
 

Singlet-assisted electroweak phase transition at two loops

Lauri Niemi ,1,* Philipp Schicho ,1,† and Tuomas V. I. Tenkanen2,3,4,‡
1Department of Physics and Helsinki Institute of Physics, P.O. Box 64, FI-00014 University of Helsinki,

Finland
2Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23,

SE-106 91 Stockholm, Sweden
3Tsung-Dao Lee Institute and School of Physics and Astronomy, Shanghai Jiao Tong University,

Shanghai 200240, China
4Shanghai Key Laboratory for Particle Physics and Cosmology, Key Laboratory for Particle Astrophysics

and Cosmology (MOE), Shanghai Jiao Tong University, Shanghai 200240, China

(Received 31 March 2021; accepted 25 May 2021; published 30 June 2021)

We investigate the electroweak phase transition in the real-singlet extension of the Standard Model at
two-loop level, building upon existing one-loop studies. We calculate the effective potential in the high-
temperature approximation and detail the required resummations at two-loop order. In typical strong-
transition scenarios, we find deviations of order 20%–50% from one-loop results in transition strength and
critical temperature for both one- and two-step phase transitions. For extremely strong transitions, the
discrepancy with one-loop predictions is even larger, presumably due to sizable scalar couplings in the tree-
level potential. Along the way, we obtain a dimensionally reduced effective theory applicable for
nonperturbative lattice studies of the model.
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I. INTRODUCTION

Phase transitions occurring in various extensions of the
Standard Model (SM) have attracted a lot of attention in
recent years. Many candidate theories for physics beyond
the SM (BSM) involve scalar fields in addition to the SM
Higgs, and it is interesting to ask if there can be phase
transitions associated with the scalar potential. A cosmo-
logical first-order phase transition around temperatures
comparable to the electroweak (EW) scale could produce
gravitational waves with observational prospects at future
detectors [1,2], and may provide the necessary conditions
for EW baryogenesis [3,4] (see [5] for a review).
In the SM, the phase structure of the EW sector is well

established: there is no phase transition associated with
the Higgs mechanism [6,7]. Instead, the early Universe
smoothly interpolates between the high-temperature “sym-
metric” and “broken” Higgs regimes, and a first-order
discontinuity between the two would require the Higgs
particle to be unphysically light (mass ≲70 GeV). For

any BSM scenario to change this conclusion, drastic mod-
ifications to the Higgs potential are necessary. First-order
electroweak phase transition (EWPT) can be achieved by
coupling theHiggs to new scalars at sufficient strength, or the
phase structure itself can bemore complicatedwith the theory
undergoing multiple phase transitions at temperatures com-
parable to theEWscale. In both cases the newparticles cannot
bemuchheavier than theHiggs,making theEWPTapotential
target at present and planned collider experiments [8]. For
cosmology, one is mainly interested in strong transitions with
large latent heat available for the production of gravitational
waves, or with significant discontinuity in the Higgs VEV
(v=T ≳ 1) as required for efficient baryogenesis.
Unfortunately, studying the EWPT with perturbation

theory is complicated because (i) first-order transitions in
simple scalar extensions typically require Oð1Þ couplings
among the scalars, and (ii) finite-temperature perturbation
theory is sensitive to infrared (IR) physics and has a different
structure than at zero temperature, often leading to slow
convergence. Because of the second point, perturbation
theory breaks down near second-order transitions where
the Higgs correlation length diverges, making it impossible
to determine the order of the EWPT with perturbative
methods alone. Hence, when applying perturbation theory
to first-order transitions one simply assumes that the
transition remains first order also at the nonperturbative
level, and that predictions are not significantly altered by
higher order effects. Because of points (i) and (ii), it is far
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from obvious whether such assumptions are justified in
typical BSM settings.
The situation can be contrasted to that of the SU(2)-

