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We study the time evolution of a complex scalar field in the symmetry broken phase in the presence of
oscillating spacetime metric background. In our (2þ 1)-dimensional simulations, we show that the
spacetime oscillations can excite an initial field configuration, which ultimately leads to the formation of
topological vortices in the system. At late times, field configuration achieves a disordered state. A detailed
study of the momentum and frequency modes of the field reveals that these field excitations are driven by
the phenomenon of parametric resonance. In the extremely-high-frequency regime where frequency of
spacetime oscillations is much larger than the field-mass, the formed vortices are not topological in nature.
Interestingly, in this regime, for a suitable choice of parameters of the simulation, we observe a persistent
lattice structure of vortex-antivortex pairs. We discuss applications of our study to the dynamics of interior
superfluidity of neutron stars during binary neutron star mergers, in generation of excitation in ultralight
axionlike field near a strong gravitational wave source, etc.
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I. INTRODUCTION

Topological defects exist in systems ranging from con-
densed matter to the early Universe [1,2]. They exist in
systems which have topologically nontrivial order param-
eter space (or vacuum manifold) [3]. There are many
condensed matter systems, e.g., superfluid, superconductor,
nematic liquid crystal, etc., which have topologically
nontrivial order parameter space. For example, the super-
fluid phase of 4He has circle S1 as an order parameter space,
for which the fundamental group is nontrivial, i.e.,
π1ðS1Þ ¼ Z [3]. Therefore, in this system, topological
vortices could exist. Topological vortices are characterized
by different elements of the fundamental group.
There are various ways by which topological defects can

be formed in a physical system. These defects can form
during spontaneous symmetry breaking phase transition,
the formation of which is described by the Kibble-Zurek
mechanism [1,4]. However, in the presence of external
influence, this mechanism needs some modifications [5,6].
There are other methods also by which these defects can be
formed. For example, in superfluid 4He, the rotation of a

vessel within a range of angular velocity leads to the
formation of vortex lattice [7,8]. Similarly, in a type-II
superconductor, an external magnetic field within a range
of field strength leads to the formation of flux-tube
lattice [7,8].
In Refs. [9,10], an interesting possibility of production of

topological defects is investigated in Φ4 theories. In these
studies, defect-antidefect pairs have been produced under
oscillating temperature of the effective potential with
frequency close to mass of the field. This leads to the
parametric resonance of the field, under which the field
achieves excitations leading to the formation of vortex-
antivortex pairs in U(1)-theory [9] and kink-antikink pairs
in Z2-theory [10].
In the Bose-Einstein condensate (BEC) of ultracold

atoms, a similar method of formation of superfluid vortices
has been studied [11–13]. In these studies, vortex-
antivortex pairs have been produced by periodically vary-
ing the trapping potential of the condensate. These studies
suggest that under these periodic perturbations time-
dependent excitations arise in the condensate modifying
the coherent wave function of the BEC. These excitations
lead to the formation of vortex-antivortex pairs in the
system. Subsequently, a tangled network of vortices is
formed in the system, indicating a transition to a state of
quantum turbulence. Ultimately, the system reaches a
disordered state where BEC is completely destroyed. In
these studies, the oscillation frequency of trapping potential
is considered to be 200 Hz, and the timescale for the whole
process is a few tens of milliseconds. This timescale

*shreyanshsd@imsc.res.in
†digal@imsc.res.in

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 103, 116007 (2021)

2470-0010=2021=103(11)=116007(16) 116007-1 Published by the American Physical Society

https://orcid.org/0000-0002-0717-9037
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.116007&domain=pdf&date_stamp=2021-06-08
https://doi.org/10.1103/PhysRevD.103.116007
https://doi.org/10.1103/PhysRevD.103.116007
https://doi.org/10.1103/PhysRevD.103.116007
https://doi.org/10.1103/PhysRevD.103.116007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


depends upon the amplitude and frequency of oscillations
of trapping potential (i.e., rate of injected energy) and the
energy of vortex configuration in the system.
Following the above studies in Refs. [9–13], it is an

obvious question to ask if spacetime oscillations can also
induce parametric resonance or large oscillations in a
field. Such a question is relevant for many systems, for
example, an ultralight axionlike field coupled to gravi-
tational waves, neutron star superfluidity under time-
dependent tidal deformations, etc. During a binary
neutron stars (BNS) merger, the orbiting neutron stars
exert a time-dependent tidal force on each other [14]. The
frequency and amplitude of this tidal force keep on
increasing with time and become maximum toward the
end of merger. Under such tidal force, depending upon
the tidal deformability, the neutron star undergoes time-
dependent deformations. These tidal deformations can
couple to the condensate of interior superfluid of the
neutron star and may lead to the turbulence (formation of
tangled vortices) as discussed in Refs. [11,12] (for the
discussion on the possibility of superfluidity inside
neutron star, see Refs. [15–17]). A similar kind of
scenario, i.e., the occurrence of superfluid turbulence,
superfluid to normal fluid transition, and glitch (or
antiglitch) in neutron stars during BNS merger, has been
discussed in Ref. [18] as well.
It has been studied in Ref. [19] that, due to the tidal force

during the merger, energy pumped into the system is so
high that the (local) temperature and density of neutron
stars can reach up to 100 MeV and a few times the nuclear
saturation density, respectively. Therefore, in such a sit-
uation, neutron superfluidity can be destroyed (in some
local regions) even before the completion of merger as the
transition temperature for such superfluidity is somewhere
in between 0.1 to 5 MeV [20]. Therefore, the generation of
excitations, vortex-antivortex pairs, and quantum turbu-
lence in superfluid during the merger are expected to occur
in the intermediate stage of evolution of neutron stars. It is
also possible that the condensate excitation increases
so much that the neutron star superfluidity is destroyed
even before the transition temperatur is reached [11,12]).
Certainly, the superfluid phase of quark matter (e.g., color-
flavor locked phase) in the inner core of neutron stars can
survive for a longer time as it has transition temperature
approximately 100 MeV [17].
To study the time evolution of interior superfluidity of

the neutron star under such tidal deformations, one must
solve the relativistic Gross-Pitaevskii equation, known as
the Gross-Pitaevskii-Anandan equation [21], in the back-
ground of the spacetime metric of star with a time-
dependent perturbation appropriate for the BNS merger
system. This also can be done by solving the nonlinear
Klein-Gordon equation in the presence of an appropriate
metric background as superfluidity can also be described in
the field theoretical framework, where BEC is generally

characterized by spontaneous breaking of U(1) global
symmetry for a complex scalar field [22,23].
In this paper, we study the effects of spacetime

oscillations on the evolution of a complex scalar field.
This may shed some light on the time dynamics of interior
superfluidity of neutron star during merger. However, in
this work, we are not doing phenomenology for any
particular system. Rather, the present work is completely
formal, where we show for the first time that a complex
scalar field can be excited and topological vortices can be
formed under the spacetime oscillations. Therefore, here,
instead of considering a spacetime metric of a star, for
simplicity, we take Minkowski metric with a periodic
perturbation in time. This simplification helps to give a
clear understanding of the effect of metric oscillations on
the field and production of topological vortices. In this
metric background, we numerically solve the nonlinear
Klein-Gordon equation in (2þ 1) dimensions for a com-
plex scalar field with an initial field configuration
given by Φðx; yÞ ¼ Φ0 þ δΦðx; yÞ, where Φ0 is the vac-
uum expectation value (VEV) of U(1) symmetry broken
effective potential and δΦðx; yÞ represents small fluctua-
tions of field about the VEV. Here, the initial field
fluctuations have been considered as the spacetime oscil-
lations couple with the field equation only through the
spacetime derivatives of the field; see the equation of
motion below.
We see that, under the spacetime oscillations, the field

undergoes large amplitude oscillations for a wide range of
frequencies of spacetime oscillations, which eventually
leads to the formation of vortex-antivortex pairs. In the
low-frequency regime (frequency smaller than the mass of
field), mainly transverse modes (Goldstone modes) arise,
while in the high-frequency regime, longitudinal modes
also get generated dominantly. A detailed analysis shows
that there is a correspondence between the frequency of
spacetime oscillations and momentum of time growing
field modes. This suggests that the field undergoes para-
metric resonance under the spacetime oscillations.
We mention that our present study is fundamentally

