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We compute the collisional energy loss of an energetic massive fermion crossing a chiral plasma at finite
temperature characterized by an imbalance between the populations of left-handed and right-handed
fermions. We find a new contribution to the energy loss which is proportional to the helicity of the test
fermion and depends on the amount of chiral imbalance in the plasma. We then compute the difference
between the energy loss of a fermion with the two opposite helicities, to assess whether this could be used
to quantify the chiral imbalance in the plasma. We find that the leading contribution to these helicity-
dependent energy loss contributions comes from the exchange of hard photons (or gluons for QCD) with
the medium constituents, and in some scenarios can become comparable to the leading-order result for a
plasma without any chiral imbalance. We also evaluate the contribution arising from soft photon exchange,
which is a subleading effect, and requires regularization. We illustrate how dimensional regularization is a
well suited prescription to be applied to these energy loss computations.
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I. INTRODUCTION

The measurement of the energy loss for a jet propagating
through a high-temperature plasma is one of the most
prominent quantities which can be used to characterize the
properties of matter in scenarios such as heavy-ion collision
experiments (see e.g., [1–4] for recent reviews). Of par-
ticular interest in such a context is the energy loss of a
heavy parton produced in the early stages of the collision,
which crosses the quark-gluon plasma interacting with the
medium constituents.
Recently, it has been proposed that the quark-gluon

plasma created in a heavy-ion collision could exhibit an
imbalance between populations of left-handed and right-
handed fermions, giving rise to several new macroscopic
phenomena (see [5–7] for reviews).
Aside from such anomalous transport phenomena, the

presence of a chiral imbalanced system should affect the
interaction of an energetic fermion with the medium, and
in particular its collisional energy loss due to interaction
with the constituents of the plasma. This feature has already
appeared in a calculation of the damping rate of a massless

fermion in an imbalanced dense system at zero temperature
[8], where it was found that the interaction with the medium
particles mediated by soft photons distinguishes between
different photon circular polarizations and depends on the
chirality of the test particle. This in turn suggests to us that a
closer investigation of the energy loss might even help shed
some light on the amount of chiral imbalance originated in
a heavy-ion collision experiment.
In order to investigate this aspect in more detail, in this

work we compute the collisional energy loss of an energetic
massive fermion traversing a chiral plasma at finite temper-
ature T made of unequal populations of left-handed and
right-handed massless fermions. We consider the fermion
energy E to be much larger than the temperature, E ≫ T.
The imbalance is parametrized by the chiral chemical
potential μ5 ¼ μR − μL, where μR=L refer to the chemical
potential associated with right- and left-handed fermions
of the medium, respectively. We start by considering an
electromagnetic plasma, and later on we discuss how to
generalize our main results to QCD.
It is worth recalling that helicity is not a Lorentz invariant

quantity. Our computation is carried out in the frame at rest
with the plasma, but it should be possible to generalize it to
a more convenient lab frame.
The calculation of the collisional energy loss involves

considering contributions for both hard and soft momenta
of the exchanged photon (recall that hard and soft refer to
scales of order T and eT, respectively, where e is the gauge
coupling constant, and that the soft scales require the
resummation of hard thermal loops [9,10]). For the leading
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contribution in a plasma without chiral imbalance, both
contributions when taken separately exhibit divergencies
which cancel when adding them up. This separation of
scales is typically performed using a sharp momentum
cutoff, a procedure which in principle spoils gauge invari-
ance. In this work, in order to calculate the new contribu-
tions arising in a chiral imbalanced plasma we will follow
the same philosophy, but employing dimensional regulari-
zation (DR) to regularize all intermediate results. As an
illustrative example, in the Appendix A we repeat the
known calculation of the leading contribution to the energy
loss for a plasma without chiral imbalance employing DR.
We stress that DR is a perfectly suited regularization
method in the presence of powerlike divergences, as those
we find in our computations.
We find that the leading contribution to the helicity-

dependent energy loss arises from the exchange of hard
photons with themedium constituents, and it does not exhibit
any sort of divergence. We also find a contribution to the
helicity-dependent energy loss as arising from the exchange
of soft photons, which however turns out to be perturbatively
suppressed as compared to the hard contribution.
Let us finally mention that in a recent publication the

collisional energy loss in a chiral medium has been con-
sidered, by studying the electromagnetic fields created by a
moving electrical charge in the presence of the chiral
magnetic current [11,12]. The effective field equations
considered in that manuscript however neglect thermal
effects, and only describe the physics of chiral plasmas in
the static limit, as can be shown by evaluating the polari-
zation tensors of the chiral plasma used in our manuscript.
This paper is structured as follows: in Sec. II we compute

the leading hard contribution to the helicity-dependent
collision rate, while in Sec. III we compute the leading
soft one. We discuss our results in Sec. IV. In Appendix A
we repeat the known calculation of the collision rate in a
regular QED plasma without chiral imbalance, employing
DR, the soft sector is considered in Appendix A 1, while
Appendix A 2 considers the hard sector. We provide in
App. B some of the DR integrals that we used in our
computations.
We work with natural units ℏ ¼ c ¼ 1 and metric

gμν ¼ diagð1;−1;−1;−1Þ. We denote four-momenta with
capital letters, Kμ ¼ ðk0;kÞ, and the modulus of three-
momenta as k ¼ jkj.

II. HARD CONTRIBUTION TO THE
COLLISIONAL ENERGY LOSS OF A MASSIVE

FERMION IN THE CHIRAL PLASMA

Let us start by computing the damping rate of a massive
particle with mass M, momentum p ¼ vE, energy E ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
and a given helicity λ, due to collision with

massless fermions in the chiral plasma, characterized
by a temperature T and chiral chemical potential μ5.

