
 

Bose-Einstein momentum correlations at fixed multiplicities:
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Two-particle momentum correlations of N identical bosons are studied in the quantum canonical
ensemble. We define the latter as a properly selected subensemble of events associated with the grand
canonical ensemble which is characterized by a constant temperature and a harmonic-trap chemical
potential. The merits of this toy model are that it can be solved exactly, and that it demonstrates some
interesting features revealed recently in small systems created in pþ p collisions at the LHC. We find that
partial coherence can be observed in particle emission from completely thermal ensembles of events if
instead of inclusive measurements one studies the two-boson distribution functions related to the events
with particle numbers selected in some fixed multiplicity bins. The corresponding coherence effects
increase with the multiplicity.
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I. INTRODUCTION

Femtoscopic study results on the two-particle momen-
tum correlations (see, e.g., Ref. [1]) in pþ p collisions at
the CERN Large Hadron Collider (LHC) have been
presented recently by the ALICE [2], ATLAS [3], CMS
[4], and LHCb [5] Collaborations. It was found that the
femtoscopic radii measured by the ATLAS and CMS
Collaborations decrease with the increasing momentum
of a pair. It can be interpreted in the hydrodynamical
approach as the decrease of “homogeneity lengths ” [6]
(sizes of the effective emission region) due to generation by
the collective flow x − p correlations. Also, one found that
the “correlation strength” parameter λ is essentially less
than unity. This is at variance with the expected behavior
for emission from thermalized systems [1].
Another very interesting observation is the saturation of

the multiplicity dependence of the interferometry correla-
tion radius parameters for very high charged-particle
multiplicity. Such an effect was observed recently by the
ATLAS [3] and CMS [4] Collaborations. Then, while there
is some evidence that hydrodynamics can be successfully
applied to describe particle momentum spectra in high-
multiplicity pþ p collisions (for recent review see, e.g.,
Ref. [7]), it is still unclear whether the reported results on
Bose-Einstein momentum correlations can be attributed to
hydrodynamic evolution like in Aþ A collisions.

In our opinion, observed peculiarities of Bose-Einstein
momentum correlations in high-multiplicity pþ p colli-
sions do not indicate inapplicability of hydrodynamics but
can be partly associated with quantum coherence effects in
small systems, when the effective system size is compa-
rable with typical wavelength of the thermal bosons. Recall
that the effective geometrical size is associated with the
length of homogeneity in the system [6].
Recently, a detail analysis of inclusive spectra and

Bose-Einstein correlations in small thermal quantum
systems was done for the analytically solved model in
Ref. [8]. It is shown that if one deals (even locally) with a
grand canonical ensemble, a nontrivial coherence param-
eter appears in inclusive two-boson spectra only in the
case of coherent condensate formation. Without the latter,
no coherence-induced suppression of the inclusive corre-
lation function is possible because of the thermal Wick’s
theorem.
As for nonthermal or quasithermal emission with fixed

particle multiplicity, the traditional pair-correlation func-
tion is distorted for events with high phase-space density, in
particular, suppression of the Bose-Einstein correlations
arises. The special algorithms for symmetrization of multi-
boson N-particle states with independent particle emis-
sions, and subsequent calculations of one- and two-particle
spectra were developed in Refs. [9–14]. The situation,
when particle radiation from different source points are not
independent because the wave packets of emitted bosons
are overlapping, was considered in Ref. [15].
Coming back to the thermal sources, in Ref. [16] the

coherence effects in Bose-Einstein correlation functions in
thermal systems are studied in subensembles of events with
fixed multiplicities. The analytical calculations were done
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in the corresponding canonical ensemble. It was found that
the correlation functions are suppressed in a finite system in
a large volume and low particle number density approxi-
mation. In the present paper, we study the two-boson
momentum correlations in small systems with high particle
number densities at the moment when the system breaks
up. Such almost sudden freeze-out can happen due to very
fast expansion (when the homogeneity lengths are around
1 fm) of the matter formed in high-multiplicity pþ p
collisions at the LHC. To make the problem tractable we
utilize a model of the finite system with smooth edges to
avoid strong boundary effects. Keeping in mind the
collective expansion inherent to systems created in particle
and nucleus collisions, one can associate the corresponding
system’s scale parameter with the homogeneity length.
The particle momentum spectra at a sharp freeze-out are

formed according to Ref. [17], which is a reasonable
approximation for pþ p collisions. In order to keep things
as simple as possible, we consider nonrelativistic ideal gas
of bosons at fixed temperature trapped by means of a
harmonic chemical potential. Such an exactly solvable toy
model of inhomogeneous and finite-sized systems is
mathematically identical to an ideal bosonic gas trapped
by a harmonic potential. Then we apply the fixed particle
number constraint to the corresponding grand-canonical
statistical operator and discuss the influence of such
constraints on one-particle momentum spectra and two-
boson momentum correlations.