different from the previous studies in Refs. [9,10], even
though the underlying physics for the generation of
topological defects is the same, i.e., parametric resonance.
In previous studies, oscillating temperature couples to the
magnitude of the field. Therefore, to observe parametric
resonance, the frequency of temperature oscillations must
be close to the mass of longitudinal modes of the field.
Whereas, in the present case, the spacetime oscillations
couple to the gradient of field. This makes a direct coupling
between the frequency of spacetime oscillations and the
momentum of field modes present in the initial field
configuration. Therefore, by satisfying the resonance con-
dition, some specific field modes grow exponentially with
time. This can occur, as long as the appropriate momentum
modes of the field are present in the system. Thus, in the
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present case, the mass of the field does not set the lowest-
frequency cutoff to induce parametric resonance; hence,
vortex-antivortex pairs could be formed for a wide range of
frequencies of spacetime oscillations. However, for this
phenomenon, the lowest-frequency cutoff is set by the
system size due to finite size effects. Our results suggest
that the frequency of spacetime oscillations must be greater
than 2=ðsystem sizeÞ to induce the parametric resonance of
the field.
In the case of neutron stars during BNS merger, the

accessible frequencies of spacetime oscillations are many
orders of magnitude smaller than the mass of condensate
field of interior superfluidity (approximately 0.1–5.0MeV).
With these frequencies, even the transverse modes of
condensate field may have difficulties growing due to finite
size effects. Our present results suggest that, in a typical
neutron star of radius approximately 10 km, to generate
condensate excitations the frequency of spacetime oscilla-
tions must be greater than approximately 30 kHz. This
required frequency is way beyond the reach of any known
BNS merger systems, which could generate maximum
frequency of spacetime oscillations up to approximately
1 kHz. Therefore, it is difficult to generate condensate
excitations of neutron star superfluidity, under the phenome-
non of parametric resonance, during BNS merger.
However, this has to be investigated in detail that

whether there is any other method by which condensate
excitation in neutron star superfluidity can be generated
during mergers. We mention that in the case of BEC of
ultracold atoms a 200 Hz frequency of oscillations of
trapping potential is sufficient to excite the condensate
with system size of only few hundred micrometers in a few
tens of milliseconds time [11]. Therefore, it is not very
unrealistic to expect the generation of such condensate
excitations and formation of vortex-antivortex pairs in the
interior superfluidity of neutron star during BNS merger.
This requires a detailed investigation, which we will try to
pursue in the future.
This paper is organized as follows. In Sec. II, we derive

the equation of motion for a complex scalar field in the
presence of oscillating spacetime metric background. In
Sec. III, we outline the details of our numerical simulations.
Then, we present our simulation results in Sec. IV. Finally,
we briefly summerize our work and discuss future direc-
tions in Sec. V.

II. EQUATION OF MOTION

To study the effects of spacetime oscillations on a
complex scalar field, we consider the spacetime metric
as a periodic perturbation on the top of Minkowski
metric. We consider the inverse spacetime metric as gμν≡
diagð−1;1− ε sinðωðt− zÞÞ;1þ ε sinðωðt− zÞÞ;1Þ, where
ε (< 1) and ω are the amplitude and frequency of spacetime
oscillations, respectively; ðt; x; y; zÞ are spacetime coordi-
nates. Note that this form of the metric has been chosen just

for a simplicity in the equation of motion of the field,
though any periodic time-dependent metric can be taken for
our study. The action of the complex scalar field on the
spacetime manifold with the given metric is [23,24]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
gμν∂μΦ�∂νΦ − VðΦ�ΦÞ

�
; ð1Þ

where g¼ detðgμνÞ¼−ð1−ε2sin2ðωðt− zÞÞÞ−1, Φ¼ϕ1 þ
iϕ2,Φ� ¼ ϕ1 − iϕ2; ϕ1 and ϕ2 are the real scalar fields. We
consider the symmetry breaking effective potential

VðΦ�ΦÞ ¼ λ

4
ðΦ�Φ −Φ2

0Þ2; ð2Þ

where λ is the self-interaction coupling parameter
of the field and Φ0 is the VEV of the effective potential.
With this, the mass of longitudinal component of the field
is given by mΦ ¼ Φ0

ffiffiffiffiffi
2λ

p
. The equations of motion for

(ϕ1;ϕ2) fields are [23,24]

□ϕi −
dV
dϕi

¼ 0; ð3Þ

where i ¼ 1, 2. The covariant d’Alembertian is given by

□ϕi ¼
1ffiffiffiffiffiffi−gp ∂μð

ffiffiffiffiffiffi
−g

p
gμν∂νϕiÞ: ð4Þ

Therefore, in the expanded form, the field equations
become

−
1

2

ε2ω sinð2ωðt − zÞÞ
ð1 − ε2sin2ðωðt − zÞÞÞ

�∂ϕi

∂t þ ∂ϕi

∂z
�
−
∂2ϕi

∂t2

þ ð1 − ε sinðωðt − zÞÞÞ ∂
2ϕi

∂x2 þ ð1þ ε sinðωðt − zÞÞÞ ∂
2ϕi

∂y2

þ ∂2ϕi

∂z2 − λϕiðϕ2
1 þ ϕ2

2 −Φ2
0Þ ¼ 0: ð5Þ

For the simplicity of solving it numerically, (i) we assume
that there is no variation of the fieldΦ along the z direction,
and (ii) we look at the solution of the field only in the z ¼ 0
plane. With these simplifications, the above equations
reduce to

−
1

2

ε2ω sinð2ωtÞ
ð1 − ε2sin2ðωtÞÞ

∂ϕi

∂t −
∂2ϕi

∂t2 þ ð1 − ε sinðωtÞÞ ∂
2ϕi

∂x2

þ ð1þ ε sinðωtÞÞ ∂
2ϕi

∂y2 − λϕiðϕ2
1 þ ϕ2

2 −Φ2
0Þ ¼ 0: ð6Þ

It is very clear from the above equations that the spacetime
oscillations only couple to the derivatives of the field,
where the coefficient of the first-order time derivative
term oscillates with a mixture of frequencies ω and 2ω.
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Under the spacetime oscillations, the gradient of the field
oscillates, which must induce oscillations in the field via
the parametric resonance with different possible oscillation
frequencies. These field oscillations must be modulated by
the steep rise of the effective potential in the longitudinal
direction. The parametric resonance of the field eventually
leads to the formation of vortex-antivortex pairs in the
system. Our simulation results validate these expectations,
which we present in the following sections.

III. SIMULATION DETAILS

To perform the simulation, we discretize the xy-plane
into 200 × 200 lattice points with the lattice spacing of
Δx ¼ Δy ¼ 0.01Λ, which gives the total lattice size L ¼
2.0 Λ in each direction (here, Λ is a unit of length and time,
which we have not specified, as in this work we are not
presenting phenomenological prediction for any system).
Δx and Δy should be smaller than inverse of the field mass,
i.e., Δx;Δy < m−1

Φ , so that a reasonable spatial variation of
the field can be resolved. The time is discretized in the time
step of Δt ¼ 0.005 Λ. Note that in the equation of motion
[Eq. (6)] the discretization in the time axis works only if the
conditionΔt < ω−1 is satisfied. In our simulation, we study
the effects of spacetime oscillations, in particular, the role
of parameters ε and ω on the field evolution. To describe
the effects, for most of the simulations, we consider ε ¼ 0.4
and ω ¼ 100 Λ−1. We take the parameters of the effective
potential as Φ0 ¼ 10 Λ−1 and λ ¼ 40. We also study the
effects of changing these parameters on simulation results.
In Eq. (6), the field evolution is coupled with spacetime

oscillations through a second-order spatial derivative and
first-order time derivative of the field. Therefore, initial
field configuration can respond to the spacetime oscil-
lations only when fluctuations of the field (spacetime
gradient) are present in the system, i.e., iff the field
configuration is not in the complete minimum energy
configuration. These fluctuations can naturally arise due
to the presence of thermal and/or quantum fluctuations in
the system. For simplicity, we consider fluctuations only
in the initial field configuration; i.e., we take Φðx; yÞ ¼
Φ0 þ δΦðx; yÞ at time t ¼ 0 and further evolve the field
with Eq. (6).
In our simulation, for the initial field configuration, we

have considered small spatial variations in ϕ1 and ϕ2 fields
such that the magnitude of fieldΦ remainsΦ0; i.e., the field
is taken at the minima of the effective potential [Eq. (2)],
and only transverse fluctuations of the field have been
considered for the simulation. However, we have seen
that considering fluctuations in the magnitude of the
field does not change any qualitative aspect of the
simulation results. More specifically, we have taken

ϕ1ðx;y;t¼ 0Þ¼Φ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−α2xy

q
and ϕ2ðx; y; t ¼ 0Þ ¼ Φ0αxy,

where αxy varies randomly from point to point on the lattice
in the range [−β, β]; here 0 < β ≪ 1. This initial field

configuration has a nonzero spatial gradient of both fields.
In our simulation, we have taken β ¼ 0.2. We have seen
that choosing different values of β does not change our
results qualitatively. We evolve this initial field configura-
tion by solving Eq. (6) using the second-order Leapfrog
method and considering periodic boundary condition along
the spatial directions. By changing lattice size and boun-
dary conditions, we have checked that the reflection of field
fluctuations from the boundary has a negligible effect on
our simulation results.