The relevant scattering diagram is given by Fig. 1 left,
depicting the scattering of a heavy fermion of a given
helicity λ with a massless one in the medium with chirality
χ via photon exchange.
The corresponding matrix element squared is given by

jMj2ðλχÞ ¼ e4DμνðQÞD†
αβðQÞ

× Tr½Pðλ;pÞð=PþMÞγμðP0 þMÞγα�
× Tr½PðχÞK0γν=Kγβ�; ð1Þ

where Dμν is the photon propagator, written in terms
of energy and momentum transfer of the collision
Qμ ¼ ðω;qÞ, which is assumed to be hard,

Pðλ;pÞ ¼
1

2
ð1þ λγ5γ0γ⃗ · p̂Þ; λ ¼ �; ð2Þ

is the helicity projector and

PðχÞ ¼
1þ χγ5

2
; χ ¼ �; ð3Þ

is the chirality projector. Note that for massless fermions,
helicity and chirality agree, but this is not so otherwise.
The first trace, which depends on the helicity of the

massive fermion, is given by

Tr½Pðλ;pÞð=PþMÞγμð=K þMÞγν�
¼ 2f½PμKν þ PνKμ þ ðM2 − P · KÞgμν�
− iλp̂i½Kβðpiϵ0μβν − p0ϵiμβνÞ þM2ϵ0iμν�g; ð4Þ

while the second one, related to the chiral fermion in the
medium, is given by

Tr½PðχÞK0γν=Kγβ� ¼ 2f½K0νKβ þ K0βKν − ðK0 · KÞgνβ�
þ iχKηK0

ρϵ
νβηρg: ð5Þ

Splitting the traces into symmetric and antisymmetric
pieces, their product will give two contributions:

FIG. 1. Feynman diagrams for the energy loss calculation. Left:
scattering of a heavy fermion (thick line) with a medium fermion
via a photon exchange. Right: heavy fermion self-energy. The dot
denotes a resummed medium photon.
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jMj2ðλχÞ ¼ 4e4DμνðQÞD†
αβðQÞf½P0μPα þ P0αPμ þ ðM2 − P0 · PÞgμα�½K0νKβ þ K0βKν − ðK0 · KÞgνβ�

− λχKηK0
ρϵ

νβηρp̂i½P0
σpiϵ0μσα − P0

σp0ϵiμσα þM2ϵ0iμα�g: ð6Þ

The first contribution gives the usual result known from the literature [9,10], whereas the second one depends both on the
helicity of the heavy fermion as well as the chirality of the medium fermion. In a plasma where there is the same population
of left- and right-handed fermions this latter contribution vanishes in the final computation of the damping rate or energy
loss when summing over chiralities, but this is not the case otherwise.
The damping rate is given by integrating the matrix element squared over phase space and summing over the chiralities of

the fermions in the plasma. We shall concentrate in the following in the interaction rate, which is related to the damping as
Γλ ¼ 2γλ. At leading order in the QED coupling constant we get

Γhard
λ ¼ 1

E

Z
d3p0

ð2πÞ3
1

2E0

Z
d3k
ð2πÞ3

X
χ¼�

nχðkÞ
2k

Z
d3k0

ð2πÞ3
1 − nχðk0Þ

2k0
ð2πÞ4δ4ðPþ K − P0 − K0ÞjMj2ðλχÞ

¼ 8e4

E

Z
d3p0

ð2πÞ3
1

2E0

Z
d3k
ð2πÞ3

X
χ¼�

nχðkÞ
2k

Z
d3k0

ð2πÞ3
1 − nχðk0Þ

2k0
ð2πÞ4δ4ðPþ K − P0 − K0Þ

×
E2

Q4

��
2ðk − v · kÞðk0 − v0 · k0Þ þ Q4

4E2
þM2Q2

2E2

�
þ λχ

�
−
Q2

2E

�
½vðkþ k0Þ − v̂ · ðkþ k0Þ�

�
; ð7Þ

where

nχðkÞ ¼
1

expððk − χμ5Þ=TÞ þ 1
; χ ¼ �; ð8Þ

is the occupation number for a fermion of chirality χ. Thus,
we assume that in the plasma there is only a chiral chemical
potential and no baryonic chemical potential.
In the last row of Eq. (7) one can recognize the result for

a symmetric plasma [9,10], followed by the first non-
vanishing correction in a chiral plasma, which is propor-
tional to the product λχ of the helicity and the chirality
of the heavy and the light medium fermion, respectively.
Note that this correction is 1=E suppressed compared to the
leading result.
Let us now consider a very energetic fermion (E ≫ T),

and move to the energy loss −dE=dx, which can be
obtained by multiplying the integrand of the damping rate
by a factor ðE − E0Þ=v [9].
If one simply takes the hard contribution computed in

this section, the energy loss at leading order turns out to be
infrared divergent. This is cured by appropriately taking
into account the contribution from soft momenta in the
exchanged photon, which requires a proper resummation.
In [9,10], this is implemented by introducing a cutoff which
separates the hard and soft contributions of the computa-
tion. Even though the final result does not depend on the
cutoff parameter, this regularization method has some clear
drawbacks, including an ambiguity in the choice of the
cutoff itself (as a matter of fact, two different ways have
been employed in [9,10]). An alternative approach would
be to employ dimensional regularization, which has several
advantages over the cutoff regularization, as it preserves the
gauge invariance. We illustrate the method in Appendix A.

On the other hand, the new contribution we compute in
the following, which is proportional to the helicity of the
external fermion, turns out to be finite and does not require
any regularization. In order to focus on the new chirality
and helicity-dependent effects we are computing, let us
consider the difference between the energy loss associated
with the two opposite helicities:

Δhard ≡
�
−
dEλ¼þ
dx

�				
hard

−
�
−
dEλ¼−

dx

�				
hard

: ð9Þ

Δhard ¼ 16e4

vE

Z
d3p0

ð2πÞ3
1

2E0

Z
d3k
ð2πÞ3

X
χ¼�

χ
nχðkÞ
2k

×
Z

d3k0

ð2πÞ3
1− nχðk0Þ

2k0
ð2πÞ4δ4ðPþK −P0 −K0Þ

× ðE−E0ÞE
2

Q4

��
−
Q2

2E

�
½vðkþ k0Þ− v̂ · ðkþk0Þ�

�
:

ð10Þ

At this point one can proceed and eliminate the p0 integral
with the d ¼ 3 spatial delta functions. The remaining delta
of energy conservation can be approximated, again to
leading order in a 1=E expansion, as δðω − v · q −Q2=
ð2EÞÞ, and neglecting higher order terms we can drop the
nFðk0Þ above due to the symmetries of the integrand [the
expression in the second row of Eq. (10) is antisymmetric
under the exchange k ↔ k0].
By further introducing

1 ¼
Z

ddqδðdÞðqþ k − k0Þ
Z

dωδðωþ k − k0Þ; ð11Þ
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we can eliminate the integral in k0 and write it in terms of q, the momentum transfer.
At this point, one can use the delta function to carry out one of the angular integrals, and perform also all the trivial

angular integrations. More specifically, we write δðωþ k − jkþ qjÞ ¼ 2jkþ qjδðQ2 þ 2kω − 2k · qÞ and use it to replace
the k · q pieces in our expression. Performing an angle average over the directions of the incoming fermion and keeping
only the leading 1=E contribution we arrive at

Δhard ¼ −
e4

4π3v3E

Z
∞

0

dk½nþðkÞ− n−ðkÞ�
Z

∞

0

dq
Z

ωþ

ω−

dω
ω

Q2

��
v2 −

ω2

q2

�
ð2kþωÞ

�
Θðjq− kj ≤ jωþ kj ≤ qþ kÞ; ð12Þ

where Θ is the step function, and with ω� ¼ E −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ q2 ∓ 2Evq

p
. As in [10], we can again split the integrals in two

regions,

Δhard ¼ −
e4

4π3v3E
½I1 þ I2�: ð13Þ

The first integral is given by

I1 ¼
Z

∞

0

dk½nþðkÞ − n−ðkÞ�
Z

2k
1þv

0

dq
Z

vq

−vq
dω

ω

Q2

��
v2 −

ω2

q2

�
ð2kþ ωÞ

�

¼ −
2

ð1þ vÞ2
2

3

�
vð2v3 − 3Þ − 3

2
ðv2 − 1Þ log

�
1þ v
1 − v

��
μ5
3
ðμ25 þ π2T2Þ: ð14Þ

The second contribution, which amounts to

I2 ¼
Z

∞

0

dk½nþðkÞ − n−ðkÞ�
Z

qmax

2k
1þv

dq
Z

ωþ

q−2k
dω

ω

Q2

��
v2 −

ω2

q2

�
ð2kþ ωÞ

�
; ð15Þ

with qmax ¼ 2kðEþ kÞ=ðEð1 − vÞ þ 2kÞ, needs some more careful treatment.
Following again [9,10], we can treat separately the regime E ≪ M2=T, where we can approximate ωþ ≃ vq,

qmax ≃ 2k=ð1 − vÞ, obtaining

I ðE≪M2=TÞ
2 ¼ −

1

6ð1þ vÞ2
�

2v
v − 1

ð−21þ 3vþ 23v2 þ 7v3Þ þ 3ðv − 1Þð7þ 13vþ 9v2 þ 3v3Þ log 1þ v
1 − v

�
μ5
3
ðμ25 þ π2T2Þ;

ð16Þ

whereas for E ≫ M2=T, corresponding to the v → 1 case,
the appropriate limit isωþ ≃ q; qmax ≃ E, leading to a much
more involved expression.
We can however obtain an analytical expression for the

v → 1 limit

I ðv¼1Þ
2 ¼

Z
∞

0

dk½nþðkÞ − n−ðkÞ�
2

3
k

�
3E − 5kþ 2

k2

E

�

¼ 2ET2½Li2ð−e−μ5=TÞ − Li2ð−eμ5=TÞ� þ…; ð17Þ

where the dots denote subleading terms in a 1=E expansion,
and Li2 denotes the dilogarithm function. We note that for
large E this is a leading correction. If we further expand in
the limit μ5 ≪ T, we obtain

I ðv¼1Þ
2 ≃ 2ETμ5 log 2þO

�
μ5
T

�
: ð18Þ

Putting together the two contributions in Eq. (13), we
reach to the final hard contribution result, valid for
E ≪ M2=T

Δhard
ðE≪M2=TÞ ¼

e4T2

12π

μ5
E

�
1þ μ25

π2T2

��
3v − 5v3

v3ðv2 − 1Þ

−
3

2v3
ðv2 − 1Þ log 1þ v

1 − v

�
; ð19Þ

while for v ¼ 1 (E ≫ M2=T), in the limit μ5 ≪ T the
leading contribution is given by

Δhard
ðv¼1Þ ≈

e4

2π3
μ5T log 2þO

�
μ5
T
;
μ5
E

�
; ð20Þ

which becomes almost comparable with the leading-
order result for the collisional energy loss, which is
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Oðe4 logðeÞT2Þ. It is also worth recalling that for v ¼ 1 the
helicity of the fermion coincides with the chirality, and it is
then a Lorentz invariant.
The other process which could contribute to the colli-

sional energy loss is Compton scattering with medium
photons. One can nevertheless see that, at this order of the
calculation, all the relevant contributions which depend on
the fermion helicity and the chiral imbalance of the system
vanish, so that this process will not contribute to Δ at the
same order as Eqs. (19) and (20).