Higgs theory relevant for the SM, where the dominant
contributions to the free energy come from gauge loops.
These are under perturbative control for v=T ≳ 1, although
there are still quantitatively important corrections at two-
loop order [9]. In many BSM scenarios, corrections from
the scalar sector dominate over the gauge loops, and
predictions may well be sensitive to higher-order scalar
diagrams even when the transition is strong.
The standard tool for studying the EWPT in BSM

settings is the one-loop effective potential with resumma-
tion of thermal “daisy” diagrams. The purpose of this paper
is to extend this calculation to the two-loop level, and
scrutinize the effects of the two-loop corrections on basic
characteristics of the EWPT (critical temperature, latent
heat, v=T). We work in the real-singlet extension of the
Standard Model which we shall refer to as XSM, following
[10]. Several one-loop analyses of the EWPT exist in this
minimalistic yet realistic BSM model, see [10–23] and
references therein, but we are not aware of existing two-
loop calculations in the finite-T context. Two-loop studies
in other scalar extensions and in the minimally super-
symmetric standard model have reported on considerable
deviations from the one-loop behavior [24–29], motivating
a detailed two-loop investigation of the XSM as well.
Our calculation proceeds in two stages. First, we apply

effective field theory (EFT) methodology to integrate out
hard thermal loops (loops involving thermal excitations at
the scale πT) in the static limit, leaving a three-dimensional
(3D) EFT describing the long-distance physics of the phase
transition [30,31]. This dimensional reduction automatically
incorporates the required resummations while also summing
a subset of higher-order corrections using the renormaliza-
tion group (RG). We then calculate the effective potential in
the resulting EFT. The 3D EFT constructed in this paper can
also serve as a starting point for future nonperturbative lattice
studies [32] of the XSM phase structure.
Applying the two-loop effective potential, we compute

the strength and critical temperature of the EWPT in
different scenarios, including two-step and purely radia-
tively generated transitions. The analysis is concentrated on
a handful of benchmark points to better illustrate the impact
of two-loop corrections on physical predictions. The main
takeaway is that the corrections are significant even if the
transition occurs through a tree-level barrier, and should be
taken into account if reliable predictions of, e.g., the
associated gravitational-wave background are sought.
The outline of this paper is as follows. We begin by

introducing the model in Sec. II. Section III reviews some
formal aspects of thermal resummation and high-T dimen-
sional reduction that form the backbone for understanding
the remainder of the paper. In Sec. IV, we introduce a
formal power counting scheme for various parameters in

the theory and discuss subtleties specific to the high-T
behavior of the XSM. Sections V and VI contain details of
the EFT construction and collect the relevant 4D → 3D
matching relations. In Sec. VII we calculate the resummed
effective potential using the EFT approach. Finally, our
results concerning the importance of two-loop correc-
tions are presented in Sec. VIII. Section IX concludes.
There are two appendices: Appendix A details our renorm-
alization prescription and loop-corrected relations to
physical observables. Appendix B calculates the two-loop
correction to the effective potential.

II. MODEL

We work on a model consisting of the usual SM field
content and an additional real scalar S, that is a singlet
under the SM gauge group. The Lagrangian in Euclidean
signature is

L ¼ LYM þ Lfer þ ytðq̄tiσ2ϕ�tþ H:c:Þ

þ jDμϕj2 þ
1

2
ð∂μSÞ2 þ Vðϕ; SÞ; ð1Þ

where LYM is the Yang-Mills part for the SM gauge
fields (including hypercharge), Lfer contains the fermion
kinetic terms and yt is the top Yukawa coupling. Yukawa
couplingsof the light fermions areorders ofmagnitude smaller
than other parameters in the theory and are neglected.
Covariant derivative for the Higgs doublet ϕ is Dμϕ ¼ ð∂μ−
1
2
igσaAa

μ − 1
2
ig0BμÞϕ, where g and g0 are the SUð2ÞL and

Uð1ÞY gauge couplings, respectively. The scalar potential is

Vðϕ; SÞ ¼ m2
ϕϕ

†ϕþ λðϕ†ϕÞ2 þ b1Sþ 1

2
m2

SS
2

þ 1

3
b3S3 þ

1

4
b4S4 þ

1

2
a1Sϕ†ϕþ 1

2
a2S2ϕ†ϕ:

ð2Þ
As usual, the zero-temperature theory can be studied by

assumingm2
ϕ < 0andspecifyingcomponentsof thedoubletas

ϕ ¼
� Gþ

1ffiffi
2

p ðvþ hþ iGÞ
�
; ð3Þ

where v2 ¼ −m2
ϕ=λ is the gauge-fixed Higgs vacuum expect-

ation value (VEV) at tree level, and G�; G are the would-be
Goldstone modes. The singlet VEV and hence
the linear coupling b1 can be absorbed into a redefinition of
the tree-level parameters, i.e., the theory contains five free
parameters instead of six. At tree level, the condition
hSi ¼ 0 fixes b1 ¼ −a1v2=4. In the limit b1; a1; b3 → 0 the
theory becomes symmetric under S → −S; we shall
call this the Z2 symmetric case. Outside the Z2 symmetric
limit the physical scalar excitations h1, h2 are mixtures of
h and S:
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�
h1
h2

�
¼

�
cos θ − sin θ

sin θ cos θ

��
h

S

�
: ð4Þ

Theangleθ ischosentodiagonalize themassmatrixat tree level
and we will identify the lighter h1 as the SM-Higgs-like
excitation with mass 125 GeV.
The input parameters we use for our analysis are

b3; b4; a2; sin θ, and the masses of h1, h2 (the VEV v
can be fixed using the Fermi constant). Inverting the
defining tree-level equations for these leads to the follow-
ing expressions for the parameters in (2):

m2
ϕ ¼ −

1

4
ðm2

h1
þm2

h2
− ðm2

h2
−m2

h1
Þ cos 2θÞ; ð5Þ

m2
S ¼

1

2
ðm2

h1
þm2

h2
þ ðm2

h2
−m2

h1
Þ cos 2θ − a2v2Þ; ð6Þ

b1 ¼ −
1

4
jvjðm2

h2
−m2

h1
Þ sin 2θ; ð7Þ

a1 ¼jvj−1ðm2
h2
−m2

h1
Þ sin 2θ; ð8Þ

λ ¼ 1

4
v−2ðm2

h1
þm2

h2
− ðm2

h2
−m2

h1
Þ cos 2θÞ: ð9Þ

Without loss of generality, sin θ can be restricted to values
j sin θj < 1=

ffiffiffi
2

p
[11].

These relations obtain corrections at higher orders of
perturbation theory. At one-loop, the corrections are para-
metrically of the same order as two-loop corrections to the
thermal effective potential. Hence, a two-loop investigation
of the finite-temperature behavior should be accompanied
by a one-loop renormalization of the zero-temperature
theory. This is a separate calculation from the main focus
of the paper, and we perform it in Appendix A using the
MS scheme. This fixes our renormalized parameters at the
Z boson pole. The main effect of the one-loop improvement
is to shift the singlet mass parameter m2

S, by as much as
50% relative to the tree-level result in some of our bench-
mark points below. The parameters b1 and λ also get
considerable corrections.
The input parameters are constrained experimentally by

electroweak precision measurements and direct searches
for new physics [33,34]. We will study the theory near its
Z2 symmetric limit, see the discussion in Sec. IV below,
taking j sin θj < 0.1 and assuming the new excitation to be
heavier than the SM Higgs. The remaining parameter space
is then relatively unconstrained by current experiments
[14,20,23,35]. We will not consider experimental con-
straints further in this paper as our focus is on the finite-
T behavior of the theory.

III. REVIEW OF THERMAL RESUMMATIONS
AND HIGH-T EFFECTIVE THEORIES

Moving on to the finite-temperature theory, let us briefly
review the premise of thermal corrections that are important
for phase transitions. Much of the discussion here is
collected from Refs. [9,25,36,37]. Readers familiar with
thermal resummations and dimensionally reduced theories
may want to skip this section.
Equilibrium quantum field theory is equivalent to a

Euclidean field theory with a compact time direction, where
the periodicity of the imaginary time coordinate τ is
identified with 1=T. The fields have momentum-space
representations of the form

ϕðxÞ ¼ T
X∞
n¼−∞

Z
d3p
ð2πÞ3 ϕðωn;pÞeiωnτe−ip·x; ð10Þ

where the Matsubara frequency is ωn ¼ 2πnT for bosons
and ωn ¼ ð2nþ 1ÞπT for fermions. The bosonic zero
modes with ωn ¼ 0 carry no momentum in the time
direction, so their dynamics is effectively three dimen-
sional. At length scales≫ 1=T the zero-mode contributions
dominate, leading to the well-known IR problems in
perturbation theory because the leading interaction terms
in 3D have dimensionful couplings [38]. In contrast, modes
with ωn ≠ 0 (nonzero Matsubara modes) are safe in the IR
due to additional factors of ðπTÞ2 in the propagators.
Qualitatively, the EWPT can occur because of a

