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The effective photon-quark-antiquark (γqq̄) vertex function is evaluated at finite temperature in the
presence of an arbitrary external magnetic field using the two-flavor gauged Nambu–Jona-Lasinio model in
the mean field approximation. The lowest order diagram contributing to the magnetic form factor and the
anomalous magnetic moment (AMM) of the quarks is calculated at finite temperature and external
magnetic field using the imaginary time formalism of finite temperature field theory and the Schwinger
proper time formalism. The Schwinger propagator, including all the Landau levels with nonzero AMM of
the dressed quarks, is considered while calculating the loop diagram. Using sharp as well as smooth three-
momentum cutoff, we regularize the UV divergences arising from the vertex function and the parameters of
our model are chosen to reproduce the well-known phenomenological quantities at zero temperature and
zero magnetic field, such as pion-decay constant (fπ), vacuum quark condensate, and vacuum pion mass
(mπ), as well as the magnetic moments of proton and neutron. We then study the temperature and magnetic
field dependence of the AMM and constituent mass of the quark. We found that the AMM as well as the
constituent quark mass are large at the chiral symmetry broken phase in the low temperature region. Around
the pseudo-chiral phase transition, they decrease rapidly and at high temperatures both of them approach
vanishingly small values in the symmetry restored phase.
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I. INTRODUCTION

The influence of an external magnetic field on the
vacuum structure of quantum chromodynamics (QCD)
and its modifications at finite temperature and/or chemical
potential can play an important role in many physical
systems (see Ref. [1] for review). For example, it is
conjectured by some cosmological models that, during
the electroweak phase transition in the early Universe,
extremely strong magnetic field as high as ∼1023 G might
have been produced [2,3] (note that, in natural units,
1018 G ≈m2

π ≈ 0.02 GeV2). The magnetic field on the
surface of certain compact stars called “magnetars” is on
the order of ∼1015 G, while in the interior it is estimated to

reach about ∼1018 G [4–6]. Most importantly, in noncentral
or asymmetric heavy-ion collisions (HICs) at the Relativistic
Heavy-Ion Collider and LHC, strong magnetic fields of the
order of ∼1018 G [7,8] or larger may be transiently gen-
erated. It is, however, predicted that the presence of a finite
electrical conductivity of the hot and dense medium created
during HICs can delay the decay of these time-dependent
magnetic fields substantially [9–12]. Thus, being compa-
rable to the QCD scale, i.e., eB ≈m2

π , such high magnetic
fields can influence substantial change in the deconfined
medium of strongly interacting quarks and gluons known as
the quark-gluon plasma, which is supposed to be created in
such HICs. So far, a considerable amount of research has
been conducted in the last few decades to understand the
consequences of this backgroundmagnetic field on theQCD
matter; this results in a large number of novel and interesting
phenomena, such as the chiral magnetic effect [7,13–15],
magnetic catalysis [16–19], and inverse magnetic catalysis
[20,21] of dynamical chiral symmetry breaking, which may
cause significant change in the nature of electroweak [22–
25], chiral, and superconducting phase transitions [26–29],
electromagnetically induced superconductivity and super-
fluidity [30,31], and many more.
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However, a first principle analysis of the above-men-
tioned phenomena involves a great deal of complexities due
to the large coupling strength of QCD in the low energy
regime, which restricts the applicability of the perturbative
analysis. One may rely on the lattice QCD (LQCD)
simulations that provide one of the best strategies to
overcome this problem at zero baryon density. It is also
possible to extrapolate the zero baryon chemical potential
results of LQCD for several thermodynamical quantities to
the intermediate temperatures (comparable to the QCD
scale) and low baryonic density using methods, such as
Taylor expansion [32] or an analytical continuation
from imaginary chemical potentials [33], which is relevant
for highly relativistic HICs [32–38]. However, for exam-
ining compact stars, one has to deal with low temperature
and high density extreme states, which are also expected
to be explored in the upcoming compressed baryonic
matter experiment at the Facility for Antiproton and Ion
Research. The so-called sign problem in the Monte Carlo
sampling restricts the accessibility of these areas of the
phase diagram via the LQCD simulation. In this situation,
an available alternative is to work with QCD inspired
effective models that possess some of the essential
features of QCD and study the effects of background
magnetic field on such effective description [39]. The
Nambu–Jona-Lasinio (NJL) model [40,41] is one such
model, which is constructed respecting the global sym-
metries of QCD, most importantly the chiral symmetry
(see Refs. [42–45] for reviews). This model has been
extensively used to study the phase structure of hot, dense,
and magnetized QCD medium [17–19,39,46–54].
The appearance of the anomalous magnetic moment

(AMM) of an elementary particle, having no internal
structure, due to quantum corrections in quantum electro-
dynamics (QED) is a well-known phenomenon in
gauge field theory. When the fermions are coupled to
the gauge field via minimal coupling, the ordinary deriv-
atives are modified to the covariant derivatives ∂μ → Dμ ¼∂μ − iQeAμ and the Dirac equation can be recast
as [55–57] �

D2 − g
Qe
4

Fμνσμν þm2

�
ψ ¼ 0; ð1Þ

where σμν ¼ i½γμ; γν�=2 and g is the Landé g factor. For
example, the Landé g factor of the electron comes out to be
2þ α=π up to one loop in QED where α is the fine
structure constant. One can also consider the higher order
corrections to g in power series of α=π [58], which are in
excellent agreement with experimental data. In the pres-
ence of a background magnetic field, the AMM modifies
the mass of electron as m2

eff ≈m2 þ ðg − 2ÞeB=2 in the
lowest Landau level (LLL) [59]. However, in the case of
massless QED, chiral symmetry breaking leads to the

dynamical generation of AMM [60,61]. Now, QCD being
the gauge theory of strong interactions, an anomalous
contribution to the magnetic moment can therefore be
associated with the quarks due to strong corrections, along
with the QED corrections. However, the nonperturbative
nature of QCD forbids one to perform a first principle
analytical calculation to extract the anomalous contribu-
tion to g. Thus, one has to resort to effective models, such
as the NJL model with spontaneous symmetry breaking,
which, in addition to the effective mass (chiral conden-
sate), leads to the dynamical generation of the AMM in a
magnetic background [59–62]. However, the dynamical
generation of AMM happens only at nonzero magnetic
field and it is difficult to evaluate the radiative corrections
to the mass and the magnetic moment independently due to
single spin orientation of the fermions in the LLL [61,62].
Therefore it is unlikely that this approach, when applied to
quarks, will reproduce the correct value of the AMM of
neutron and proton because of the absence of the strong
interaction contribution. Moreover, using a gauged NJL
model, it was shown in Ref. [63] that the AMM of quarks
can be significant in theories where mass generation occurs
through dynamical chiral symmetry breaking.
Another alternative approach is to use the AMM of

quarks calculated using the constituent quark model
(CQM) [64,65], where the experimental values of the
nucleon AMM are used to extract the AMM of the quarks.
This procedure has already been used in Refs. [66–68] and
a substantial modification in thermodynamical quantities is
observed. In Ref. [67], masses of scalar and neutral
pseudoscalar mesons are also examined using the NJL
model, and the Mott transition temperature is found to
decrease substantially with the increase in magnetic field
when the AMM of the quarks are taken into consideration.
In Ref. [69], the NJL model with nonzero AMM of quarks
is used to study the dilepton production rate in the presence
of an arbitrary external magnetic field. In Refs. [68,70], the
authors have used the Polyakov loop extended NJL model
to study the effect of AMM of the quarks on the phase
structure of magnetized quark matter.
We reiterate that AMM of the quarks has dominant

contribution from the QCD correction to the photon-quark-
antiquark (γqq̄) vertex function. The corresponding QED
correction to the vertex is subleading (as compared to the
QCD correction) and thus cannot explain the large value of
the AMM of the proton and neutron. Moreover, due to the
large QCD coupling, it is not possible to evaluate the γqq̄
vertex function using the perturbative QCD technique,
especially at low temperature. As an alternative, we use
the NJL model to explicitly calculate the vertex function
and extract the AMM of the quarks, which reproduces the
correct values of the AMM of proton and neutron.
In the current work, we have modified the two-flavor

NJL Lagrangian by introducing an interaction term with a
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Abelian gauge field via the minimal coupling, which will
be considered as a small perturbation to the original field
theory. Using this gauged NJL model, we have calculated
the lowest order diagram, which contributes to the magnetic
form factor corresponding to the effective photon-quark-
antiquark (γqq̄) vertex at finite temperature in the presence
of an arbitrary external magnetic field in the mean field
approximation. For this, the imaginary time formalism
(ITF) of finite temperature field theory and Schwinger
proper time formalism are implemented in the calculation
of the loop graphs; the complete (including all the Landau
levels) Schwinger propagator with nonzero AMM of the
quarks is considered. The NJL model being nonrenorma-
lizable [42], we have used a proper regularization scheme
that correctly reproduces the well-known phenomenologi-
cal quantities at zero temperature and zero magnetic field,
such as pion-decay constant (fπ), vacuum quark conden-
sate, and vacuum pion mass (mπ), as well as the magnetic
moments of proton and neutron using the CQM. We then
study the thermomagnetic modification of the AMM of the
quarks and find that at sufficiently high temperature both
the constituent quark mass and AMM of the quarks
asymptotically vanish.
The article is organized as follows. In Sec. II, the

magnetic form factors for the effective γqq̄ vertex are
calculated at finite temperature and magnetic field. Next, in
Sec. III, the AMM of the quarks and the constituent quark
mass are extracted by solving a set of coupled gap
equations. All the numerical results are presented in
Sec. IV, followed by a brief summary in Sec. V. Some
of the relevant calculational details are provided in the
Appendix.

