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Real scalar fields with attractive self-interaction may form self-bound states, called oscillons. These
dense objects are ubiquitous in leading theories of dark matter and inflation; of particular interest are long-
lived oscillons which survive past 14 Gyr, offering dramatic astrophysical signatures into the present day.
We introduce a new formalism for computing the properties of oscillons with improved accuracy, which we
apply to study the internal structure of oscillons and to identify the physical mechanisms responsible for
oscillon longevity. In particular, we show how imposing realistic boundary conditions naturally selects a
near-minimally radiating solution and how oscillon longevity arises from its geometry. Furthermore, we
introduce a natural vocabulary for the issue of oscillon stability, which we use to predict new features in
oscillon evolution. This framework allows for new efficient algorithms, which we use to address questions
of whether and to what extent long-lived oscillons are fine-tuned. Finally, we construct a family of
potentials supporting ultra-long-lived oscillons, with lifetimes in excess of 1017 yr.
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I. INTRODUCTION

Axions are real scalar fields predicted to exist in many
extensions of the Standard Model. One of the best-
motivated is the QCD axion, which emerges as the
pseudo-Nambu-Goldstone boson of a broken Uð1Þ-axial
symmetry, known as Peccei-Quinn (PQ) symmetry [1]. The
PQ breaking scale fa, known as the axion decay constant,
suppresses the axion’s self-interactions and its coupling to
the Standard Model (SM). To avoid impacting stellar
cooling rates, axion-SM interactions must be highly sup-
pressed, forcing fa to be in the deep UV, fa ≳ 1010 GeV
[2–4]. As the Universe cools below the QCD scale
ΛQCD ≈ 200 MeV, strong dynamics generate a periodic
potential for the axion, whose vacuum expectation value
cancels the strong sector’s CP-violating phase, thus resolv-
ing the strong-CP problem. The separation between the
QCD scale and the PQ scale forces the axion’s mass ma ∼
Λ2
QCD=fa to be smaller than 1 meV, potentially by many

orders of magnitude [5,6].
Furthermore, axionic degrees of freedom emerge in great

numbers from realistic string compactifications, collec-
tively known as the axiverse. Like the QCD axion, these

axionlike particles (ALPs) are generally described by two
parameters: their massm and the decay constant f. Generic
ALPs are also expected to have naturally small masses,
which are exponentially suppressed by the string instanton
action. The precise form of the ALP potential depends on
the specifics of the UV theory it descends from, leaving its
low-energy dynamics effectively unconstrained [7].
Axions (both the QCD axion and ALPs) come equipped

with natural production mechanisms, such as the vacuum
misalignment mechanism, making them well-motivated
dark matter candidates [8–16]. Of particular phenomeno-
logical interest are ultralight axions, whose masses can be
as low as 10−21 eV [17–24]. Such ultralight axions lead to
novel wave dark matter signatures, including effects on the
matter power spectrum and structure formation [15,25–28],
cosmic microwave background observables [29,30], and
the formation of compact scalar structures such as axion
minihalos [31–33], gravitationally bound solitons and
axion stars [34–36], and self-interaction bound oscillons
[37–63], the latter of which is the subject of this paper.
As the densest object in this family of bound axionic

structures, oscillons promise dramatic astrophysical sig-
natures and have, therefore, been the subject of intense
scrutiny [64–70]. Oscillons have a finite lifespan, and such
phenomena crucially rely on oscillons that are cosmologi-
cally long lived. Since dark matter axions are constrained
by Lyman-α forest measurements to be at least 10−21 eV in
mass, their oscillation period is at most 0.1 yr [17–20,22–
24]. Therefore, oscillons that survive 14 Gyr until the
present day must be stable for at least 1011 oscillations.
Simulating an oscillon this long lived is at the upper limit of
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current computational capabilities [57,58], and, thus, indi-
rect methods are required to study longer-lived oscillons.
Significant progress has been made toward understand-

ing the structure and evolution of oscillons in the past two
decades, building on improved computational resources
and theoretical understanding [44–63]. Of central theoreti-
cal importance are artificial, exactly periodic solutions of
the equations of motion, which have been used to approxi-
mate the oscillon’s instantaneous profile and radiation rate.
In rare instances, in which the oscillon is known to be
infinitely long lived, this approximation is exact, and the
solution is called a breather: a finite energy periodic
solution of the equations of motion. The most famous
such example is the 1þ 1-dimensional sine-Gordon
breather, which is stabilized by an infinite set of conserved
quantities [71]. Breathers are not known to exist in 3þ 1
dimensions. Relaxing the breather’s finite energy con-
straint, we find the periodic solutions known as quasi-
breathers. These constructions have an infinite amount of
energy residing in their standing-wave tails. These radiative
tails can be understood as an approximation of the
oscillon’s classical radiation amplitude, which can be used
to estimate the oscillon’s lifetime.
In this paper, we further develop the quasibreather

technique into a framework for understanding the classical
properties of oscillons, unifying several observations made
in the literature, and addressing key conceptual questions
about the harmonic structure and stability of oscillons. By
imposing realistic boundary conditions, we introduce the
physical quasibreather (PQB) as the member of the
quasibreather family closest to a radiating oscillon and
arrive at an improved method for calculating oscillon
properties, such as lifetime, radial profile, linear stability,
and frequency content. In the limit of long lifetimes, our
method becomes especially efficient, since semiperturba-
tive techniques may be employed to rapidly compute
oscillon radiation. We apply our new methods to system-
atically study oscillon lifetimes in periodic axion potentials,
allowing us to probe the genericity of long-lived oscillons.
Moreover, we apply our framework to expand on existing
studies of long-lived oscillons in monodromy potentials.
We summarize our study of oscillon lifetimes in periodic

potentials with parity in the form of longevity landscapes,
such as the one depicted in Fig. 1. There, we scan the
coefficients Vn of the axion potential VðϕÞ defined as

VðϕÞ ¼ m2f2
X∞
n¼1

Vn

n2

�
1 − cos

�
nϕ
f

��
;

X∞
n¼1

Vn ¼ 1:

ð1Þ

Here, the field ϕ is the axion field, m its mass, and f its
decay constant. The particular slice through the space of
coefficients in Fig. 1 is defined by the choice to treat V1 and
V2 as free parameters, while fixing V3 ¼ −1 and forcing V4

to satisfy the mass constraint, with all other Vn set to zero.
Our numerical techniques based on the PQB formalism
have allowed us to perform this parameter sweep in 96 CPU
hours, parallelized down to a few hours of wall-clock time.
We see that the landscape is broken down into “islands of
longevity,” where neighboring potentials sustain oscillons
that are similarly long lived. While most of this space
supports oscillons in the range 102 − 104 oscillations, these
few tunable parameters in the potential are enough to allow
for oscillons that may live up to 1014 cycles.
The distinct islands in Fig. 1 correspond to the action of

two mechanisms that suppress oscillon radiation, which we
identify as totally destructive self-interference and geometric
decoupling. Together, these two effects comprise the form
factor of the oscillon coupling to radiation, but we separate
them because of their distinct imprints on the oscillon life
cycle, as depicted in Fig. 3. Furthermore, the cliffs in Fig. 1
represent destructive interferencepeaks enteringunreachable
frequencies beyond the point of energetic death, where the
oscillon is forced to dissipate because of energy conserva-
tion. Here, we briefly review these three effects.

Destructive interference.—The bound bulk of the oscillon
is a nearly coherent object, oscillating at frequency ω.

FIG. 1. A slice through the oscillon lifetime landscape of parity
symmetric periodic potentials with three free parameters (1) (see
the text for details). The lifetime T is calculated in units of the
scalar massm for oscillons starting with a fundamental frequency
of ω ¼ 0.8 m. The result is a glimpse into the structure of the
oscillon lifetime landscape, revealing islands of longevity, sep-
arated by valleys. These features correspond to the location of
exceptional “dip” frequencies, where the third harmonic expe-
riences totally destructive interference. We plot the families of
potentials along the important colored contours in Fig. 2.
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Through the interaction terms of integer order ϕnþ1, the
oscillon bulk behaves as a nearly coherent source of
radiation at multiples of the fundamental frequency nω.
Similar to a diffraction experiment, certain geometries
lead to totally destructive interference, exponentially
confining certain radiation channels at exceptional
frequencies. When the dominant radiation channel
destructively interferes, the radiated power experiences
a sudden dip.

Geometric decoupling.—The size of the oscillon is
inversely proportional to the binding energy per particleffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ω2

p
, which blows up as ω approaches the rest

mass m (see Fig. 4). In this limit, the oscillon grows
much larger than the wavelengths of radiation 2π=nω,
causing a separation of scales. As this separation grows,
the smooth oscillon bulk decouples from radiation,
which manifests as an exponential decrease in radiated
power toward the end of the oscillon’s lifetime.

Energetic death.—As the oscillon radiates away its
energy, the binding energy per particle decreases,
reducing the oscillon’s central amplitude and increas-
ing its radius. In three or more spatial dimensions,
weak self-interactions result in a volume growing
faster than can be accommodated by the decreasing
central amplitude. Therefore, at frequencies ω ap-
proaching the mass m, there is a point past which an

external energy source is necessary for the oscillon to
remain bound. At this point, the oscillon is forced to
undergo a rapid process of dissipation, which we call
energetic death.

These mechanisms explain the structure of the longevity
landscape observed in Fig. 1. An island of longevity starts

FIG. 2. The potentials along the lines of constant lifetime in
Fig. 1. To interpret this figure, we recognize that each color
corresponds to approximately a single lifetime. Therefore, thin
regions contain the most significant features, while broad regions,
such as the value of the potential near ϕ=f ¼ �π, are the least
significant for determining the lifetime. As the central part of the
potential approaches a free theory, the oscillon must grow in
spatial extent because of weak self-interaction, leading to
decoupling of the large bound oscillon from the short wavelength
radiation (see Sec. III A). On the other hand, some self-interaction
is necessary to delay energetic death, which is why the purple
potentials are much longer lived than the red ones (see Secs. III C
and IV).

FIG. 3. This plot illustrates the mechanisms of oscillon lon-
gevity and death described in Sec. III. Here, we plot the power
carried out of the oscillon in the dominant radiating harmonics as
a function of the oscillon frequency ω. The fundamental fre-
quency ω increases with time and, therefore, may be interpreted
as a time coordinate (see Fig. 4). For simplicity, we consider a
scalar potential with parity symmetry, leading to radiation at odd
multiples of ω due to n → 1 processes. Toward higher frequen-
cies, the size of the oscillon 2π=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ω2

p
is much larger than the

radiation wavelength 2π=ðnωÞ, leading to the geometric decou-
pling of radiation.As the oscillon becomesmore diffuse, its volume
grows faster than its amplitude shrinks, forcing an early energetic
death. At exceptional frequencies, certain radiative harmonics
vanish as a consequence of destructive self-interference.

FIG. 4. The oscillon’s instantaneous frequency ωðtÞ and radi-
ated power PðtÞ plotted as explicit functions of time. These
curves correspond to the generic scenario in Fig. 3. This plot
illustrates how the oscillon spends most of its life at the excep-
tional frequency where the dominant radiating harmonic vanishes
through destructive self-interference.
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when a point of destructive interference (a dip) emerges
from low frequencies (green contour). As the dip migrates
toward higher frequencies, its effect is enhanced by geo-
metric decoupling, causing lifetime to increase until the dip
moves beyond the frequency of energetic death, resulting in
a longevity “cliff” (blue contour).
In order to obtain these results, we have applied our PQB

formalism to estimate the evolution of extremely long-lived
spherically symmetric oscillons in isolation. In doing so,
we have made the implicit assumption that the physical
oscillon has relaxed into a state near the PQB. In order to
check that this assumption is valid, we have performed a
detailed linear stability analysis of the PQB to spherical and
nonspherical perturbations, and we have presented evi-
dence that unstable modes remain small enough that our
procedure stays predictive (Appendix C).
This paper is structured as follows. Section II introduces

the main object of study, the physical quasibreather. The
oscillon is identified as living in the basin of attraction of
the PQB, which naturally captures notions of oscillon
stability. Section III uses the PQB formalism to understand
the mechanisms of longevity briefly discussed above and
derives the minimum radiation condition. Section IV
applies the mechanisms of oscillon longevity and death
to construct a family of potentials supporting ultra-long-
lived oscillons. Section V applies our techniques to study
the genericity of long-lived oscillons and introduces local
and global measures of fine-tuning. Section VI applies our
formalism to well-known potentials in the literature,
rederiving and expanding on previous results. Finally,
the Appendixes provide a detailed technical overview of
our formalism and contain an exhaustive treatment of linear
stability, as well as our numerical work flow. Appendix A
provides the mathematical basis of the PQB. Appendix B
details the numerical procedure for obtaining the PQB.
Appendix C details our linear and nonlinear stability
analysis of the PQB. Appendix D provides technical
formulas relevant for computing the PQB and its linear
stability. Appendix E details our explicit numerical
simulations.

II. THE PHYSICAL QUASIBREATHER

The nonlinear wave equation we study in this paper is of
the generic form

0 ¼ ϕ̈ −∇2ϕþ V 0ðϕ=fÞ: ð2Þ

Here, f is the scale of self-interaction, known as the axion
decay constant. The overdot represents time differentiation,
∇2 is the usual flat-space Laplacian, and V 0 represents
differentiation of the potential Vðϕ=fÞ with respect to the
field ϕ. An oscillon is a finite-energy solution of Eq. (2)
that is quasibound by self-interactions. In 3þ 1 dimen-
sions, which is the focus of our study, all known oscillons
have a finite lifetime, because they radiate classical scalar

waves. To understand whether a potential hosts cosmo-
logically relevant oscillons, one needs a robust computa-
tional formalism for obtaining these classical radiation
rates. Here, we introduce the physical quasibreather for-
malism for computing the oscillon radiation and lifetime,
while leaving the more technical details to Appendix A.
A physical potential V represents interactions between

an integer number of particles and, therefore, possesses a
well-defined Taylor series. Consequently, a field oscillating
at fundamental frequency ω will couple only to integer
multiples of ω. Thus, one may look for quasibreather
solutions: spherically symmetric, exactly periodic solutions
of the equation of motion (2) of the form

θQBðt; r; ϑ;φÞ≡ ϕ

f
¼

X
n∈N0

Snðr;ωÞ sinðnωtþ δnÞ; ð3Þ

where δn are constant phases, with δ1 ¼ 0 by the choice of
a time coordinate. The harmonic profiles Snðr;ωÞ divide
into bound modes n < m=ω and radiative modes n > m=ω.
Solutions of this form were first introduced in Ref. [72] and
have since been used throughout the oscillon literature to
obtain approximate oscillon solutions (see [54] for a
complete review). Although Eq. (3) is a periodic solution
of the equations of motion, it is not an infinitely long-lived
oscillon; the far-field tails of the radiative harmonics
Sn>m=ω decay like r−1 and, therefore, contribute infinite
energy.
These unphysical, infinite energy radiative tails have

been problematic when interpreting quasibreathers as
approximate oscillons. Furthermore, finding a quasi-
breather of a specific frequency is underdetermined:
There are as many different quasibreathers of frequency
ω as there are radiative degrees of freedom, representing the
choice of central amplitudes Sn>m=ωðr ¼ 0;ωÞ. One pro-
posal to resolve this ambiguity is to pick the quasibreather
with the minimum radiation amplitude, in an attempt to
minimize the influence of the unphysical radiation tails
(see, e.g., [54]). Here, we introduce a different criterion for
choosing the quasibreather closest to a physical oscillon.
Instead of demanding that the radiative tails are minimized,
we will require that the quasibreather is perturbatively close
to a radiating solution of Eq. (2).
To this end, we introduce the orthogonal deformation

(OD)

θODðt; r; ϑ;φÞ≡
X
nω>m

cnðr;ωÞ cosðnωtþ δnÞ; ð4Þ

whose temporal phase is 90° offset from that of the
quasibreather (3). Note that the sum over n includes only
the frequencies corresponding to modes with radiative tails,
nω > m. When added to the standing wave quasibreather
(3), the orthogonal deformation allows for traveling modes
(see Fig. 5). We then define the family of physical
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quasibreathers (PQB) θPQB, parametrized by ω, as those
quasibreathers which may be orthogonally deformed
θPQB → θPQB þ θOD to satisfy purely outgoing boundary
conditions at leading order in θOD (i.e., θPQB þ θOD must
satisfy the Sommerfeld radiation condition [73]). Note that
we will use subscripts to refer either to a general quasi-
breather θQB or to a physical quasibreather θPQB with an
OD partner that together satisfy the Sommerfeld radiation
condition.
The radiative boundary conditions are enforced at spatial

infinity, where the wave equation (2) is well approximated
by the Klein-Gordon equation. In this region, the OD and
the radiative tails of the PQB are of the same amplitude,
because they represent purely outgoing radiation. Because
θPQB is a solution of the equations of motion, the pertur-
bation θOD must backreact at second order Oðθ2ODÞ, and it
must obey a homogeneous linear equation to the same order
[74]. Therefore, a PQB with small radiative tails must have
an OD that is small everywhere, compared to the PQB
central amplitude. The infinite lifetime limit is the limit of
no radiation, and, in this case, the PQB approaches a finite
energy oscillon. Therefore, the PQB will be the central
object in our study of long-lived oscillons.
In summary, the following three objects are pointwise

close to one another: the finite energy oscillon, the PQB,
and the orthogonally deformed PQB. This proximity forms
the basis of an expansion of the oscillon, which we fully
develop in Appendix A, where the oscillon is understood to

be a stable perturbation of the orthogonally deformed PQB.
As such, oscillon properties (instantaneous frequency,
stability, radiation, etc.) may be understood as originating
from the nearest PQB. Furthermore, we develop the
Floquet analysis of linear perturbations to the deformed
PQB in Appendix C. Although linear stability turns out to
be a sufficient criterion for the existence of an oscillon, it is
not a necessary condition, since stable orbits can (and do)
emerge at higher orders. In other words, linear instability
does not imply the dissolution of the oscillon, since
nonlinearities control the size of the linearly unstable
perturbations. This effect has important phenomenological
consequences for the nature of the oscillon evolution (for
examples, see Figs. 12, 14, 19, and 20). Specifically, slow
quasiperiodic oscillations around the PQB profile emerge
in linearly unstable regions, with amplitude that depends
strongly on initial conditions.
Below, Sec. II A provides a minimal technical review of

our framework, which will be useful in understanding the
qualitative features of oscillon evolution in Sec. III.
Afterward, Sec. II B outlines the steps in the numerical
work flow of computing the PQB and OD, as well as the
associated oscillon properties such as lifetime.