T-dependent correction to the Higgs mass parameter from
thermal loops, schematically m2

ϕ → m2
ϕðTÞ ¼ m2

ϕ þ g2T2.
At large enough T the VEV is relaxed to zero, and at the
critical temperature the “symmetric” and “broken” phases
have equal free energies. In the absence of a singlet VEV,
this happens, at the mean field level, when m2

ϕðTÞ ¼ 0 and
requires a cancellation between the vacuum and thermal
masses.1 Such large corrections to the tree-level behavior
call for resummation of specific thermal corrections. For
the one-loop effective potential this is achieved by the ring
(“daisy”) resummation where the propagators are replaced
with thermally corrected ones [39].
At two-loop level, a consistent prescription has been

given in Ref. [9]: thermal masses for the zero modes are
generated by integrating out the heavier modes with
ω2
n ≥ ðπTÞ2, and resummation of the nonzero modes is

not needed at all. Such prescription is possible in the
formal high-T limit where the IR degrees of freedom are
lighter than πT. Outside this limit, there is no simple way
of choosing thermal masses for resummation and the pro-
cedure becomes ambiguous beyond one-loop level [27].
In many cases the high-T assumption is justified because

1In the general XSM, radiative corrections will generate a
nonzero VEV even if we set hSi ¼ 0 at tree level. Consequently,
the condition for the critical temperature changes. The arguments
here are not qualitatively affected by such loop effects.
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the (thermally corrected) Higgs mass is parametrically
small compared to T near the critical temperature, and
possible BSM excitations cannot be arbitrarily heavy if
they are to produce a first-order EWPT [8].
To understand the necessary resummations beyond one-

loop order, it is convenient to reformulate the problem in
the language of effective field theory. The finite-T theory
contains several mass scales in addition to those present at
zero temperature. The most obvious one is the scale πT,
characterizing the nonzero Matsubara modes. There are
also the scales associated with Debye screening of electric
and magnetic fields, parametrically gT and g2T, respec-
tively. The latter appears in non-Abelian gauge theory and
is inherently nonperturbative [40]. Conventional terminol-
ogy for the scales πT, gT, and g2T is “hard,” “soft,” and
“ultrasoft” (or sometimes “superheavy,” “heavy,” and
“light”; we will stick to the former). In a weakly coupled
theory, these are all distinct scales. For scalars, a similar
hierarchy of scales between the zero- and nonzero
Matsubara modes is present in a window around Tc where
the thermal mass is comparable to the vacuum one.
The strategy is now as follows. Making use of the

thermal scale hierarchy, we construct an effective theory for
the Matsubara zero modes by integrating out all field
modes with ωn ≠ 0, which includes all fermionic fields.
This leaves a 3D theory for the zero modes, describing the
static properties of the finite-T theory at length scales
≳ðπTÞ−1. The effects of the hard scale are incorporated in
tree-level parameters of the EFT, and the process of thermal
resummation at any order of perturbation theory is then
equivalent to calculating the EFT parameters to correspond-
ing accuracy. Consequently, the effective potential calcu-
lated within the dimensionally reduced EFT reproduces the
resummed high-T effective potential [36].
The form of the EFT is governed by 3D gauge invari-

ance. In particular, under static gauge transformations the
gauge-field time components transform like adjoint scalar
fields. They generate a thermal mass due to Debye screen-
ing of electric fields in the thermal medium. Therefore, the
dimensionally reduced theory corresponding to (1) has an
action of the form2

S3D ¼ 1

T

Z
d3x

�
Lð3DÞ
YM þ jDiϕj2 þ

1

2
ð∂iSÞ2 þ Vðϕ; SÞ

þ 1

2
ðDiAa

0ÞðDiAa
0Þ þ

1

2
m2

DA
a
0A

a
0

þ ðscalar interactions withA0Þ

þ ðoperators of dimension 5 and higherÞ
�

ð11Þ

and is valid in the high-T limit. Here Lð3DÞ
YM is the Yang-

Mills part in three spatial dimensions and A0 is the
adjoint scalar corresponding to the time component of the
SUð2ÞL gauge field; the mass mD is the Debye screening
mass. The corresponding scalars for the hypercharge field
and QCD gluons are not shown for simplicity. The
potential Vðϕ; SÞ is of the same form as in (2) but with
modified parameters. The overall factor 1=T comes from
a trivial integration over the imaginary time and can be
absorbed in a rescaling of the fields and couplings. At
leading order one matches masses at one loop and
couplings at tree level, which is precisely the standard
procedure for daisy resummation.
The higher-dimensional operators in (11) are sup-