III. SOFT CONTRIBUTION TO THE
COLLISIONAL ENERGY LOSS OF A MASSIVE

FERMION IN THE CHIRAL PLASMA

Let us now focus on the contribution to the energy loss
coming from soft momentum photons, mainly focusing on
contributions that depend on the helicity of the test fermion.
The most convenient way to calculate these contributions
is to start from the computation of the fermion damping
rate [13]

γλ ¼ −
1

2E
Tr½Pðλ;pÞð=PþMÞImΣðPÞ�jp0¼E; ð21Þ

where Pðλ;pÞ are the helicity projectors defined in Eq. (2),
and the fermion self-energy ΣðPÞ (Fig. 1 right) can be
written in terms of four independent scalar functions Σλ

sðPÞ

ΣðPÞ ¼
X
λ¼�

X
s¼�

Pðλ;pÞγ0Λðs;pÞΣλ
sðPÞ; ð22Þ

where

Λð�;pÞ ¼
E� ðγ0γ⃗ · pþ γ0MÞ

2E
ð23Þ

are particle/antiparticle projectors. One can check that
½Pðλ;pÞ;Λð�;pÞ� ¼ 0.
The fermion self-energy can be computed e.g., using the

imaginary time formalism, and then analytically continued
to Minkowski space time. For a plasma without any chiral
imbalance, the self-energy corrections for the two helicities
turn out to be the same [14]. In the presence of a
nonvanishing μ5 however, one can expect the damping
rate to depend on the helicity of the fermion, only based on
the global symmetries of the system, as parity is broken.
If we compute the fermion damping rate in the regime

where the photon carries soft momentum, the photon in the
one-loop diagram has to be resummed. If we use the hard
thermal loop (HTL) resummed photon propagators, there is
still no helicity dependence on the fermion damping rate.
However, we find a helicity dependence if we improve the
HTL resummation by considering μ5 corrections to the
resummed photon propagators.

As in [8], we consider that in Coulomb gauge (we ignore
gauge dependent pieces here, as they do not contribute to
the imaginary part of the fermion self-energy) the photon
propagator can be written as [15]

DμνðQÞ ¼ δμ0δν0DLðQÞ þ
X
h¼�

PT;h
μν Dh

TðQÞ; ð24Þ

where h ¼ � labels the two circular polarized transverse
photon states, left and right, and

PT;h
μν ¼ 1

2
ðδij − q̂iq̂j − ihϵijkq̂kÞδμiδνj: ð25Þ

The resummed longitudinal and transverse propagators
read, with the usual prescription ω → ω� iη for retarded
and advanced quantities, respectively,

DLðω; qÞ ¼
1

q2 þΠL
; Dh

Tðω; qÞ ¼
1

ω2 − q2 −ΠT − hΠP
;

ð26Þ

where

ΠLðω; qÞ ¼ m2
D

�
1 −

ω

2q
ln
ωþ q
ω − q

�
; ð27Þ

ΠTðω; qÞ ¼ m2
D
ω2

2q2

�
1þ 1

2

�
q
ω
−
ω

q

�
ln
ωþ q
ω − q

�
ð28Þ

are the longitudinal/transverse part of the hard thermal/

dense loop photon polarization tensor [16], and m2
D ¼

e2ðT2

3
þ μ2

5

π2
Þ is the Debye mass, while

ΠPðQÞ ¼ −
e2μ5
π2

ω2 − q2

q

�
1 −

ω

2q
ln
ωþ q
ω − q

�
ð29Þ

can be viewed as the anomalous hard dense loop contri-
bution [17–19].
Please also note that by improving the HTL resummed

photon propagators by adding the new anomalous contri-
bution, means that we are including a correction of order e
to the standard HTL result, as it is a correction
∼e2μ5qsoft ∼ eq2soft, where qsoft is a soft momentum, of
order eT or eμ5.
Let us point out here that by analyzing the poles of

the transverse propagators, one finds a chiral plasma
instability [17,18]. However, the timescales associated with
the instability are relatively large (tins ∼ T2=e4μ35, for
μ5 ∼ T, tins ∼ 1=e4μ5), and the computation of the energy
loss we carry out is valid for shorter timescales.
The spectral functions associated with the longitudinal

and transverse gauge field modes are given by
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ρLðQÞ ¼ 2ImDLðωþ iη; qÞ; ð30Þ

ρhTðQÞ ¼ 2ImDh
Tðωþ iη; qÞ; h ¼ �; ð31Þ

respectively.

Using these resummed photon propagators, after some
standard manipulations, one ends up with the following
value of the interaction rate

Γλ ¼
e2

2E

Z
d3q
ð2πÞ3

Z
dω½1þ nBðωÞ�δðE − E0 − ωÞ 1

E0 f½EE0 þ E2 − p · q�ρLðQÞ þ ½EE0 −M2 − ðp · q̂Þ2 þ p · q�
X
h¼�

ρhTðQÞ

− λ½ðEE0 −M2 − p2Þðp̂ · q̂Þ þ pq�
X
h¼�

hρhTðQÞg; ð32Þ

where E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − qÞ2 þM2

p
, nBðωÞ ¼ ðexpðω=TÞ − 1Þ−1 is the bosonic occupation number and we assumed that

M;E0 ≫ T, which allows us to neglect the fermionic occupation numbers in our expression.
The above integral can be analyzed in an expansion on 1=E. Let us define the velocity vector as v ¼ p=E and expand

E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − qÞ2 þM2

q
≃ E − vq cos θ þ q2ð1 − v2 cos2 θÞ

2E
þO

�
1

E2

�
: ð33Þ

We can write

Γλ ¼
e2

4π2v

Z
∞

0

dqq
Z

qv

−qv
dω½1þ nBðωÞ�

��
1 −

ω

E

�
ρLðω; qÞ þ

1

2

X
h¼�

ρhTðω; qÞ
��

v2 −
ω2

q2

��
1 −

λhq
vE

�
−
ω

E

�
1 −

ω2

q2

���

−
e2ð1 − v2Þ
8Eπ2v

Z
∞

0

dqq3ρLðqv; qÞ; ð34Þ

which in the limit of a massless fermion v → 1 reduces to the expressions found in [8,20,21], as expected.
When μ5 ¼ 0 our result agrees with that of Refs. [9,10] up to order 1=E (after taking into account a different factor of 2π

in the convention for the definition of the photon spectral functions). At order 1=E we find the new contributions that only
appear in the presence of chiral imbalance (as otherwise ρþT ¼ ρ−T and they would cancel when summing over polarizations),
which depend on both the helicity of the fermion and the circular polarization of the photon.
The energy loss can again be obtained from the damping by multiplying by ω=v [9]. We have