II. IDEAL GAS OF BOSONS IN A HARMONIC
TRAP WITH FIXED PARTICLE

NUMBER CONSTRAINT

We begin with a brief overview of the properties of the
grand-canonical ensemble of noninteracting nonrelativistic
quantum-field bosons at fixed temperature, T, trapped by a
harmonic chemical potential. For such a quantum field, the
Hamiltonian is given by

H ¼
Z

d3rΨ†ðrÞ
�
−

1

2m
∇2

�
ΨðrÞ; ð1Þ

where the operators Ψ†ðrÞ and ΨðrÞ are the creation and
annihilation operators, respectively. They fulfill the com-
mutation relations

½ΨðrÞ;Ψ†ðr0Þ� ¼ δð3Þðr − r0Þ; ð2Þ

and

½ΨðrÞ;Ψðr0Þ� ¼ ½Ψ†ðrÞ;Ψ†ðr0Þ� ¼ 0: ð3Þ

The Fourier transformed operators are defined as

ΨðpÞ ¼ ð2πÞ−3=2
Z

d3re−iprΨðrÞ; ð4Þ

Ψ†ðpÞ ¼ ð2πÞ−3=2
Z

d3reiprΨ†ðrÞ: ð5Þ

They satisfy the following canonical commutation
relations:

½ΨðpÞ;Ψ†ðp0Þ� ¼ δð3Þðp − p0Þ; ð6Þ

and

½ΨðpÞ;Ψðp0Þ� ¼ ½Ψ†ðpÞ;Ψ†ðp0Þ� ¼ 0: ð7Þ

The grand-canonical ensemble of such a system can be
represented by the thermal statistical operator ρ,

ρ ¼ 1

Z
ρ̂; ð8Þ

where Z is the grand-canonical partition function,

Z ¼ Tr½ρ̂�; ð9Þ

and

ρ̂ ¼ e−βĤ; ð10Þ

Ĥ ¼
Z

d3rΨ†ðrÞ
�
−

1

2m
∇2 − μðrÞ

�
ΨðrÞ; ð11Þ

where β ¼ 1=T is inverse temperature. The chemical
potential, μðrÞ, reads

μðrÞ ¼ −
m
2
ðω2

xx2 þ ω2
yy2 þ ω2

zz2Þ þ μ̂; ð12Þ

where μ̂ ¼ const The expectation value of an operator O
can be expressed as

hOi ¼ Tr½ρO�: ð13Þ

It is well known that Ĥ is not diagonal in momentum
(plane-wave) representation but can be diagonalized in the
oscillator representation. Decomposing ΨðrÞ and Ψ†ðrÞ in
terms of the harmonic oscillator eigenfunctions we get

ΨðrÞ ¼
X∞

n;k;l¼0

αðn; k; lÞϕnðxÞϕkðyÞϕlðzÞ; ð14Þ

where the creation, α†ðn; k; lÞ, and annihilation, αðn; k; lÞ,
operators satisfy the commutation relations

½αðn; k; lÞ; α†ðn0; k0; l0Þ� ¼ δnn0δkk0δll0 ; ð15Þ

and
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½αðn; k; lÞ;αðn0; k0; l0Þ� ¼ ½α†ðn; k; lÞ; α†ðn0; k0; l0Þ� ¼ 0:

ð16Þ

Functions ϕnðxÞ, ϕkðyÞ, ϕlðzÞ are the harmonic oscillator
eigenfunctions satisfying corresponding equations, e.g.,

�
d2

dx2
−mω2

xx2 þ 2mϵn

�
ϕnðxÞ ¼ 0: ð17Þ

The normalized solution of Eq. (17) reads

ϕnðxÞ¼ð2nn!π1=2bxÞ−1=2Hn

�
x
bx

�
exp

�
−
1

2

�
x
bx

�
2
�
;

ð18Þ

where Hnðx=bxÞ is the Hermite polynomial, and

ϵn ¼ ωx

�
nþ 1

2

�
; ð19Þ

bx ¼ ðmωxÞ−1=2: ð20Þ

Eigenfunctions (18) are complete,

X∞
n¼0

ϕnðxÞϕ�
nðx0Þ ¼ δðx − x0Þ; ð21Þ

and orthonormal

Z
∞

−∞
ϕnðxÞϕ�

n0 ðxÞdx ¼ δnn0 : ð22Þ

Then, from Eq. (14) it immediately follows that

αðn; k; lÞ ¼
Z

∞

−∞
dxdydzϕ�

nðxÞϕ�
kðyÞϕ�

l ðzÞΨðrÞ: ð23Þ

In such a basis the Ĥ reads

Ĥ ¼
X∞

n;k;l¼0

ðϵn þ ϵk þ ϵl − μ̂Þα†ðn; k; lÞαðn; k; lÞ: ð24Þ

Equation (24) allows one to calculate expectation values
(13) for products of α† and α operators. It can be done in
various ways. It is more appropriate here to use the method
which was used to prove the Wick’s theorem for the grand-
canonical ensemble (see, e.g., Ref. [18]) as the extension of
it can be used for the case of the canonical ensemble. First,
using the eigenstates1

jj1;…; jNi ¼
1ffiffiffiffiffiffi
N!