IV. SIMULATION RESULTS

A. Parametric resonance of field under
spacetime oscillations

We now present our simulation results. In Fig. 1, we
show the vector plots of field configuration in the physical
space (xy plane) at four different times of the field
evolution. The x and y components of the vector field
correspond to ϕ1 and ϕ2 fields, respectively. Note that the
whole lattice area is 2.0 × 2.0 Λ2, while only a small
portion of the lattice is shown in the figure. In this
simulation, we have taken ε ¼ 0.4, ω ¼ 100 Λ−1,
Φ0 ¼ 10 Λ−1, and λ ¼ 40. As mentioned earlier that,
only transverse fluctuations of the field have been consid-
ered in the initial field configuration, for which phase of the
field varies randomly from one lattice point to other within
the range of −0.2 to 0.2 rad for the given value of β.
Figure 1(a) shows such an initial field configuration, in
which the phase fluctuations of field can be clearly
seen. We observe that roughly during the time interval
of 0.5–1.5Λ the field itself starts performing oscillations in
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FIG. 1. The figure shows the vector plots of field configuration
in physical space (xy plane) at four different times of field
evolution. The parameters of simulation are ε¼0.4, ω¼ 100Λ−1,
Φ0 ¼ 10Λ−1, and λ ¼ 40. Plots a, b, c, and d correspond to the
field configurations at times t ¼ 0, 1.35, 1.7, and 1.8Λ, respec-
tively. In plot d, vortex-antivortex pairs have been formed.
Roughly at time t ¼ 2.5 Λ, the field configuration achieves a
disordered state.
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space and time with a significantly large amplitude; at time
larger than this, the field dynamics becomes much more
complicated. Figure 1(b) shows the field configuration at
time t ¼ 1.3 Λ. This figure clearly shows that there is
generation of a systematic periodic variation (waves) of the
field in the physical space, whose amplitude keeps increas-
ing with time within the time interval mentioned above. We
observe that the wavelength of these waves is ω dependent;
decreasingω leads to increase in wavelength of these waves
(see Figs. 4 and 5 in this regard). Depending upon the
choice of ω, these waves may contain transverse as well as
longitudinal excitation of the field. Because of the gen-
eration of these excitations, the field acquires a significant
energy in some parts of the physical space to climb the
central barrier of the effective potential and fall into the
opposite side of the vacuum manifold. This leads to
the formation of vortex-antivortex pairs in the system. This
process can be seen in Figs. 1(c) and 1(d), which are plotted
at times t ¼ 1.7 Λ and t ¼ 1.8 Λ, respectively. In this
process, the vortex-antivortex pairs keep forming, and
some of them annihilate with time, while the overall
number of these pairs keeps increasing. Roughly at the
time t ¼ 2.5 Λ, fluctuations become so strong that the field
configuration no longer remains in the ordered state and
achieves a disordered state (not shown in the figure).
In Fig. 2, we plot distribution of the field in the ϕ1ϕ2

plane (field space) at four different times of the field
evolution. In this figure, the field has been mapped from the

physical space to the field space, where the density of
points has been indicated by colors. The distribution has
been normalized such that in each plot density varies
between 0 and 1. The parameters of simulation are same
as used in Fig. 1. Figure 2(a) shows the field distribution at
time t ¼ 0.05 Λ. This shows a highly localized distribution
of the field around ϕ1 ≈Φ0 ¼ 10Λ−1, ϕ2 ≈ 0 due to our
initial choice of field values. In this figure, the maximum
height of the distribution is 2672. As the field evolves, the
distribution keeps spreading around the initial distribution
in the field space. Figure 2(b) shows the field distribution at
time t ¼ 1.05 Λ with maximum distribution height of 316.
One can clearly see that at this time mostly the transverse
excitation has been generated. Figure 2(c) shows the stage
of field distribution at time t ¼ 1.35 Λ with distribution
height of 88. At this time, both types of excitations,
transverse as well as longitudinal, have been generated
in the system. Note that Figs. 2(b) and 2(c) correspond to
the time duration in which the field oscillates with a
significantly large amplitude, as shown in Fig. 1(b).
These excitations ultimately lead to the formation of
vortex-antivortex pairs in the system. The field distribution,
at the time stage when these pairs have been formed, is
shown in Fig. 2(d) at time t ¼ 1.8 Λ with maximum
distribution height of 26. Subsequently, the field distribu-
tion spreads over the field space symmetrically around
ϕ1 ¼ ϕ2 ¼ 0, the maximum extent of which becomes way
beyond the VEV, signaling a disordered state of the field.
To see how fluctuations in fields ϕ1 and ϕ2

grow with time, we calculate field’s fluctuations
δϕiðtÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hϕ2

i ðx⃗; tÞi− hϕiðx⃗; tÞi2
p

, where i ¼ 1, 2, and
brackets h…i represent the volume average (areal average
in two dimensions) of the field. Figure 3 shows the time
evolution of δϕ1 and δϕ2 for two sets of parameters of the
effective potential. The parameters of the spacetimemetric
for the simulations are ε ¼ 0.4 andω ¼ 100 Λ−1, the same
as used in Figs. 1 and 2. Plots a (blue) and b (gray) are the
time evolution of δϕ1 and δϕ2 for Φ0 ¼ 10 Λ−1 and
λ ¼ 40, while plots c (black) and d (red) are the time
evolution of δϕ1 and δϕ2 for Φ0 ¼ 0.1 Λ−1 and λ ¼ 4,
respectively. Note that ϕ1 and ϕ2 at initial time are
proportional to Φ0, which is the reason δϕ1 and δϕ2 start
with larger values in plots a and b in comparison with plots
c and d even though the chosen value of β for both sets of
parameters of the effective potential is the same (indeed,
the fluctuation in the phase of field Φ is the same for both
the sets of parameters of the effective potential). The
Fig. 3 clearly shows that in each case the growth of
fluctuation in the ϕ2 field is larger than fluctuation in ϕ1,
which is again due to our choice of initial field con-
figuration. After some time, both the field fluctuations
become degenerate. Note that there are oscillations in
plots a and b during the time interval of 0.5–1.5 Λ. These
oscillations correspond to the large amplitude field
oscillations as discussed in Fig. 1.
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FIG. 2. In the figure, the distribution of field has been plotted in
field space (ϕ1ϕ2 plane) at four different times of field evolution.
The distribution has been normalized such that in each plot
density varies in between 0 and 1. Plots a, b, c, and d correspond
to the field distribution at times t ¼ 0.05, 1.05, 1.35, and 1.8 Λ,
respectively. In plot a, field distribution is highly localized about
the chosen minima of the effective potential, which becomes
more spread in plot b, where mostly transverse excitation has
been generated. In plot c, longitudinal excitation also has been
generated. At the time stage of plot d, the field flips to the
opposite side of the vacuum manifold, leading to the formation of
vortex-antivortex pairs.
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We now discuss a very crucial issue regarding
the properties of formed vortices at different frequency
regimes of spacetime oscillations. For two sets of param-
eters of the effective potential in Fig. 3, the masses of the
field are mΦ ¼ 89.44 Λ−1 and mΦ ¼ 0.28 Λ−1, respec-
tively. Therefore, with the used frequency ω in this figure,
for the former case, mΦ < ω < 2mΦ, while for the latter
case, ω ≫ mΦ. Even though in both the cases there are
qualitative similar growths in the fluctuations, there is a
basic difference in the evolution of the field for these two
cases. In the case of ω ≫ mΦ, spacetime oscillations
generate waves in the field configuration having much
shorter wavelength in comparison with m−1

Φ (spacetime
oscillations generate transverse modes with momentum
≈ω=2; see details later). Furthermore, later we show that for
high frequency of spacetime oscillations, the longitudinal
modes of the field also grow along with transverse modes
following the relation jk⃗j2 þm2

Φ ¼ ðnω
2
Þ2, where jk⃗j is the

momentum of the longitudinal modes of the field, and
n ¼ 1; 2; 3;…. Therefore, in the case of ω ≫ mΦ, the
fastest growing longitudinal modes (modes for n ¼ 1 and
n ¼ 2) must have much larger momentum in comparison
with mΦ. All this leads to huge excitations in the field for
ω ≫ mΦ, and the field acquires value much larger than the
VEV in a short time. In such a situation, the field does not
feel the presence of the central barrier of the effective
potential and does go back and forth across this easily.

