID property.
Ultimately, we did not find any formal or practical

advantage for training a multievent classifier instead of a
single-event classifier, as least for the cases we studied.
With a carefully selected multievent architecture, one can
achieve similar performance to a scaled-up per-event
classifier, but the latter will typically train faster. For direct
regression, the per-ensemble strategy might be conceptu-
ally simpler than the per-instance method, though the per-
instance methods allow for a simpler treatment of variably
sized datasets. Note that there may be situations where a
simplifying assumption (e.g., the linear regression model in
Ref. [11]) could yield better per-ensemble behavior than
indicated by our case studies. At minimum, we hope this
paper has demystified aspects of per-ensemble learning and
highlighted some interesting features of the MLC loss
function.
Going beyond the IID assumption, the duality between

per-instance classifiers and per-ensemble classifiers could
have applications to problems with approximate independ-
ence. For example, flavor tagging algorithms have

traditionally exploited the approximate independence of
individual track features within a jet [66,67]. Similarly,
emissions in the Lund jet plane [68,69] are approximately
independent, with exact independence in the strongly
ordered limit of QCD. In both contexts, the instances are
particles (or particlelike features) and the ensemble is the
jet. A potentially powerful training procedure for these
situations might be to first train a per-particle classifier,
then build a per-jet classifier using the constructions
described in this paper, and finally let the network train
further to learn interdependencies between the particles.

The code for this paper can be found at Ref. [70]. The
physics datasets are hosted on Zenodo at Ref. [71] for the
top quark dataset and Ref. [72] for the BSM dataset.

ACKNOWLEDGMENTS

We thank Anders Andreassen, Patrick Komiske, and Eric
Metodiev for discussions about the MLC loss. We thank
Rikab Gambhir and Ian Convy for discussions about
mutual information. We thank Adi Suresh for discussions
about the regression task with the classifier loss. We thank
Katherine Fraiser, Yue Lai, Duff Neill, Bryan Ostdiek,
Mateusz Ploskon, Felix Ringer, and Matthew Schwartz for
useful comments on our manuscript. B. N. is supported by
the U.S. Department of Energy (DOE), Office of Science
under Contract No. DE-AC02-05CH11231. J. T. is sup-
ported by the National Science Foundation under
Cooperative Agreement No. PHY-2019786 (The NSF AI
Institute for Artificial Intelligence and Fundamental
Interactions, http://iaifi.org/), and by the U.S. DOE
Office of High Energy Physics under Grant No. DE-
SC0012567. B. N. also thanks NVIDIA for providing
Volta GPUs for neural network training.

APPENDIX: DERIVING MAXIMUM
LIKELIHOOD CLASSIFIER LOSS

Beyond just the practical value of learning the likelihood
ratio, the MLC loss in Eq. (7) has a nice interpretation in
terms of learning probability distributions.
Consider trying to learn a function fðxÞ that is a

normalized probability distribution, up to a Jacobian
factor jðxÞ,

Z
dx jðxÞfðxÞ ¼ 1: ðA1Þ

We are given samples from a probability distribution qðxÞ,
and we want to learn fðxÞ such that

fðxÞ → qðxÞ
jðxÞ : ðA2Þ

In other words, we want to learn a function fðxÞ that
reproduces the sampled distribution qðxÞ after including the
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Jacobian factor. This problem was studied in Ref. [34],
albeit in a context where fðxÞ had a restricted functional
form such that Eq. (A1) was automatically enforced.
One strategy to accomplish this is to minimize the cross

entropy of fðxÞ with respect to qðxÞ, since the smallest
cross entropy is obtained when fðxÞ has the same infor-
mation content as qðxÞ. The associated loss functional is

L½f� ¼ −
Z

dx qðxÞ log fðxÞ − λ

�
1 −

Z
dx jðxÞfðxÞ

�
;

ðA3Þ

where the first term is the cross entropy and λ is a Lagrange
multiplier to enforce the normalization condition in
Eq. (A1). Taking the functional derivative of Eq. (A3)
with respect to fðxÞ and setting it equal to zero, we find the
extremum condition

−
qðxÞ
fðxÞ þ λjðxÞ ¼ 0: ðA4Þ

Multiplying both sides of this equation by fðxÞ and
integrating over x to set the Lagrange multiplier, we find
that Eq. (A4) is solved for

λ ¼ 1; fðxÞ ¼ qðxÞ
jðxÞ ; ðA5Þ

so fðxÞ learns the qðxÞ=jðxÞ ratio as desired.
In the special case that jðxÞ is itself a normalized

probability distribution, we can substitute for the
Lagrange multiplier and rewrite Eq. (A3) in the following
form:

L½f� ¼ −
Z

dxðqðxÞ log fðxÞ þ jðxÞð1 − fðxÞÞÞ: ðA6Þ

Identifying qðxÞ ¼ pðxjθAÞ and jðxÞ ¼ pðxjθBÞ, this is
precisely the MLC loss in Eq. (7). Therefore, we have

an intuitive understanding of the MLC loss as trying to
maximize the (log) likelihood of fðxÞ with respect to
pðxjθAÞ, subject to the constraint that fðxÞpðxjθBÞ is a
proper probability distribution.
In Fig. 10, we plot the learned likelihood ratio between

the two Gaussian samples from Fig. 1(a), comparing the
performance of MLC against binary cross entropy and the
exact analytic expression. In all cases, a network is trained
with 100 epochs and early stopping with a patience of 10
epochs. We also compare the MLC loss against the CðfÞ ¼
exp f variant discussed in footnote 1. We see that both the
linear [i.e., CðfÞ ¼ f] and exponential parametrizations
perform similarly in the region with ample data. That said,
the exponential parametrization has a more robust extrapo-
lation toward the edges, yielding similar behavior to binary
cross entropy. Note that the exponential parametrization of
the MLC loss was used in Ref. [32].
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