p α†ðj1Þ…α†ðjNÞj0i ð25Þ

of the particle number operator
P

j α
†ðjÞαðjÞ, and the

identity

X∞
N¼0

X∞
j1¼0

…
X∞
jN¼0

jj1;…; jNihj1;…; jN j ¼ 1; ð26Þ

which express the completeness and normalization of this
basis, one can insert Eq. (24) into Eq. (10) and write ρ̂ in the
harmonic oscillator basis,

ρ̂ ¼
X
N

X
j1

…
X
jN

e−βðϵj1−μ̂Þ…

× e−βðϵjN−μ̂Þjj1;…; jNihj1;…; jN j: ð27Þ

We denote here

ϵj ¼ ϵn;k;l ¼ ϵn þ ϵk þ ϵl

¼ ωx

�
nþ 1

2

�
þ ωy

�
kþ 1

2

�
þ ωz

�
lþ 1

2

�
: ð28Þ

Then, using an elementary operator algebra and Eq. (27)
one can see that

αðjÞρ̂ ¼ ρ̂αðjÞe−βðϵj−μ̂Þ: ð29Þ

Using trace invariance under the cyclic permutation of an
operator, we get

Tr½ρ̂α†ðj1Þαðj2Þ�
¼ e−βðϵj2−μ̂ÞTr½ρ̂αðj2Þα†ðj1Þ�
¼ e−βðϵj2−μ̂ÞðTr½ρ̂α†ðj1Þαðj2Þ� þ δj1j2Tr½ρ̂�Þ: ð30Þ

The Kronecker delta in the above equation, δj1j2 , is

δj1j2 ¼ δn1n2δk1k2δl1l2 : ð31Þ

From Eq. (30) we have

hα†ðj1Þαðj2Þi ¼
1

Tr½ρ̂�Tr½ρ̂α
†ðj1Þαðj2Þ�

¼ δj1j2
eβðϵj2−μ̂Þ − 1

; ð32Þ

which is a familiar Bose-Einstein distribution. It follows
then that

hNi ¼
X
j

hα†ðjÞαðjÞi: ð33Þ1For notational simplicity, here and below we write j instead of
ðn; k; lÞ.
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In a similar way, one can get

Tr½ρ̂α†ðj1Þα†ðj2Þαðj3Þαðj4Þ�
¼e−βðϵj4−μ̂Þðδj1j4Tr½ρ̂α†ðj2Þαðj3Þ�
þδj2j4Tr½ρ̂α†ðj1Þαðj3Þ�þTr½ρ̂α†ðj1Þα†ðj2Þαðj3Þαðj4Þ�Þ:

ð34Þ

Then, taking into account Eq. (32) we have

hα†ðj1Þα†ðj2Þαðj3Þαðj4Þi
¼ hα†ðj2Þαðj3Þihα†ðj1Þαðj4Þi
þ hα†ðj1Þαðj3Þihα†ðj2Þαðj4Þi; ð35Þ

which is nothing but the particular case of the thermal
Wick’s theorem. Then, utilizing Eq. (14) and Eqs. (32) and
(35) one can calculate expectation values of Ψ and Ψ†

operators.
Now, let us apply the fixed particle number constraint to

the grand-canonical statistical operator (8) to define canoni-
cal statistical operator ρN. For this aim, one can utilize the
projection operator PN,

PN ¼ 1

N!

Z
d3r1…d3rNΨ†ðr1Þ…

×Ψ†ðrNÞj0ih0jΨðr1Þ…ΨðrNÞ; ð36Þ

which automatically invokes the corresponding constraint.
Using Eqs. (14), (22), and (25) one can see that

PN ¼
X
j1

…
X
jN

jj1;…; jNihj1;…; jN j: ð37Þ

It is worth noting that such a projection is accompanied by
the proper normalization in order to insure the probability
interpretation of the ensemble obtained in result of this
projection. Then, using (37) we assert that the canonical
statistical operator is

ρN ¼ 1

ZN
ρ̂N; ð38Þ

where

ρ̂N ¼ PN ρ̂PN ¼
X
j1

…
X
jN

e−βðϵj1−μ̂Þ…

× e−βðϵjN−μ̂Þjj1;…; jNihj1;…; jN j; ð39Þ

and ZN is the corresponding canonical partition function,

ZN ¼ Tr½ρ̂N �: ð40Þ

It follows from Eq. (39) that

Z ¼
X∞
N¼0

ZN: ð41Þ

The vacuum state, N ¼ 0, yields Z0 ¼ h0j0i ¼ 1. Let us
denote ρ̂N associated with μ̂ ¼ 0 as ρ̂0N . Then one can
readily see that ρ̂N ¼ eβμ̂N ρ̂0N and