As the core size of a topological vortex is given by m−1
Φ

where the field magnitude at distances larger than m−1
Φ is

given by the VEV, under such a huge field excitations
having much shorter wavelength in comparison with m−1

Φ ,
there is no possibility of the formation of topological
vortices. Thus, in the case of ω ≫ mΦ, topological vortices
cannot be formed under the spacetime oscillations. Note
that for the second set of parameters of the effective
potential, our lattice size is smaller than m−1

Φ ; hence, it
cannot accommodate even a single topological vortex for
these parameters. However, our above conclusion holds
true even for a lattice whose size is much bigger than m−1

Φ .
However, in this case with sufficient evolution of the

field, after time t ≃ 2.7 Λ, we see the formation of some
vortex-antivortex kind of structures (even on the used
lattice), though these are not topological vortices. In these
vortices, due to huge excitations, the field acquires values
way beyond the VEV outside the vortex core; note that in
this case the VEV is 0.1 Λ−1, where outside these vortices,
at this time, field acquires value ≃20 Λ−1, which is 200
times larger than the VEV. Furthermore, in this case, we
have found that the vortex core size is given by ω−1 (instead
of m−1

Φ ), as expected from the wavelength of the generated
field excitations. Thus, these vortices certainly do not
satisfy the properties of topological vortices; rather, their
properties are determined by the parameters of spacetime
oscillations. Basically, in this case, the magnitude of the
field becomes so large in comparison with the VEV that the
field configuration is able to create vortices (nontopolog-
ical) with a core size of a much shorter length scale than
m−1

Φ . (We show the vortices in the case of ω ≫ mΦ in
Fig. 14, where mΦ ¼ 0.28 Λ−1 and ω ¼ 17 Λ−1 have been
used for the simulation).
On the other hand, in the former case as discussed above,

although longitudinal excitation arises and hence vortices
are not well formed, vortices up to some extent satisfy the
properties of topological vortices; see Figs. 1 and 2. Later,
we show that there is a fundamental difference in the
evolution of field for ω > mΦ and for ω ≤ mΦ. In the case
of ω ≤ mΦ, the field remains close to the VEV where
mainly transverse excitation arises under the spacetime
oscillations. Therefore, the formed vortices in such a case
certainly are topological vortices; see Fig. 10. Thus, only in
those cases, for which frequency is either less than or close
to the mass of the field, i.e., for which ω≲mΦ, the formed
vortices under the spacetime oscillations are topological in
nature. In our simulations, however, the field profile of
these vortices never achieves an exact profile of topological
vortices as the field configuration has to bear continuous
spacetime oscillations.
To further investigate the behavior of field configurations

at various time stages, we calculate the time evolution
of various momentum modes of the fields ϕ1 and ϕ2.
The Fourier transform of the field configuration from
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FIG. 3. The figure shows the time evolution of fluctuations δϕ1

and δϕ2 of fields ϕ1 and ϕ2, respectively, under the spacetime
oscillations for two sets of parameters of the effective potential.
The parameters of the spacetime metric are ε ¼ 0.4 and
ω ¼ 100 Λ−1. Plots a (blue) and b (gray) are the time evolution
of δϕ1 and δϕ2 for Φ0 ¼ 10 Λ−1 and λ ¼ 40, while plots c
(black) and d (red) are for Φ0 ¼ 0.1 Λ−1 and λ ¼ 4, respectively.
The figure clearly shows that in each case the initial growth of
δϕ2 is larger in comparison with δϕ1; δϕ1 and δϕ2 ultimately
become degenerate. There are oscillations in plots a and b during
the time interval of 0.5–1.5 Λ, which correspond to the large
amplitude field oscillations discussed in Fig. 1.
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the physical space to the momentum space at any time is
given by

ϕ̃iðk⃗; tÞ ¼
1

A

Z
b:c:

d2x⃗ϕiðx⃗; tÞeik⃗:x⃗; i ¼ 1; 2; ð7Þ

where A is the total area of the system, b.c. stands for the
boundary condition, and k⃗ ¼ kxx̂þ kyŷ, x⃗ ¼ xx̂þ yŷ
are the momentum and position vectors, respectively. In
Figs. 4 and 5, we plot the modulus of momentum modes of
fields ϕ1 and ϕ2, i.e., jϕ̃1ðk⃗; tÞj (upper panel) and jϕ̃2ðk⃗; tÞj
(lower panel), in the momentum space with spacing
Δkx ¼ Δky ¼ 2.0 Λ−1. (The white regions in the plots
correspond to the magnitude larger than the maximum
range of the legend.) In Fig. 4, we have taken spacetime
oscillation frequency larger than mΦ, while in Fig. 5, the
frequency is taken smaller than that. Therefore, the
field dynamics is expected to be different in both the cases.
Note that for the ϕ1 field, the zero mode (zero-momentum
mode) is the most dominant mode, while for ϕ2, it is close
to zero. This is just because of initially chosen values of
these fields. In Fig. 4, we have taken ω ¼ 100 Λ−1,
ε ¼ 0.4, Φ0 ¼ 10 Λ−1, and λ ¼ 40 for the simulation.
From left to right, field modes are plotted at times
t ¼ 0.05, 1.05, 1.35, 1.8 Λ; see also Figs. 1 and 2. Note
that the time interval 0.5–1.5 Λ is the time stage of large
amplitude field oscillations for the given ω. At the initial
time itself, all higher momentum modes of the field up to
kx ¼ ky ¼ 2π=Δx are present due to the prescribed random

fluctuations, which can be seen in the plot at time
t ¼ 0.05 Λ. Under the spacetime oscillations, depending
upon the frequency ω, some specific momentum modes of
the field grow with time. In the figure, there is noticeable
growth of jϕ̃1ðk⃗; tÞj at kx ¼ 15 Λ−1, ky ¼ ω and

kx ≈ ky ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω2 − ðmΦffiffi

2
p Þ2Þ=2

q
¼ 54.77 Λ−1, and growth of

jϕ̃2ðk⃗; tÞj at kx ¼ 0, ky ¼ ω=2 and kx ¼ ω=2, ky ¼ 0. The
subsequent evolution also leads to the growth of various
other momentum modes of both fields.
In Fig. 5, we have taken ω ¼ 50 Λ−1, ε ¼ 0.4,

Φ0 ¼ 10 Λ−1, and λ ¼ 40 for the simulation. From left
to right, field modes are plotted at times t ¼ 2.0, 2.5, 3.0,
3.5Λ. Note that for the given ω the time interval 2.0–3.7Λ
corresponds to the stage of large amplitude oscillations of
the field. In this case also, the initial distributions of field
modes are the same as plotted in Fig. 4 at time t ¼ 0.05 Λ
(therefore, not shown again in Fig. 5). The figure clearly
shows that there is noticeable growth of jϕ̃1ðk⃗; tÞj at kx ¼ 0,
ky ¼ ω, and growth of jϕ̃2ðk⃗; tÞj at kx ¼ 0, ky ¼ ω=2. In
the intermediate stage of field evolution, there is also
growth of jϕ̃1ðk⃗; tÞj at kx ≈ ω=2, ky ≈ ω=2 and kx ≈ ω=2,
ky ≈ 3ω=2. In this case also, the subsequent evolution
leads to the growth of various other momentum modes of
both fields.
To understand why some specific momentum modes

of the field grow for a given ω, we write the field as Φ ¼
Φ0 þ v1 þ iv2 (ϕ1 ¼ Φ0 þ v1, ϕ2 ¼ v2), where v1 and v2
are small fluctuations of the field about the VEV. We write

FIG. 4. The figure shows the profile of modulus of field modes jϕ̃1ðk⃗; tÞj (upper panel) and jϕ̃2ðk⃗; tÞj (lower panel) at different
times for ω ¼ 100 Λ−1, ε ¼ 0.4, Φ0 ¼ 10 Λ−1, and λ ¼ 40. From left to right, modes are plotted at times t ¼ 0.05, 1.05, 1.35, 1.8 Λ.
There is noticeable growth of jϕ̃1ðk⃗; tÞj at kx ¼ 15 Λ−1, ky ¼ ω and kx ≈ ky ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω2 − ðmΦffiffi

2
p Þ2Þ=2

q
¼ 54.77 Λ−1, and growth of jϕ̃2ðk⃗; tÞj

at kx ¼ 0, ky ¼ ω=2 and kx ¼ ω=2, ky ¼ 0. The subsequent evolution also leads to the growth of various other momentum modes of
both fields.
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the equation of motion for these fluctuations, keeping terms
up to linear order in these fields, and then Fourier transform
in the momentum space. The evolution equations for
momentum modes of these fluctuations are

ε2ωsinð2ωtÞ
2fðtÞfð−tÞ

_̃vikþ ̈̃vikþðk2xfðtÞþk2yfð−tÞþm2
i Þṽik ¼ 0;