−
dEλ

dx

				
soft

¼ e2
Z

d3q
ð2πÞ3

Z
dω½1þ nBðωÞ�δðE − E0 − ωÞ 1

2EE0
ω

v
ð35Þ

×

�
½EE0 þ E2

p − p · q�ρLðQÞ þ ½EE0 −M2 − ðp · q̂Þ2 þ p · q�
X
h¼�

ρhTðQÞ

− λ½ðEE0 −M2 − p2Þðp̂ · q̂Þ þ pq�
X
h¼�

hρhTðQÞ
�
: ð36Þ

Focusing again on the difference between the energy loss of two particles with opposite helicities,

Δsoft ≡
�
−
dEλ¼þ
dx

�				
soft

−
�
−
dEλ¼−

dx

�				
soft

; ð37Þ

we get

Δsoft ¼ e2

4π2v2

Z
∞

0

dqq2
Z

v

−v
dxðqxÞ½1þ nBðqxÞ�

1

2

X
h¼�

ρhTðqx; qÞðv2 − x2Þ
�
−2

hq
vE

�
: ð38Þ
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We can plug in the explicit value of the transverse
spectral functions. One has [8]

ρhT;cut
2π

ðω; qÞ ¼ M2
h

x
1−x2 Θð1 − x2Þh

2q2 þ m2
D

1−x2 −M2
hQ1ðxÞ

i
2 þ M4

hπ
2x2

4

;

x ¼ ω=q; ð39Þ

with M2
h ¼ m2

D − e2μ5
2π2

hq,

Q1ðxÞ ¼ 1 −
x
2
ln

				 1þ x
1 − x

				; ð40Þ

and we note that we can substitute 1þ nBðqxÞ → 1
2
due

to the symmetries of the integrand in the domain of
integration.
At this point one could worry whether there could be

problems of nonintegrability in the computation due to the
chiral plasma instability. However, exactly as it occurs in
the computation of the energy loss in anisotropic QED and
QCD plasmas [22,23], which exhibit the well-known
Weibel instabilities, we find that the poles associated with
the unstable modes are dynamically shielded. The compu-
tation of other quantities such as the momentum broad-
ening would however be more problematic, as there the
unstable modes are not shielded [24,25], and would be
drastically affected by the instability.
One can easily recognize that the resulting integrals

contain both linear and quadratic ultraviolet divergencies,
as opposed to the μ5 ¼ 0 case, where the leading result in
the soft region contains only a logarithmic ultraviolet
divergence. In this case, it turns out to be very convenient
to use dimensional regularization. The linear divergence is
then set to zero in DR, and only yields a finite result
proportional to e2m2

De
2μ5=E (see Appendix B). The

dominant term of Δsoft is then provided by the piece that
is quadratically divergent: in d ¼ 3þ 2ϵ spatial dimensions

Δsoft≈
e2

8πv3
e2μ5
E

Z
v

−v
dxx2

�
1−

x2

v2

�ðd−3Þ=2v2−x2

1−x2
X
h¼�

Ih
qðxÞ;

ð41Þ

with

Ih
qðxÞ¼ν3−dFðdÞ

Z
∞

0

dq
qdþ2h

2q2þ m2
D

1−x2−M2
hQ1ðxÞ

i
2þM4

hπ
2x2

4

;

ð42Þ

where ν is the DR scale, and FðdÞ is a normalization factor
in d dimension, see Eq. (A2). A closed analytical expres-
sion for the above integral can be obtained if we neglect the
e2μ5 pieces in the denominator, giving (see Appendix B)

Ih
qðxÞ ≈

m2
D

4π2
AðxÞ

�
1

ϵ
þ log

ν2

m2
D
þ γ − log 4π

�
; ð43Þ

with AðxÞ ¼ 1
2
ð 1
1−x2 −Q1ðxÞÞ. Thus

Δsoft ≈
e4m2

D

2v3
μ5
E

�
1

ϵ
þ log

ν2

m2
D
þ γ − log 4π

�
fðvÞ; ð44Þ

where

fðvÞ ¼ 2

Z
v

−v
dxx2

v2 − x2

1 − x2
AðxÞ ð45Þ

is a positive function for v ∈ ½0; 1�.
The divergence of Δsoft in the limit ϵ → 0 should be

cancelled by a hard contribution, as it occurs with the
leading logarithmic divergence (see Appendix A). This
would require us to compute perturbative corrections to the
leading term we computed in the previous section, to find a
quadratic infrared divergent piece. Using DR one then
expects to eliminate the pole 1=ϵ and the dependence on the
scale ν, resulting in a contribution Δ ∝ e4 logðe2Þm2

D
μ5
E ,

which would be a correction to the leading result computed
in the previous section. It could also be possible that at this
higher order of the computation the perturbative resummed
theory breaks down. We defer the investigation of this issue
to future projects, as this would be in any case a subleading
correction.

IV. CONCLUSIONS

We have computed the collisional energy loss of an
energetic massive fermion crossing a chiral plasma with an
imbalance of its left-handed and right-handed populations.
In the presence of a chiral imbalance, the energetic fermion
interacts differently with the left-handed and right-handed
components of the plasma, generating new contributions to
the energy loss. These contributions depend on the helicity
of the fermion, and we isolated them by focusing on the
difference between the energy loss of the two opposite
helicities. Such contributions can only be due to parity
breaking effects in the medium, and we single them out to
study whether they can be used to quantify the chiral
imbalance of the plasma.
We find that the leading contribution to these helicity-

dependent energy loss contributions comes from the
exchange of hard photons with the medium constituents,
and in some scenarios can become comparable to the
leading-order result for a plasma without any chiral
imbalance. More specifically, we find that for a very
energetic fermion (v → 1) our correction is Δ ∼ e4Tμ5,
compared to the known ∼e4 logðe2ÞT2 result for a vanish-
ing μ5 [9], whereas at smaller velocities we get a μ5=E
suppression compared to the leading result.
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On the other hand, when it comes to softer photon
exchanges the chiral imbalance of the medium is felt via a
different interaction with the right and left circular polari-
zation components of the photon, which can be incorpo-
rated via an extension of the HTL resummation via the
inclusion of an anomalous hard dense fermionic loop
contribution proportional to the chiral imbalance of the
medium [17,18]. This can be seen to be a subleading effect
[8], perturbatively suppressed as compared with the con-
tribution from the hard photon exchange.
Recall that chiral plasmas with an imbalance of right-