pressed by powers of the ultraviolet (UV) scale πT,
but Ref. [42] points out that their effects do not fully
decouple even in the T → ∞ limit. In many cases it is
still a good approximation to neglect them, provided that
all mass scales appearing in the EFT (including cubic
couplings) are small compared to πT [32]. It should be
emphasized that the 3D approach is not suited for
describing heavy BSM fields if their zero-mode masses
are comparable to πT. However, thermal effects from
such fields are Boltzmann suppressed and can be incor-
porated by integrating out the field together with the hard
Matsubara modes. It is also difficult to obtain a first-order
EWPT in such a scenario, unless there are non-negligible
effects from the higher-dimensional operators arising
from integration over the heavy field [35,43].
If the higher-dimensional operators are dropped by

truncation, the remaining EFT is super-renormalizable.
In this case a nonperturbative approach to the phase
transition is possible using relatively simple lattice simu-
lations [32,44]. Hence, our calculations in the following
sections are a prerequisite for future nonperturbative studies
of the singlet-extended SM, but in the present paper we
restrict ourselves to perturbation theory.
A further simplification can be achieved by explicitly

integrating out the adjoint scalar A0, whose mass is of the
order gT. The resulting theory is formally valid for
momenta at the ultrasoft scale, k≲ g2T, and has the same
form as (11) but without the A0 field. This is often a good
approximation even when parametric mass hierarchies are
not strictly satisfied, because of small numerical factors
involved in the integration over A0 [37].
The reader may wonder if purely perturbative studies of

the effective potential actually benefit from the EFT
approach, which does seem like an extra step compared
to the more direct calculation described in [9]. The two
approaches are, of course, equivalent, since the resumma-
tion of Ref. [9] also utilizes approximate decoupling of hard
Matsubara modes. In the perturbative context, the main
advantage of the EFT lies in factorization: physics at the
hard thermal scale is accounted for in the EFT matching
and can, in principle, be calculated to any order in

2The integration over hard modes also produces a T-dependent
constant term, a “cosmological constant”, to the effective action,
corresponding to a renormalization of the free energy [41]. It
plays no role in our discussion of phase transitions where the
relevant quantities depend only free-energy differences.
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perturbation theory, while the IR sensitive contributions
are obtained by separate calculations within the EFT.
There are also additional resummations of coupling con-
stants and those related to the A0 field that are typically not
included in the 4D calculations but are straightforward to
implement using EFT methods. In the context of hot QCD,
where dimensionally reduced theories are widely used,
including these higher-order effects is known to improve
the convergence of perturbation theory [45,46].

IV. POWER COUNTING AND
PARAMETRIC ESTIMATES

Let us now discuss the accuracy goal of our calculation.
Near a phase transition, there is competition between the
vacuum and thermal masses, so we assume that our tree-
level masses are not considerably heavier than T. We
express this parametrically as mϕ; mS ∼ gT, where g is a
formal expansion parameter that will be identified as
the SUð2ÞL gauge coupling for concreteness. For the
dimensionful cubic couplings, we consequently require
a1; b3 ∼ g2T; otherwise ratios such as a1=mϕ are unsup-
pressed and perturbativity is questionable. For other cou-
plings, the renormalization structure of the theory suggests
the parametric countings λ; a2; b4 ∼ g2 and yt; g0; gs ∼ g
(here gs is the QCD coupling). Adopting this schematic
counting facilitates the discussion of loop corrections
where combinations of the various couplings appear.
The structure of perturbative expansion at finite T is

modified by resummations and differs from that of its zero-
temperature counterpart. Loops involving hard Matsubara
modes contribute to the effective potential at orders
g2; g4;… while the resummed zero modes provide correc-
tions also at g3; g5;…. A one-loop calculation with daisy
resummation gives the field-dependent terms in the effec-
tive potential at Oðg3Þ with partial Oðg4Þ contributions, but
reaching g4 accuracy in the quadratic terms requires a two-
loop calculation. In particular the relative difference
between a one-loop daisy resummed potential and a
two-loop calculation is OðgÞ, while at zero temperature
the difference between one and two loops is Oðg2Þ. Thus
the two-loop improvement is relatively more important in
the finite-T theory. We will perform a full Oðg4Þ compu-
tation applying the 3D EFT approach.