ZN ¼ eβμ̂NZ0
N: ð42Þ

Therefore [see Eq. (38)], eβμ̂N is factored out and ρN does
not depend on μ̂:

ρN ¼ 1

Z0
N
ρ̂0N: ð43Þ

The expectation value of an operator O is defined as

hOiN ¼ Tr½ρNO�: ð44Þ

It follows from Eqs. (39) and (44) that

hOi ¼
X∞
N¼0

ZN

Z
hOiN: ð45Þ

To evaluate the expectation values of operators
α†ðj1Þαðj2Þ and α†ðj1Þα†ðj2Þαðj3Þαðj4Þwith the canonical
statistical operator ρN, one can adopt the procedure which
was used above to calculate expectation values with the
grand-canonical statistical operator ρ. It can be done in a
similar way as it was done, e.g., in Ref. [16]. For the
reader’s convenience, below we adjust the derivation from
Ref. [16] for our model. A starting point is the relation

αðjÞρ̂0N ¼ ρ̂0N−1αðjÞe−βϵj ð46Þ

which follows from Eq. (39) and commutation relations
(15) and (16). Then one can exploit invariance under cyclic
permutation and get the iteration equation

hα†ðj1Þαðj2ÞiN ¼ e−βϵj2 δj1j2
Z0
N−1
Z0
N

þ e−βϵj2
Z0
N−1
Z0
N

hα†ðj1Þαðj2ÞiN−1: ð47Þ

With the starting value hα†ðj1Þαðj2Þi0 ¼ 0 one can get
from the above equation that

hα†ðj1Þαðj2ÞiN ¼ δj1j2
XN
s¼1

e−sβϵj2
Z0
N−s
Z0
N

: ð48Þ

It follows from the definition of ρN [see Eqs. (38) and (39)]
that

X
j

hα†ðjÞαðjÞiN ¼ N: ð49Þ
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Utilizing relation (46) we have

hα†ðj1Þα†ðj2Þαðj3Þαðj4ÞiN ¼ e−βϵj4
Z0
N−1
Z0
N

hαðj4Þα†ðj1Þα†ðj2Þαðj3ÞiN−1: ð50Þ

Then the same procedure leads to

hα†ðj1Þα†ðj2Þαðj3Þαðj4ÞiN ¼ e−βϵj4
Z0
N−1
Z0
N

ðhα†ðj1Þα†ðj2Þαðj3Þαðj4ÞiN−1þδj1j4hα†ðj2Þαðj3ÞiN−1þδj2j4hα†ðj1Þαðj3ÞiN−1Þ:

ð51Þ

One can show by induction that Eq. (51) can be written as

hα†ðj1Þα†ðj2Þαðj3Þαðj4ÞiN ¼ δj1j4
XN
s¼1

e−sβϵj4
Z0
N−s
Z0
N

hα†ðj2Þαðj3ÞiN−s þ δj2j4
XN
s¼1

e−sβϵj4
Z0
N−s
Z0
N

hα†ðj1Þαðj3ÞiN−s: ð52Þ

Then, taking into account that hα†ðj1Þαðj2Þi0 ¼ 0 and Eq. (48), we get

hα†ðj1Þα†ðj2Þαðj3Þαðj4ÞiN ¼ ðδj1j4δj2j3 þ δj1j3δj2j4Þ
XN−1

s¼1

XN−s

s0¼1

e−sβϵj4e−s
0βϵj3

Z0
N−s−s0

Z0
N

: ð53Þ

The above expressions explicitly demonstrate deviations
from the Wick’s theorem in the canonical ensemble for a
system of noninteracting bosons.
Canonical partition functions in Eqs. (48) and (53) can

be calculated by means of the recursive formula of the
canonical partition function for a system of N noninteract-
ing bosons as given in Ref. [19] (an elementary derivation
of it can be seen in Ref. [16]):

nZ0
n ¼

Xn
s¼1

X
j

e−sβϵjZ0
n−s; ð54Þ

where Z0
0 ¼ h0j0i ¼ 1 and n ¼ 1;…; N.

As a final comment we would like to point out that there
is an essential difference between states defined by the
grand-canonical statistical operator, ρ [see Eqs. (8), (9), and
(27)] and the canonical statistical operator, ρN [see
Eqs. (38), (39), and (40)]. While the former is a mixture
of all N-particle states including vacuum state with N ¼ 0,
the latter is a mixture of states with N fixed to some value.
In a sense, the quantum canonical state, ρN , can be
interpreted as a state which is not completely chaotic but
has some quantum coherent properties. In what follows we
demonstrate that such a coherence is enhanced in the case
of the Bose-Einstein condensation, when the number of
particles in the ground state, N0, is of the order of the total
number of particles, N,2 and discuss possible relations of

our results to two-boson momentum correlations measured
in pþ p collisions at the LHC.