A. The mode equations

At each stage of its life cycle, the oscillon may be viewed
as close to a particular physical quasibreather. This descrip-
tion becomes increasingly precise in the infinite lifetime
limit, where radiation goes to zero and the oscillon evolves
slowly.Because the oscillon spends a long time in thevicinity
of a particular physical quasibreather, the notion of the
instantaneous frequencyωbecomeswell defined. Physically,
ω then behaves like an adiabatic parameter, although
formally it serves as an index to label which physical
quasibreather the oscillon is closest to at a given time.
The fact that the oscillon does remain close to the physical
quasibreather family is a consequence of its attractive
properties, which we make precise in Appendix C.
We are now in position to introduce the mode equations,

which describe the spatial profile of the physical quasi-
breather at a given frequency ω. In the interest of a
pedagogical introduction, we will consider the particularly
simple case of a single bound harmonic S1 for a potential
with parity VðθÞ ¼ Vð−θÞ, and we will keep only the first
radiative harmonic S3.
As outlined above, the potential V is Taylor expandable

and, therefore, factorizes into a sequence of integer har-
monics of the fundamental frequency ω. By restricting to
VðθÞ ¼ Vð−θÞ, only the odd harmonics are coupled to one
another, allowing for the following decomposition:

V 0ðθPQBÞ≡m2f
X
n¼1;3

V 0
nðS1; S3Þ sinðnωtÞ þ � � � ; ð5Þ

FIG. 5. The radial profile of the PQB (solid lines) and its OD
(dashed lines) for the sine-Gordon (SG) oscillon at ω ¼ 0.92 m,
plotted against radius in units of the mass m−1. In the limit where
the radiation tails are small, this serves as an instantaneous
approximation of the internal structure of the oscillon. The first
quasibreather harmonic S1 is exponentially bound, defining the
oscillon bulk. The third harmonic S3 is the dominant radiation
mode, followed by the fifth, seventh, and so on. The spatial and
temporal phase of the OD are 90° out of phase with the PQB in
the radiative region, representing outgoing radiation.
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V 00ðθPQBÞ cosðn0ωtÞ
≡m2

X
n¼1;3

V 00
n;n0 ðS1; S3Þ cosðnωtÞ þ � � � ; ð6Þ

where the dots refer to terms proportional to higher
frequencies nω and terms that contain the small harmonics
Sn, n ≥ 5. Inserting the quasibreather and the orthogonal
deformation into the equations of motion, we arrive at the
orthogonally deformed mode equations

0 ¼ S001 þ
2

r
S01 þ ω2S1 −m2V 0

1ðS1; S3Þ;

0 ¼ S003 þ
2

r
S03 þ ð3ωÞ2S3 −m2V 0

3ðS1; S3Þ;

0 ¼ c003 þ
2

r
c03 þ ðð3ωÞ2 −m2V 00

3ðS1; S3ÞÞc3: ð7Þ

To fully specify the solution to this system, we must
provide six boundary conditions: regularity at the origin

0 ¼ S01ð0Þ ¼ S03ð0Þ ¼ c03ð0Þ; ð8Þ

regularity at spatial infinity

0 ¼ S1ð∞Þ; ð9Þ

and radiative boundary conditions [73]

0 ¼ lim
r→∞

∂rrS3ðrÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3ωÞ2 − 1

q
rc3ðrÞ;

0 ¼ lim
r→∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3ωÞ2 − 1

q
rS3ðrÞ þ ∂rrc3ðrÞ: ð10Þ

To understand these equations, it is helpful to visualize the
evolution of S1 and S3 as the coordinates of a point particle
rolling down a hill, where r is now the time coordinate and
the initial stationary particle is placed so that it arrives at the
saddle located at the origin when r → ∞ (see Fig. 6). Out
of the continuum of quasibreather initial conditions S1ð0Þ,
S3ð0Þ satisfying this constraint, the orthogonal deformation
selects only one, corresponding to the PQB.

B. Calculation work flow

Here we review the work flow of estimating the oscillon
lifetime in the physical quasibreather framework, leaving a
more detailed presentation to the appendixes.
(1) The harmonics Sn of the PQB may be thought of as

existing in two categories. The perturbative harmon-
ics are those Sn whose amplitude is everywhere
small enough that self-interaction can be safely
neglected. Those Sn for which this is not true are
called nonperturbative. Typically, only a few non-
perturbative harmonics are needed to achieve
numerical convergence. The physical intuition for

whether a harmonic may be treated perturbatively or
not is whether it contributes significantly to the
binding energy compared to the flux radiated per
cycle. In other words, a good rule of thumb for
whether a harmonic is perturbative is whether its
central amplitude is significantly larger than the
leading orthogonal deformation at the origin.

(2) The nonperturbative harmonics (which must include
S1) are calculated using a shooting technique, in
which the Sn’s are propagated from the origin to an
outer boundary at r ¼ rout. At this point, the
Sommerfeld radiation condition (10) is used to
calculate the OD, cnðroutÞ and c0nðroutÞ. From these
final conditions, the cn are propagated back to the
origin in the background of the nonperturbative Sn.
One then checks whether the backward propagated
cn’s satisfy regularity at the origin. We perform a
search over initial conditions Snð0Þ until regularity is
satisfied for all cn’s.

(3) Having computed the nonperturbative harmonics, an
arbitrary number of perturbative harmonics may be
computed to linear order by solving a sparse matrix
equation. In other words, once the hard work of
computing the nonperturbative harmonics is done,
one may compute the full spectrum of the oscillon to
arbitrary harmonic order with little computational
cost. One may then reshoot the nonperturbative
harmonics in the background of the perturbative

FIG. 6. The PQB trajectory of the harmonic amplitudes S1 and
S3 (red line) is plotted on top of the level sets of the effective
potential. The set of all initial conditions corresponding to
quasibreathers is outlined in dotted blue. The particular example
plotted here is of the sine-Gordon equation for ω ¼ 0.5 m.
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harmonics to account for linear backreaction, repeat-
ing until converged.

(4) The result of these calculations is a semi-nonper-
turbative expression for the physical quasibreather
Sn and its orthogonal deformation cn. The radiation
power in each harmonic is easily computed as Pn ¼
2πr2ðnωÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnωÞ2 − 1

p
ðS2n þ c2nÞ evaluated at the

outer boundary. The sum
P

n Pn is the PQB
approximation to the total power P radiated by
the oscillon.

(5) Having calculated the outgoing power P as a
function of the PQB frequency ω, we may approxi-
mate the lifetime of the oscillon near the physical
quasibreather trajectory as T ¼ R

dωðdEB=dωÞ=P,
where EB is the bound energy in the oscillon,
defined as the difference between the PQB and
OD energy (see Appendix A 4).

We provide a public implementation of this protocol for the
case of a single nonperturbative harmonic in potentials with
parity—a fast and easy-to-use tool to obtain ballpark
estimates of oscillon properties at larger frequencies [75].

III. THE OSCILLON LIFE CYCLE

Here we review and expand upon previous literature
results [36,37,45–58] in order to identify the main mech-
anisms responsible for oscillon longevity and death. We
point out two distinct effects contributing to oscillon
longevity: geometric decoupling and destructive interfer-
ence, both of which may be thought of together as the form
factor of the oscillon coupling to radiation. It is important to
separate the form factor into these two effects, because they
intervene at different times and have different consequences
for oscillon evolution. Often, an oscillon’s lifetime is
dominated by one mechanism or the other, while the
longest-lived oscillons take advantage of both simultane-
ously. Separately, as the oscillon ages and grows more
diffuse, it will inevitably undergo an energetic death, beyond
which its energy would be forced to unphysically increase.
These three effects are all pointed out in Fig. 3, which depicts
the typical radiation history of anoscillon.Below,weprovide
a semiquantitative overview of these three effects.

A. Geometric decoupling

Recall that the oscillon is a smooth, nearly coherent
object, coupling to integer multiples n of its fundamental
frequency ω through many-to-one interactions at leading
order ϕnþ1. As the oscillon radiates binding energy
throughout its life, its fundamental frequency increases
toward m (see Fig. 4), and its typical size 2π=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ω2

p

blows up, where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ω2

p
is the binding energy per

particle. Therefore, a natural separation of scales occurs
between the length scale of radiation 2π=nω and the size of
the oscillon, leading to an exponential suppression of the

oscillon’s coupling to radiative modes nω, n ≥ 2.
According to a standard Riemann-Lebesgue suppression
argument, the ratio of the nω harmonic amplitude to the
fundamental harmonic central value scales as γn, with

γ ≈ exp

�
−G

ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ω2

p
�
; ð11Þ

where G is an order 1 geometrical factor, used here as a
stand-in for the exact shape of the oscillon. The fact that the
geometrical factor G is in the exponent shows that even
modest changes in the oscillon’s shape can dramatically
change its lifespan, emphasizing the importance of accu-
rately resolving the oscillon geometry. Moreover, because
the factor ω=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ω2

p
becomes larger as ω approachesm,

the differences between potentials will be exaggerated in
this limit, while low-frequency oscillons will typically be
similar to one another (see Figs. 12 and 13 for an example).
As a consequence of this growing separation of scales,
oscillons whose frequency ω approaches the mass m
radiate at increasingly suppressed rates, so that the last
phase of the oscillon’s life is often the longest. We refer to
this general trend as geometric decoupling.

B. Destructive interference and the minimum
radiation condition

Throughout the oscillon lifetime, radiative harmonics are
subject to self-interference, which is totally destructive at
exceptional frequencies. At these points, destructive inter-
ference completely confines specific harmonics and sub-
verts the expected radiation hierarchy implied by geometric
decoupling. When the leading harmonic is confined, the
overall radiation amplitude shrinks by another global factor
of γ. For many especially long-lived oscillons, a period near
harmonic confinement dominates the total lifetime. In
principle, it is possible to imagine engineering ultralong-
lived oscillons by aligning the destructive interference of
multiple harmonics, leading to additional suppression by
γl, where l is the number of aligned exceptional points. In
practice, these constructions are necessarily fine-tuned,
since each resonance must be aligned to the order of γl−1.

1. Interferometric analog

The basic physics of oscillon radiation is captured by the
physical model in Fig. 7, which describes an interference
experiment reminiscent of the classic Lloyd’s mirror. In this
simple one-dimensional setup, a coherent, finite-sized,
optical source at r > 0, representing the oscillon’s coupling
to the radiative harmonic, is placed in front of a mirror at
r ¼ 0, representing the spherical symmetry of the oscillon.
Each point in the source experiences interference both from
its reflection and from its neighbors. Let the spatial loca-
tion and magnitude of the source be described by J̃ ðrÞ.
The direct radiation reaching the observer is, therefore,
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Adirectðt; rÞ ¼
Z

∞

0

dxJ̃ ðxÞei½ωt−kðr−xÞ�: ð12Þ

On the other hand, the reflected light paths sum up to an
amplitude:

Areflectedðt; rÞ ¼
Z

∞

0

dxJ̃ ðxÞei½ωt−kðrþxÞþπ�; ð13Þ

where, crucially, a half-wavelength path difference is
picked up upon reflection at the mirror. This is equivalent
to enforcing the usual regularity conditions at the origin in a
spherically symmetric field solution. Finally, the observer
adds up these contributions coherently, which explicitly
leads to an amplitude equal to the sine-transform of the
source:

Aobsðt; rÞ ¼ Adirectðt; rÞ þ Areflectedðt; rÞ;

¼ 2ei½ωt−krþπ=2�
Z

∞

0

dxJ̃ ðxÞ sinðkxÞ: ð14Þ

In the following section, we derive a similar result from the
mode equations of the PQB and quantify corrections to this
simplified picture.

2. The physical quasibreather picture

In the previous section, we introduced a simple inter-
pretation of the oscillon radiation in terms of the interfer-
ence of a coherent source with its own reflection. Here we
study the mode equations (7), in which the first radiative
harmonic S3 and the orthogonal deformation c3 are treated
as a perturbation of the fundamental S1. Under this
perturbative assumption, the mode equations for the radi-
ative harmonic S̃3 ≡ rS3 and its orthogonal deformation
c̃3 ≡ rc3 further simplify to the frictionless linear system

S̃003ðrÞ þ k2SðrÞS̃3ðrÞ ¼ rJ 3ðrÞ; ð15Þ

c̃003ðrÞ þ k2cðrÞc̃3ðrÞ ¼ 0: ð16Þ

Here, kS and kc represent the r-dependent wave numbers of
the third harmonic S3 and c3, respectively, in the back-
ground of the fundamental harmonic S1, and rJ 3ðrÞ
corresponds to the 3 → 1 processes generating the radia-
tion. Note, the wave number is different for the third
harmonic S3 and its orthogonal deformation c3, a distinc-
tion explicitly derived in the appendix result (D9). There,
we find that the difference between kS and kc appears at
sixth order in a Bessel expansion of the background and,
therefore, is typically small, making the approximation
kS ¼ kc quantitatively good in most circumstances. We can
solve the linear system analytically in terms of two linearly
independent solutions yS1;2ðrÞ and yc1;2ðrÞ of the homo-
geneous equations. In this case, the expression for the
Green’s function is simple, and the full solution becomes a
sum of homogeneous (defined by initial conditions) and
inhomogeneous contributions, of the form

S̃3ðrÞ ¼ aH1 y
S
1ðrÞ þ aH2 y

S
2ðrÞ

þ yS1ðrÞ
Z

r

0

dr0r0J 3ðr0Þ
yS2ðr0Þ
WSðr0Þ

− yS2ðrÞ
Z

r

0

dr0r0J 3ðr0Þ
yS1ðr0Þ
WSðr0Þ ; ð17Þ

c̃3ðrÞ ¼ bH1 y
c
1ðrÞ þ bH2 y

c
2ðrÞ; ð18Þ

whereWSðrÞ≡yS1ðrÞyS2 0ðrÞ−yS1
0ðrÞyS2ðrÞ is the Wronskian.