The cubic couplings appearing in the XSM have
implications for the parametric accuracy of dimensional
reduction. In the absence of chemical potentials, the leading
higher-dimensional operators appearing in the dimension-
ally reduced EFT of the SM are of dimension six (in 4D
units) [47]. This is also true for the Z2-symmetric case
of XSM. However, in the more general case there can be
Z2-breaking operators like c4;1ðϕ†ϕÞ2S at dimension five.
The coefficient is parametrically c4;1 ∼ g4a1=T2. With this
operator present in the 3D EFT, it contributes, among
others, to the ϕ†ϕS2 correlator via the diagram

ð12Þ

Since the typical mass scale of the 3D EFT is m ∼ gT, this
diagram contributes at order a41=T

4. But there is a one-loop
contribution of the same parametric order from integrating
out the hard thermal modes. We conclude that that as far as
arbitrary Green’s functions are concerned, there is no
reason to keep terms proportional to a41 in the EFT
matching relations unless dimension five operators are
included as well.3

To keep the discussion simple, we will only include
operators up to dimension four in the EFT. In terms of our
power counting, the maximal accuracy that can be reached
for field-dependent terms in the effective potential is then
Oðg4Þ, sufficient for our purposes. The EFT reproduces
hard-mode contributions at this accuracy provided that we
match one- and two-point Green’s functions at two-loop
order, and three- and four-point functions at one loop.
Terms such as a41 and g2a21 will be dropped, following the
power counting described above. An additional advantage
of dropping the higher-dimensional operators is that the
resulting EFT admits a simple continuum limit, facilitating
nonperturbative lattice studies in the future.

V. MATCHING TO THE 3D EFT

Building on the discussion of Sec. III, the dimensionally
reduced EFT for the full XSM has the Euclidean action

S3D ¼
Z

d3x

�
1

4
Fa
ijF

a
ij þ

1

4
BijBij þ jDiϕj2 þ

1

2
ð∂iSÞ2 þ V3Dðϕ; SÞ þ 1

2
ðDiAa

0ÞðDiAa
0Þ þ

1

2
m2

DA
a
0A

a
0 þ

1

2
ð∂iB0Þ2

þ 1

2
ðm0

DÞ2B2
0 þ

1

2
ðDiCα

0ÞðDiCα
0Þ þ

1

2
ðm00

DÞ2Cα
0C

α
0 þ h3ϕ†ϕAa

0A
a
0 þ h03ϕ

†ϕB2
0 þ h003ϕ

†Aa
0σaϕB0

þ ω3ϕ
†ϕCα

0C
α
0 þ x3SAa

0A
a
0 þ x03SB

2
0 þ y3S2Aa

0A
a
0 þ y03S

2B2
0 þ interactions among A0; B0; andC0

�
: ð13Þ

3This conclusion can also be reached via the general power-counting arguments given in [47].
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We use “natural” 3D units where all couplings are
dimensionful and fields have mass dimension 1=2.
Here σa are the Pauli matrices and Fij; Bij are 3D field
strengths for the SU(2) and Uð1ÞY gauge fields whose
couplings are denoted by g3 and g03. The fields A0, B0, C0

are scalars in adjoint representations of SUð2Þ;Uð1ÞY;
SUð3Þ, respectively (i.e., B0 is a singlet).4 Their masses
are parametrically gT; g0T; gsT due to Debye screening;
we will shortly integrate these fields out to considerably
simplify the EFT.
Couplings between the singlet and the adjoint fields are

generated by ϕ loops in the 4D theory and the ϕ†ϕC0C0

term by quark loops. In principle the SU(3) gluons are also
present in the EFT, but these couple to the Higgs sector
only through C0 and any such contribution to the Veff is of
higher order than our accuracy goal. Interaction vertices
among the adjoint scalars are Oðg4Þ and contribute only at
higher orders [48]. The scalar potential for ϕ and S in the
EFT is