III. PARTICLE MOMENTUM SPECTRA AND
CORRELATIONS AT FIXED MULTIPLICITIES

In this section we relate the model with physical
observables in relativistic particle and nucleus collisions.
To keep things as simple as possible, below we assume that
ωx ¼ ωy ¼ ωz ≡ ω. Note that the mean particle number,
hNi, defined by the grand canonical ensemble, as well as
the particle number, N, in the canonical ensemble are the
same for Ψ particles and α quasiparticles because unitary
transformation (14) does not mix creation and annihilation
operators.
First, let us estimate spatial size of the system at fixed

multiplicities. It is defined as

1

3

ffiffiffiffiffiffiffiffiffiffiffi
hr2iN

q
¼ hx2iN ¼

R
dxdydzx2hΨ†ðrÞΨðrÞiNR
dxdydzhΨ†ðrÞΨðrÞiN

; ð55Þ

where hΨ†ðrÞΨðrÞiN is the mean particle number density in
the canonical ensemble, and

R
dxdydzhΨ†ðrÞΨðrÞiN ¼ N.

From Eqs. (14) and (48) we get

hΨ†ðr1ÞΨðr2ÞiN ¼
XN
s¼1

Z0
N−s
Z0
N

X∞
n¼0

X∞
k¼0

X∞
l¼0

ϕ�
nðx1Þϕ�

kðy1Þ

× ϕ�
l ðz1Þϕnðx2Þϕkðy2Þ

× ϕlðz2Þe−3
2
sβωe−sβωðnþkþlÞ; ð56Þ

2This is the definition of the Bose-Einstein condensation; see,
e.g., Ref. [20].
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where the eigenfunctions are defined by Eq. (18), bx ¼
by ¼ bz ≡ b and

b ¼ ðmωÞ−1=2; ð57Þ

see Eq. (20). Then, utilizing integral representation of the
Hermite function (see, e.g., Ref. [21]),

Hn

�
x
b

�
¼

�
b
i

�
n b
2

ffiffiffi
π

p e
x2

b2

Z þ∞

−∞
vne−

1
4
b2v2þixvdv; ð58Þ

one can perform summations over n, k, l in Eq. (56). A
lengthy but straightforward calculation results in

hΨ†ðr1ÞΨðr2ÞiN ¼
XN
s¼1

1

ð2πÞ3=2
1

b3
Z0
N−s
Z0
N

ðsinhðβωsÞÞ−3=2

× exp

�
−

r21 þ r22
2b2 tanhðβωsÞ

�

× exp

�
r1r2

b2 sinhðβωsÞ
�
: ð59Þ

Utilizing identity ðtanhAÞ−1 − ðsinhAÞ−1 ¼ tanhðA=2Þ, we
have from Eq. (59) that mean particle number density in the
canonical ensemble reads

hΨ†ðrÞΨðrÞiN ¼
XN
s¼1

1

ð2πÞ3=2
1

b3
Z0
N−s
Z0
N

ðsinhðβωsÞÞ−3=2

× exp

�
−
tanhð1

2
βωsÞ

b2
r2
�
: ð60Þ

Substituting the above expression in Eq. (55) we readily
find

hx2iN ¼ 1

2
b2

P
N
s¼1

Z0
N−s
Z0
N
ðsinhðβωsÞÞ−3=2ðtanhð1

2
βωsÞÞ−5=2

P
N
s¼1

Z0
N−s
Z0
N
ðsinhðβωsÞÞ−3=2ðtanhð1

2
βωsÞÞ−3=2

:

ð61Þ

To relate parameters of the model with physically
meaningful parameters in relativistic particle and nucleus
collisions, it is convenient to introduce parameter R such as

ω ¼ 1

R
ffiffiffiffiffiffiffi
βm

p ; ð62Þ

then mω2

2
¼ 1

2βR2; see Eq. (12). In what follows we treat R as

free parameter instead of ω. As we will see below, R can be
approximately associated with the spatial size of the
system, hx2iN .

Then

βω ¼ 1

R

ffiffiffiffi
β

m

r
¼ ΛT

R
; ð63Þ

and

b ¼ 1ffiffiffiffiffiffiffi
mω

p ¼
ffiffiffiffiffiffiffiffiffi
ΛTR

p
; ð64Þ

where ΛT is the thermal wavelength, which we defined as

ΛT ¼ 1ffiffiffiffiffiffiffi
mT

p : ð65Þ

We now turn to the two-particle momentum correlation
functions. Two-particle momentum correlation function is
defined as ratio of two-particle momentum spectrum to
one-particle ones and can be written in canonical ensemble
at fixed multiplicities as