Let yS;c1 be the sine-like solution (nonzero derivative at
r ¼ 0) and let yS;c2 be the cosine-like solution (zero
derivative at r ¼ 0). Regularity at the origin requires that
only sine-like initial conditions are allowed, constraining
the cosine-like terms to be zero bH2 ¼ aH2 ¼ 0.
In the far-field region, all solutions yS;c1;2 are simple

combinations of sines and cosines of frequency
k3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3ωÞ2 −m2

p
. However, orthogonality between y1

and y2 is generally not maintained into the far field.
Without loss of generality, we can introduce phase shifts
to express these misalignments:

FIG. 7. A physical model for an oscillon radiating into the third
harmonic. The black line represents the background oscillon
source ϕ3, while the red lines represent the amplitude of the
radiated field. The spherical symmetry of the oscillon imposes
boundary conditions at the origin which behave like an optical
mirror: An inward propagating spherical wave is reflected at the
origin, propagating back outward with the opposite phase. The
result is that the oscillon radiation may experience two kinds of
self-interference: interference from the physical extent of the
source, analogous to diffraction of a laser beam through a finite-
width slit, and interference due to the spherical symmetry of the
oscillon, represented by the mirror. At certain oscillon frequen-
cies, these two effects conspire to destructively interfere, trapping
a nominally free harmonic.
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yS1 ¼ sinðk3rÞ; ð19Þ

yS2 ¼ cosðk3rþ φS
2Þ; ð20Þ

yc1 ¼ sinðk3rþ φc
1Þ; ð21Þ

with the understanding that when these phase shifts are
zero, we regain the simple constant-wave-number
Helmholtz solutions. These phase shifts can, in principle,
be computed in the WKB approximation. Furthermore, we
define the orthogonal components ys ¼ sinðk3rÞ and yc ¼
cosðk3rÞ against which we can project the shifted solutions,
leading to

yS1 ¼ ys; ð22Þ

yS2 ¼ yc cosφS
2 − ys sinφS

2; ð23Þ

yc1 ¼ yc sinφc
1 þ ys cosφc

1: ð24Þ

Substituting, we collect the orthogonal contributions to the
radiative tails as

S3ðrÞr !
r→∞

ysðaH1 þ aI1 þ aI2 sinφ
S
2Þ − ycaI2 cosφ

S
2;

c3ðrÞr !
r→∞

ysbH1 cosφc
1 þ ycbH1 sinφc

1; ð25Þ

where aI1 and aI2 are fixed, representing the total inhomo-
geneous contribution from the oscillon background

aI1 ¼
Z

∞

0

dr0r0J 3ðr0Þ
yS2ðr0Þ
WSðr0Þ ; ð26Þ

aI2 ¼
Z

∞

0

dr0r0J 3ðr0Þ
yS1ðr0Þ
WSðr0Þ : ð27Þ

Radiative boundary conditions (10) match the coefficients
of ys and yc between S3 and c3, which uniquely determines
the homogeneous degrees of freedom:

bH1 ¼ aI2 cosφ
S
2 secφ

c
1;

aH1 ¼ −aI1 þ aI2ð− sinφS
2 þ cosφS

2 tanφ
c
1Þ: ð28Þ

Consequently, the solution simplifies to

S3ðrÞr ¼ aI2 cosðφS
2Þðys tanφc

1 − ycÞ; ð29Þ

c3ðrÞr ¼ aI2 cosðφS
2Þðys þ yc tanφc

1Þ: ð30Þ

In other words, the amplitude of the radiation is always
proportional to the inhomogeneous contribution aI2. At
exceptional frequencies, this contribution is exactly zero,
and the harmonic experiences totally destructive interfer-
ence; this is visible in the power versus frequency plots as a

sudden drop (see Figs. 12 and 13, for example). Therefore,
in this linear model the condition for totally destructive
interference is

0 ¼
Z

∞

0

dr0r0J 3ðr0Þ
yS1ðr0Þ
WSðr0Þ : ð31Þ

In the case of a flat wave number, i.e., Helmholtz system,
this is precisely the sine-transform of the source, as
predicted by the simple interferometric model. Because
totally destructive interference is equivalent to a single
constraint on one free parameter ω, we conclude this effect
is generic and not the result of some fine-tuning.
To reach this result, we have effectively solved for the

physical quasibreather, defined by the choice of aH1 in
Eq. (28), at the level of the third harmonic and in a linear
approximation. In previous literature (e.g., Ref. [54]), a
different quasibreather was highlighted as relevant in
approximating the oscillon, namely, the minimum-radia-
tion quasibreather. This corresponds to a different choice
of homogeneous parameters; in this case, the construction
of c3 is irrelevant, and the value of aH1 is chosen such that S3
is minimized at the level of Eq. (25), specifically by picking

aH1 ¼ −aI1 − aI2 sinφ
S
2: ð32Þ

We see that this differs from the physical quasibreather
answer (28) by an additional aI2 cosφ

S
2 tanφ

c
1, which is zero

in the case when φc
1 ¼ 0, i.e., when the wave numbers kSðrÞ

and kcðrÞ are identical functions of r. While typically small,
differences between kSðrÞ and kcðrÞ appear at higher orders
in the background and are not guaranteed to be perturbative
—as derived below in Appendix D 1. Therefore, the
minimum-radiation quasibreather and the physical quasi-
breather are generally close but distinct and are identical
only at the exceptional dip frequency where both predict
zero radiative tails.

C. Energetic death

As explained in Sec. III A, the spatial extent of the
oscillon increases as it radiates away its binding energy. On
the other hand, the balance between self- and binding
energy demands that the oscillon’s central amplitude
decreases. Depending on the number of spatial dimensions,
one effect or the other dominates the oscillon’s total energy
as ω approaches m. In particular, in three or more spatial
dimensions, the volume turns out to grow faster than the
central amplitude shrinks. The oscillon’s parent PQB also
obeys the same scaling relation, and at some point the
bound energy in the PQB will necessarily begin to increase.
To keep up, the oscillon would need a source of energy; in
its absence, the oscillon is forced off the PQB trajectory, in
a process we call energetic death.
To make these ideas precise, we can invoke the mode

equations (7), in the limit of small central amplitude S1ð0Þ.
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Note that, because the oscillon’s volume is large, it is
geometrically decoupled from radiation according to the
argument in Sec. III A, and, therefore, it is safe to neglect
backreaction from the radiative harmonics. Keeping only
the leading quartic nonlinearity in the potential, S1 is
described by

0 ¼ S001 þ
d − 1

r
S01 − ðm2 − ω2ÞS1 þ

3

4
m2λS31: ð33Þ

Here, d is the number of spatial dimensions. To extract the
scaling of S1ð0Þ, we match the binding energy of the
oscillon to its self-energy, leading to

ðm2 − ω2ÞS21 ∼m2λS41: ð34Þ

Therefore, the scaling of the central amplitude is indepen-
dent of dimensions, namely,

S1ð0Þ ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ω2

p
: ð35Þ

On the other hand, since the spatial extent of the oscillon
scales like scale 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ω2

p
(as seen in Sec. III A), its

volume must increase according to

V ∼ ðm2 − ω2Þ−d=2: ð36Þ

Combining these two scalings results in the oscillon’s total
energy

E ∝ VS1ð0Þ2 ∝ ðm2 − ω2Þ1−d=2; ð37Þ

which grows as ω approaches m for spatial dimension
d ≥ 3. In other words, the expectation that the oscillon
energy decreases as a function of ω is true only up to a
specific frequency strictly less than m. Beyond this point,
the oscillon energy is forced to increase as a result of weak
self-interaction. Such an increase is unphysical, and the
value of ω at which the PQB’s energy is minimized sets the
moment of death. For an earlier argument along these lines,
see [47,54].
For an explicit comparison, take the d ¼ 1 sine-Gordon

oscillon, which has a simple analytic form

ϕ ¼ 4 arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ω2

p
cosωt

ω cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ω2

p
x

�
: ð38Þ

In the ω → m limit, the energy of the sine-Gordon oscillon
is exactly 16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ω2

p
, which matches our predicted

scaling.
All the examples of oscillons studied in Secs. IV–VI live

in three spatial dimensions and, therefore, exhibit an
energetic death. In other words, for each oscillon there
is a specific frequency strictly less thanm beyond which the
scalar field may no longer exist close to a PQB. After this

point, our formalism no longer applies, and the oscillon is
considered “dead.” Afterward, gravity may take over,
leading to the formation of much more diffuse configura-
tions such as axion stars [35,36]. In our numerical simu-
lations, this moment of death is distinctly visible as a
“loop,” representing the rapid conversion of the oscillon
into radiation through 3 → 1 processes (see Figs. 12, 14,
and 15).

IV. A PRESCRIPTION FOR OSCILLON
LONGEVITY

Here, we provide a procedure for generating potentials
that support cosmologically long-lived oscillons. In
Sec. III, we explained how the longest-lived oscillons
exhibit a combination of geometric decoupling and destruc-
tive interference. Geometric decoupling refers to the
suppression of radiation when the oscillon size is much
larger than the radiation wavelengths, which is especially
pronounced at large frequencies ω close to m. For a large
oscillon, the interferometric “fringe pattern” also occurs
more rapidly, leading to more instances of destructive
interference which further suppresses radiation. Thus, we
may find long-lived oscillons by searching for potentials
that support large oscillons at frequencies ω close to m. An
apparent obstacle to this goal is due to energetic death (see
Sec. III C), which limits the frequencies for which the
oscillon can have decreasing energy as a function of ω. In
the following, we identify a feature in the scalar potential
that can stave off energetic death and produce large
oscillons.
In Sec. II, we introduced the mode equations (7) obeyed

by the radial profiles of the PQB harmonics SnðrÞ and the
sense in which these harmonics may be thought of as the
coordinates of a point particle, whose initial condition is
tuned so that ðS1; S3;…Þ ¼ 0⃗ at r ¼ ∞. Here, we aim to
study the longest-lived oscillons, whose radiation is
necessarily small. Moreover, we will focus on large
frequencies ω ≈m, for which higher harmonics are
urther suppressed by a natural separation of scales
ω ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ω2

p
. Therefore, we will drop the higher har-

monics n ≥ 3 in this section’s analysis and work with a
simplified one-dimensional point-particle picture, repre-
senting the radial profile of the fundamental mode, S1ðrÞ.
We now introduce the equations that govern S1 from first

principles, using an effective action technique, equivalent
to the PQB formalism for a single bound harmonic. The
Lagrangian describing the real scalar ϕ is

L½ϕ� ¼
Z

d3x

�
1

2
_ϕ2 −

1

2
∇2ϕ2 − VðϕÞ

�
: ð39Þ

Because both V and ϕ are proportional to f2 [as in Eq. (1)],
f is an overall factor in the action and, therefore, does not
contribute to the dynamics. Hence, for the rest of this
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section, we will work in units of f ¼ 1. Since we are
looking for quasiperiodic, spherically symmetric solutions
dominated by the fundamental mode, we substitute ϕ ¼
S1ðrÞ sinωt and integrate out time, leading to the effective
action for S1:

Seff ½S1� ¼
Z

2π=ω

0

dtL½S1 sinωt� ð40Þ

¼ −
π

ω

Z
4πr2dr

�
1

2
S01ðrÞ2 − VeffðS1Þ

�
: ð41Þ

By integrating out time, we arrive at an action for a point
particle S1ðrÞ, where r acts like a time coordinate, and the
resulting effective potential is

Veff ½S1�≡ 1

2
ω2S1ðrÞ2 −

ω

π

Z
2π=ω

0

dtVðS1 sinωtÞ: ð42Þ

Finally, the equation of motion for S1 arising from this
effective action carries a 2=r friction term from the
spherical Jacobian

0 ¼ S001 þ
2

r
S01 þ V 0

effðS1Þ; ð43Þ

where V 0
eff represents the derivative of Veff with respect

to S1.
A solution of these equations which describes an oscillon

profile needs to respect regularity conditions at r ¼ 0 and
r ¼ ∞, corresponding to S0ð0Þ ¼ 0 and Sð∞Þ ¼ 0. All
solutions which respect regularity at r ¼ ∞ must exponen-
tially decay, since Veff behaves like a quadratic hilltop
− 1

2
ðm2 − ω2ÞS21 for small S1. From the perspective of the

point particle, this means that initial conditions are tuned
such that S1 has just enough energy to climb up the hilltop
at 0.
In order to engineer large oscillons, we need the particle

S1 to stay at small velocities so that the oscillon interior
spreads out. Initializing on a hillside of Veff is detrimental
to this goal, since the slope of Veff controls the speed of S1,
typically leading to a small oscillon core. On the other
hand, releasing S1 close to a hilltop allows S1 to remain at
low velocities for a time inversely proportional to the initial
displacement of S1 from the hilltop.
Therefore, we need to connect hilltop-initialized solu-

tions (i.e., low central velocity) to physical solutions [i.e.,
which arrive at S1ð∞Þ ¼ 0]. To compensate for the energy
lost by 2=r friction, a physical solution must be initialized
with positive potential energy [where we have normalized
Veffð0Þ ¼ 0]. Effective potentials which satisfy these two
conditions will have nontrivial local maxima, whose hilltop
is higher than 0 (see Fig. 8).
Here, we reverse engineer a class of scalar potentials

VðϕÞ which generate effective potentials VeffðS1Þ with the
aforementioned hilltops. This construction makes use of the

fact that the mass term in the effective potential VeffðS1Þ
acquires an ω2 offset compared to the mass term in the
scalar potential VðϕÞ. Based on this observation, we
introduce the family of frustrated quadratics, whose
Fourier coefficients [in the basis expansion (1)] are chosen
as the solution to the following optimization problem:

minimize max
ϕ∈½−b;b�

����VðϕÞ − 1

2
m2

fϕ
2

����;
subject to V 00ðϕ ¼ 0Þ ¼ m2; ð44Þ

where 0 < b < π and 0 < mf < m is the frustrated mass.
In other words, we are forcing the potential to have mass m
at small ϕ and a different, smaller mass mf at larger ϕ. For
frequencies ω close to mf, the effective potential Veff will
consist of a series of hills and valleys inside the interval
S1 ∈ ½−b; b�, whose amplitude is controlled by how tightly
the objective (44) is optimized.
As local hilltops in such potentials rise above the zero-

potential line, new oscillon solutions emerge. When the
hilltop is precisely at the zero line, this new solution is
wholly unphysical, carrying infinite energy. Asω increases,
this hilltop is pushed upward, and S1ð0Þ starts with more
potential energy that needs to be dissipated through
friction. As a consequence, S1ð0Þ starts further from the
hilltop so that it begins rolling earlier while the 2=r friction

FIG. 8. Effective potential VeffðS1Þ for a long-lived oscillon, at
three nearby frequencies. The example is obtained using the
frustrated quadratic method defined in Eq. (44) with m2

f ¼
0.9 m2 and b ¼ 2, computed using three Fourier coefficients
V1;2;3 with V3 forced to satisfy the mass constraint in Eq. (1). We
see that, as ω passes through the frustrated mass mf, new
solutions to the equations of motion (43) emerge, specifically
when the local maximum of the effective potential increases to
positive values. The balls are placed at the values S1ð0Þ which
initialize physical oscillon solutions at the respective frequencies
ω. The inset figure shows the trajectories of the smallest-
amplitude solutions of Eq. (43) for each of the three potentials
plotted.
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is still active, corresponding to an oscillon with a smaller
radius and less energy (see the inset in Fig. 8). Even though
this branch may appear at very large ω close to m, this
effect guarantees there is some finite range of frequencies
over which the energy of these solutions decreases, mean-
ing a physical oscillon can be supported.
In Fig. 9, we plot the lifetime of oscillons in frustrated

quadratics as a function of the frustration m2
f=m

2. The
frustration mass mf controls the frequency at which new
hilltop solutions emerge. As mf increases toward m, the
appearance of these new branches occurs at larger frequen-
cies, taking advantage of enhanced geometric decoupling
and leading to longer lifetime. Increasing the number of
Fourier coefficients in the potential reduces the height of
the hilltops in the effective potential, allowing them to
emerge at larger frequencies. Furthermore, higher frequen-
cies in the potential push the hilltops closer to S1 ¼ 0,
allowing for lower-energy oscillons. We speculate that a
fixed number of Fourier coefficients in the potential implies
an upper bound on oscillon lifetimes, although we leave
this question to future work.

V. IS LONGEVITY FINE-TUNED?

There are many known examples of potentials which
support very long-lived oscillons, including those identified
in Sec. IV. However, the precise form of these potentials
remains largely unconstrained by a UV theory, and,

therefore, it is not clear how to assess whether their
longevity is a result of fine-tuning, since the distribution
from which the potential coefficients are sampled strongly
influences the lifetime. Therefore, we introduce two
notions of tuning that attempt to quantify the difficulty
of constructing a theory with a long-lived oscillon:
(1) Global tuning asks what fraction of parameter space

hosts long-lived oscillons. A typical object of study
is the probability distribution of lifetimes, sampled
with minimal priors over the potential coefficients in
some natural basis.