V3D ¼ m2
ϕ;3ϕ

†ϕþ λ3ðϕ†ϕÞ2 þ b1;3Sþ 1

2
m2

S;3S
2

þ 1

3
b3;3S3 þ

1

4
b4;3S4 þ

1

2
a1;3Sϕ†ϕþ 1

2
a2;3S2ϕ†ϕ:

ð14Þ

To avoid clutter, we will use the same notation for fields in
the original theory and those in (13).
To relate the EFT parameters to those appearing in the

full XSM in 4D, we identify the fields in (13) as the
Matsubara zero modes of the original theory and integrate
out all loops involving a nonzero (hard) Matsubara mode.
Effects of the hard modes approximately decouple in the
high-T limit, apart from a T-dependent renormalization of
parameters and fields in the zero-mode sector. It is
convenient to make these corrections explicit in the EFT
by writing, for instancem2

ϕ;3 ¼ m2
ϕ þ δTm2

ϕ, where δTm
2
ϕ is

the T-dependent correction from hard modes (“thermal
counterterm”). Here m2

ϕ;3 is the renormalized parameter; a
separate counterterm δm2

ϕ;3 is introduced to absorb UV
divergences in dimensional regularization. In the matching
we treat both counterterms as perturbations. We then
calculate 1PI Green’s functions both in the EFT and in
the full theory at soft external momenta, solving for the
matching corrections order by order in perturbation theory
by requiring that the Green’s functions match (note that
hard Matsubara modes cannot appear in reducible inter-
nal legs).

The required matching relations have been worked out
previously in Ref. [49], where terms such as g2a21 and a41
were included. As discussed above, one then has cor-
rections of the same order from higher-dimensional
operators, and the resulting EFT becomes complicated.
Here we shall stick to the power counting of the previous
section and omit such terms, whose effects are negligible
unless the cubic couplings are unnaturally large compared
to masses appearing in the quadratic terms. We have
checked this numerically in the benchmark points dis-
cussed below.
For the matching, we can expand the fields around any

constant background value that is parametrically smaller
than the UV scale πT. Any such field shifts affect only the
IR sector and have no effect on the matching. Therefore we
choose to expand around the origin so that no background
fields are explicitly present in the calculation. The resulting
EFT correctly describes the phase structure of the full
XSM, provided that VEVs after the EWPT are not con-
siderably larger than πT; otherwise there will be unsup-
pressed contributions from higher-dimensional operators.
We take the linear term b1S to be an additional interaction
rather than part of the free particle action. This is allowed
because it only creates one-particle-reducible insertions
that can be incorporated in the EFT by matching the singlet
one-point correlator at Oðg4Þ.
Detailed discussions of matching calculations in the

high-T context can be found for instance in [37,41,
49,50]. Here we cut down on details, showing explicitly
only the matching of singlet contributions to the Higgs
mass parameter m2

ϕ;3. The relevant diagrams are shown in
Fig. 1. At two-loop level there are diagrams where both
soft and hard momenta flow in loops, however these are
absorbed in the EFT by one-loop diagrams containing a
thermal counterterm insertion [37].5 Hence, only dia-
grams with hard momenta in all loops are needed for
the matching. The sum integrals are calculated using
high-T expansion, i.e., an expansion in m2=ðπTÞ2, and
we assume m ∼ gT. For Oðg4Þ accuracy we need to
expand the one-loop diagrams to next-to-leading order,
while at two-loop level the leading order suffices.
We denote sum integrals over nonzero modes as

XZ 0

P
≡ T

X
ωn≠0

�
eγμ̄2

4π

�
ϵ
Z

ddp
ð2πÞd ; ð15Þ

where P ¼ ðωn; pÞ, d ¼ 3 − 2ϵ, μ̄ is the MS scale and γ is
the Euler-Mascheroni constant. At one loop, the relevant
bosonic sum integrals are [52]

4Three-dimensional gauge invariance also allows for operators
with an odd number of the adjoint fields, such as ϕ†Aa

0σaϕ and
ϕ†ϕB0. However, these can only appear in the presence of
nonvanishing chemical potentials [47].