CNðk;qÞ ¼ GN
hΨ†ðp1ÞΨ†ðp2ÞΨðp1ÞΨðp2ÞiN

hΨ†ðp1ÞΨðp1ÞiNhΨ†ðp2ÞΨðp2ÞiN
: ð66Þ

Here k ¼ ðp1 þ p2Þ=2, q ¼ p2 − p1, and GN is the nor-
malization constant. The latter is needed to normalize the
theoretical correlation function in accordance with normali-
zation that is applied by experimentalists: Cexpðk;qÞ → 1
for jqj → ∞.
Expressions in the denominator of Eq. (66) can bewritten

immediately using Fourier transform of hΨ†ðr1ÞΨðr2ÞiN ;
see Eq. (59). We thus have

hΨ†ðp1ÞΨðp1ÞiN ¼
XN
s¼1

Z0
N−s
Z0
N

Φ1ðk;q; βωsÞ; ð67Þ

hΨ†ðp2ÞΨðp2ÞiN ¼
XN
s¼1

Z0
N−s
Z0
N

Φ1ðk;−q; βωsÞ; ð68Þ

where we introduced shorthand notation

Φ1ðk;q; βωsÞ ¼
b3

ð2π sinhðβωsÞÞ3=2

× exp

�
−
�
k −

1

2
q

�
2

b2 tanh

�
1

2
βωs

��
:

ð69Þ

Utilizing Eq. (53) and the same techniquewhichwas used to
derive hΨ†ðr1ÞΨðr2ÞiN , we get, after somewhat lengthy but
straightforward calculations,
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hΨ†ðp1ÞΨ†ðp2ÞΨðp1ÞΨðp2ÞiN ¼
XN−1

s¼1

XN−s

s0¼1

Z0
N−s−s0

Z0
N

ðΦ1ðk;q; βωsÞΦ1ðk;−q; βωs0Þ þΦ2ðk;q; sÞΦ2ðk;−q; βωs0ÞÞ; ð70Þ

where we introduced notation

Φ2ðk;q; βωsÞ ¼
b3

ð2π sinhðβωsÞÞ3=2 exp
�
−k2b2 tanh

�
1

2
βωs

�
− q2

b2

4 tanhð1
2
βωsÞ

�
: ð71Þ

InsertingEqs. (67), (68), and (70) inEq. (66) gives us an explicit expression for the two-bosonmomentumcorrelation function
at fixed multiplicities,

CNðk;qÞ ¼ GN

P
N−1
s¼1

P
N−s
s0¼1

Z0

N−s−s0
Z0
N

Φ1ðk;q; βωsÞΦ1ðk;−q; βωs0Þ
P

N
s¼1

Z0
N−s
Z0
N
Φ1ðk;q; βωsÞ

P
N
s0¼1

Z0

N−s0
Z0
N
Φ1ðk;−q; βωs0Þ

þ GN

P
N−1
s¼1

P
N−s
s0¼1

Z0

N−s−s0
Z0
N

Φ2ðk;q; sÞΦ2ðk;−q; βωs0Þ
P

N
s¼1

Z0
N−s
Z0
N
Φ1ðk;q; βωsÞ

P
N
s0¼1

Z0

N−s0
Z0
N
Φ1ðk;−q; βωs0Þ

: ð72Þ

To estimate normalization constant GN in Eq. (72), one
needs to utilize the limit jqj → ∞ at fixed k in the
corresponding expression. One can readily see that when

jqj → ∞ at fixed k then CNðk;qÞ → GN
Z0
N−2
Z0
N
ð Z0

N
Z0
N−1

Þ2. It

follows then that proper normalization is reached if

GN ¼ Z0
N

Z0
N−2

�
Z0
N−1
Z0
N

�
2

: ð73Þ

IV. RESULTS AND DISCUSSION

In this section, we calculate one-particle momentum
spectra and two-particle Bose-Einstein momentum corre-
lations in the model. For specificity, we assume that m is
equal to pion mass and we take the set of parameters
corresponding roughly to the values at the system’s breakup

in pþ p collisions at the LHC energies: The temperature T
is set to 150 MeV, and for R we use 1.5 and 3 fm. The
thermal wavelengthΛT ¼ 1=

ffiffiffiffiffiffiffi
mT

p
≈ 1.36 fm. We variedN

in the range 1,…,20. Our aim here is to investigate how
particle momentum spectra and correlations in the canoni-
cal ensemble with the fixed particle number constraint
differ from the ones in the corresponding grand-canonical
ensemble.
We start with calculations of the one-particle momentum

spectra in the canonical ensemble, nNðpÞ≡ hΨ†ðpÞΨðpÞiN ;
see Eq. (67). We compare these calculations with the ones
performed in the corresponding grand-canonical ensembles
where μ̂were found numerically to guarantee proper values
of hNi, such as hNi ¼ N. One-particlemomentum spectra in
the grand-canonical ensembles are calculated utilizing