(2) Local tuning asks whether a given long-lived oscil-
lon is sensitive to variation in its potential param-
eters. The typical objects of study are the local
gradient and curvature of the lifetime with respect to
the parameter space at the point in question.

In Secs. VA and V B, we address the genericity of long-
lived oscillons in periodic potentials with parity. The
advantage of studying periodic potentials is that they are
naturally expanded in the Fourier basis. Without any
theoretical priors, a natural scale for the Fourier coefficients
is m2f2, and variations will be of the same size.
One may also be interested in studying the genericity of

long-lived oscillons in monodromy potentials [76–78].
Since an oscillon has a finite amplitude, one may restrict
the aperiodic monodromy potentials to a compact interval,
which is fully described by a Fourier expansion. However,
any realistic model of axion monodromy is asymptotically
a power law, meaning the high-frequency modes of the
potential are perfectly correlated. To sample the full space
of monodromy potentials, one must sample from a dis-
tribution that imposes this correlation. In the absence of a
reliable way to select coefficients from this distribution, we
leave this question to future work. Instead, in Sec. VI A, we
scan the one-parameter family of monodromy potentials
studied in Refs. [50,57,58].

A. Global tuning

In this section, we study the distribution of oscillon
lifetimes as a function of the potential coefficients in the
Fourier basis. In particular, we will consider periodic
potentials with parity

VðθÞ ¼ m2f2
X∞
n¼1

Vn

n2
ð1 − cos nθÞ;

X∞
n¼1

Vn ¼ 1; ð45Þ

where the sum of the coefficients Vn constrains the mass of
ϕ to be m. In Fig. 10, we plot the lifetime versus the free
variation of the first two coefficients n ¼ 1, 2 with the third
constrained so that the sum in Eq. (45) is satisfied, with all
other Vn set to zero. The mass constraint in Eq. (45)
naturally sets the typical scale of Vn to 1. Therefore, we
restrict our study to Vn in the range ½−1; 1�, inspired in part
by the fact that the QCD axion potential has order 1
coefficients in this basis [see Eq. (51)].

FIG. 9. Lifetime versus frustration for oscillons in frustrated
quadratic potentials, computed using three and four Fourier
coefficients [see Eq. (44)]. The lifetimes are integrated over
the interval ω ∈ ½0.8; 0.999� in the one-nonperturbative harmonic
PQB formalism. We speculate that introducing more Fourier
coefficients leads to longer-lived oscillons, since the frustration
mass can be closer to m before self-interactions become repul-
sive, leading to enhanced geometric decoupling. The line
of best fit for three coefficients (dashed purple line) is
log10ðmtÞ ¼ 28ðmf=mÞ2 − 11, and the best fit with four coef-
ficients (solid blue line) is log10ðmTÞ ¼ 39ðmf=mÞ2 − 21.
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Figures 10 and 11 provide illustrative examples of some
important qualitative features of the distribution of oscillon
lifetimes. First, we observe islands of longevity, seen in
Fig. 10 as localized regions of exceptionally long lifetimes.
In Fig. 11, this feature is manifested as plateaus in the
distribution of lifetimes. We observe that each successive
degree of freedom introduces a new longer-lived island of
longevity which we observe to be exponentially more long
lived than the last. The probability of landing on one of
these islands decreases with a scaling expected to be
exponential in the number of degrees of freedom.
With these observations in mind, we introduce a notion of

global tuning based on the cumulative probability of finding
an oscillon at least as long lived. Therefore, smaller values of
this probabilitymeanmore extreme outliers and, thus, higher
degrees of global tuning. For example, according to our PQB
simulations, summarized by Fig. 11, an oscillon of lifetime
log10mT ¼ 3 is tuned to one part in two (or 50%). Oscillons
of lifetime log10mT ¼ 7 are tuned to one part in eight (or

10%), and oscillons of lifetime log10mT ¼ 12 are tuned to
one part in 400 (or 0.2%). Finally, the longest-lived potential
we observe in our search lives roughly log10mT ¼ 14, and
its tuning is roughly one part in 3000, or 0.03%, although
longer-lived oscillons may still reside further up the distri-
butional tail.

B. Local tuning

As opposed to global tuning, which deals with the
statistics over large volumes of parameter space, local
tuning attempts to quantify the sensitivity of an oscillon’s
lifetime to variations in its potential coefficients. If we
understand the lifetime mT as a function of the potential
coefficients V⃗ ≡ fV1;…g, we can naturally introduce a
local approximation of mT as a function of its gradient and
curvature, writing V⃗ ¼ V⃗0 þ δV⃗ and mTðV⃗0Þ ¼ mT0:

Gi ¼
∂log10mT

∂Vi
; Kij ¼

∂2log10mT
∂Vi∂Vj

;

log10mT ¼ log10mT0 þ G⃗ · δV⃗ þ 1

2
δV⃗ ·K · δV⃗: ð46Þ

In terms of this local approximation, we may quantify the
sensitivity of the lifetime to local variations in V⃗ as the
minimum relative displacement of the potential coefficients

FIG. 11. The distribution of oscillon lifetimes for 1 (yellow
line), 2 (gray line), and 3 (red line) degrees of freedom in a
periodic potential. We uniformly sample the nd:o:f .-dimensional
cube V1;…Vnd:o:f: ∈ ½−1; 1� restricting the potential such that
ϕ ¼ 0 is a global minimum, and Vnd:o:f:þ1 is fixed such that the
mass ism, with the remaining Vn set to 0. Lifetimes are computed
in the interval ω=m ∈ ½0.8; 0.995� in the single-nonperturbative-
harmonic approximation. The geometric suppression of the
radiative modes means that these frequencies likely dominate
the oscillon lifetime and that the perturbative radiation approxi-
mation is typically good. We see that each new degree of freedom
is observed to introduce a new island of longevity (island 1
log10 mT ∈ ½0; 4�, island 2 log10 mT ∈ ½4; 9�, and island
3 log10 mT ∈ ½9; 14�).

FIG. 10. Accessible oscillon lifetimes in a periodic potential
with two degrees of freedom V1 and V2. Here, V3 is constrained
such that the mass is fixed to m, with all other Vn≥4 ¼ 0. The red
region indicates parts of the parameter space where ϕ ¼ 0 is not a
global minimum of the potential and has significantly shorter
lifetimes. The stars indicate potentials for which we have
compared our formalism with multiple nonperturbative harmon-
ics to direct numerical simulation (see Fig. 12). The peninsula of
longevity corresponds to the emergence of a frequency at which
the third harmonic experiences totally destructive interference at
dips. The yellow banding corresponds to the migration of dips to
higher frequencies, where geometric decoupling suppresses the
fifth harmonic, increasing the impact of the dip. At the upper right
of these bands, the dip migrates to frequencies higher than that of
energetic death, creating a longevity cliff.
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jjδV⃗jj=jjV⃗0jj necessary to change the lifetime by an order of
magnitude log10mT0 � 1. In other words, our local tuning
metric is the solution to the following constrained opti-
mization problem:

minimize jjδV⃗jj=jjV⃗0jj;

subject to

����G⃗ · δV⃗ þ 1

2
δV⃗ ·K · δV⃗

���� > 1: ð47Þ

We denote the minimal value ν≡ jjδV⃗jj=jjV⃗0jj.
Consider the potential V⃗ ¼ ð1; 1=2;−1Þ, for which an

oscillon lives approximately log10mT ¼ 14. Using the
above measure of tuning and a grid-based approximation
to the gradient and Hessian, we calculate ν ≈ 0.03. In other
words, a 3% variation in the potential parameters corre-
sponds to an order of magnitude change in the lifetime of
the oscillon. This is substantially less tuned than one would
expect from our global metric, in which this potential is
0.03% tuned. This is a reflection of the structure of the
lifetime landscape, which contains islands of stability seen
in Figs. 1, 10, and 11.

VI. ILLUSTRATIVE EXAMPLES

Here, we apply our framework to a series of potentials
that have been studied extensively in previous literature,
with the aim to reproduce and expand upon known results.
The main goal is to show how our methods can

accommodate a wide variety of potentials: both with or
without parity and with or without periodicity. We compare
the results of our PQB framework to explicit numerical
simulation. When simulating the equations of motion
explicitly (as in Appendix E), the wall-clock time is at
least proportional to the oscillon lifetime, which becomes
computationally prohibitive for lifetimes beyond 1010=m.
Our framework can bypass this scaling, since time has been
explicitly integrated out, allowing us to predict the exist-
ence of very long-lived oscillons, well in excess of the
lifetimes we can simulate explicitly.
The results of this section are presented in the form of

“power versus frequency” curves, which represent the
instantaneous flux radiated by the oscillon at a particular
fundamental frequency ω. The oscillon fundamental fre-
quency ω monotonically increases with time and can,
therefore, be thought of as a time coordinate. For a detailed
review of how to interpret these plots and their features,
see Fig. 3.

A. Axion monodromy

Monodromy refers to the nontrivial winding of an axionic
degree of freedom, which effectively endows the axion with
an aperiodic potential at low energies [7,76,77]. In general,
the resulting monodromy potentials share the property that
they asymptote to a power law at large field values. A
common family of potentials which interpolate between the
asymptotic power law and the small-field mass m is

VðϕÞ ¼ m2f2

p

���
ϕ

f

�
2

þ 1

�
p=2

− 1

�
; ð48Þ

where p scans the asymptotic power law. The potential (48)
has been widely studied and has been shown to support very
long-lived oscillons, in excess of 1010 cycles [50,52,57,58].
In Fig. 13, we summarize our study of the oscillon life

cycles as we scan p from −8 to−1. In general, we find good
agreement with the results of Ref. [58]: The power versus
frequency curves and lifetimes broadlymatch the predictions
of Ref. [58] in the cases we have mutually studied p ¼
−8;−5;−4;−1 although there are minor differences.
As p increases from −8 to −1, the lifetime of the

corresponding oscillon increases dramatically, from 106 to
1010 cycles. This is due to the simultaneous action of the
two longevity mechanisms identified in Sec. III.
Specifically, the third harmonic experiences totally destruc-
tive interference at an exceptional frequency that is larger
with increasing p. Therefore, as p grows, the third
harmonic dip moves deeper into the frequencies where
geometric decoupling dominates, which further suppresses
the fifth harmonic.
A natural conjecture is that the oscillons of Eq. (48) are

unusually long lived because of the asymptotic power law
in the potential. However, our results in Fig. 13 indicate that
longevity is dominated by large frequencies, where field

FIG. 12. The power radiated by the oscillons in the potentials
denoted by stars in Fig. 10. The dark curves are data from explicit
numerical simulations (see Appendix E), while the lighter curves
are computed in the PQB formalism. The PQB predictions
become dotted in regions of linear instability, as computed using
the methods described in Appendix C. Notice that, at low
frequencies, the oscillon power curves are of similar magnitude,
diverging at larger frequencies due to geometric decoupling, as
explained in Sec. III A. The loops at the end of the simulations
correspond to the oscillon rapidly converting into 3ω modes past
the point of energetic death, causing the measured frequency at
the origin to briefly grow larger than 1.
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amplitudes are too small for the asymptotic behavior to take
over. In particular, for p ¼ −1, the field amplitude at the
origin is roughly ϕð0Þ ≈ 1.5 f, far too small to be sensitive
to the flatness of the potential at large ϕ=f. Therefore, we
conjecture that it is not the asymptotic form but the details
of the connection between 1

2
m2ϕ2 and ϕp that determine the

oscillon lifetime.
In the oscillon literature, many examples of extremely

long-lived oscillons are obtained with monodromy poten-
tials. Thus, a natural question is whether all monodromy
potentials share a common feature leading to longevity or
whether simple examples such as Eq. (48) happen to live in a
tuned island of longevity. In the language we introduced in
Sec. VA, in order to quantify the link between monodromy
and longevity, we would need to know the probability
distribution from which monodromy potentials are chosen.
In the absence of this nontrivial construction, we are left with
a case-by-case analysis of particular potentials, which, in this
probabilistic view, may suffer from sampling bias.

B. ϕ4 theory

ϕ4 theory is the quintessential example of spontaneously
broken parity symmetry. It is well known to host moder-
ately long-lived oscillons, which have been studied in
previous work [37,44,51,52,55]. Shifting to the broken

vacuum and fixing the mass of ϕ ¼ θ=f to be m, we arrive
at the following parity-violating potential:

VðθÞ ¼ m2f2
�
1

2
θ2 −

1

2
θ3 þ 1

8
θ4
�
: ð49Þ

In order to properly compute the physical quasibreather in
this potential, the first three harmonicsC0,S1, andC2must be
treated nonperturbatively. As is evident from the numerical
simulation (Fig. 14), the ϕ4 physical quasibreathers are
linearly unstable over the entire range of ω for which the
oscillon is long lived. The instability that occurs at linear
order in the PQB background is, however, stabilized by self-
interaction, leading to quasiperiodic oscillations. These
nonlinear oscillations are visible as dense curlicues in the
power versus frequency plot (Fig. 14).
Our explicit numerical simulation yields an approximate

lifetime of 6000=m, which is close to the PQB prediction of
5900=m. This confirms the earlier results in Ref. [37].

C. The QCD axion

The QCD axion is the best-studied example of a scalar
field described by a periodic potential and could allow for
oscillons with cosmological observables. At low temper-
atures, the QCD axion potential is dominated by strong
dynamics, giving rise to the potential [14,36]

VðϕÞ ¼ −m2
πf2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4mumd

ðmu þmdÞ2
sin2

�
ϕ

2 f

�s
: ð50Þ

FIG. 14. Comparison of the explicitly simulated ϕ4 oscillon
(black line) with the physical quasibreather trajectory (red line)
truncated to the leading three harmonics C0, S1, and C2 (in the
notation of Appendix A), all treated nonperturbatively. The
oscillating behavior is a symptom of linear instability, although,
crucially, it does not destroy the oscillon, since the size of the
oscillations is controlled by nonlinearity. For technical details of
the explicit simulation, see Appendix E.

FIG. 13. The instantaneous decay rate P=EB of the oscillons in
the monodromy potentials (48) for p ¼ −1;…;−8, calculated in
the PQB formalism, versus the results of Olle, Pujolas, and
Rompineve [58]. Here, the power P and binding energy EB are
computed as in Sec. II. As p scans from −8 to −1, the third
harmonic dip migrates to larger frequencies where the fifth
harmonic is further suppressed by geometric decoupling, leading
to increased lifetime. To obtain the PQB results, we start with a
two-nonperturbative-harmonic approximation and used three
nonperturbative harmonics to obtain better accuracy near the
dips. At frequencies below the dip frequency, we see a small shift
in the PQB formalism versus Ref. [58], which may arise from the
need to use more nonperturbative harmonics at lower frequencies
or because the Fourier series representation of Eq. (48) converges
slowly.
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A simple Taylor expansion about θ ¼ 0 reveals that
Eq. (50) has a smaller quartic term than the simple cosine
potential, which leads us to expect the oscillons in Eq. (50)
to be shorter lived than the sine-Gordon oscillon. Indeed,
this expectation is confirmed by the physical quasibreather
framework and explicit numerical simulation (see Fig. 15
and Appendix E).
In order to compute the lifetime in the physical quasi-

breather formalism, we calculate the potential’s Fourier
coefficients

V⃗ ¼ f1.427;−0.648; 0.336;…g: ð51Þ

Our formalism can accommodate many nonzero Fourier
coefficients, although only the first three (and a fourth to
normalize the mass) are necessary to converge within 1% of
the true potential; adding more terms has a negligible
impact on the results of explicit simulation and on the result
of our PQB formalism.
The result of this analysis is that the QCD axion oscillon

is relatively short lived compared to the average oscillon,
living about 400=m. However, it is interesting to observe
that this oscillon spends most of its life with a confined
third harmonic, undergoing very large central-amplitude
oscillations of the order of 15 f. Although the short
lifespan of the QCD axion oscillon means that it will leave
its cosmological imprint only shortly after formation, the
large amplitude and violent deaths of these oscillons may
have observational implications.