ð8Þ

where ṽik ≡ ṽiðk⃗; tÞ, fðtÞ ¼ 1 − ε sinðωtÞ, m1 ¼ mΦ, and
m2 ¼ 0. These equations clearly show that ṽ1k and ṽ2k
undergo parametric resonance (get resonant growths)
if suitable conditions (relations between kx, ky, mi,
and ω) are satisfied. We numerically solve these equations
and find that there are various resonance conditions
for both fields. In a reasonable range of frequency ω, the
resonance conditions for ṽik are jk⃗j2 þm2

i ¼ ðnω
2
Þ2, where

n ¼ 1; 2; 3;…. For each n, there are different frequency
cutoff for ṽ1k to get resonance growth, which are
ω ≤ 2mΦ=n. This indicates that the most dominant modes
of ṽ1k, i.e., modes for n ¼ 1 and n ¼ 2, grow only when ω
is greater than mΦ. Thus, effectively, the frequency cutoff
for the longitudinal modes is ω ≤ mΦ. On the other hand,
for ṽ2k, there is no such frequency cutoff (due to its zero
mass), therefore it can undergo parametric resonance even
for any low frequency ω (where ω > 0). For a comparison,
if one ignores the first term from the equation of ṽ2k, then in

(1þ 1) dimensions, it takes the form of a harmonic
oscillator equation with the (time-dependent) frequency
square k2xðyÞð1 ∓ sinðωtÞÞ [25]. In such a case, the oscillator
undergoes parametric resonance when the condition kxðyÞ ≃
nω=2 is satisfied [25]. For a given frequency ω, the growth
rates of growing modes of ṽik are different and get changed
by changing ω. The fastest growing modes out of ṽ1k and
ṽ2k are ṽ2k at kxðyÞ ¼ ω=2, kyðxÞ ¼ 0, whose growth rates
decrease by decreasing frequency of spacetime oscillations.
This response of field modes to the frequency ω can play an
important role in the understanding of the time of formation
of first vortex-antivortex pair in the system at different
frequencies ω.
A similar feature of the resonance growths as discussed

above can be seen in Figs. 4 and 5, where ϕ̃2 grows
resonantly at kxðyÞ ≃ ω=2, kyðxÞ ≃ 0. In these figures, there is

a qualitative difference in the evolution of ϕ̃1 for ω > mΦ
andω < mΦ, as forω > mΦ some momentummodes of the
longitudinal component (ṽ1k) also grow resonantly. This
shows that in the frequency regime of ω > mΦ, both
components of the field [transverse as well as longitudinal]
are generated under the resonance process, whereas in the
frequency regime of ω ≤ mΦ, a predominantly transverse
component is generated. It has to be noted that in Fig. 4 ϕ̃1

grows by following relation jk⃗j2 þ ðmΦffiffi
2

p Þ2 ¼ ω2 instead of

following the relation obtained for ṽ1k at n ¼ 2. This is
happening probably because ϕ1 is the field whose values

FIG. 5. The figure shows the profile of modulus of field modes jϕ̃1ðk⃗; tÞj (upper panel) and jϕ̃2ðk⃗; tÞj (lower panel) at different times
for ω ¼ 50 Λ−1, ε ¼ 0.4, Φ0 ¼ 10 Λ−1, and λ ¼ 40. From left to right, modes are plotted at times t ¼ 2.0, 2.5, 3.0, 3.5 Λ. There is
noticeable growth of jϕ̃1ðk⃗; tÞj at kx ¼ 0, ky ¼ ω, and growth of jϕ̃2ðk⃗; tÞj at kx ¼ 0, ky ¼ ω=2. In the intermediate stage of field

evolution, there is also growth of jϕ̃1ðk⃗; tÞj at kx ≈ ω=2, ky ≈ ω=2 and kx ≈ ω=2, ky ≈ 3ω=2. The subsequent evolution also leads to the
growth of various other momentum modes of both fields.
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are given from the center of the effective potential. It is
important to appreciate that the appropriate momentum
modes of the field corresponding to ω have to be present
initially to have resonance growths, where transverse
modes of the field can grow even at frequencies less than
the mass of the field. Thus, under the spacetime oscil-
lations, there is no lowest-frequency cutoff for resonance
to occur as long as the appropriate momentum modes of
the field are present initially to grow (however, finite size
effects of the system set a lowest-frequency cutoff; see
discussions later). We point out that the above discussion
is based on the linear approximation, while ϕ1 and ϕ2 are
the coupled fields whose dynamics are modulated by the
effective potential. This couples various momentum
modes of the field nonlinearly and makes resonance
conditions much more complicated.
The above analysis shows that the higher momentum

modes of fields ϕ1 and ϕ2, following their respective
resonance conditions, grow with time. Now, we show
how zero modes (modes for kx ¼ 0, ky ¼ 0) of these fields
vary with time. The zero modes of fields characterize the
field configuration at each time and provide the frequency
of oscillations during the large-amplitude oscillation stage
of the field. Figure 6 shows the time evolution of the real
part of zero modes of fields ϕ1 and ϕ2 for two sets of
parameters of the effective potential. Note that the imagi-
nary part of zero modes for both the fields is zero. In the
figure, zero mode of the ϕ1 field is normalized with the
respective Φ0 value. For this simulation, we have taken
ε ¼ 0.4 and ω ¼ 100 Λ−1. Solid (blue) and dot-dashed
(gray) lines are the time evolution of zero modes of fields
ϕ1 and ϕ2, respectively, for Φ0 ¼ 10 Λ−1, λ ¼ 40. In this
case, there are oscillations in the ϕ1 zero mode during the
time interval of 0.5–1.5 Λ with growing and then decaying
amplitude; let us call it the large amplitude field oscillation
stage. Roughly at time t ¼ 1.5 Λ, these oscillations stop,
and the zero mode starts collapsing toward the zero value.
The collapse of the zero mode starts roughly at the time of
formation of vortex-antivortex pairs in the system. We have
performed the simulations for different spacetime oscilla-
tion frequencies and calculated the time evolution of the ϕ1

zero mode for each case (in the figure, it is not shown for
other frequencies). We see that in all cases at initial time
there is a unique frequency and amplitude of oscillations of
the ϕ1 zero mode, which with subsequent evolution get
modulated with a new frequency of oscillations with
growing amplitude as shown in Fig. 6 from time
t ¼ 0.5 Λ. This shows that the initial time oscillations of
the ϕ1 zero mode (before time t ¼ 0.5 Λ in Fig. 6) are
independent from the spacetime oscillations and may be
related with the evolution of initial field fluctuations. On
the other hand, the new modulation frequency, i.e., the
frequency during the time stage of large amplitude oscil-
lations of the ϕ1 zero mode, is exactly equal to the
spacetime oscillation frequency ω (which we show later).

This gives more evidence of the parametric resonance of
the field under the spacetime oscillations.
In Fig. 6, zero mode of the ϕ2 field [shown by dot-dashed

(gray) line] also has small amplitude oscillations roughly in
the same time interval (i.e., in time interval of 0.5–1.5 Λ),
but without much growth. Later, we show that the oscil-
lation frequency of the zero mode of ϕ2 during this time
interval is half the spacetime oscillation frequency. Here, it
should be noted that during this time interval ϕ2 varies in
between negative and positive values spatially as well as
temporarily, as can be seen in Fig. 1(b). Therefore, even
though the absolute value of ϕ2 reaches a nonzero value in
some regions, its zero mode comes out to be very small
(just because of the cancellation of positive and negative
values). This is the reason why the zero mode of ϕ2 does
not show any growth during this time interval (indeed, this
mode does not follow the resonance condition). It is already
clear from Fig. 3 that during this time interval the growth in
the fluctuations of the field ϕ2 is larger in comparison with
fluctuations in ϕ1. Therefore, the higher momentum modes
of ϕ2 must show growths with time, which already has been
seen in Fig. 4 at kx ¼ ω=2, ky ¼ 0 and kx ¼ 0, ky ¼ ω=2.
In Fig. 7, we plot the time evolution of the real and
imaginary parts of the (kx ¼ ω=2, ky ¼ 0) mode of ϕ2 with
solid (red) and dotted (blue) lines, respectively. This clearly
shows oscillations of these modes with growing and then
decaying amplitude with time.
To show the dependence of the zero modes of fields ϕ1

and ϕ2 on the parameters of the effective potential, in
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FIG. 6. The figure shows the time evolution of real part of zero
modes of fields ϕ1 and ϕ2 for two sets of parameters of the
effective potential. In the figure, the zero mode of the ϕ1 field is
normalized with the respective Φ0 value. We have taken ε ¼ 0.4
and ω ¼ 100 Λ−1 for the simulation. Solid (blue) and dot-dashed
(gray) lines are the time evolution of zero modes of fields ϕ1 and
ϕ2 for Φ0 ¼ 10 Λ−1 and λ ¼ 40, while dashed (black) and dotted
(red) lines are for Φ0 ¼ 0.1 Λ−1 and λ ¼ 4, respectively. Note
that there are small amplitude oscillations in dashed (black) line,
which does not appear because of the large y range.
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Fig. 6, we also plot their time evolution for Φ0 ¼ 0.1 Λ−1

and λ ¼ 4 with dashed (black) and dotted (red) lines,
respectively. In this case, the depth of the effective potential
is very small; therefore, the field can easily climb the
central barrier atΦ ¼ 0. Note that in this case the amplitude
of oscillations of the ϕ1 zero mode is small, which is not
clearly visible because of the large y range in the plot.
The amplitude of oscillations of the ϕ2 zero mode is also
very small in the plot because of the same reason
mentioned above.
To determine the oscillation frequency of fields during

the time interval of ti−tf in which the ϕ1 zero mode
oscillates with a significantly large amplitude, we perform
Fourier transform of the fields’ zero mode from t space to
the frequency f space as