Eq. (67) after substitution
P

N
s¼1

Z0
N−s
Z0
N
→

P∞
s¼1 e

βμ̂s. The

FIG. 1. Normalized nðpx; 0; 0Þ=nð0Þ momentum spectra calculated in the canonical ensembles with different N and R (solid lines),
and corresponding spectra calculated in the grand-canonical ensembles with hNi ¼ N (dotted lines).
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results are plotted in Fig. 1 as a function of the particle
momentum for several different values of the radius param-
eter R and particle numberN. Figure 1 demonstrates clearly
that for the used range of parameter values, one-particle
momentum spectra in the canonical ensembles can be
approximated with good accuracy by the ones calculated
in the corresponding grand-canonical ensembles.
Figure 2 displays two-boson momentum correlation

functions (72) calculated in the canonical ensembles as a
function of the momentum difference. From Fig. 2 it is
evident that the intercept of the correlation function,
CNðk; 0Þ, is less than 2. This can be interpreted as a result
of partial coherence of particle emission [1] because
projection of the thermal grand-canonical ensemble into
the fixed-N subensemble results in the N-particle canonical
state which is the state with partial coherence. Furthermore,
one observes for small values of R the essential non-
Gaussianity of the correlation functions beyond the region
of the correlation peak. It distinguishes two-boson corre-
lation functions in the canonical ensembles from the ones in
the corresponding grand-canonical ensembles where the
correlation functions (not shown here) are well fitted by the
Gaussian and intercept of the ones is equal to 2.
To analyze reasons for this behavior of the correlation

functions in greater detail, let us first remark that correla-
tion function CNðk;qÞ [see Eqs. (72) and (73)] can be
parametrized by the two-Gaussian expression

C2g
N ðk;qÞ¼ 1−λ1ðk;NÞe−q2R2

1
ðk;NÞ þλ2ðk;NÞe−q2R2

2
ðk;NÞ;

ð74Þ

where λ1 > 0 and λ2 > 0. Here 1 − λ1ðk; NÞe−q2R2
1
ðk;NÞ is

associated with the first term in Eq. (72), and
λ2ðk; NÞe−q2R2

2
ðk;NÞ with the second one. The results of

fittings are plotted in Fig. 2. It is evident that CNðk;qÞ is
rather well fitted by Eq. (74). This suggests that much of the
non-Gaussian deviations observed in Fig. 2 arises from

such a two-scale structure of the correlation function. If the
fitting procedure is restricted to the correlation peak region,
then one observes from Fig. 2 that the correlation function
is well fitted by the one-Gaussian expression

C1g
N ðk;qÞ ¼ 1þ λðk; NÞe−q2R2

HBTðk;NÞ; ð75Þ

where λ is equal to the intercept of the correlation
function, CNðk; 0Þ.
From Fig. 2 it is clear that the value of the intercept of the

correlation function is strongly dependent on the value of R
at fixed N, namely, one observes that smaller values of R
result in smaller values of the intercept of the correlation
function. The question naturally arises: why does decreas-
ing the parameter R amount to a decreasing of the
intercept? Some insight into this question may be gained
from Fig. 3, in which mean size of the system

ffiffiffiffiffiffiffiffiffiffiffi
hx2iN

p
[see

Eq. (61)] is plotted out to N. One observes from this figure
that parameter R roughly corresponds to the mean spatial

FIG. 2. Correlation functions (red solid lines) and their one- and two-Gaussian fits (blue dotted and green dashed lines, respectively)
with k ¼ 0.15 GeV=c, N ¼ 10, R ¼ 1.5 fm (left plot) and R ¼ 3.0 fm (right plot). See text for details.

FIG. 3. The
ffiffiffiffiffiffiffiffiffiffiffi
hx2iN

p
dependence on N at different R.
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size of the system in the varied range of N. It means that the
decrease of R at fixed N results in an increase of the mean
particle number density, ∝ N=R3.
To gain further insight into these results, the λ parameter

and also the ratio of the ground-state population, N0 ¼
hα†ð0Þαð0ÞiN [see Eq. (48)], to the number of particles, N,
are plotted out to N in Fig. 4. It can be seen from this figure
that the coherent effects, associated with the parameter λ,
are significant for any N if the mean size of the system is
comparable to or less than the thermal wavelength ΛT . One
can also see from this figure that an increase of N results in
an increase of the value of the N0=N ratio and decrease of
the value of the λ parameter. To interpret this result it is
instructive to compare the canonical condensate fraction,
N0=N, with its grand-canonical counterpart hN0i=hNi. We
start by noting that applying Cauchy’s integral formula to
Eqs. (41) and (42) one can get (see, e.g., Ref. [22])

Z0
N ¼ β

Z
δþi∞

δ−i∞

dμ̂
2πi

e−μ̂βNZðμ̂Þ: ð76Þ

It is well known that utilizing the above expression for
approximate evaluation of the canonical partition function,
in the leading order of the saddle-point approximation one
obtains