VII. CONCLUSION

Real scalar fields play a central role in many theories of
early Universe cosmology and dark matter. Many of these
theories predict attractive self-interactions that allow the
scalars to form quasistable oscillons. Understanding oscil-
lon lifetime is necessary for determining whether oscillons
only play a role in early Universe cosmology or whether
they may also survive until the present day and lead to
dramatic astrophysical signatures.
In this work, we have expanded the quasibreather

approximation into a formalism for computing the proper-
ties of oscillons that naturally incorporates realistic boun-
dary conditions. We defined the physical quasibreather by
finding initial conditions of the nonlinear wave equation
that simultaneously obey radiative boundary conditions
and specify a quasibreather solution. As the closest
quasibreather to a physical oscillon, the PQB provides a
raw approximation for the oscillon profile (see, e.g., Fig. 5)
which is increasingly accurate in the limit of long lifetimes.
Furthermore, the PQB represents the solutions to which the
oscillon is instantaneously and locally attracted to during its
evolution. When understood as a stable perturbation to a
PQB, the oscillon borrows its properties from its PQB
partner, including its radial profile and radiation rate [79].
When the PQB becomes linearly unstable, nonlinear
quasiperiodic oscillations emerge, whose size is controlled
by higher-order terms, as depicted in Figs. 14, 19, and 20.
In other words, linear instability often does not result in the
death of the oscillon. Furthermore, we have demonstrated
that the PQB and the minimum radiation quasibreather
differ at sixth order in the background, explaining the
success of the “minimum radiation quasibreather ansatz.”
Since the PQB offers an accurate description of the

oscillon structure, we have used it to understand the
oscillon’s form factor and the resulting mechanisms which
control longevity. Specifically, as the oscillon radiates its
energy away, its central amplitude decreases, causing self-
interactions to become weaker; as a result, the oscillon
becomes much larger than the radiation wavelengths,
suppressing the radiated power (see Fig. 3). At these high
frequencies (ω → m), the large oscillon core naturally leads
to the rapid self-interference of radiation. When the self-
interference is destructive, the total radiation is suppressed
by another power of the form factor. While both these
effects, geometric decoupling and destructive interference,
are generic features of oscillon evolution, the longest-lived
oscillons are a consequence of these two effects occurring
simultaneously at large oscillon frequencies close to m (as
in Fig. 13). Finally, we have understood the physics of
oscillon death as a further consequence of weak self-
interaction: Past a certain critical frequency, the energy
of the PQB is forced to increase, and the oscillon cannot
sustain its proximity to its PQB partner. Using our under-
standing of the mechanisms responsible for oscillon lon-
gevity and death, we have constructed the family of

FIG. 15. Comparison of the explicitly simulated QCD axion
oscillon (black line) to the PQB formalism (red line) with three
nonperturbative harmonics. The radiated power is so large that
the orthogonal deformation is nonperturbative, leading to dis-
agreement within a factor of a few, although the shape of the
physical quasibreather curve still captures the qualitative features
of the simulated oscillon. Namely, it shows that there is a dip
around ω ¼ 0.6 m where the fifth harmonic is dominant. This
region, in which the third harmonic is confined and nonpertur-
batively large, constitutes most of the oscillon’s lifetime.
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frustrated quadratic potentials which support extremely
long-lived oscillons, living more than 1018 cycles
(see Sec. IV).
There are several computational advantages provided by

our methodology. First, the oscillon evolution is computed
in a time-independent way, separating the physical lifetime
of the oscillon from the computational wall-clock time it
takes to evolve numerically. Second, our formalism natu-
rally incorporates nonperturbative harmonics and potentials
without even parity. Third, all perturbative harmonics may
be efficiently computed by taking advantage of sparse
linear algebra. Fourth, we have introduced the Fourier basis
as the natural basis for expanding potentials when studying
oscillons. In this basis, the form of the mode equations is
especially simple, allowing us to write down analytical
expansions for the mode potentials that converge every-
where. Fifth, our formalism provides a natural language for
studying the stability of oscillons. Finally, the speed of our
numerical techniques has enabled us to study extremely
long-lived oscillons and has yielded the first prediction of
cosmologically long-lived periodic potentials (see Fig. 9).
Using our efficient numerical techniques, we scan over

degrees of freedom in axionic potentials (see Figs. 1 and
10), allowing us to probe the genericity of long-lived
oscillons (see Fig. 11). Important outcomes of this param-
eter scan include the identification of features in the lifetime
landscape with the mechanisms of longevity (see Sec. III)
and the realization that extremal lifetimes may scale at least
exponentially in the number of potential degrees of free-
dom. At the same time, long lifetimes are not particularly
fine-tuned, since as few as three degrees of freedom are
enough to generate oscillons that survive until last scatter-
ing (4 × 106 cycles) with only 15% global tuning (as
defined in Sec. VA) and oscillons that live until today
(1011 cycles) with 0.5% global tuning.
The code to obtain ballpark estimates of oscillon proper-

ties at larger frequencies is publicly available [75].
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APPENDIX A: THE PHYSICAL
QUASIBREATHER FORMALISM

In this appendix, we outline the precise definition of the
PQB and its OD introduced in Sec. II. We will see that the
orthogonally deformed PQB is an instantaneous solution of
the equations of motion that satisfies outgoing boundary
conditions. We then find oscillonic solutions of the equa-
tions of motion that are perturbations of the orthogonally
deformed PQB. By studying the evolution and stability of
these perturbations, we arrive at a sense in which the
orthogonally deformed PQB can be an attractor, which we
apply to study oscillon stability in Appendix C.

1. Quasibreathers

Physical potentials may be interpreted in terms of n-
particle interactions and, therefore, possess Taylor expan-
sions around their vacua. Consequently, a periodic field
configuration with fundamental frequency ω will couple
only to modes oscillating with integer multiples of this
fundamental frequency. In other words, physical nonlinear
wave equations possess periodic orbits, which may be
interpreted as a Fourier series in time. This is in contrast to
unphysical potentials that may not be interpreted in terms
of integer-number particle interactions, which can at best
possess quasiperiodic orbits.
For the remainder of the appendix, we move into

dimensionless units with m ¼ f ¼ 1. The nonlinear wave
equation for the field θ in a potential V is then

0 ¼ θ̈ −∇2θ þ V 0ðθÞ: ðA1Þ

As we have argued above, V must possess a Taylor series,
and, therefore, θ may be expanded as a series of integer
harmonics:

θ ¼
X
n∈N0

Snðr;ωÞ sinðnωtþ δnÞ; ðA2Þ

where δn is a phase and we have taken spherical symmetry
for simplicity. Without loss of generality, we may take
δ1 ¼ 0. We say that a solution of the form (A2) is generated
by the frequency ω if S1 is nonzero, and the only nonzero
higher harmonics Sn are those that couple to S1, consistent
with closure of the equations of motion. We then define the
quasibreather as the solution generated by ω.
Using this definition, we may compute the generic form

of the quasibreather. Consider the generic potential

VðθÞ ¼ 1

2
θ2 þ 1

3
λ3θ

3 þ 1

4
λ4θ

4 þ � � � : ðA3Þ

From the symmetries of sine and cosine, we observe that
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ðsinωtÞn ¼

8>><
>>:

P
k
ak sin nkωt; nk ∈ Nodd; n is odd;P

k
bk cosmkωt; mk ∈ Neven; n is even;

ðcosωtÞn ¼
8<
:

P
k
ck cos nkωt; nk ∈ Nodd; n is odd;P

k
dk cosmkωt; mk ∈ Neven; n is even:

The case of parity VðθÞ ¼ Vð−θÞ offers a pleasant sim-
plification, decoupling the even harmonics and the odd
harmonics from one another. Thus, potentials with parity
have quasibreathers of the form

θQB ¼
X

n∈Nodd

Snðr;ωÞ sin nωt ðA4Þ

and a periodic solution of the form θ ¼ P
n∈Neven

Snðr;
ωÞ sin nωt, although it is not a quasibreather because it is
not generated by ω. Quasibreathers in potentials without
parity possess expansions

θQB ¼
X
n∈Nodd

Snðr;ωÞ sinnωtþ
X

n∈Neven

Cnðr;ωÞ cos nωt;

ðA5Þ

whereNeven contains 0. Thus, we have identified the form of
the quasibreathers of the nonlinear wave equation when V
represents a physical interaction.
Inserting the form (A5) into Eq. (A1), one arrives at the

set of mode equations

0¼ −ðnωÞ2Cn −C00
n −

d− 1

r
C0
n þV 0

nðC;SÞ; n ∈ Neven;

0¼ −ðnωÞ2Sn − S00n −
d− 1

r
S0n þV 0

nðC;SÞ; n ∈ Nodd;

ðA6Þ

where d is number of spatial dimensions and Vn is defined
through the equation

V 0ðθQBÞ ¼
X

n∈Nodd

VnðC;SÞ sinnωtþ
X

n∈Neven

VnðC;SÞ cosnωt:

ðA7Þ

Equation (A6) is a system of second-order ordinary differ-
ential equations, and, therefore, each degree of freedom Sn
and Cn must be constrained by two boundary conditions.
In order to discuss boundary conditions, we define the

number n0 as the least integer such that n0ω > 1, so that
bound harmonics have n < n0 and radiative harmonics
have n ≥ n0. Regularity at the origin places a nontrivial
constraint on all harmonics, that all Sn and Cn must have
zero first derivative at the origin. However, regularity at

spatial infinity is only a constraint on the bound modes,
n < n0; all radiative harmonics decay geometrically as they
propagate to spatial infinity. Thus, for a quasibreather, the
radiative harmonics are constrained by regularity only at
the origin, and the space of possible quasibreathers has
dimension equal to the number of radiative modes. In other
words, one has the freedom to pick the amplitude of the
radiative modes at the origin, and the result will still be a
quasibreather. The authors of Ref. [54] have alleviated this
ambiguity by picking a specific quasibreather out of this
manifold: the minimum radiation quasibreather, whose
radiative tails are the smallest. Instead, we pick the PQB,
defined below, which is perturbatively close to a radiating
solution.

2. The deformed mode equations

A localized field configuration with a finite lifetime
necessarily radiates its energy to spatial infinity and,
therefore, satisfies radiative boundary conditions at spatial
infinity. In this section, we introduce the concept of the
PQB, which is, in a precise sense, the quasibreather closest
to a physical configuration satisfying radiative boundary
conditions.
First, we define the OD of the quasibreather (A5), which

consists of adding 90° out-of-phase components sn and cn
to the radiative harmonics in order to satisfy radiative
boundary conditions

θ ¼
X
n∈Nodd

Snðt; r;ωÞ sin nωtþ
X

n∈Neven

Cnðt; r;ωÞ cos nωt;
X

n∈N≥n0
even

snðt; r;ωÞ sin nωtþ
X

n∈N≥n0
odd

cnðt; r;ωÞ cos nωt:

ðA8Þ

Notice that here we have introduced a time dependence to
the modes, which accounts for the fact that a radiating
solution cannot have a stationary profile. This formulation
will be useful for studying initial conditions of interest,
namely, those which specify a quasibreather and orthogonal
deformation that together satisfy outgoing boundary con-
ditions. Although Eq. (A8) is a vast overparametrization of
a single field, we recognize that a solution of the deformed
mode equations (A9),

0 ¼ S̈n − 2nω_cn − ðnωÞ2Sn − S00n −
d − 1

r
S0n þ V 0

Sn
;

0 ¼ c̈n þ 2nω _Sn − ðnωÞ2cn − c00n −
d − 1

r
c0n þ V 0

cn ;

0 ¼ C̈n þ 2nω_sn − ðnωÞ2Cn − C00
n −

d − 1

r
C0
n þ V 0

Cn
;

0 ¼ ̈sn − 2nω _Cn − ðnωÞ2sn − s00n −
d − 1

r
s0n þ V 0

sn ; ðA9Þ
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is also a solution of the full equation of motion (A1).
Equation (A9) is obtained from the equations of motion
(A1) by substituting Eq. (A8) and collecting the terms
proportional to sinnωt or cos nωt for a given n, setting
them independently to zero. Intuitively, when the time
dependence of the harmonic functions S, C, s, and c is
slow, they have the usual interpretation as the profiles of
quasistationary modes. Here, the functions V 0

X ¼
V 0
XðSn; Cn; sn; cnÞ are the mode potentials, in which we

have suppressed functional dependence for brevity. The
mode potentials are defined by the equation

V 0ðθÞ ¼
X

n∈Nodd

V 0
Sn
sin nωtþ

X
n∈Neven

V 0
Cn

cos nωt

X
n∈Neven

V 0
sn sin nωtþ

X
n∈Nodd

V 0
cn cos nωt; ðA10Þ

where θ is written in the form of Eq. (A8) and V 0
Sn
, V 0

Cn
,

V 0
sn , and V0

cn are pure functions of Sn, Cn, sn, and cn.
During the evolution of Eq. (A9), ω is treated as a

constant. This is not in contradiction to the usual under-
standing that the fundamental frequency of the oscillon
increases with time. For the purpose of the mode
equations (A9), ω is understood as a choice of a fixed
parameter, independent of the time variation of the modes
S, C, s, and c themselves. For certain initial conditions, and
for certain choices of ω, there will be periods of time over
which S, C, s, and c vary slowly, and it is during these
periods that ω may be interpreted as the instantaneous
frequency of the oscillon.
In other words, there is no a priori reason to choose a

particular ω for a particular field configuration, and one
may think of ω as only an instantaneous frequency in the
context of certain initial conditions. Thus, the following
paragraphs are dedicated to specifying initial conditions
which allow ω to be interpreted as the instantaneous
frequency of an oscillon, where the oscillon is perturba-
tively close to a quasibreather. The smaller the orthogonal
deformation, the better this interpretation is, and the longer
it holds. In this sense, ω may be conceptualized as an
adiabatic parameter, although one should not confuse it
with an externally controlled parameter—in our frame-
work, it is a constant that parametrizes the decomposition
(A8) of solutions to Eq. (A1).
We now specify the following consistent set of initial and

boundary conditions, in which we treat sn and cn as linear
perturbations. Here, we take V 0

X ¼ V 0
XðSnð0; rÞ; Cnð0; rÞ;

0; 0Þ, and we define δV 0
X ≡P

n≥n0 snð0; rÞ∂snV
0
X þ cnð0;

rÞ∂cnV
0
X [note the absence of a constant term in δV 0

X is a
consequence of (a), below]. A complete and consistent set of
initial and boundary conditions associated with Eq. (A9) that
exactly specify a quasibreather and orthogonal deformation
at t ¼ 0 is

ðaÞInitial quasibreather∶

0 ¼ −ðnωÞ2Snð0; rÞ − S00nð0; rÞ −
d − 1

r
S0nð0; rÞ þ V 0

Sn
;

0 ¼ −ðnωÞ2Cnð0; rÞ − C00
nð0; rÞ −

d − 1

r
C0
nð0; rÞ þ V 0

Cn
:

ðbÞInitial deformation∶

0 ¼ −ðnωÞ2cnð0; rÞ − c00nð0; rÞ −
d − 1

r
c0nð0; rÞ þ δV 0

cn ;

0 ¼ −ðnωÞ2snð0; rÞ − s00nð0; rÞ −
d − 1

r
s0nð0; rÞ þ δV 0

sn :

ðcÞMaximally stationary∶

0 ¼ _Sn≥n0ð0; rÞ ¼ þ2nω _Sn<n0ð0; rÞ þ δV 0
cn ;

0 ¼ _Cn≥n0ð0; rÞ ¼ −2nω _Cn<n0ð0; rÞ þ δV 0
sn ;

0 ¼ _snð0; rÞ ¼ _cnð0; rÞ:
ðdÞRegularity∶
0 ¼ S0nðt; 0Þ ¼ C0

nðt; 0Þ ¼ s0nðt; 0Þ ¼ c0nðt; 0Þ;
0 ¼ S0n<n0ðt;∞Þ ¼ C0

n<n0ðt;∞Þ:
ðeÞRadiative∶
0 ¼ lim

r→∞
rð1−dÞ=2ðrðd−1Þ=2cnðt; rÞÞ0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnωÞ2 − 1

q
Snðt; rÞ;

0 ¼ lim
r→∞

rð1−dÞ=2ðrðd−1Þ=2Snðt; rÞÞ0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnωÞ2 − 1

q
cnðt; rÞ;

0 ¼ lim
r→∞

rð1−dÞ=2ðrðd−1Þ=2Cnðt; rÞÞ0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnωÞ2 − 1

q
snðt; rÞ;

0 ¼ lim
r→∞

rð1−dÞ=2ðrðd−1Þ=2snðt; rÞÞ0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnωÞ2 − 1

q
Cnðt; rÞ:

Our initial condition (a) selects Sn and Cn which specify a
quasibreather. This quasibreather is one which may be
orthogonally deformed to satisfy radiative boundary con-
ditions, and it is this quasibreather which we call the PQB.
Because we have broken the time translation symmetry

of the quasibreather by satisfying radiative boundary
conditions, the modes S, C, s, and c are endowed with
an irreducible time dependence. The maximally stationary
condition (c) shows that this time dependence is propor-
tional to the pointwise small deformations s and c. Since s
and c obey a homogeneous system of equations (b), their
amplitude everywhere must uniformly go to zero as their
amplitude at r ¼ ∞ goes to zero. From (e), we see that
cn ∝ Sn and sn ∝ Cn at spatial infinity. Thus, we conclude
that if Sn andCn possess small radiative tails, then sn and cn
become pointwise small everywhere, and the time variation
of the modes uniformly approaches zero. This is the limit in
which the oscillon is long lived and approaches the
quasibreather; in this same limit, the interval over which
this approximation is valid, during which ωmay be thought
of as an instantaneous frequency, becomes longer.
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3. The asymptotic attractor

The initial conditions (a)–(e) specify a solution to the
nonlinear wave equation that at t ¼ 0 is exactly an
orthogonally deformed physical quasibreather (to linear
order in the deformation). More practically, we want to
understand the evolution of the oscillon in the neighbor-
hood of this deformed physical quasibreather, before and
after this particular point. To this end, we introduce the
perturbation δθðt; rÞ, which simultaneously absorbs the
time dependence of the modes in (a)–(e) and deviations
from the orthogonally deformed physical quasibreather.
Specifically, a field configuration θ describing a physical
oscillon can be expanded as

θ ¼ θPQB þ θOD þ δθ; ðA11Þ

with

θPQB¼
X
n∈Nodd

Snð0;r;ωÞsinnωtþ
X

n∈Neven

Cnð0;r;ωÞcosnωt;

ðA12Þ

θOD ¼
X

n∈N≥n0
even

snð0; r;ωÞ sinnωtþ
X

n∈N≥n0
odd

cnð0; r;ωÞ cosnωt:

ðA13Þ

Crucially, θPQB is exactly a quasibreather solution, and θOD
is exactly periodic in time, as opposed to δθ, which
characterizes the secular evolution of the oscillon in the
vicinity of the physical quasibreather at ω. Inserting
Eq. (A11) into Eq. (A1), we arrive at the following equation
for δθ at linear order:

0 ¼ δθ̈ −∇2δθ þ V 00ðθPQBÞδθ
þ

X
n<n0

ðδV 0
cn cos nωtþ δV 0

sn sin nωtÞ: ðA14Þ

This is a sourced equation, representing the fact that the
physical quasibreather with orthogonal deformation does
not conserve energy on its own. As a linear equation, δθ
may be decomposed into a sum of homogeneous terms,
which obey the homogeneous equation

0 ¼ δθ̈H −∇2δθH þ V 00ðθPQBÞδθH; ðA15Þ

and one particular solution δθP, that obeys the sourced
equation (A14), which we take to be identically zero at
t ¼ 0. In the absence of homogeneous terms, it is this
particular solution δθP which satisfies the initial conditions
(a)–(e). Therefore, the homogeneous terms represent per-
turbations around those initial conditions. If the homo-
geneous solutions of Eq. (A14) are stable, then we say that
θPQB þ θOD is an asymptotic attractor.

The usefulness of the construction δθ is that it contains
all information about the linear stability of the oscillon [80].
Just like in a standard damped oscillator, linear stability
represents an exponential approach to the inhomogeneous
solution. In other words, it is enough to study the stability
of the homogeneous equation (A15) with the tools of
Floquet theory. The full picture of how the one-parameter
family of deformed physical quasibreathers, parametrized
by the frequency ω, acts like an attractor may be understood
in the following picture. Before t ¼ 0, the particular
solution δθP is approaching 0 (see Fig. 16). If the
homogeneous terms are stable, then the field θ is approach-
ing the deformed physical quasibreather at frequency ω.
However, past t ¼ 0, δθP begins to grow again, causing the
field to diverge from this temporary quasibreather partner.
This story repeats by choosing the next physical quasi-
breather to expand around at a nearby frequency ωþ dω,
such that the attractive region of this new quasibreather has
some overlap with the repulsive region of the previous
quasibreather at ω (see Fig. 17). The term “asymptotic
attractor” is chosen because of its likeness to the concept of
asymptotic series, in which increasing the order of an
expansion increases its precision until, at some point, it
begins to diverge.

4. Energetic instability

The physical quasibreather background around which
we expand the perturbation δθ is one among a continuum of
quasibreathers, parametrized by their fundamental fre-
quency ω. Thus, when we talk about a perturbation δθ,
we introduce the notation δθω in order to talk about “the
perturbation relative to (the deformed physical quasi-
breather of frequency) ω,” where we may omit the
parenthetical when it is unambiguous to do so.

FIG. 16. The asymptotic attractor (red line) is approached as the
inhomogeneous solution goes to zero. The homogeneous terms
representing the initial conditions at t ¼ −t0 cannot converge
exactly to zero by the time the inhomogeneous solution passes
through zero, and, therefore, the perturbation never exactly
reaches the asymptotic attractor.
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In the previous section, we introduced the concept of
asymptotic attraction, in which an oscillon may be viewed
as approaching a physical quasibreather for a finite period
of time. For each quasibreather, there is an epoch of
attraction, during which the particular solution δθP is
shrinking toward zero, and an epoch of repulsion, during
which δθP is growing away from zero. Neighboring
quasibreathers at ω and ωþ dω have particular solutions
that cross zero at different absolute times t ¼ tω and
t ¼ tωþdω, respectively; whether tω < tωþdω determines
whetherωþ dω is attractive for some time after ω becomes
repulsive. Because the particular solution δθP encodes the
energy flow out of the oscillon, the relative timing of the
zero crossings of δθωP and δθωþdω

P may be viewed as a
reflection of energy conservation, defining an arrow of
time. That is, the oscillon at ωþ dω is energetically
accessible from ω if tω < tωþdω.
This time ordering implies the existence of a relative

energy function, whose local monotonicity encodes
whether ωþ dω is accessible from ω. In other words,
the physical quasibreather at ωþ dω is energetically
accessible from ω if there is a time when δθω is a negative
energy perturbation relative to ω and δθωþdω is a positive

energy perturbation relative to ωþ dω. However, the
energy of the total field configuration is ill behaved because
of the divergent radiative tails. Strictly speaking, because
the quasibreather at ω has a different amplitude radiative
tail than the quasibreather at ωþ dω, δθ cannot be a finite
energy perturbation of both quasibreathers. However, the
tails are decoupled and do not influence the dynamics of the
oscillon bulk. Therefore, our measure of the perturbation
energy must be agnostic to the radiation tails.
One might be inclined to count only the energy inside

some finite box containing the oscillon bulk. However,
such a measure still grows polynomially with the size of the
box. One may also try to subtract the radiative tails by
removing the 1=r (in d ¼ 3) asymptotic, although again
this depends on an explicit cutoff between the bulk and the
tails. Our framework provides a natural resolution to this
ambiguity. Specifically, the orthogonal deformation θOD
provides a measure of the radiative tail of θPQB valid
everywhere. It is the energy associated with this orthogonal
deformation that we subtract, leading to our definition of
the bound energy in the PQB:

EB ≡ lim
r→∞

�Z
r

0

dV

�
1

2
_θ2PQB þ 1

2
ð∇θPQBÞ2 þ VðθPQBÞ

�

−
Z

r

0

dV

�
1

2
_θ2OD þ 1

2
ð∇θODÞ2 þ VðθODÞ

��
: ðA16Þ

Note that, because θOD and θPQB are out of phase, this
difference will oscillate around an average value, reflecting
the uncertainty principle. This definition has the virtue of
converging to the deformed physical quasibreather energy
when the oscillon is infinitely long lived, i.e., when all
harmonics are confined.
Having provided an unambiguous measure of the bound

energy of the physical quasibreather, we may now address
the question of when the perturbation δθ may flow between
nearby quasibreathers. Because the frequency of the
quasibreather, ω, is a decreasing function of binding
energy, under the assumption that binding energy decreases
as total energy decreases, a family of physical quasi-
breathers is energetically stable where

dEB

dω
< 0: ðA17Þ

Inside a region of asymptotic attraction, the radiation
power P of the physical quasibreathers is a good approxi-
mation for the radiation power of the oscillon. This leads to
a standard approximation for the oscillon lifetime, under
the assumption that the perturbation δθ may completely
relax (the adiabatic assumption):

T ≈
Z

dEB

PðEBÞ
: ðA18Þ

FIG. 17. Here, we have a schematic power radiated (as a proxy
for field space) versus oscillon frequency plot for the family of
deformed PQB (red line) and an oscillon trajectory (dashed gray
line). Each ellipse centered on a deformed PQB represents the
domain of frequencies and field values over which that specific
quasibreather is an asymptotic attractor. As the oscillon trajectory
enters an attractive region, it moves closer to the attractive
deformed PQB. Consequently, it is also drawn into the attractive
vicinity of the neighboring PQBs. Therefore, the oscillon is
forced to approach the red trajectory as the radii of attraction get
larger and larger toward the bottom of the dip. After traversing the
dip, the deformed PQB radii of attraction begin to shrink, and the
oscillon trajectory begins to diverge from the deformed PQB
trajectory. In this latter half of the evolution, we see how the
deformed PQB trajectory does not act as a standard attractor but
can still be described as an asymptotic attractor. To see this, notice
how the oscillon instantaneously moves closer to the quasi-
breather when entering each new attractive bubble.
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As the oscillon becomes increasingly long lived, and thus
approaches the physical quasibreather, this prediction
becomes increasingly precise.

APPENDIX B: QUASIBREATHER NUMERICAL
METHODS

In the previous section, we arrive at the physical
quasibreather as the main object of study which may be
used to derive the properties of oscillons in a physical
potential. In this section, we develop the numerical tools
which enable the efficient calculations of physical quasi-
breathers and their orthogonal deformations.

1. Linear radiation

Let us begin by supposing that Sn and Cn are known for
n < npert and that the remaining Sn and Cn are perturba-
tively small everywhere, so that they obey linear equations.
Define the perturbation vector and the deformation vector,
respectively,

C⃗¼ rðd−1Þ=2

0
BB@

Cnpert

Snpertþ1

..

.

1
CCA; s⃗¼ rðd−1Þ=2

0
BB@

snpert
cnpertþ1

..

.

1
CCA; ðB1Þ

the diagonal matrix of frequencies

Ω ¼

0
BB@

n pertω

ð n pert þ 1Þω
. .
.

1
CCA; ðB2Þ

the source vector J⃗ ðS1; C2;…Þ, and the mass matrices
VC⃗ðS1; C2;…Þ and Vs⃗ðS1; C2;…Þ, which are functions of
the nonperturbative harmonics. Finally, we define the
Sommerfeld operator S, which together with the
Dirichlet-Neumann 1D flat Laplacian acting on each
diagonal block ∇2 [81] contains the Sommerfeld radiation
condition (e), provided in Appendix D 1. In this notation,
the equations of motion for the perturbation and the
deformation can be written as a sparse linear system:

�
J⃗ C⃗

J⃗ s⃗

�
¼

�−Ω2 − ∇2 þ VC⃗ S

−S −Ω2 − ∇2 þ Vs⃗

��
C⃗

s⃗

�
:

ðB3Þ

This form, in which C⃗ and s⃗ couple only through the
boundary term S, is guaranteed, because C⃗ on its own
solves the equations of motion, and, hence, any back-
reaction from a perturbation s⃗ must come at second order.
The explicit forms of S, VC⃗, Vs⃗, J C⃗, and J s⃗ are provided
for several cases of interest in Appendix D 1. Note that J s⃗

is proportional to the orthogonal deformation of the non-
perturbative modes and is, therefore, zero when all radiative
modes are perturbative.
The fact that we may write the equations for the

perturbative modes as a well-determined system of equa-
tions is a reflection of the fact that the radiative boundary
conditions and regularity conditions completely (and
uniquely, for the linear modes) specify the physical
quasibreather.

2. Nonlinear harmonics

The perturbative method in the previous section amounts
to solving a sparse linear system, a process that is
computationally efficient. Thus, given the knowledge of
the nonperturbative background harmonics, we can com-
pute the contribution of arbitrarily many additional har-
monics at almost no computational cost.
Now we must do the dirty work of computing the

nonlinear harmonics. Computing npert − 1 nonperturbative
harmonics will amount to shooting a point particle in
npert − 1 dimensions and tuning its initial condition so that
it lands on the saddle top at the origin.
The physical quasibreather feels the orthogonal defor-

mation only at second order, and, therefore, we may use the
following procedure to compute the deformed PQB to
leading order.
(1) Choose Snð0Þ and Cnð0Þ from the npert − 1 dimen-

sional space of initial conditions.
(2) Shoot the harmonics Sn and Cn from r ¼ 0 to some

large finite radius rout by evolving the mode equa-
tions (a).

(3) Use the radiative boundary conditions (e) to convert
the Sn to cn and Cn to sn at r ¼ rout.

(4) Shoot the cn and sn back to the origin in the
background resulting from step 2.

(5) Check for regularity at the origin for the cn and sn
and regularity at rout for the bound harmonics. If not
regular, adjustSnð0Þ andCnð0Þ and repeat fromstep2.
Since regularity is equivalent to minimizing the first
derivative, this can be implemented by a variant of a
binary search procedure, e.g., golden section search.

(6) Compute any number of perturbative harmonics
using the procedure from the previous section in
the background of the nonperturbative harmonics.

(7) To account for linear backreaction of the perturba-
tive harmonics, reshoot the nonperturbative harmon-
ics in the background of the perturbative harmonics.
This last step is repeated until convergence.

In practice, it is helpful to break down the npert − 1
dimensional search into npert − 1 linear searches that are
performed hierarchically. The process of nonlinear shoot-
ing is sped up by precomputing the potential functions and
using table lookup. This kind of optimization is especially
important when dealing with periodic potentials where
repeatedly computing Bessel functions is costly.
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3. Branching of the fundamental mode

In Sec. II, we reduce the problem of finding the radial
profile of the oscillon to a classical-mechanical “shooting”
problem. In its simplest case of one nonperturbative
harmonic S1, the problem further simplifies to the rolling
of a massive ball in a double-welled potential VS1ðS1Þ in the
presence of 2=r friction. A shooting solution is one which
starts at rest at an initial displacement S1ð0Þ and ends at
S1 ¼ 0 at r ¼ ∞.
In linear equations, such as the radial hydrogen atom

problem, there is exactly one solution for each integer
number of nodes (i.e., zero crossings) of the radial profile
S1. In our PQB mode equations, strong nonlinearities break
this intuition, as depicted in Fig. 18. Specifically, a small
change in the oscillon frequency ω can change the number
of solutions with zero nodes by an increment of 2,
introducing new branches of oscillon solutions (or elimi-
nating them) when the potential possesses nontrivial con-
vexity. If this new branch consists of quasibreathers with
lower binding energy, then the original branch may jump to

the low-energy branch after the original branch experiences
energetic death. In the reverse scenario, oscillons may form
on the high-energy branch, but the low-energy branch is
energetically forbidden from reaching the high-energy
branch.
In the oscillons that we study in, e.g., Fig. 1, many of the

longer-lived potentials contain a high-energy branch of
very large, low-amplitude oscillons which exists only in a
small range of frequencies close to m. One such example is
shown in Fig. 18. All the examples studied in Sec. IV are
the result of purposefully introducing these branches at a
specific frequency ω ≈mf.

APPENDIX C: FLOQUET ANALYSIS

In Appendix A, we introduced the notion of asymptotic
attraction to describe physical oscillons as perturbations of
PQBs. From this expansion, we have reduced the problem
of oscillon stability to the study of the linear stability of
Eq. (A15). Standard Floquet theory tells us that the result of
this analysis can have two outcomes: The equation is
linearly unstable, or it possesses oscillatory states exclu-
sively (modulo boundary effects). In other words, the
existence of a stable decaying mode implies the existence
of a growing mode, and stability must emerge at higher
order in perturbation theory, if at all. Here, we address the
linear stability of perturbations δθ and later argue that
nonlinear terms stabilize linearly oscillatory modes (see
e.g. Figs 19 and 20).