Πiðk⃗; fÞ ¼
1

ðtf − tiÞ
Z

tf

ti

dtϕ̃iðk⃗; tÞe−ift; i ¼ 1; 2: ð9Þ

We calculate the moduli of Π1ðk⃗; fÞ and Π2ðk⃗; fÞ, which
provide the frequency spectrum of momentum modes of ϕ1

and ϕ2 fields. Figure 8 shows the frequency spectrum of the
zero mode of ϕ1 during the time interval of ti−tf for
different spacetime oscillation frequencies ω. In the
figure, such a time interval for each frequency ω is
mentioned in brackets. To obtain this frequency spectrum,
in each case,Φ0 has been subtracted from the ϕ1 zero mode
so that the background frequency modes, arising due to
constant Φ0 value, get eliminated and the peak structures
become apparent. (However, this subtraction does not
remove background frequency modes completely, which
is the reason a peak at the zero frequency is still present in
each plot). In the figure, violet (dotted), green (solid thin),
and black (solid thick) lines correspond to the frequency
spectrum for ω ¼ 20 Λ−1, 50 Λ−1, and 100 Λ−1,

respectively. In each case, ε ¼ 0.4, Φ0 ¼ 10 Λ−1, and
λ ¼ 40 have been taken for simulations. In the figure, in
each case, the frequency spectrum has a peak at the
respective frequency ω of spacetime oscillations, sug-
gesting the phenomenon of parametric resonance. Note
that, for the frequency ω ¼ 50 Λ−1, there are two peaks at
f ¼ 50 Λ−1 (dominant peak) and at f ¼ 100 Λ−1 (sub-
dominant peak). The second peak is arising maybe due to
coefficient sinð2ωtÞ of the first-order time derivative term
in Eq. (6) or maybe due to resonance process itself. For
Φ0 ¼ 0.1 Λ−1 and λ ¼ 4, the amplitude of oscillations of
the ϕ1 zero mode is too small to determine such peak
structure, which is why the frequency spectrum for this case
has not been shown in the figure.
Figure 9 shows the frequency spectrum of the zero mode

of ϕ2 in the same time interval as mentioned in Fig. 8 for
different spacetime oscillation frequencies ω (the time
interval ti − tf for each frequency ω is mentioned in
brackets). Unlike for the ϕ1 zero mode, in this case, there
is no background frequency spectrum. In the figure, violet
(dotted), green (solid thin), and black (solid thick) lines
correspond to the frequency spectrum for ω ¼ 20 Λ−1,
50 Λ−1, and 100 Λ−1, respectively. In this case, each
frequency spectrum has peak at half the spacetime
oscillation frequency ω. For ω ¼ 20 Λ−1, there is no
unique and strong peak structure in the frequency spec-
trum. In the figure, the red (dashed) line corresponds
to the case for ω ¼ 100 Λ−1, Φ0 ¼ 0.1 Λ−1, and λ ¼ 4.0.
In this case also, the frequency spectrum has a peak at the
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FIG. 7. The figure shows the time evolution of real and
imaginary parts of the (kx ¼ ω=2, ky ¼ 0) mode of field ϕ2

with solid (red) and dotted (blue) lines, respectively, for
ω ¼ 100 Λ−1, ε ¼ 0.4, Φ0 ¼ 10 Λ−1, and λ ¼ 40.
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FIG. 8. The figure shows the frequency spectrum of the ϕ1

zero mode for different spacetime oscillation frequencies ω in
the time interval in which it oscillates with a significant large
amplitude. This time interval for the respective frequencies is
written in brackets. Violet (dotted), green (solid thin), and black
(solid thick) lines correspond to the frequency spectrum for
ω ¼ 20; 50; and 100Λ−1. In each case, the frequency spectrum
has a peak at the respective frequency ω of spacetime oscil-
lations, which indicates the phenomenon of parametric reso-
nance of the field.
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half ω, which shows the independence of some aspects of
this phenomenon from the parameters of the effective
potential. We have also checked that the real and imagi-
nary parts of momentum modes of ϕ2 at kx ¼ ω=2, ky ¼ 0

and kx ¼ 0, ky ¼ ω=2 (see Fig. 7) also oscillate with
frequency ω=2.
With all these results, it is clear that under the spacetime

oscillations the field Φ itself starts performing oscillations
in space and time with a certain momentum and frequency
by following the resonance condition for the given ω,
where the ϕ1 field oscillates with frequency ω and ϕ2

oscillates with frequency ω=2. This shows that the field Φ
undergoes parametric resonance under the spacetime
oscillations.

B. Frequency dependence of generation
of field excitations

As discussed earlier, to generate longitudinal excitation
dominantly, the frequency of spacetime oscillations should
be ω > mΦ. Contrary to this, to generate transverse
excitation of the field, there is no such frequency cutoff
as the mass of modes corresponding to this excitation is
zero. Therefore, even in the low-frequency regime, i.e.,
ω < mΦ, spacetime oscillations can lead to the generation
of transverse excitation via parametric resonance. Thus,
there is a fundamental difference in the evolution of field in
the frequency regimes ω > mΦ and ω ≤ mΦ, where in both
the regimes, in principle, the field excitations can be
generated under the spacetime oscillations.

In our simulation, we have studied the generation of field
excitations and the formation of vortex-antivortex pairs for
a wide range of frequencies of spacetime oscillations. At
low frequencies, vortex-antivortex pairs form with rela-
tively smaller vortex densities and remain well separated. In
this frequency regime, unlike the case of high frequency,
the field remains close to the VEVof the effective potential
for significantly longer time of field evolution. This is
shown in Fig. 10, where the left panel shows the vector plot
of field configuration in the physical space and the right
panel shows the field distribution in the field space; both are
at time t ¼ 18.5 Λ. For this simulation, the spacetime
oscillation frequency is taken as ω ¼ 20 Λ−1, and other
parameters of the simulation are ε ¼ 0.4, Φ0 ¼ 10 Λ−1,
and λ ¼ 40 (the same as used earlier). The left plot clearly
shows the formation of the well-separated vortex-antivortex
pair in the system. The right plot shows that at almost all
lattice points the field is close to the VEV of the effective
potential, where the field distribution covers the whole
vacuum manifold at this time [at initial time, the field
distribution is a localized distribution in the field space; see
Fig. 2(a)]. It shows that mainly transverse excitation has
been generated in the system, while longitudinal excitation
is strongly suppressed in this frequency regime; compare
with Fig. 2(d).
In the extremely-low-frequency regime of spacetime

oscillations [ω≲ 4πðsystem sizeÞ−1; see the discussion
below], the finite size of the system affects the generation
of field excitations. This happens because spacetime
oscillations couple to k modes of the field, where for the
ϕ2 field (kxðyÞ ¼ ω=2, kyðxÞ ¼ 0) modes dominantly grow
with time; see Figs. 4 and 5. For a finite lattice, the k mode
with a wavelength equal to the system size L will be
k
L
¼ 2π=L. Therefore, any frequency ω below the cutoff

2kL cannot lead to the growth of the most dominant
resonance modes of the field; excitations with wavelength
larger than the lattice size cannot grow resonantly.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0  10  20  30  40  50  60  70  80  90  100

kx=0, ky=0
|Π

2(
k,

f)
|

f

ω=20 (14.0-17.0)
ω=50 (2.0-3.0)

ω=100 (0.5-1.5)
ω=100 (0.6-2.4) (Φ0=0.1,λ=4.0)

FIG. 9. The figure shows the frequency spectrum of the ϕ2

zero mode for different spacetime oscillation frequencies ω in
the same time interval as mentioned in Fig. 8 (mentioned here
as well in brackets). Violet (dotted), green (solid thin), and
black (solid thick) lines correspond to the frequency
ω ¼ 20; 50; and 100Λ−1. The peak structures show that the
zero mode of ϕ2 oscillates with frequency ω=2. The red
(dashed) line corresponds to the case for ω ¼ 100 Λ−1,
Φ0 ¼ 0.1 Λ−1, and λ ¼ 4, which also has a peak at ω=2.