Z0
N ≈ e−μ̂σβNZðμ̂σÞ; ð77Þ

where μ̂σ is solution of the equation
d
dμ̂ ð−μ̂βN þ lnZðμ̂ÞÞ ¼

0. For an ideal gas it means that μ̂σ is such that hNi ¼ N.
Equation (77) becomes exact for N → ∞. Then, using
Eqs. (41), (42), and (45), one can expect that for finite but
large N we get N0=N ≈ hN0i=hNi where hN0i=hNi is the
condensate fraction in the grand-canonical ensemble with
hNi ¼ N. Let us compare our results for the canonical
condensate fraction, N0=N, with the grand-canonical con-
densate fraction for a finite mean number of particles in a
three-dimensional harmonic potential [23],

hN0i
hNi ≈ 1 −

Δ
hNiðβωÞ3 ; ð78Þ

Δ ¼ ζð3Þ þ 3

2
ζð2Þβω; ð79Þ

calculated in the approximation βω ≪ 1. Here ζðxÞ is the
Riemann zeta function, ζð2Þ ≈ 1.645 and ζð3Þ ≈ 1.202. In
the above expression we have approximated eβðμ̂−ð3=2ÞωÞ≈1.
Identifying hNi with the actual particle number N, and βω
with ΛT=R [see Eq. (63)], we compare N0=N with
hN0i=hNi in Fig. 5 for R ¼ 1.5 fm and R ¼ 3 fm.
One observes that the approximate grand-canonical

formula shows a rather good agreement with the exact
canonical results even for not very large values of N.
Loosely speaking, the canonical condensate fraction of the
large system becomes noticeable (say, about 1=2) when the
mean interparticle distance, ðN=R3Þ−1=3, becomes smaller

FIG. 4. The λ at k ¼ 0.15 GeV=c, and N0=N dependence on N
for R ¼ 1.5 fm and R ¼ 3.0 fm.

FIG. 5. Canonical N0=N (red solid line) and its fits with Eq. (78) (blue and green dotted lines), R ¼ 1.5 fm (left plot), and R ¼ 3.0 fm
(right plot). See text for details.
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than the correlation length, for an ideal gas the latter
coincides with the thermal wavelength, ΛT .
While the quantitatively accurate description of the

canonical condensate fraction within the grand-canonical
approximation is manifest, it is not the case for fluctuations.
It is well known that fluctuations in the ground state differ
in the canonical and grand-canonical ensembles, and that
for the latter the condensate fluctuations are very large; see,
e.g., Ref. [24] and references therein. In the canonical
ensemble with a fixed number of particles such large
fluctuations are impossible, and therefore an increase of
the ground-state fraction N0=N increases “coherence” of
the state. The latter distinguishes the ideal gas Bose-
Einstein condensation in the canonical ensemble from
the ideal gas Bose-Einstein condensation in the grand-
canonical ensemble. It is well known that the intercept of
the two-boson momentum correlation function for a max-
imally mixed (chaotic) state is equal to 2, and that the one
for a pure state is equal to 1; see, e.g., Ref. [1]. Therefore,
an increase of the ground-state fraction, N0=N, results in a
decreasing of the λ parameter.
Finally, in Fig. 6 we plot the RHBT as a function of the

pair momenta, k, for different R and N. One observes a
consistent trend: by increasing k the interferometry radii,
RHBT , become independent of N.

V. CONCLUSIONS

Usually one does not care so much about quantum
coherence in the canonical ensemble at fixed multiplici-
ties.3 However, utilizing the simple analytically solvable

model, we demonstrated that the formulas derived in the
fixed-N canonical ensemble for a small inhomogeneous
thermal system are not always accurately approximated by
the grand-canonical ones with hNi ¼ N. Namely, we
noticed that while the one-particle momentum spectra
can be well approximated by the corresponding grand-
canonical ensemble expressions, it is not the case for the
two-boson momentum correlations. Interestingly, we
observed that the most significant deviations arise if the
particle number density in the canonical ensemble can
increase with N. In the considered simple model it implies
that interferometry radii are independent on N at moder-
ately high pair momenta. Then for fairly high N the particle
number density exceeds some limit value leading to the
noticeable Bose-Einstein condensation in the correspond-
ing ground state of the fixed-N canonical ensemble state.
Such a condensation strengthens the coherence properties
of the canonical ensemble state and results in the decreas-
ing of the intercept of the two-boson momentum correlation
function when N increases. This may explain the observed
phenomenon of partial quantum coherence in high-multi-
plicity pþ p collisions events in fixed multiplicity bins at
the LHC energies [3,4]. It would be very interesting to
revisit the results of experimental studies in view of our
findings.
The main lesson from this study is that the canonical

and grand-canonical ensembles can yield different
results for two-boson momentum correlations of par-
ticles emitted by small inhomogeneous systems. The
results of our analysis can be useful to elucidate the
influence on the shape of the measured correlation
function of both factors: an experimental selection of
events with fixed multiplicity and the effects of thermal-
ization and flow. Therefore, determination of the extent
to which our results can be generalized for a realistic
model of heavy ion and particle collisions could be of
great interest.

FIG. 6. HBT radii obtained from the one-Gaussian fit of the two-boson correlation function in the canonical ensembles with different
N, as a function of the pair average momentum k.

3See, however, Ref. [25] where it was demonstrated that the
description in the hydrodynamic approach of the interferometry
radii in pþ p collisions is improved if one accounts for the
mutual quantum coherence of closely located emitters caused by
the uncertainty principle.
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