1. Linear stability analysis

Let us begin by reproducing Eq. (A15) for ease of
reference: The linearized homogeneous equation for the
perturbation δθ in the background of θPQB is

0 ¼ δθ̈ −∇2δθ þ V 00ðθPQBÞδθ: ðC1Þ

Recall that θPQB is a periodic solution of the equations of
motion and, therefore, can induce parametric resonances.
Substituting in the form of the quasibreather (A5), we find

V 00ðθPQBÞ
¼

X
m∈Neven

V 00
mðS; CÞ cosmωtþ

X
m∈Nodd

V 00
mðS; CÞ sinmωt;

ðC2Þ

which, under parity symmetry of V, further simplifies to

V 00ðθPQBÞ ¼
X

m∈Neven

V 00
mðSÞ cos nωt; ðC3Þ

where V 00
m is defined by Eq. (C2). We will leave specific

formulas for V 00
m to Appendix D 3.

Since Eq. (A15) is linear, we may Fourier transform
t → Ω and decompose δθ in spherical harmonics. Because

FIG. 18. The emergence of two new zero-node solutions in the
potential defined by Fourier coefficients V⃗ ¼ f1; 0.5;−1; 0.5g at
large oscillon frequencies. The plot shows the effective potential
VS1ðS1Þ as a function of S1 for positive values of S1; since the
potential is parity symmetric, the S1 < 0 region is the mirror
opposite with respect to the S1 ¼ 0 axis. We have adjusted the
vertical axis to better illustrate the qualitative features of the
potential. Different regions are colored according to the sign of
S1ð∞Þ when launched from that location. A shooting solution is
represented by a point on the boundary between a black and
magenta region. Whereas initially there was only one zero-node
shooting solution (marked by the circle), the new potential adds
two more zero-node solutions, marked by the stars. Intuitively,
the higher the starting point, the further the particle will travel,
causing successive solutions to have an increasing number of
nodes. However, the combination of 2=r friction and nonlinear-
ities in the potential breaks this intuition. Depending on the
potential’s convexity at the initial point, the oscillon may lose a
widely variable amount of energy to friction. Therefore, it is at
these regions of varying curvature that we expect these new
solutions to emerge.
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the quasibreather background is periodic, it induces cou-
plings between frequencies separated by integer multiples of
the fundamental frequency ω. Therefore, let us restrict our
analysis to the values of the Fourier transform δθðΩ; rÞ at the
discrete tower of harmonics defined as Ωn ≡Ω0 þ nω,
n ∈ Z, where the base frequency Ω0 can be assumed to
lie in the interval ð0;ωÞ. Therefore, the Fourier components
on this tower, denoted δθnðΩ0; rÞ≡ δθðΩn; rÞ, will respect a
matrix-differential equation:

0 ¼ −ðΩ0 þ nωÞ2δθn − δθ00n −
d − 1

2
δθ0n

þ lðlþ d − 2Þ
r2

δθn þ V 00
0ðS; CÞδθn

þ 1

2

X
m∈N>0

even

V 00
mðS; CÞðδθnþm þ δθn−mÞ

þ 1

2i

X
m∈Nodd

V 00
mðS; CÞðδθnþm − δθn−mÞ; ðC4Þ

wherel is the angularmomentumnumber. This is apparently
a quadratic eigenvalue problem in the fundamental frequency
Ω0 [82], although, as we will see, it becomes an irrational
eigenvalue problem upon imposing transparent boundary
conditions [83,84]. The eigenvalue solutionsΩ0 characterize
the stability or instability of the system: real eigenvalues
corresponding to oscillatory motion; if solutions pick up an
imaginary part, the mode will be exponentially growing [if
ImðΩ0Þ < 0] or exponentially decaying [if ImðΩ0Þ > 0]. In
the absence of transparent boundary conditions, the solutions
come in pairs of complex conjugates; in this closed-box
scenario, the existence of a stable (i.e., decaying) mode
implies the existence of an unstable mode.
An instructive example.—Wemay gain some insight into

the eigenvalues Ω0 by studying the simpler case of
perturbations inside a box for a potential with parity.
The matrix differential equation simplifies such that only
the sum over even terms in Eq. (C4) survives. At leading
order we include only the first harmonic’s n ¼ �1 terms;
the reason is that large-n harmonics both decouple from the
fundamental and become unbound. This allows us to keep
only the V 00

0 and V 00
2 terms in the equation. Moreover, we

make the assumption that Ω0 is small compared to ω,
representing solutions to the perturbation equations with a
separation between the fast and slow timescales; this is
relevant whenwe focus on the boundary between periodicity
and instability, where Ω0 will be small in magnitude. This
assumption will be supported by the result of the analysis.
The result is the following 2 × 2 matrix-differential

equation:

0 ¼ ½2ωΩ0σz þ σxV 00
2 þ Iðω2 −∇2 þ V 00

0Þ�δθ⃗; ðC5Þ
wherewe have suppressed the argument ofV 00

0; V
00
2 for brevity

and σi are the Pauli matrices with entries of magnitude 1. We

may phrase this as a typical eigenvalue problem in Ω0 by
multiplying through with σz=2ω, leading to

0 ¼ detðHþA −Ω0IÞ; ðC6Þ

where H and A are Hermitian and anti-Hermitian matrices,
respectively, defined by

H ¼ 1

2ω
σzðω2 −∇2 þ V 00

0Þ; A ¼ i
2ω

σyV 00
2: ðC7Þ

In other words, the Ω0 eigenvalues are the roots of the
characteristic polynomial with all-real coefficients defined
by the matrix with all-real entriesHþA. Consider the case
A ¼ 0; the eigenvalues Ω0 are the eigenvalues ofH, which
is composed of two mirrored copies of the real spectrum of
the single-block operator 1

2ω ðω2 −∇2 þ V 00
0Þ. The addition

of A introduces couplings only between these two sectors;
since it is also antisymmetric, these couplings are equal and
opposite in sign. If we start from a spectrum of H with no
overlap between its two sectors, the addition ofAwill bring
the two mirrored “ground states” together from Ω0 ¼
�Eground to the value of Ω0 ¼ 0 (see Fig. 21). From the
perspective of the characteristic polynomial, this corre-
sponds to the two roots becoming degenerate before
turning imaginary. In other words, complex eigenvalues
must appear by first passing through an interblock degen-
eracy. Therefore, the meeting of the two ground states
defines the boundary between periodicity (i.e., an all-real
spectrum) and instability (i.e., complex spectrum). If the
spectrum of H is bounded below by 0, then the meeting of
the two states will produce purely imaginary eigenvalues.
This result should be compared to Ref. [49]. In general, the
symmetries of Eq. (C6) that led to this result are only
approximate, and, therefore, we should expect the first
nearly stable eigenvalue to be close to zero, in general.
However, because the oscillon lives in an open box, we

must ensure that Eq. (C4) is endowed with transparent
boundary conditions. Such radiative boundary conditions
depend on the momentum of the outgoing modeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ0 þ nωÞ2 − 1

p
. Eigenvalue problems with radiative

boundary conditions have been studied in the nonrelativ-
istic limit in Ref. [83]. Crucially, the calculations of
Ref. [83] depend on the existence of a uniformizing
variable uðΩ0Þ in which the outgoing momentum becomes
a rational function of u. As far as we are aware, no such
uniformization procedure is known for the relativistic case
with two channels or, more generally, for any case with
more than two channels.
Using series approximations and a uniformizing variable

uðΩ0Þ, we show in Appendix D 3 that it is possible to
express the boundary condition as a polynomial for jΩ0j <
1=2 for ω > 1=2 in the case of parity or ω > 3=4 without
parity. Using standard linearization techniques, we may
reduce this polynomial eigenvalue problem to a generalized
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eigenvalue problem, for which numerical software is
plentiful. This is the method applied to the stability analysis
in Fig. 19.

2. Nonlinear stabilization

In the previous section, we laid out our numerical
method for computing the linear stability of the homo-
geneous perturbation δθ in the background of the deformed
physical quasibreather. Modulo technicalities at the boun-
dary, we found that all linear perturbations either are
oscillatory or come in pairs of exponentially growing
and decaying modes. The result is that stability, understood
to mean that all homogeneous perturbations shrink, cannot
be fully explained at the level of linear Floquet analysis.
Thus, stability must originate at higher order in pertur-

bation theory, if it exists at all. In this section, we identify
radiation as the mechanism of stabilization accessible to
small oscillatory perturbations—specifically, modes which
are periodic in the linear stability analysis will couple to
radiative modes at higher orders, providing a channel for
dissipation. Therefore, we conclude that a sufficient con-
dition for full nonlinear stability is that all modes are
oscillatory at the level of linear perturbation theory.
Furthermore, we will see that linear instability does not
imply nonlinear instability.
We will explore the effect of adding a nonlinear term to a

Floquet-type problem by studying the toy example of the
Mathieu equation with a quadratic nonlinear term. To

simplify our analysis, we begin by studying potentials
with parity, so that the leading-order oscillating contribu-
tion to V 00ðθPQBÞ is proportional to cos 2ωt. The leading
nonlinear term is then proportional to sinωt. Thus, we will
study the nonlinear generalizations of the Mathieu equation
of the form

0 ¼ ÿþ ð1þ ϵðαþ cos 2tþ y sin tÞÞy: ðC8Þ

In this toy problem, y represents the perturbation δθ to a
physical quasibreather whose potential conserves parity.
The fact that the linear term is proportional to cos 2t and the
quadratic term y2 is proportional to sin t is a consequence of
the symmetry of the potential, which guarantees that
polynomials in y of certain parity have the corresponding
oscillatory terms.
A standard two-timing analysis, along the lines of

Ref. [85], with ϵ ≪ 1 demonstrates that the Mathieu
instability bifurcation at jαj ¼ 1=2 is unchanged by the
nonlinearity around y ¼ 0. However, one difference is the
appearance of regions of stability inside the linearly
unstable region jαj < 1=2, although large enough y always
implies instability, regardless of α [86]. When y is the

FIG. 19. The Lyapunov characteristic exponent [the eigenvalue
Ω0 of Eq. (C4) with maximum imaginary part] for the sine-
Gordon deformed physical quasibreather (with an error of
�0.005). The perturbation δθ becomes linearly unstable at
ω ≈ 0.88. The nearest asymptotically attractive quasibreather is
always finitely far away from the oscillon. When ω > 0.88, the
linearly unstable mode is therefore always excited, leading to
growing quasiperiodic oscillations on top of the deformed
quasibreather background (see Fig. 20). Note that, throughout
this band of linear instability, the mass energy

R
dV 1

4
m2S21 is

monotonically decreasing, in contradiction with Ref. [49]. On the
plot, we denote the energetic death at ω ≈ 0.94, where the
oscillon is forced off the quasibreather trajectory by energy
conservation.

FIG. 20. The power radiated by a simulated sine-Gordon
oscillon versus the central fundamental frequency. On this plot,
we have indicated the onset of linear instability ω ≈ 0.88
calculated using our eigenvalue code described in Appendix C
and the instance of energetic death ω ≈ 0.94 described in
Appendix A 4. This figure represents the a consequence of linear
instability: growing quasiperiodic oscillations. The specific
magnitude of this effect depends on initial conditions and
environmental perturbations (see Fig. 12 for an example where
oscillations are suppressed). Whether or not the unstable mode
can become large enough to destroy the oscillon, the perturbation
itself has a radiation component, which may significantly modify
the lifetime. In this particular case, the unstable mode’s frequency
ω� ReΩ0 approaches the oscillon frequency ω toward the end of
life, leading to growing beats (see Fig. 19). The loop of death at
the end of the evolution occurs because the central oscillon
rapidly becomes a mix of first and third harmonic, causing the
central frequency to be larger than 1.
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smallest scale in the problem, we recover the usual Mathieu
equation behavior (see Fig. 22). In summary, linear
periodicity is unchanged for small enough y, although
linearly unstable modes may become periodic.
Thus, we should expect that the oscillatory modes of the

linear equation (C4) remain oscillatory upon introduction
of a nonlinear term as long as they are of small enough
amplitude. Moreover, the nonlinear terms may convert an
otherwise linearly unstable mode into an oscillatory one.
Furthermore, the nonlinear interactions of linearly oscil-
latory modes will necessarily produce radiation, carrying
away energy, causing their amplitude to shrink. Thus,
sufficiently small linearly oscillatory modes are stabilized
by radiation.

3. Angular perturbations

In Appendix D 3, we develop a calculation scheme to
solve for the perturbation δθ as a function of t and r. In

order to obtain the perturbation equations for δθ, we
performed a spherical harmonic decomposition, resulting
in a set of decoupled equations for each mode of angular
momentum number l. These equations differ by the
coefficient of the angular momentum effective potential

Vangular ¼
lðlþ d − 2Þ

r2
: ðC9Þ

Because this potential is positive, it acts as a repulsive
centrifugal term, reducing the perturbation density at the
origin. Hence, we expect that perturbations with more
angular momentum are typically more linearly stable, since
less of the perturbation lies inside the oscillon bulk, although
for low angular momentum, the conclusion is case depen-
dent. An intuition for this comes from applying the stability
phases of the standard Mathieu equation (see Fig. 23).
A similar 1=r2 term appears in the effective potential for

the perturbation upon removing the ðd − 1Þ=r friction term
through a change of variables δθ → rðd−1Þ=2δθ. This intro-
duces the effective potential

Vgeometric ¼ −
ðd − 1Þðd − 3Þ

4r2
: ðC10Þ

FIG. 22. Here we plot the maximum stable amplitude of y in the
nonlinear Mathieu equation (C8) for small ϵ, and we have
indicated the instability band of the linear Mathieu equation in
red. Outside the red region, the nonlinear oscillations are centered
on y ¼ 0, representing that the oscillations stay bounded inde-
pendent of phase. However, for jαj < 0.5, only oscillations of a
particular phase remain bounded, indicating that y ¼ 0 has
become hyperbolic (see the left inset). The inset in the plot
are two examples of the slow oscillation trajectories. For
jαj < 0.5, the red stable trajectories have amplitude larger than
0 and are restricted to a finite interval of phase. This generally
nonlinear phenomenon represents a special region of stability
within the otherwise unstable phase of the Mathieu parameter
space. For jαj > 0.5, the red stable oscillations are restricted to a
finite amplitude but are allowed to have any phase. In both cases,
large enough amplitude perturbations grow without bound,
represented by the black trajectories.

FIG. 21. A visualization of how linear instability emerges in the
simplified model of Appendix C. The boundary of stability is
described by eigenvalues meeting at zero. The plot describes the
solutions to the eigenvalue equation (C6) in the case of a simple
Gaussian background, in which the fundamental oscillon mode is
taken to be S1ðrÞ ¼ A expf−r2=2σ2g. The plot background
describes stability as a function of the two Gaussian parameters,
the oscillon amplitude A and width σ; for oscillons of sufficient
width and amplitude, there are eigenvalues Ω0 with a negative
imaginary part, and, thus, the oscillon is unstable. We show the
eigenvalues nearest to zero for three points in this parameter
space: stable (green), borderline unstable (yellow), and unstable
(red). The real eigenvalues closest to the origin become degen-
erate at zero on the boundary of stability; they further split into
purely imaginary conjugates in the instability region.
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This term differs from the angular momentum term in two
important ways. First, it can be of either sign: For d ¼ 1; 3
it vanishes; for d ¼ 2, it is repulsive; and for d ≥ 4, it is
attractive. Second, it also influences the quasibreather
background itself, whereas the angular momentum terms
influence only the nonspherical perturbations. Because this
potential influences both the background and the pertur-
bation, its effect on stability depends on the specifics of the
nonlinear potential.

APPENDIX D: TECHNICAL FORMULAS

In this section, we provide a detailed description of the
formulas and numerical techniques used to compute
physical quasibreather properties.

1. Perturbative harmonic formulas

Once we have computed the oscillon’s nonperturbative
modes Sn<npert and Cn<npert and their orthogonal deforma-
tions cn<npert and sn<npert , we may compute the perturbative
modes Sn≥npert and Cn≥npert and their orthogonal deforma-
tions cn≥npert and sn≥npert using the procedure outlined in

Appendix B 1. Here, we provide explicit formulas for the
Sommerfeld matrix S and the block Laplacian operator ∇2.
Upon discretizing space such that r ¼ ½0; dr;…; ðN − 1Þdr�,
the matrix S is comprised of all zeros, except for the lower
right entry in each diagonal block. To describe this object, we
introduce the following notation. The matrix S has four
indices: two upper indices labeling the block and two lower
indices labeling the location within that block. In this
notation, the entries in the matrix S in (B3) may be written

Snm
ab ¼ ð−1Þn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnωÞ2 − 1

q
δnmδaNδbN: ðD1Þ

In the same notation, we may describe the Dirichlet-
Neumann block Laplacian operator

½∇2�nm ¼ 1

dr2

0
BBBBBBBB@

−2 1

1

. .
.