II. THE PHOTON-QUARK-ANTIQUARK VERTEX
FUNCTION AND THE MAGNETIC FORM

FACTORS

Let us start with the standard expression of the two-
flavor gauged NJL Lagrangian

LNJL ¼ ψ̄ðiγμ∂μ − jejQ̂γμAμ −mÞψ
þ Gfðψ̄ψÞ2 þ ðψ̄iγ5τψÞ2g; ð2Þ

where ψ ¼ ðψu
ψd
Þ is the quark isospin flavor doublet with ψu

and ψd being the up and down quark fields, respectively. In
the above equation, Q̂ ¼ ðQu

0
0
Qd
Þ is the charge-fraction

matrix in the flavor space with Qu ¼ 2=3 and
Qd ¼ −1=3, τ are the three Pauli isospin matrices, jej is
the electric charge of a proton, G is the coupling constant
in the scalar channel for the four point contact interactions
among the quark fields, and m is the current quark
mass, which is assumed to be equal for the up and down
quarks ensuring the isospin symmetry. Throughout
the paper, we have used the metric tensor with signa-
ture gμν ¼ diagð1;−1;−1;−1Þ.
In order to calculate the magnetic form factors and AMM

of the quarks, we need to evaluate the photon-quark-
antiquark (γqq̄) vertex function. For this, let us consider
an initial state jIi ¼ jγðk; λÞi containing a photon of
momentum k and polarization λ going to a final state
jFi ¼ jqðp; s; c; fÞq̄ðp0; s0; c0; f0Þi, containing a quark and
antiquark having momenta p and p0, spin s and s0, color c
and c0, and flavor f and f0, respectively. The amplitude for
the transition jIi → jFi is SFI ¼ hFjŜjIi, where Ŝ is the
scattering matrix operator given by

Ŝ ¼ T
�
exp

�
i
Z �

LeðxÞ þLGðxÞ
�
d4x

��
; ð3Þ

in which T denotes the time ordering, Le ¼ −jejψ̄ Q̂ γμψAμ, and LG ¼ Gfðψ̄ψÞ2 þ ðψ̄iγ5τψÞ2g. Expanding SFI up to
second order, we get after some simplifications

SFI ¼ i
Z

d4xhFjT LeðxÞjIi −
Z Z

d4xd4yhFjT LeðxÞLGðyÞjIi þ � � � : ð4Þ

The calculations of the matrix elements are provided in the Appendix and we obtain the nontrivial contribution to the matrix
elements from Eqs. (A2) and (A5) as

hFjT LeðxÞjIi ¼ eix·ðpþp0−kÞūðp; s; c; fÞð−jejQ̂γμÞf;f0c;c0 vðp0; s0; c0; f0Þϵμðk; λÞ; ð5Þ

hFjT LeðxÞLGðyÞjIi ¼ eiy·ðpþp0Þe−ix·kūðp; s; c; fÞð−2GSðy; xÞjejQ̂γμSðx; yÞ
þ2Gγ5τiSðy; xÞjejQ̂γμSðx; yÞγ5τiÞf;f0c;c0 vðp0; s0; c0; f0Þϵμðk; λÞ; ð6Þ

where ϵμðk; λÞ is the polarization vector of the incoming photon, ūðp; s; c; fÞ and vðp0; s0; c0; f0Þ are, respectively, the color
isospinors representing the outgoing quark and antiquark, respectively. In the above equation, Sðx; yÞ is the coordinate
space Hartree-quark propagator (dressed) in vacuum given by
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Sðx; yÞ ¼ Sðx − yÞ ¼ hΩjT ψðxÞψ̄ðyÞjΩi; ð7Þ

where jΩi denotes the NJL vacuum corresponding to the propagation of the quarks in a mean field (MF). It is to be noted
that Sðx; yÞ is translationally invariant and is diagonal in both the color and flavor spaces. Substituting Eqs. (5) and (6) into
Eq. (4) and performing the space-time integrals, we arrive at

SFI ¼ ð2πÞ4δ4ðk − p − p0Þūðp; s; c; fÞð−ijejΓμÞf;f0c;c0 vðp0; s0; c0; f0Þϵμðk; λÞ þ � � � ; ð8Þ

where

Γμðk; pÞ ¼ γμ ⊗ Q̂ ⊗ 1Color − 2iG
Z

d4p̃
ð2πÞ4 ½Sðkþ p̃ÞQ̂γμSðp̃Þ − γ5τiSðkþ p̃ÞQ̂γμSðp̃Þγ5τi�; ð9Þ

in which SðpÞ is the momentum space quark Feynman propagator in vacuum given by

SðpÞ ¼ i
Z

d4xeip:ðx−yÞSðx − yÞ ¼
�
SuðpÞ 0

0 SdðpÞ

�
¼ −ðpþMÞ

p2 −M2 þ iϵ
⊗ 1Flavor ⊗ 1Color; ð10Þ

with M being the “constituent quark mass.” Equation (8) has been represented in terms of the Feynman diagram in Fig. 1.
In order to extract themagnetic form factors andAMMof the quarks from the effective vertex Γμðk; pÞ, we decompose it as