and left-handed populations exhibit a chiral plasma insta-
bility [17,18], with a timescale tins ∼ T2=e4μ35, and that our
calculation for the fermion energy loss will be valid in a
regime before the instability sets in. In practice, if we
assume that the medium has a length of order L, we impose
L=v ≪ tins. The time scale should definitely be large for the
QED plasma considered in this work.
While we have focused our computations to an electro-

magnetic plasma, it is easy to generalize them to QCD
[26–29]. First, one has to take into account the proper color
and flavor factors in the corresponding scattering matrix.
Note that in QCD there is an additional diagram contrib-
uting to the hard sector of the energy loss, namely the
collision of the energetic massive quark with the gluons of
the medium, but it would not yield a helicity dependent
piece in the energy loss, as one assumes that all gluons of
different polarizations are equally thermally distributed.
Then for a heavy quark traversing a chiral QCD plasma,
composed by Nf light quark flavors with a chiral chemical
potential μ5, we can take our QED result, and simply
replace the electromagnetic coupling constant by the strong
coupling constant e → g, and take into account a 2Nf=3
global factor,

ΔðQCDÞ
ðE≪M2=TÞ ¼

g4T2Nf

18π

μ5
E

�
1þ μ25

π2T2

��
3v − 5v3

v3ðv2 − 1Þ

−
3

2v3
ðv2 − 1Þ log 1þ v

1 − v

�
; ð46Þ

while for v ¼ 1 (E ≫ M2=T), in the limit μ5 ≪ T the
leading contribution is given by

ΔðQCDÞ
ðv¼1Þ ≈

g4Nf

3π3
μ5T log 2þO

�
μ5
T
;
μ5
E

�
: ð47Þ

One should as well consider that the chiral plasma
instability in the chromoelectromagnetic fields in this case
should occur at tins ∼ T2=g4μ35.
Our computations should be completed with the evalu-

ation of a helicity dependence of the radiative energy loss.
For very heavy fermions, it is known that collisional
loss dominates over radiative loss. It might be particularly
interesting to study the case of radiative energy loss for the

v → 1 case. This last computation would be needed to
answer the question whether by analyzing the helicity
dependence the energy loss of light energetic fermions one
could get information of the chiral misbalance produced,
for example, in heavy ion collisions.
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APPENDIX A: COLLISIONAL ENERGY LOSS
IN A SYMMETRIC PLASMA USING
DIMENSIONAL REGULARIZATION

Most calculations of the energy loss of a fermion in a
plasma (see e.g., Refs. [9,10]) have been performed by
regularizing the intermediate results with a sharp cutoff
separating the soft and hard pieces of the computation. The
two results are then matched and the final cutoff depend-
ence disappears.
The use of a sharp cutoff however has some disadvan-

tages. It does not preserve gauge invariance, and makes the
cancellation of powerlike divergencies more subtle, should
they appear. It may thus be preferable to use a more refined
method.
In this Appendix, we apply dimensional regularization

to derive the leading-order result for the energy loss of a
massive fermion in a plasma.
Working in d ¼ 3þ 2ϵ spatial dimensions, our integrals

are modified as

Z
d3q
ð2πÞ3→

Z
ddq
ð2πÞd¼FðdÞ

Z
∞

0

dqqd−1
Z

1

−1
dcosθsind−3θ;

ðA1Þ

with

FðdÞ ¼ 4

ð4πÞdþ1
2 Γðd−1

2
Þ¼

1

4π2
þOðϵÞ; ðA2Þ

where θ parametrizes an angle with respect to an external
vector, and ΓðzÞ stands for the Gamma function.
Furthermore, in d dimensions one has to change the
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coupling constant as e2 → e2ν3−d, where ν is an auxiliary
scale introduced by DR.
In a similar spirit to previous calculations, we then

compute separately the contributions at the soft and hard
scales, which will exhibit ultraviolet and infrared divergen-
cies, respectively, appearing as simple poles 1=ϵUV and
1=ϵIR. The two results are then matched at the scale ν,
with the identification ϵIR ¼ ϵUV, and the poles as well as
all dependence on the scale ν cancel out.
Dimensional regularization has several advantages over

cutoff regularization (see [30] for a general discussion on
DR and effective field theories, or [31–33] for explicit
applications for thermal plasmas). In DR scaleless integrals
vanish, and there are no power divergences. Evaluating
integrals using DR is basically the same as evaluating
integrals using the method of residues [30], the result is
given in terms of the residues of these poles, which only
depend on the physical scales of the theory.
As we will show in our explicit computations of the

energy loss in the soft sector, even if the integrals are carried
out for all momenta, the integral is dominated by eT, the soft
scale associated with the Debye mass, as it is the only scale
in the corresponding integral. In an analogous way, in the
hard sector, the integrals are dominated by contributions at
the scale given by the temperature T, as can be seen by the
presence of the fermionic occupation numbers.
Let us illustrate how this works by repeating the

computation [9] using DR.

1. Soft contribution

First we compute the soft contribution to the energy loss
using the HTL effective theory. Within dimensionally
regularized resummed effective field theory the computa-
tion will have UV divergences, which appear as simple
poles in our result.