1

1 −2 dr

1 −dr

1
CCCCCCCCA
δnm: ðD2Þ

2. Potentials with parity

As described in Sec. V, the Fourier basis is a natural basis
to describe any scalar potential, since it is not plagued by
the same radius-of-convergence issues of, say, the Taylor
basis. Here, we provide the harmonic factorization of a
general scalar potential with parity (45). Taking the first
derivative of Eq. (45) with respect to θ, we arrive at the
following expression for the self-interaction terms in the
nonlinear wave equation:

V 0ðθÞ ¼
X∞
m¼1

Vm

m
sinmθ: ðD3Þ

This expression is specific to the case of a potential with 2π
periodicity. To accommodate potentials without periodicity,
simply replace θ → θ=θmax, where θ ∈ ½−πθmax; πθmax� andP

Vm ¼ θ2max. In order to keep the following expressions
from getting any more unruly, we will present the explicit
formulas for 2π-periodic potentials, since the reader may
easily convert these expressions to accommodate general
periodicity.
By virtue of the Jacobi-Anger expansion [87]

eia sin b ¼
X∞
k¼−∞

JkðaÞeikb; ðD4Þ

we may compute the harmonic expansion of the potential,
evaluated as a function of the PQB harmonics:

FIG. 23. Effective Mathieu equation parameters 0 ¼ ÿþ ða −
2q cos 2kωtÞy for integer k, where we associate a pair ðar; qrÞ to
each radius r of the sine-Gordon quasibreather background (C4)
for ω ¼ 0.95, ignoring the gradient term. This picture is meant to
guide our intuition of the Mathieu equation into the less-familiar
Floquet problem (C4). Intuitively, a mode can be understood as
more unstable if more of its volume lies in the Mathieu instability
bands. This plot, although not quantitatively precise, provides
intuition for why the lowest angular momentum states are more
susceptible to instabilities, since they have the most overlap with
the dominant instability bands.
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V 0
�X∞

n¼1

Sn sinðnωtÞ
�

¼
X∞
m¼1

Vm

m

X
k⃗∈Z⃗

��Y∞
n¼1

JknðmSnÞ
�
sin

�X∞
n¼1

nknωt

��
; ðD5Þ

where k⃗ ¼ ðk1; k2;…Þ. One may write this more compactly in terms of generalized Bessel functions [87]. From this
formula, we obtain the expressions for VSn in (A9):

V 0ðθÞ≡X∞
n¼1

V 0
Sn
ðS1;…; Þ sinðnωtÞ: ðD6Þ

In general, we may evaluate the full nonperturbative formulas for the mode-potential derivatives V 0
SN

and V 0
cN :

V 0
SN
¼
X∞
m¼1

Vm

m

X
ks
1
;…;kc

1
;…

�Y∞
n¼1

JksnðmSnÞJkcnðmcnÞ
�
cos

�X∞
n¼1

kcnπ=2

��
δ

�
N−

X∞
n¼1

nðksnþkcnÞ
�
−δ

�
−N−

X∞
n¼1

nðksnþkcnÞ
��

;

V 0
cN ¼

X∞
m¼1

Vm

m

X
ks
1
;…;kc

1
;…

�Y∞
n¼1

JksnðmSnÞJkcnðmcnÞ
�
sin

�X∞
n¼1

kcnπ=2

��
δ

�
N−

X∞
n¼1

nðksnþkcnÞ
�
þδ

�
−N−

X∞
n¼1

nðksnþkcnÞ
��

:

ðD7Þ

Note that the δ’s in this equation are Kronecker δ’s, but we use a parenthetical argument to keep the expression readable.
From these expressions, we may derive useful formulas for important cases of interest. Here, we present two examples for
illustration and because the reader may find them particularly useful in generating oscillon profiles of their own. First, in the
case that the fundamental mode S1 dominates and all other modes are perturbative, we have the following source term:

J⃗ C⃗ ¼ rðd−1Þ=2
X∞
m¼1

2
Vm

m

0
BB@

J3ðmS1Þ
J5ðmS1Þ

..

.

1
CCA; ðD8Þ

with J⃗ s⃗ ¼ 0 and the following mass matrices:

VC⃗ ¼
X∞
m¼1

Vm

0
BB@

ðJ3−3ðmS1Þ − J3þ3ðmS1ÞÞ ðJ3−5ðmS1Þ − J3þ5ðmS1ÞÞ � � �
ðJ5−3ðmS1Þ − J5þ3ðmS1ÞÞ ðJ5−5ðmS1Þ − J5þ3ðmS1ÞÞ

..

. . .
.

1
CCA;

Vs⃗ ¼
X∞
m¼1

Vm

0
BB@

ðJ3−3ðmS1Þ þ J3þ3ðmS1ÞÞ ðJ3−5ðmS1Þ þ J3þ5ðmS1ÞÞ � � �
ðJ5−3ðmS1Þ þ J5þ3ðmS1ÞÞ ðJ5−5ðmS1Þ þ J5þ3ðmS1ÞÞ

..

. . .
.

1
CCA; ðD9Þ

to be inserted into Eq. (B3). The case where S1 and S3 are nonperturbative and all other harmonics are perturbative
everywhere has a similarly clean form:
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V ¼
X∞
m¼1

Vm

X∞
k¼−∞

JkðmS3Þ

0
BB@

ðJ5−5−3kðmS1Þ ∓ J5þ5−3kðmS1ÞÞ ðJ5−7−3kðmS1Þ ∓ J5þ7−3kðmS1ÞÞ � � �
ðJ7−5−3kðmS1Þ ∓ J7þ5−3kðmS1ÞÞ ðJ7−7−3kðmS1Þ ∓ J7þ7−3kðmS1ÞÞ

..

. . .
.

1
CCA;

J⃗ C⃗ ¼ rðd−1Þ=2
X∞
m¼1

Vm

m

X∞
k¼−∞

JkðmS3Þ

0
BB@

J5−3kðmS1Þ − J−5−3kðmS1Þ
J7−3kðmS1Þ − J−7−3kðmS1Þ

..

.

1
CCA;

J⃗ s⃗ ¼ rðd−1Þ=2c3
X∞
m¼1

Vm

X∞
k¼−∞

Jk−1ðmS3Þ

0
BB@

J5−3kðmS1Þ þ J−5−3kðmS1Þ
J7−3kðmS1Þ þ J−7−3kðmS1Þ

..

.

1
CCA; ðD10Þ

with − corresponding to VC⃗ and þ corresponding to Vs⃗.
The formulas when there are more nonperturbative har-
monics follow the same pattern.

3. Formulas for linear stability analysis

Here, we provide the mathematical details to accompany
Appendix C. We restrict ourselves toω > 1=2 in the case of
parity and ω > 3=4 otherwise. This restriction is to ensure
that the following series approximation converges on the
disk jΩ0j < 1=2. If one is certain that the unstable eigen-
values occur in a smaller disk, the restrictions on ω may be
weakened significantly, and, indeed, this is often the case.
The outgoing boundary conditions depend on the

momentum of the outgoing mode, which is an irrational
function of Ω0. In order to convert the irrational eigenvalue
problem (C4) into a polynomial eigenvalue problem that
may be solved with standard techniques, we need to
approximate the momentum

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ0 � nωÞ2 − 1

p
by a poly-

nomial. One’s first intuition might be that the Taylor series
of the momentum expanded aboutΩ0 ¼ 0 would be a good

approximation. This intuition is good for the higher
harmonics, since Ω0 is often much smaller than nω.
However, this series converges only inside the disk jΩ0j <
1 − ω for n ¼ 1, which is not sufficient to compute the
Lyapunov exponent of the linear perturbation δθ. A more
sophisticated approximation is necessary in order to capture
the behavior of the momentum as a function ofΩ0 on a disk
that remains finite size as ω → 1.
To this end, we define

x ¼ Ω2
0 − ð1 − ωÞ2; ðD11Þ

so that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ0 � ωÞ2 − 1

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ 2ωðω − 1� Ω0Þ

p
: ðD12Þ

We then Taylor expand around x ¼ 0, yielding the follow-
ing series that converges on the disk of radius 1=2 centered
on Ω0 ¼ 0 for ω > 1=2:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ0 � ωÞ2 − 1

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωðω − 1� Ω0Þ

p �
1 −

X∞
j¼0

�
2j

j

�
1

ðjþ 1Þ22jþ1

� ð1 − ωÞ2 − Ω2
0

2ωðω − 1�Ω0Þ
�

jþ1
�
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ0 � nωÞ2 − 1

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnωÞ2 − 1

q �
1 −

X∞
j¼0

�
2j

j

�
1

ðjþ 1Þ22jþ1

�
−
ðΩ0 � nωÞ2 − ðnωÞ2

ðnωÞ2 − 1

�
jþ1

�
; ðD13Þ

where the second equation is just the ordinary Taylor
expansion centered on Ω0 ¼ 0 for n ≥ 2. The factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωðω − 1�Ω0Þ

p
is not yet a polynomial. We utilize

the technique of uniformization [83], where we define the
complex variable u such that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωðω − 1�Ω0Þ

p
becomes a

polynomial in u:

Ω0 ¼
1 − ω

2
ðu2 þ u−2Þ: ðD14Þ

This definition turns Eq. (D13) into rational functions of u,
allowing us to rephrase Eq. (C4) as a polynomial eigen-
value problem. The zero eigenvalues now live at the four
roots of the equation u4 ¼ −1, around which we perform a
small eigenvalue search using the Krylov subspace meth-
ods implemented in MATLAB. Once the u eigenvalues and
eigenvectors have been computed, we must convert back to
check that they correspond to eigenvalues of the original
irrational eigenvalue problem. In short, we have reduced
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the original irrational eigenvalue to a polynomial eigen-
value problem of degree at least 4, depending on the degree
of accuracy one wants to achieve.
Finally, we define the matrix S which encodes the

nonderivative term in the Sommerfeld radiation condition,
which can be written as a sum of the matrices Ŝλ, which are
matrices of all zeros except for the lower right entry of the
λth diagonal block, which is 1. This entry corresponds to
the outer boundary of the grid, with λ ranging from −L to
L, and the upper left block corresponding to λ ¼ −L, where
L is the chosen order of the Floquet expansion. In this

notation, the nonderivative part of the Sommerfeld boun-
dary conditions may be written

S ¼
X∞
λ¼−∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ0 þ λωÞ2 − 1

q
Ŝλ ≈

XL
λ¼−L

X2Mþ1

i¼0

cλ;iuiŜλ;

ðD15Þ

where M ¼ minð2jmax;1 þ 3; 4jmax;n þ 4Þ, where jmax;n is
the order of the Taylor expansion of the nth momentum
eigenvalue.

Collecting terms in Eq. (D13), we have the following expressions for the coefficients of the Ŝλ matrices, for λ ¼ 1 and
λ ¼ n > 1, respectively:

c�1;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ωð1 − ωÞ

p �
ðδ1þM−i ∓ δ−1þM−iÞ −

Xjmax;1

j¼0

�
2j

j

�
1

ðjþ 1Þ22jþ1

�
�ω − 1

4ω

�
jþ1

×
X2ðjþ1Þ

k¼0

�
2jþ 2

k

�
ð�1Þkðδ2ðj−kÞþ3þM−i ∓ δ2ðj−kÞþ1þM−iÞ

�
;

cn;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnωÞ2 − 1

q �
δi−M −

Xjmax;n

j¼0

ð2jÞ!
ðj!Þ2

2−3j−2

ðjþ 1Þ
� ð1 − ωÞ2
1 − ðnωÞ2

�
jþ1

×
X

k−4þk−2þk0þk2þk4¼jþ1

ðjþ 1Þ!
k−4!k−2!k0!k2!k4!

�
1

2

�
k4þk−4

�
2nω
ω − 1

�
k2þk−2

δ4k4−4k−4þ2k2−2k−2þM−i

�
: ðD16Þ

Finally, we define the matrix of frequencies

Ω ¼

0
BBBBBBBB@

. .
.

ω

0

−ω
. .
.

1
CCCCCCCCA
; ðD17Þ

where the even entries are dropped when V has parity.
These versions ofΩ and S are not to be confused with those

used to solve for the physical quasibreather (B3),
as the correct version to use will always be clear from
context.
With these definitions, the irrational eigenvalue problem

(C4) has been reduced to the polynomial eigenvalue
problem

0 ¼
XN
i¼0

uiMi; ðD18Þ

where the matrices Mi are defined

Mi ¼ −i
XL
λ¼−L

cλ;iŜλ þ
�
2

�
1 − ω

2

�
2

IþΩ2 þL

�
δM−i þ

�
1 − ω

2

�
2

IðδMþ4−i þ δM−4−iÞ þ ð1 − ωÞΩðδMþ2−i þ δM−2−iÞ;

ðD19Þ

L ¼ ∇2 −
lðlþ d − 2Þ

r2
þ ðd − 1Þðd − 3Þ

4r2
− V 00

0 −
1

2

X∞
m∈Neven

V 00
mðD−m þDmÞ −

1

2i

X∞
m∈Nodd

V 00
mðDm − D−mÞ; ðD20Þ
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where displacement matrices Dm are the matrices consisting of all 1’s on the diagonal of the mth block diagonal. Thus, we
have reduced the computation of the Lyapunov exponents to computing the eigenvalues of the generalized eigenvalue
problem

0 ¼

0
BBBBBBBB@

uI −I
uI −I

. .
. . .

.

uI −I
M0 M1 � � � MN−2 MN−1 þ uMN

1
CCCCCCCCA

0
BBBBB@

δθ

uδθ

..

.

uN−1δθ

1
CCCCCA: ðD21Þ

In summary, the precision of this approximation can be increased to the desired level by

(1) increasing the resolution of the radial grid by
reducing dr,

(2) increasing the physical radius of the simulation rout,
(3) increasing the number L of Floquet blocks kept in

the expansion,
(4) increasing the order jmax;λ of the momentum ex-

pansions, and
(5) increasing the number of PQB harmonics kept in the

background.

APPENDIX E: EXPLICIT TIME
EVOLUTION—NUMERICAL METHODS

Throughout the text, we refer to explicit numerical
simulations for validation of our results. Here, we outline
the numerical setup used to compute the time evolution of
the field θ in the equations of motion (2) and the
methodology used to measure oscillon frequency ω and
radiated power P.
The radial equation of motion for the field θðt; rÞ in

3þ 1 dimensions is

0 ¼ ∂2θðt; rÞ
∂t2 −

∂2θðt; rÞ
∂r2 −

2

r
∂θðt; rÞ
∂r2 þ Fðθðt; rÞÞ: ðE1Þ

We introduce the variable v ¼ rθ, which eliminates the
friction term. We now discretize time and space, with time
steps dt and radial steps dr, and introduce the notation

vðNdt;MdrÞ ¼ vNðMÞ ðE2Þ

Finally, we define the ratio ξ≡ ðdt=drÞ2. In this notation,
the equations of motion lead to the following leading-order
finite difference equation:

vNþ1ðMÞ ¼ ξðvNðMþ 1Þ þ vNðM − 1ÞÞ þ 2ð1− ξÞvNðMÞ
− vN−1ðMÞ− ðdt2drMÞFðvNðMÞ=ðdrMÞÞ:

ðE3Þ
Dirichlet boundary conditions are imposed at the origin by
fixing vNð0Þ ¼ 0. The oscillon is assumed to be evolving in
empty space, and, therefore, the box size must be chosen
large enough that the radiation from the oscillon reflected
off the outer boundary does not propagate backward and
interfere with the oscillon itself.
The length scale of thenth harmonic is 2π=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnωÞ2 −m2

p
.

During an instance of destructive interference, typically the
fifth harmonic dominates, and in rare cases the seventh may
contribute significantly. Since 2π=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
72 − 1

p
≈ 0.9, we choose

a safe value of dr ¼ 0.1=m, about 10 times smaller than the
length scale of radiation at thehighest possible frequency.We
find that ξ ¼ 1=4 leads to stable evolution for dr of the order
of 0.1=m. To check that this choice of dr is good, we
increased the resolution by a factor of 2 and 4,which resulted
in marginal discrepancies.
The frequency of the oscillon is then measured by

tracking the times at which vNð1Þ crosses through zero.
The outgoing flux is measured outside the oscillon bulk,
typically between 20 and 100 in units of the mass. We do
not measure the flux too far from the source, since the
different frequency modes travel at different velocities, and
the PQB formalism does not account for this dispersion.
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