Γμðk; pÞ ¼
�
F1ðk; pÞQ̂ ⊗ γμ þ F2ðk; pÞQ̂i

σμν

2M
kν

�
⊗ 1Color þ � � � ; ð11Þ

where F1 and F2 are, respectively, the electric and magnetic form factors. The quantity F2 can be easily extracted from
Γμðk; pÞ as

F2ðk; pÞ ¼ −i
M

6Nck2
Q̂−1Trd;cðkνσμνΓμÞ; ð12Þ

whereNc is the number of color and the subscripts “d” and “c” in trace correspond to the traces taken over the Dirac and color
spaces, respectively. Substituting Eq. (9) into (12), we get after some simplifications

F2ðkÞ ¼
�
Fu
2 0

0 Fd
2

�
¼ −

MG
3Nck2

Z
d4p̃
ð2πÞ4

�
Trd;c½kνσμνSdðkþ p̃ÞγμSdðp̃Þ� 0

0 4Trd;c½kνσμνSuðkþ p̃ÞγμSuðp̃Þ�
�
: ð13Þ

Substituting SðpÞ from Eq. (10) into the above equation leads to the following simplified expression of the magnetic form
factors corresponding to the up and down quarks

Fu
2ðkÞ ¼

1

4
Fd
2ðkÞ ¼ −4GM2i

Z
d4p̃
ð2πÞ4

1

fðp̃þ kÞ2 −M2 þ iϵgðp̃2 −M2 þ iϵÞ : ð14Þ

FIG. 1. The lowest order Feynman diagrams contributing to the γqq̄ vertex function. The blob represents the effective vertex Γμ. All
the fermion lines denote the dressed quark propagation in a mean field. The arrows denote the direction of the momentum.
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For the incorporation finite temperature in the calculation of the form factors, we employ the ITF of finite temperature
field theory in which the continuous energies are replaced by discrete Matsubara modes as p̃0 → ð2rþ 1ÞiπT, where T is
the temperature and r ∈ Z. Thus, the magnetic form factors at finite temperature become

Fu
2ðk;TÞ ¼

1

4
Fd
2ðk;TÞ ¼ 4GM2T

Z
d3p̃
ð2πÞ3

X∞
r¼−∞

1

fðp̃þ kÞ2 −M2 þ iϵgðp̃2 −M2 þ iϵÞ
����
p̃0¼ð2rþ1ÞiπT

: ð15Þ

Performing the sum over Matsubara frequencies, the above equation leads to

Fu
2ðk;TÞ ¼

1

4
Fd
2ðk;TÞ ¼ −2GM2

Z
d3p̃
ð2πÞ3

�ðω̃p þ ω̃kÞ
ω̃pω̃k

1

k20 − ðω̃p þ ω̃kÞ2
−

fðω̃pÞ=ω̃p

ðk0 þ ω̃pÞ2 − ω̃2
k

−
fðω̃pÞ=ω̃p

ðk0 − ω̃pÞ2 − ω̃2
k

−
fðk0 þ ω̃kÞ=ω̃k

ðk0 þ ω̃kÞ2 − ω̃2
p
−
fð−k0 þ ω̃kÞ=ω̃k

ðk0 − ω̃kÞ2 − ω̃2
p

�
; ð16Þ

where ω̃p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̃2 þM2

p
, ω̃k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̃2 þM2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ p̃Þ2 þM2

p
, and fðxÞ ¼ ½ex=T þ 1�−1 is the Fermi-Dirac thermal

distribution function of the quarks.
Let us now consider a constant external magnetic field B ¼ Bẑ along the positive z direction. The incorporation of such

background classical field in the evaluation of the vertex function can be done using the Schwinger proper time formalism in
which the quark propagator of Eq. (7) modifies to

SBðx; yÞ ¼ Φðx; yÞSBðx − yÞ ¼ hΩBjT ψðxÞψ̄ðyÞjΩBi; ð17Þ

where jΩBi denotes the magnetized NJL vacuum in the MF approximation. It is to be noted that SBðx; yÞ is not
translationally invariant due to the presence of the phase factor Φðx; yÞ, but is diagonal in both the color and flavor spaces.
However, the substitution of Eq. (17) into Eqs. (5) and (6) leads to the cancellation of the two phase factors coming from the
two propagators, since the phase factor satisfies Φðy; xÞΦðx; yÞ ¼ 1. Therefore, we can work with the translationally
invariant piece SBðx − yÞ of the Schwinger propagator for the calculation of the vertex function and analogously obtain

Γμðk; pÞ ¼ γμ ⊗ Q̂ ⊗ 1Color − 2iG
Z

d4p̃
ð2πÞ4 ½SBðkþ p̃ÞQ̂γμSBðp̃Þ − γ5τiSBðkþ p̃ÞQ̂γμSBðp̃Þγ5τi�; ð18Þ

in which SBðpÞ is the momentum space quark Schwinger propagator in vacuum given by