Generalizing the result of [9] to d dimensions, we have

−
dE
dx

				
soft

¼ e2ν3−d

v2
FðdÞ

Z
∞

0

dqqd−1
Z

v

−v
dx

�
1−

x2

v2

�ðd−3Þ=2

× ½1þ nBðqxÞ�ðqxÞðρdLðqx;qÞ
þ ðv2 − x2ÞρdTðqx;qÞÞ; ðA3Þ

where the factor ð1 − x2

v2Þðd−3Þ=2 stems from the angular
integral in d dimensions, and ρdL=T are the HTL spectral
functions, which can be defined in Coulomb gauge as in the
d ¼ 3 case starting from the imaginary part of the retarded
propagators:

ρdL=Tðq0; qÞ ¼ 2ImDd
L=Tðq0 þ iϵ; qÞ: ðA4Þ

One can substitute 1þ nBðqxÞ → 1
2
due to the sym-

metries of the integrand in the domain of integration in
Eq. (A3). Then the only physical scale that appears in
Eq. (A3) is the Debye mass.
Expressions of the HTL in d dimensions can be found in

[34,35]. The result is finite and does not present any sort of
divergencies, as the scaleless T ¼ 0 integrals are zero in
DR. One thus typically computes the HTL diagrams setting
ϵ ¼ 0 (i.e., d ¼ 3). However, since in our calculation they
are multiplied by 1=ϵ poles, one should keep pieces up to
order ϵ, which can be seen as corrections to the Debye mass
as well as the Landau damping pieces, as they can give rise
to finite pieces in the final result. In the following, we will
mainly focus on the form of the pole obtained within the
DR calculation, so we will not derive these explicitly.
Performing the q integral (see Appendix B for the

explicit results), one finds, in the limit ϵ → 0,

−
dE
dx

				
soft

¼ −
e2m2

Dð3þ2ϵÞ
16π

��
1

v
−
1 − v2

2v2
ln
1þ v
1 − v

��
1

ϵ
− ln

ν̄2

m2
D

�
þ AðvÞ þ AextraðvÞ

�
; ðA5Þ

where ν̄2 ¼ ν2ð4πe−γÞ, m2
Dð3þ2ϵÞ denotes the Debye mass in d ¼ 3þ 2ϵ dimensions keeping pieces up to OðϵÞ, which is

given by (for simplicity we restrict ourselves to μ ¼ 0)

m2
Dð3þ2ϵÞ ¼ 16e2Fð3þ 2ϵÞν−2ϵ

Z
∞

0

dkk1þ2ϵnFðkÞ ¼ m2
D

�
1þ ϵ

�
2 − γE þ 2

ζ0ð2Þ
ζð2Þ − log

πν2

T2

��
¼ m2

D þ ϵðδm2
DÞ; ðA6Þ

where nF is the fermionic occupation number, ζ denotes the Riemann zeta function, and ζ0 its derivative.
The finite pieces are given by

AðvÞv2 ¼
Z

v

−v
dxx2 ln

�
1 −

x2

v2

��
1þ 1

2

v2 − x2

1 − x2

�
þ 1

2

Z
v

−v
dxx2

�
ln

�
Q2

1ðxÞ þ
π2x2

4

�
þ 1

2

v2 − x2

1 − x2
ln

�
Q2

2ðxÞ þ
π2x2

16

��

þ
Z

v

−v
dxx2

�
2Q1ðxÞ
πx

arccos
πx

2Q1ðxÞ
þ 1

2

v2 − x2

1 − x2
Q2ðxÞ
πx

arccos
πx

Q2ðxÞ
�
; ðA7Þ
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which matches the finite pieces of the soft contribution of the energy loss computed with a cutoff of Ref. [9], and Aextra are
additional pieces arising from considering HTLs in d ¼ 3þ 2ϵ dimensions.
Focusing on the pole, we get

−
dE
dx

				
pole

soft
¼ −

e2m2
D

16π

�
1

v
−
1 − v2

2v2
ln
1þ v
1 − v

�
1

ϵ
; ðA8Þ

and we need to check if it cancels with the hard part.

2. Hard contribution

The computation above has to be matched with that of the tree-level scattering in QED, which we also carry out in
d ¼ 3þ 2ϵ spatial dimensions. This one contains IR divergencies, which are again regulated with DR.
Restricting ourselves to the leading terms in the 1=E expansion, and considering μ ¼ 0 for simplicity, we have [9]

−
dE
dx

				
hard

¼ 4πe4ν6−2d

v

Z
ddk
ð2πÞd nFðkÞ

Z
ddq
ð2πÞd

Z
dωδðωþ k − jkþ qjÞδðω − v · qÞ

×
ω

Q4

1

kjkþ qj
�
2ðk − v · kÞ2 þ 1 − v2

2
Q2

�
; ðA9Þ

where nF is the fermionic occupation number. At this point we can perform an average of the above expression on the
directions of v.
The angular integral will give us new integration boundaries, as well as an additional factor from the integration measure

in d dimensions. We get to an expression which can be split into two integrals over different boundaries for q and ω:

−
dE
dx

				
hard

¼ 2e4ν6−2d

v2
2πd=2ffiffiffi
π

p
Γðd−1

2
Þ

FðdÞ
ð2πÞd−1

Z
∞

0

dkkd−3nFðkÞ
�Z

2k=ð1þvÞ

0

dqqd−5
Z

vq

−vq
dωω

þ
Z

2k=ð1−vÞ

2k=ð1þvÞ
dqqd−5

Z
vq

q−2k
dωω

��
1 − v2

2

q2

Q2
þ 3ω2 − v2q2

4q2
þ 3ðωkþ k2Þ

q2

− ðv2 − 1Þωkþ k2

Q2

��
1 −

ω2

v2q2

�ðd−3Þ=2�
1 −

�
Q2

2kq
þ ω

q

�
2
�ðd−3Þ=2

≡ I1 þ I2: ðA10Þ

Since our main focus in this section is to discuss the implementation of dimensional regularization, we focus on the
possibly diverging pieces, which are restricted to the first q integral above, which is IR divergent. The remaining pieces are
the same as those obtained in [9,10].
Focusing on the first integral of Eq. (A10) and setting d ¼ 3þ 2ϵ we have

I1 ¼
e4ν−4ϵ

v2π2
1

ð4πÞ1þ2ϵ

1

ðΓð1þ ϵÞÞ2
Z

∞

0

dkk2ϵnFðkÞ
Z

2k=ð1þvÞ

0

dqq−2þ2ϵ

Z
vq

−vq
dω

×

�
1 − v2

2

q2

Q2
þ 3ω2 − v2q2

4q2
þ 3ðωkþ k2Þ

q2
− ðv2 − 1Þωkþ k2

Q2

��
1 −

ω2

v2q2

�
ϵ
�
1 −

�
Q2

2kq
þ ω

q

�
2
�
ϵ

: ðA11Þ

If we now restrict ourselves to extracting the pole and the dependence on the scale ν, we can actually drop several finite
pieces and work with