FIG. 10. The figure shows the field configuration in physical
space (left panel) and in field space (right panel) at time t ¼
18.5 Λ for the frequency ω ¼ 20 Λ−1 (ε ¼ 0.4, Φ0 ¼ 10 Λ−1,
and λ ¼ 40). The left plot shows the formation of well-separated
vortex-antivortex pair in the system. The right plot shows that at
this frequency of spacetime oscillations mainly transverse ex-
citation of the field has been generated.
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Therefore, to excite the field, the frequency of spacetime
oscillations must be ω ≥ 4π=L or equivalently fa ≥ 2=L,
where fa ¼ ω=2π. In our simulations, even with frequen-
cies two or three times larger than this cutoff, the field finds
difficulties in achieving excitations. We have checked that
the field excitations, which cannot be generated on a small
lattice with a given spacetime oscillation frequency, can be
generated using a larger lattice with the same frequency.
This suggests that, in principle, any low frequency of
spacetime oscillations can excite the field, leading to the
formation of vortices if a suitably large system size is
chosen and the field is evolved for a significantly long time;
see details in the next subsection.

C. Time dependence of formation of vortices on
parameters of spacetime oscillations

In this subsection, we present our study on the time
dependence of formation of vortices on parameters of
spacetime oscillations. For this, we note down time at
which first vortex-antivortex pair forms in the system. We
call this time as the vortex formation time and denote it by
tvortex. To locate the vortices, we compute the variation of
phase of Φ around each elementary square of the lattice.
The variation of phase between any two adjacent points on
the elementary square is determined by the geodesic rule
[26]. By continuity, the phase of a complex scalar field
along a loop is always 2πn, where n is an integer.
Throughout the evolution of the field, we observe only
n ¼ 0;�1 for the variation of phase around each elemen-
tary square, where we identify vortex with n ¼ þ1 and
antivortex with n ¼ −1. In our simulations, we observe that
tvortex does not depend much on the amplitude of fluctua-
tions (value of β) of the initial field configuration.
In Fig. 11, we plot tvortexω=2π versus ω for ε ¼ 0.4. The

parameters of the effective potential are Φ0 ¼ 10 Λ−1 and
λ ¼ 40. Note that tvortexω=2π is a dimensionless number
which is equal to the number of cycle of spacetime
oscillations up to the time tvortex. The figure clearly shows
that in the frequency regime ω≳ 50 Λ−1 the number of
cycle required to form vortices is almost independent from
ω. However, by decreasing the frequency of spacetime
oscillations below ω ¼ 50 Λ−1, this number starts increas-
ing. We have not seen the formation of any vortices below
ω ¼ 16 Λ−1 up to a significantly long time of simulation on
the used lattice.
As mentioned earlier, in extremely-low-frequency

regime, the finite size of the system restricts the generation
of field excitations; therefore, it must also restrict the
formation of vortices. In our simulation, we observe that
up to a significantly long time there is no formation of any
vortex-antivortex pair on the 200 × 200 lattice with fre-
quency ω ¼ 15 Λ−1; however, with the same parameters
of simulation, vortices form on the 800 × 800 lattice.
Therefore, it is quite possible that in Fig. 11 the deviations
of tvortexω=2π below ω ¼ 50 Λ−1 from a constant value

have arisen due to the finite size effects of the system.
Therefore, it may also be possible that this constant value of
tvortexω=2π is a universal number of cycle for formation of
vortices and has the same value even in the low-frequency
regime when finite size effects are eliminated.
To investigate this in more detail, we have performed

simulations at different system sizes L, frequencies ω, and
boundary conditions. As mentioned earlier, in our simu-
lations, we use periodic boundary conditions (PBCs).
These boundary conditions affect our simulation results
very strongly in the regime where finite size effects
dominate. In general, we observe finite size effects when
the frequency of spacetime oscillations becomes ω≲ 4π=L
or equivalently when Lω=4π ≲ 1. To show these effects
explicitly and effects of boundary conditions in general, we
study the effects of changing lattice size L and choice of
boundary condition on tvortex by keeping ω and ε fix. We
show below that values of tvortex using fixed boundary
conditions (FBCs) are relatively less affected with finite
size effects in comparison with simulations using PBCs.
In Fig. 12, we plot tvortexω=2π versus Lω=4π (both are
dimensionless numbers) for two different boundary con-
ditions and at two frequencies ω, ω1 ¼ 100 Λ−1 and
ω2 ¼ 50 Λ−1, where for each curve ω and εð¼ 0.4Þ are
fixed. The parameters of effective potential are Φ0 ¼
10 Λ−1 and λ ¼ 40. In this figure, blue (circle) and black
(square) lines correspond to simulations using PBCs at
frequencies ω1 and ω2, respectively, while red (triangle)
and brown (star) lines correspond to simulations using
FBCs, again, at frequencies ω1 and ω2, respectively. Under
the spacetime oscillations, the lowest cutoff for Lω=4π to

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 10  20  30  40  50  60  70  80  90  100  110  120  130

t v
or

te
xω

/2
π

ω

FIG. 11. The figure shows the dependence of vortex formation
time tvortex on various frequencies ω. In the figure, we plot the
number of cycle of spacetime oscillations up to the time tvortex,
i.e., tvortexω=2π, vs ω. Other parameters of simulation are ε ¼ 0.4,
Φ0 ¼ 10 Λ−1, and λ ¼ 40. The figure clearly shows that in the
frequency regime ω≳ 50 Λ−1, tvortexω=2π is almost independent
from ω. However, by decreasing frequency below ω ¼ 50 Λ−1,
this number starts increasing.
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generate field excitations is 1, which must also be a cutoff
for formation of vortices in the system. Therefore, when
Lω=4π approaches 1 from higher values, one would expect
a growth in tvortexω=2π, which must diverge at Lω=4π ≲ 1.
This is what we see in the figure, where in each curve,
beyond the lowest value of Lω=4π, tvortex diverges.
In the figure, for sufficiently large values of Lω=4π (say,

greater than approximately 10), tvortexω=2π is almost
invariant with increasing value of Lω=4π and takes a
constant value ≃23. This constant value seems to be a
universal number, which is independent from choice of
boundary condition and ω. On the other hand, when Lω=4π
approaches 1 (say, becomes less than approximately 10),
tvortexω=2π starts increasing due to finite size effects and
diverges when Lω=4π reaches very close to 1 (say, ≃2 for
PBCs and ≃1.5 for FBCs). Note that in the case of FBCs
the deviation in tvortexω=2π from such a universal value is
less in comparison with PBCs. Also, there are small lattice
sizes, for which vortices are not formed using PBCs,
whereas they are formed using FBCs. Thus, with FBCs,
vortices could be formed easily in comparison with
PBCs. It should be appreciated that for both boundary
conditions, the number of cycles of spacetime oscillations
required to form the first vortex-antivortex pair in the
system is approximately the same at Lω=4π ≫ 1 and is
independent of frequency ω. Thus, this study clearly
indicates that there is a universal number of cycle of
spacetime oscillations to form the first vortex-antivortex
pair in the system if there are no finite size effects. All in

all, this investigation suggests that, even with a small
frequency ω, the field may get excited (transverse excita-
tion) under the spacetime oscillations if the simulation
is performed on a sufficiently large lattice (L ≫ 4π=ω)
and the field is evolved for a significantly long time
(t≳ tvortex ≃ 46π=ω ≃ 3

2
π4

ω ).
In Fig. 13, we plot tvortex versus ε. Other parameters of

simulations are ω ¼ 100 Λ−1, Φ0 ¼ 10 Λ−1, and λ ¼ 40.
The figure clearly shows that decreasing ε causes more time
to form a vortex-antivortex pair in the system. For lower
values of ε, the system takes a longer time to achieve field
excitations, where the large amplitude field oscillation
stage persists for a longer time. In the regime of very
small ε, the field excitations do not grow sufficiently to
create vortices in the system. This behavior of the field
response to ε is also a feature of parametric resonance, in
which the resonance growth is strongly suppressed by
decreasing the amplitude of time-dependent parameter(s) of
the oscillator [25].