SBðpÞ ¼ i
Z

d4xeip:ðx−yÞSBðx − yÞ ¼
�
SBu ðpÞ 0

0 SBd ðpÞ

�
; ð19Þ

where each of the diagonal flavor component becomes sum over discrete Landau levels and spin as

SBf ðpÞ ¼
X

s∈f�1g

X∞
n¼0

−DnfsðpÞ
p2
k −M2

nfs þ iϵ
⊗ 1Color; f ∈ fu; dg: ð20Þ

In the above equation,Mnfs ¼ jMnf − sκfQfBj, whereMnf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2njQfeBj

q
with κf being the AMM of quark flavor

f. With respect to the direction of the external magnetic field, we have decomposed p ¼ ðpk þ p⊥Þ, where pμ
k ¼ gμνk pν and

pμ
⊥ ¼ gμν⊥ pν with g

μν
k ¼ diagð1; 0; 0;−1Þ and gμν⊥ ¼ diagð0;−1;−1; 0Þ. The quantityDnfsðpÞ in the above equation contains

the Dirac structure of the propagator and its explicit form is

DnfsðpÞ ¼ ð−1Þne−αfp 1

2Mnf
ð1 − δ0nδ

−1
s Þ½ðMnf þ sMÞðpk − κfQfBþ sMnfÞð1þ signðQfÞiγ1γ2ÞLnð2αfpÞ

− ðMnf − sMÞðpk − κfQfB − sMnfÞð1 − signðQfÞiγ1γ2ÞLn−1ð2αfpÞ
− 4sðpk − signðQfÞiγ1γ2ðκfQfB − sMnfÞÞsignðQfÞiγ1γ2p⊥L1

n−1ð2αfpÞ�; ð21Þ
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where αfp ¼ −p2⊥=jQfeBj and La
nðzÞ denotes the associate Laguerre polynomials with convention La

−1ðzÞ ¼ 0. This
convention, along with the presence of the factor ð1 − δ0nδ

−1
s Þ in Eq. (21), ensures that the LLL is spin nondegenerate.

Substituting Eq. (18) into (12), we obtain the magnetic form factor analogous to Eq. (13), which are now functions of
external magnetic field B and AMM of the quark as

F2ðk;B; κu; κdÞ ¼
�
Fu
2ðk;B; κdÞ 0

0 Fd
2ðk;B; κuÞ

�
¼ −

MG
3Nck2

�
Idðk;B; κdÞ 0

0 4Iuðk;B; κuÞ

�
; ð22Þ

where

Ifðk;B; κfÞ ¼
Z

d4p̃
ð2πÞ4 Trd;c½kνσ

μνSBf ðkþ p̃ÞγμSBf ðp̃Þ�; f ∈ fu; dg: ð23Þ

The incorporation of the effect of finite temperature can now be done using ITF, in which we again replace continuous
energies by discrete Matsubara modes as p̃0 → ð2rþ 1ÞiπT. Thus, Eqs. (22) modifies to

Fu
2ðk;B; κd; TÞ ¼ −

MG
3Nck2

Idðk;B; κd; TÞ; ð24Þ

Fd
2ðk;B; κu; TÞ ¼ −

MG
3Nck2

Iuðk;B; κu; TÞ; ð25Þ

where

Ifðk;B; κf; TÞ ¼
Z

d3p̃
ð2πÞ3 iT

X∞
r¼−∞

Trd;c½kνσμνSBf ðkþ p̃ÞγμSBf ðp̃Þ�
����
p̃0¼ð2rþ1ÞiπT

; f ∈ fu; dg: ð26Þ

For simplicity in analytic calculation, we will take k⊥ ¼ 0. Substituting Eq. (20) into the above equation, we get, after a long
but straightforward calculation, the quantity Ifðkk; k⊥ ¼ 0;B; κf; TÞ as

Ifðkk;B; κf; TÞ ¼
i
4π

Nc

X
sk∈f�1g

X
sp∈f�1g

X∞
l¼0

X∞
n¼0

jQfeBjsksp
MlfskMnfsp

ð1 − δ0l δ
−1
sk Þð1 − δ0nδ

−1
sp Þ

× ½fðskMlf − spMnfÞI1 þ ðskMlf − κfQfBÞk2kI2gfðM þ skMlfÞðM þ spMnfÞδnl
− ðM − skMlfÞðM − spMnfÞδn−1l−1 g
− 2fðskMlf þ spMnf − 2κfQfBÞI1 þ ðskMlf − κfQfBÞk2kI2g
× fðM þ skMlfÞðM − spMnfÞδn−1l − ðM − skMlfÞðM þ spMnfÞδnl−1g�; ð27Þ

where a Kronecker delta with negative index is considered to be zero (i.e., δ−1−1 ¼ 0) and I1 and I2 are given by