Ipole1 ¼ e4ν−4ϵ

v2π2
1

ð4πÞ
Z

∞

0

dkk2ϵnFðkÞ
Z

2k=ð1þvÞ

0

dqq−2þ2ϵ

Z
vq

−vq
dω

�
3ω2k
q2

− ðv2 − 1Þω
2k
Q2

�
; ðA12Þ

where we exploited the symmetry of the integral to drop all odd terms in ω. The ω integral can now be easily carried out,
leading to
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Ipole1 ¼ 2e4ν−4ϵ

π
Fð3þ 2ϵÞ

�
1

v
þ ðv2 − 1Þ

2v2
ln
1þ v
1 − v

�Z
∞

0

dkk1þ2ϵnFðkÞ
Z

2k=ð1þvÞ

0

dqq−1−2ϵ: ðA13Þ

Now we have to evaluate the q integral. Due to the finite upper integration limit, this integral does not vanish in DR and
gives

ν−2ϵ
Z

2k=ð1þvÞ

0

dqq−1þ2ϵ ¼ 1

2ϵ

�
2k

νð1þ vÞ
�

2ϵ

¼ 1

2ϵ
þ log

2k
νð1þ vÞ þOðϵÞ; ðA14Þ

so we are left with

Ipole1 ¼ 2e4

π
Fð3þ 2ϵÞ

�
1

v
þ ðv2 − 1Þ

2v2
ln
1þ v
1 − v

�
ν−2ϵ

Z
∞

0

dkk1þ2ϵnFðkÞ
�
1

2ϵ
þ log

2k
νð1þ vÞ

�

¼ e2

16πv

�
1 −

1 − v2

2v
ln
1þ v
1 − v

��
1

ϵ
m2

Dð3þ2ϵÞ þ
8e2

π2

Z
∞

0

dkknFðkÞ log
2k

νð1þ vÞ
�
; ðA15Þ

where we recognized in the first row the same integral as Eq. (A6), giving the Debye mass in d ¼ 3þ 2ϵ dimensions.
Restricting ourselves for simplicity to the case μ ¼ 0, we get

−
dE
dx

				
hard

¼ e4T2

48π

�
1

v
þ v2 − 1

2v2
ln
1þ v
1 − v

��
1

ϵ
þ δm2

D − log
ν̄2

T2
þ…

�
; ðA16Þ

where δm2
D was defined in Eq. (A6) and the dots denote additional finite pieces. We can see that the pole thus cancels out

exactly with the one of the soft part [Eq. (A8)], and the ν dependence also drops when adding up the two contributions,
which combine to the characteristic logðe2Þ factor.
The generalization to finite chemical potential amounts to replacing T2 → T2ð1þ 3μ2

π2T2Þ in the pole, while for the
finite pieces one obtains significantly more involved expressions, originating from the evaluation of integrals likeR∞
0 dkk logðkÞ½ðnFðk; μÞ þ nFðk;−μÞ�. Remarkably, these are the same integrals appearing in the calculation of finite pieces
at finite chemical potential using a sharp cutoff [36].

APPENDIX B: USEFUL INTEGRALS IN DIMENSIONAL REGULARIZATION

We report in this Appendix some integrals we encounter during our calculations, which are regularized in d ¼ 3þ 2ϵ
dimensions using DR. Recall that DR sets powerlike divergencies to zero, keeping only results which depend on the
physical scales of the system.
The logarithmic ultraviolet divergence encountered in the soft region of the calculation for the energy loss in a thermal

plasma without chiral imbalance stems from the integral

ν−2ϵ
Z

∞

0

dq
q3þ2ϵ

ðq2 þm2
DaÞ2 þm4

Db
2
¼ 1

2

�
mD

ν

�
2ϵ
Z

∞

0

dz
z1þϵ

ðzþ aÞ2 þ b2

¼ −
1

2

�
1

ϵ
− log

ν2

m2
D
þ 1

2
log ða2 þ b2Þ þ a

b
arccos

affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
�
þOðϵÞ; ðB1Þ

and shows up as a 1=ϵ pole, together with a logarithmic dependence on the scale ν, which are finally cancelled by similar
contributions in the hard sector, which appear there as infrared divergent integrals.
When evaluating the new contributions arising in a chiral plasma, we deal with a possibly linearly ultraviolet divergent

piece. In d ¼ 3þ 2ϵ dimensions the corresponding integral reads

ν−2ϵ
Z

∞

0

dq
q4þ2ϵ

ðq2 þm2
DaÞ2 þm4

Db
2
¼ mD

2

�
mD

ν

�
2ϵ
Z

∞

0

dz
z3=2þϵ

ðzþ aÞ2 þ b2
¼ −

mDπ

2
ffiffiffi
2

p 2aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p

ðaþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
Þ1=2 þOðϵÞ; ðB2Þ

which however turns out to be finite in DR.
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In the chiral plasma there is also a quadratic ultraviolet divergence. In d ¼ 3þ 2ϵ dimensions one has to evaluate

ν−2ϵ
Z

∞

0

dq
q5þ2ϵ

ðq2 þm2
DaÞ2 þm4

Db
2
¼ m2

D

2

�
mD

ν

�
2ϵ
Z

∞

0

dz
z2þϵ

ðzþ aÞ2 þ b2

¼ am2
D

�
1

ϵ
− log

ν2

m2
D
þ 1

2

�
logða2 þ b2Þ þ a2 − b2

ab
arctan

b
a

��
þOðϵÞ; ðB3Þ

which results in the 1=ϵ pole appearing in Eq. (43), and a logarithmic dependence on the scale ν, which should be cancelled
with a contribution of the hard sector, not evaluated in this manuscript.
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