D. Formation of vortex-antivortex lattice under
spacetime oscillations

The formation of vortex-antivortex lattice structure
has interest in various condensed matter systems. In
Refs. [27–29], the formation of such lattices is studied
in (i) superconducting films with magnetic pinning arrays,
(ii) ultracold fermionic gases in two dimensions, and
(iii) superconducting twisted-bilayer graphene. Melting
of the vortex-antivortex lattice in two-dimensional Fermi
gases has been studied in Ref. [30]. For certain parameters
of the simulation, we have also seen the formation of
vortex-antivortex lattice structures under spacetime oscil-
lations. In Fig. 14, we show the phase (left panel) and
magnitude (right panel) of field Φ at two different times
of field evolution. The parameters of the simulation
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FIG. 12. The figure shows the effects of using different
boundary conditions on tvortex at different system sizes L and
at two different ω, ω1 ¼ 100 Λ−1 and ω2 ¼ 50 Λ−1, where for
each curve ω and ε are fixed. The parameters of the effective
potential are Φ0 ¼ 10 Λ−1 and λ ¼ 40. Blue (circle) and black
(square) lines correspond to simulations using periodic boundary
conditions at frequencies ω1 and ω2, respectively, while red
(triangle) and brown (star) lines correspond to simulations using
fixed boundary conditions, again, at frequencies ω1 and ω2,
respectively. In each curve, beyond the lowest value of Lω=4π,
tvortex diverges.
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FIG. 13. The figure shows the effect of ε on tvortex. Other
parameters of simulations are ω ¼ 100 Λ−1, Φ0 ¼ 10 Λ−1, and
λ ¼ 40.
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are ω ¼ 17 Λ−1, ε ¼ 0.4, Φ0 ¼ 0.1 Λ−1, and λ ¼ 4. As
mentioned earlier, for ω ≫ mΦ, the formed vortices under
spacetime oscillations are not topological in nature. For the
above parameters of the simulation also, ω is much greater
than mΦ; therefore, the formed vortices in Fig. 14 do not
satisfy the properties of topological vortices. The core size
of these vortices is much less thanm−1

Φ ; rather, it is given by
approximately ω−1, where the field values outside these
vortices are six times greater than the VEV. Figures 14(1a)
and 14(1b) show the phase and magnitude of the field Φ at
time t ¼ 28.65 Λ, while Figs. 14(2a) and 14(2b) show the
same at time t ¼ 29.4 Λ. On the plots, circles and triangles
indicate the locations of vortices and antivortices, respec-
tively. In the left panel, these locations correspond to þ2π
and −2π variations of phase of Φ, respectively, and in the
right panel, they correspond to the places where the
magnitude of Φ is zero. One can clearly see that there
are vortex-antivortex lattice structures in both, upper and
lower, panels. We observe that these lattice structures keep
changing with time. Formation of these structures does not
depend upon the amplitude of initial fluctuations, i.e., on
the value of β. It may be possible that such lattice structures
are arising because of the use of periodic boundary
conditions in the simulation.

V. CONCLUSIONS

In this work, we have performed (2þ 1)-dimensional
simulations for a complex scalar field in the presence of
oscillating spacetime metric background. We have consid-
ered the spacetime metric as periodic time-dependent
perturbations on the top of the Minkowski metric. The
field is taken on the VEV of the U(1) symmetry broken

effective potential, where small random fluctuations in the
initial field configuration have been considered. We find
that, depending upon the amplitude and frequency of metric
oscillations, the field undergoes parametric resonance,
which leads to the generation of field excitations and the
formation of vortex-antivortex pairs in the system. There is
a fundamental difference in the evolution of field in the
frequency regimes ω > mΦ and ω ≤ mΦ. In the low-
frequency regime, mainly transverse excitation arises,
and well-separated vortex-antivortex pairs form in the
system, whereas in the high-frequency regime, longitudinal
excitation of the field also arises prominently.
In our simulation, finite size effects restrict the gener-

ation of field excitations in the regime Lω=4π ≲ 1, where L
is the system size and ω is the frequency of spacetime
oscillations. Our study suggests that, in principle, any low
frequency can excite the field if a suitable system size is
chosen (L ≫ 4π=ω) and the field is evolved for a signifi-
cantly long time (t≳ 3

2
π4

ω ). We have studied the effects of
frequency, boundary conditions, and system size on the
number of cycle of spacetime oscillations required to form
the first vortex-antivortex pair in the system. This suggests
that there is a universal number of cycle of spacetime
oscillations for formation of the first vortex-antivortex pair
in the system if there are no finite size effects. The
formation of vortices also depends upon the amplitude
of spacetime oscillations; the vortex formation time
increases by decreasing amplitude. For certain parameters
of the simulation, we have seen the formation of vortex-
antivortex lattice structures. However, such vortices do not
satisfy the properties of topological vortices as in such case
ω is much greater thanmΦ (mass of the field), for which the
generated field modes have much larger momentum in
comparison with mΦ. Only in the case of ω≲mΦ, the
formed vortices under spacetime oscillations are topologi-
cal in nature.
In this work, we have ignored an important aspect of the

system evolution, which is the backreaction of energy
density variations of field on the spacetime metric. As we
have shown, under spacetime oscillations, vortices are
formed, which have an energy density profile, with a
maximum value in the vortex core. Therefore, depending
upon the energy of vortex configuration, the spacetime
manifold itself may be affected by these energy density
variations, which may affect the further evolution of the
field. It would be interesting to see the field evolution under
such a complete scenario. Wewill try to pursue this in future.
To study the time evolution of condensate field of

neutron stars superfluidity during BNS merger, a full
(3þ 1)-dimensional simulation with an appropriate time-
dependent deformation of the star metric is required. It will
reveal whether the timescale and length scale of the whole
process are sufficient to excite the condensate field to lead
the formation of vortex-antivortex pairs in the interior
superfluid. Our present study suggests that there is no

FIG. 14. The figure shows the formation of vortex-antivortex
lattice structures in the system. The locations of the vortex and
antivortex in the plots are depicted by circles and triangles,
respectively. The parameters of the simulation are ω ¼ 17 Λ−1,
ε ¼ 0.4, Φ0 ¼ 0.1 Λ−1, and λ ¼ 4. Plots 1a and 1b show the
phase and magnitude of field Φ at time t ¼ 28.65 Λ, while plots
2a and 2b show the same at time t ¼ 29.4 Λ.
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possibility of the generation of condensate excitations of
neutron star superfluidity under the phenomenon of para-
metric resonance due to finite size effects. However, a
detailed investigation is needed to reveal whether there is
any other method of generation of such excitations.
The present work has applications in other systems also.

The second homotopy group of the S2 manifold is non-
trivial, i.e., π2ðS2Þ ¼ Z [3], which allows the existence of
topological texture in (2þ 1) dimensions (baby Skyrmion)
and topological monopole in (3þ 1) dimensions. Similarly,
the S3 manifold [group space of SUð2Þ] allows the
existence of topological texture in (3þ 1) dimensions as
the third homotopy group is nontrivial, i.e., π3ðS3Þ ¼ Z [3].
These topological objects have cosmological interests, the
formation of which could be studied under spacetime
oscillations as well (similar to the formation of vortices
studied in this paper). In the Abelian-Higgs model and pure
Uð1Þ gauge theory also, one could study the formation of
flux tubes and generation of magnetic field, respectively,
under these oscillations.
This study can also be extended to the U(1) symmetry

broken effective potential with a small explicit sym-
metry breaking term. In such a case, there must be a
lowest-frequency cutoff of spacetime oscillations for the
generation of field excitations set by the mass of pseudo-
Goldstone modes; only frequencies higher than or equal to
the mass of these modes can lead to the field excitations. In
our simulation, we have seen the generation of field
excitations in the presence of such a term (we have not
presented this here). This result suggests a possibility of
generation of excitations in the axionlike field having mass

approximately 10−22–10−21 eV [31] and coupled with
spacetime oscillations. The axionlike particles having the
above mass range are considered to be a possible candidate
of dark matter, known as the “wave dark matter” or “fuzzy
dark matter” [31]. To excite this field, correspondingly, the
frequency of spacetime oscillations must be greater than or
approximately equal to 0.1–1 μHz. This frequency can be
easily achieved by BNS [14] and black hole merger [32]
systems, which produce gravitational waves in the fre-
quency range of approximately 10 Hz–1 kHz with a
significantly large strain amplitude. We expect that sus-
tained spacetime oscillations will give rise excitation in
axionlike field over a length scale having momentum of
field corresponding to the frequency of spacetime oscil-
lations. The effect will be more pronounced in the nearest
region of gravitational wave source as the strain amplitude
is significantly large there. If such an excitation arises, then
as soon as gravitational waves pass completely, the field
will start rolling toward the minima of effective potential
and perform coherent oscillations at various constant-r
hypersurfaces about the source. We will present this
phenomenon in detail in our future work.
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