I2 ¼
1

2

Z
∞

−∞

dp̃z

ð2πÞ
�ðωlfsk þ ωnfspÞ

ωlfskωnfsp

1

k20 − ðωlfsk þ ωnfspÞ2
−

fðωlfskÞ=ωlfsk

ðk0 þ ωlfskÞ2 − ω2
nfsp

−
fðωlfskÞ=ωlfsk

ðk0 − ωlfskÞ2 − ω2
nfsp

−
fðk0 þ ωnfspÞ=ωnfsp

ðk0 þ ωnfspÞ2 − ω2
lfsk

−
fð−k0 þ ωnfspÞ=ωnfsp

ðk0 − ωnfspÞ2 − ω2
lfsk

�
; ð28Þ

I1 ¼
1

4

Z
∞

−∞

dp̃z

ð2πÞ
1

ωlfskωnfsp

½ðωnfsp − ωlfskÞ − 2fðωlfskÞωnfsp

þ ffðk0 þ ωnfspÞ þ fð−k0 þ ωnfspÞgωlfsk � −
1

2
ðk2k þM2

lfsk
−M2

nfsp
ÞI2; ð29Þ

in which, ωlfsk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̃2
z þM2

lfsk

q
and ωnfsp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp̃z þ kzÞ2 þM2

nfsp

q
.
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III. THE COUPLED GAP EQUATIONS AND AMM
OF THE QUARKS

The AMM of the quarks, namely κu and κd, are related to
the magnetic form factors (calculated in the previous
section) by the relation

κf ¼ 1

2M
Ff
2ðk → 0Þ; f ∈ fu; dg: ð30Þ

At B ¼ 0, we can therefore calculate κf by substituting
Eq. (16) into Eq. (30) provided we know the constituent
quark mass M ¼ MðTÞ, which is obtained by solving the
gap equation in absence of external magnetic field [42],

MðTÞ¼mþ2GNc

X
f∈fu;dg

Z
d3p̃
ð2πÞ3

2M
ω̃p

½1−2fðω̃pÞ�: ð31Þ

The situation becomes lot more complicated at B ≠ 0,
where the AMM of the quarks are to be obtained from
Eqs. (24), (25), and (30) as

κu ¼ −
G

6Nck2
Idðk → 0;B; κd; T;MÞ; ð32Þ

κd ¼ −
G

6Nck2
Iuðk → 0;B; κu; T;MÞ; ð33Þ

along with the constituent quark massM ¼ MðT; B; κu; κdÞ
satisfying the following gap equation:

MðT; B; κu; κdÞ ¼ mþ 2GNc

X
f∈fu;dg

jQfeBj
2π

X∞
l¼0

X
sk∈f�1g

ð1 − δ0l δ
−1
sk Þ

�
1 −

skκfQfB

Mlf

�Z
∞

0

dp̃z

2π

2M
ωlfsk

½1 − 2fðωlfskÞ�: ð34Þ

Therefore Eqs. (32)–(34) constitute the set of three non-
linear coupled equations for the three unknown quantities
κu, κd, and M and they have to be simultaneously solved.
We name Eqs. (32)–(34) as the “coupled gap equations.”
Once the AMM of the quarks are known, a few other

physical quantities can be easily calculated. For example,
the magnetic moments of the quarks are given by

μf ¼ Qfð1þ 2MκfÞ
MN

M
μN; f ∈ fu; dg; ð35Þ

where MN ¼ 938 MeV is the nucleon mass and μN ¼
jej=2MN is the nuclear magneton. Now, using the con-
stituent quark model, the magnetic moments of proton and
neutron come out to be [56,64]

μproton ¼
1

3
ð4μu − μdÞ; ð36Þ

μneutron ¼
1

3
ð4μd − μuÞ: ð37Þ

We conclude this section by mentioning the regulariza-
tion procedure used in this work. First, we note that the
temperature-independent parts in Eqs. (16), (28), (29), (31),
and (34) are UV divergent. The NJL model being non-
renormalizable requires proper regularization procedure. In
this work, we have used two different regularization
methods, namely (i) sharp cutoff and (ii) smooth cutoff.
In the sharp cutoff scheme, we use a three-momentum
cutoff Λ to regulate the UV divergences so that, at zero
magnetic field,

Z
d3kfðk⃗Þ →

Z
d3kfðk⃗ÞΘðΛ − jk⃗jÞ; ð38Þ

whereas for nonzero magnetic field, we use

X∞
l¼0

Z
∞

−∞
dkzfðkz; lÞ

→
X∞
l¼0

Z
∞

−∞
dkzfðkz; lÞΘðΛ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ 2ljeBj

q
Þ: ð39Þ

On the other hand, in the smooth cutoff scheme, we use the
following regularization prescription [71] at B ¼ 0:

Z
d3kfðk⃗Þ →

Z
d3kfðk⃗Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ20

Λ20 þ jk⃗j20

s
ð40Þ

and for nonzero magnetic field,

X∞
l¼0

Z
∞

−∞
dkzfðkz; lÞ

→
X∞
l¼0

Z
∞

−∞
dkzfðkz; lÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ20

Λ20 þ ðk2z þ 2ljeBjÞ10

s
: ð41Þ

IV. NUMERICAL RESULTS AND DISCUSSIONS

We begin this section by specifying the choice of param-
eters of theNJLmodel used in this work, which are tabulated
in Table I. The parameters are chosen so as to reproduce
the phenomenological vacuum (B ¼ T ¼ 0) values of
quark condensate per flavor hψ̄ψi=Nf ¼ −ð243.5Þ3 MeV3,
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pion-decay constant fπ ¼ 93 MeV, pion mass mπ ¼ 138
MeV, and the magnetic moment of the nucleons as

μproton ≃ 2.7928 μN and μneutron ≃ −1.9130 μN: ð42Þ

The constituent massM and AMM of the quarks at B ¼ T ¼
0 comes out to be
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FIG. 2. The variation of (a) κu, (c) κd, and (e) M as a function of temperature and external magnetic field using the sharp cutoff
regularization scheme. The variation of (b) κu, (d) κd, and (f) M as a function of magnetic field using the sharp cutoff regularization
scheme.

TABLE I. Choice of the different parameters used in this work.

ΛSharp ΛSmooth G m

623.95 MeV 568.69 MeV 5.844 GeV−2 5.6 MeV
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M ≃ 343.8 MeV; κu ≃ 0.02399 GeV−1; and

κd ≃ 0.09595 GeV−1: ð43Þ

Besides this, the chosen model parameters ensure that, at
B ¼ T ¼ 0, the relation ðFu

2 ∼ Fd
2Þ ≃ 0.05 is satisfied, which

guarantees the isospin symmetry [65,66].

We now show the numerical results for the AMM of the
quarks (κf) and the constituent quark mass (M), which are
obtained by solving the coupled gap Eqs. (32)–(34)
numerically. For all the numerical calculations, we have
taken up to 1000 quark Landau levels. In Fig. 2, the
variation of κu, κd, and M as a function of temperature and
external magnetic field are shown using the sharp cutoff
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variation off (b) κu, (d) κd, and (f) M as a function of magnetic field using the smooth cutoff regularization scheme.
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regularization. We first notice from Figs. 2(a), 2(c),
and 2(e), that both the AMM and constituent mass of
the quarks are large in the chiral symmetry broken phase in
the low temperature region. With the increase in temper-
ature, they first remain almost unchanged up to a certain
value of temperature and then fall rapidly around the
pseudo-chiral phase transition temperature. Finally, at
sufficiently high temperature region, the AMM of the
quarks approach asymptotically to zero value, whereas
the constituent quark mass approaches the current quark
mass value in the chiral symmetry restored phase. The
temperature variation of the constituent quark mass in
Fig. 2(e) is understandable physically from the fact that the
mass gap (M −m) is proportional to the chiral condensate
hψ̄ψi, which is nonzero (zero) at the symmetry broken
(restored) phase. Moreover, on comparing the finite mag-
netic field curves (blue, green, and violet) with the zero
magnetic field curve (red) in Fig. 2(e), we see that the
external magnetic field strengthens the chiral condensate at
all temperatures. This can also be noticed in Fig. 2(f), in
which an overall increase of the constituent quark mass
with the increase in magnetic field is seen.
On the other hand, the temperature dependence of the

AMM of the quarks at zero magnetic field [i.e., the red
curves of Figs. 2(a) and 2(c)] can be understood from
Eqs. (16) and (30), where the AMM has a linear and
dominant M dependence apart from the complicated
integral factor. Therefore, the temperature dependence of
the AMM at zero magnetic field is almost similar to the
temperature dependence of the constituent quark mass.
Moreover, in the high temperature limit, the integral factor
of Eq. (16) approaches to zero and we get κu ≃ κd ≃ 0. At
nonzero external magnetic field, a linear M dependence in
the expression of AMM is not apparent from Eq. (27),
unlike the zero magnetic field case, and the rhs of Eq. (27)
contains explicit AMM dependence as well as an implicit
AMM dependence through the M ¼ MðκÞ. These compli-
cations forbid us to perform an analytical analysis of the
finite magnetic field expressions. Nevertheless, numerically
we see that, at sufficiently small value of external magnetic
field, the complicated nonzero magnetic field expressions
boil down to the exact zero magnetic field results [compare
the blue and red curves in Figs. 2(a) and 2(c)]; this is the
consequence of the fact that, at B ≃ 0, the Landau levels
become infinitesimally close to each other and approach the
continuum result of B ¼ 0.
Comparing Figs. 2(b) and 2(d), we see that AMM of the

quarks are also slowly varying function of the external
magnetic field alike the constituent quark mass depicted in
Fig. 2(f). κu decreases with the increase in external magnetic
field, whereas κd shows an opposite trend. This is due to the
opposite signs of the charges of up and down quarks
producing anopposite response to the externalmagnetic field.
In Figs. 2(b), 2(d), and 2(f), we notice that both the

AMM as well as the constituent quark mass suffer

oscillations as the magnetic field changes. These oscilla-
tions appear to be an artifact of the use of a sharp three-
momentum regulator, as commented in Refs. [71,72]. We
also notice that the amplitudes of these oscillations are
maximum around the pseudo-chiral phase transition region.
Interestingly, it turns out that, when we use the smooth
cutoff regularization scheme, these unphysical oscillations
vanish as depicted in Fig. 3. Comparing Figs. 2 and 3, we
notice that the oscillations appearing in Figs. 2(b), 2(d),
and 2(f) get smeared out in Figs. 3(b), 3(d), and 3(f),
keeping the overall qualitative and quantitative nature the
same. Moreover, the temperature dependence of AMM and
constituent quark mass in Figs. 2(a), 2(c), and 2(e) suffers
marginal change while switching to the smooth cutoff
scheme, as can be observed by comparing to Figs. 3(a),
3(c), and 3(e), respectively.

V. SUMMARY AND CONCLUSION

In summary, using a gauged NJL model, we have
evaluated the effective photon-quark-antiquark (γqq̄) ver-
tex function in the mean field approximation. The lowest
order diagram that contributes to the magnetic form factor
and the AMM of the quarks is calculated at finite temper-
ature in the presence of an arbitrary external magnetic field.
The incorporation of finite temperature is done through the
ITF of finite temperature field theory, where the continuous
energies of the loop particles are replaced with discrete
Matsubara modes. The complete (including all the Landau
levels) Schwinger propagator with nonzero AMM of the
dressed quarks are considered while calculating the loop
graphs. Using two different momentum cutoff (sharp and
smooth) regularization schemes, we regularize the UV
divergences arising from the vertex function, and the
parameters of our model are chosen to reproduce the
well-known phenomenological quantities at zero temper-
ature and zero magnetic field, such as pion-decay constant
(fπ), vacuum quark condensate, and vacuum pion mass
(mπ), as well as the magnetic moments of proton and
neutron using the CQM. Finally, the temperature, magnetic
field dependence of the AMM, and constituent quark mass
are studied.
Since the Schwinger propagator itself contains explicit

AMM dependence, the magnetic form factor obtained from
the vertex function in the presence of magnetic field is also
an explicit function of κ, along with an implicit AMM
dependence emerging from the constituent quark mass
M ¼ MðκÞ. For this, the calculation of the AMM from the
magnetic form factors requires solving a set of three
coupled gap equations.
We found that the AMM as well as the constituent quark

mass is large in the chiral symmetry broken phase in the
low temperature region. Around the pseudo-chiral phase
transition, κ and M suffer a sudden decrease and at high
temperature limit, both of them approach vanishingly small
values at the symmetry restored phase. The value of κu is
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seen to decrease slowly with the increase in magnetic field,
whereas an opposite trend is observed for κd due to the
opposite sign of the charges of up and down quarks. The
oscillations seen in the magnetic field dependence of both
the AMM and constituent mass of the quarks while using
the sharp cutoff regularization scheme vanish when we use
the smooth cutoff regularization prescription.
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APPENDIX: CALCULATION OF MATRIX
ELEMENTS

In this Appendix, we will briefly sketch the deriva-
tion of the matrix elements hFjT LeðxÞjIi and
hFjT LeðxÞLGðyÞjIi leading to Eqs. (5) and (6). The
calculation of hFjT LeðxÞjIi is trivial since

hFjT LeðxÞjIi ¼ −jejhqðp; s; c; fÞq̄ðp0; s0; c0; f0ÞjT ∶ψ̄ðxÞQ̂γμψðxÞAμðxÞ∶jγðk; λÞi; ðA1Þ

which on applying Wick’s theorem [55] becomes

ðA2Þ

The evaluation of the quantity hFjT LeðxÞLGðyÞjIi is a bit involved. We have

hFjT LeðxÞLGðyÞjIi ¼ −jejGhqðp; s; c; fÞq̄ðp0; s0; c0; f0ÞjT ∶ψ̄ðxÞQ̂γμψðxÞAμðxÞ∶∶ψ̄ðyÞψðyÞψ̄ðyÞψðyÞ∶jγðk; λÞi
þ jejGhqðp; s; c; fÞq̄ðp0; s0; c0; f0ÞjT ∶ψ̄ðxÞQ̂γμψðxÞAμðxÞ∶∶ψ̄ðyÞγ5τiψðyÞψ̄ðyÞγ5τiψðyÞ∶jγðk; λÞi:

ðA3Þ
Applying Wick’s theorem, we obtain

ðA4Þ

where we have omitted few other possible contractions as they do not contribute to the electromagnetic form factors of the
quarks. Simplification of the above expression yields

hFjT LeðxÞLGðyÞjIi ¼ eiy·ðpþp0Þe−ix·kūðp; s; c; fÞð−2GSðy; xÞjejQ̂γμSðx; yÞ
þ2Gγ5τiSðy; xÞjejQ̂γμSðx; yÞγ5τiÞf;f0c;c0 vðp0; s0; c0; f0Þϵμðk; λÞ þ � � � : ðA5Þ
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