5For example, diagram (c) with hard momentum in the lower
and soft momentum in the upper loop corresponds to a one-loop
diagram of the type (c2) in the EFT, with the blob replaced by
δTa2, the thermal correction to a2.
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I4b1 ¼
XZ 0

P

1

P2
;

¼ T2

12

�
1þ ϵ

�
2γ − ln 4þ 2 ln

μ̄

T
− 2

ζ0ð2Þ
ζð2Þ

��
þOðϵ2Þ;

ð16Þ

I4b2 ¼
XZ 0

P

1

P4
¼ 1

16π2

�
1

ϵ
þ 2γ þ 2 ln

μ̄

4πT

�
þOðϵÞ:

ð17Þ
At vanishing external momentum, the one-loop diagrams in
Fig. 1 give

ðaÞ þ ðbÞ ¼ −
1

2
a2ðI4b1 −m2

SI
4b
2 Þ þ 1

4
a21I

4b
2 þOða21m2

SÞ:
ð18Þ

Here the a21m
2
S term exceeds our desired accuracy. The first

term is the Oðg2Þ singlet contribution to thermal Higgs
mass, δTm2

ϕ ¼ ðδTm2
ϕÞSM þ T2

24
a2 þOðg4Þ.

On the EFT side, we renormalize the field as
ϕ → ð1þ δTZϕÞ1=2ϕ, where the counterterm arises from
integration over the hard modes at soft external momenta in
the full theory. Then, in the EFT Lagrangian we have
m2

ϕ;3ϕ
†ϕ=T → ðm2

ϕþ δTm2
ϕÞð1þ δTZϕÞϕ†ϕ=T, plus a mass

counterterm needed to cancel 1=ϵ poles in 3D. For Oðg4Þ
matching, the field renormalization counterterm needs to be
known at Oðg2Þ accuracy. Momentum-dependent contribu-
tions from the singlet are ∼k2a21=T2 ∼ g6T2 for soft k ∼ gT,
therefore the SM result is sufficient [Eq. (B.37) in [53]]:

δTZϕ ¼ −
1

ð4πÞ2
�
Lb

4
ð3ð3 − ξÞg2 þ ð3 − ξÞg02Þ − 3y2t Lf

�
;

ð19Þ
which holds in a general covariant gauge (ξ is the gauge-fixing
parameter).HereLb andLf are logarithms that arise frequently
from one-loop bosonic and fermionic sum integrals:

Lb ¼ 2 ln
μ̄

T
− 2ðln 4π − γÞ; ð20Þ

Lf ¼ Lb þ 4 ln 2: ð21Þ

Gauge dependence of (19) cancels against two-loop contribu-
tions in the final result for m2

ϕ;3.
We then turn to the two-loop diagrams in Fig. 1, which

we evaluate at vanishing external momentum and leading
order in the high-T expansion (i.e., propagators can be
taken massless). Diagrams (c), (d), (e) are products of one-
loop sum integrals:

ðcÞ þ ðdÞ þ ðeÞ ¼
�
3λa2 þ a22 þ

3

2
b4a2

�
I4b1 I4b2 : ð22Þ

The “sunset” diagram (f) does not contribute to matching
at Oðg4Þ because of the identity [54]

XZ
P

XZ
Q

1

P2Q2ðPþQÞ2 ¼ 0: ð23Þ

Diagrams ðg1Þ; ðg2Þ contain gauge fields, but the resulting
integrals are trivial because the gauge propagator DμνðPÞ
with loop momentum P gets contracted with PμPν, leaving
only the longitudinal part. In a general covariant gauge, the
result is

ðg1Þ þ ðg2Þ ¼ −
1

8
ð3g2 þ g02Þa2ξI4b1 I4b2 : ð24Þ

Finally, there are one-loop diagrams with counterterm
insertions. Our counterterms for the MS scheme are listed
in Appendix A. Here we note that mass counterterms
contribute finite parts at Oðg6Þ in our counting and that the
singlet does not need field renormalization at one loop.
Thus diagram (c1) does not contribute while (c2) is
proportional to δa2. We also need an additional diagram
proportional to δλ (not shown in Fig. 1), because the Higgs
self-interaction gets renormalized by singlet loops. The
required diagrams are

ð25Þ

where, for the present discussion, we only include singlet
contributions to δλ.
Summing all the diagrams, expanding in ϵ and discard-

ing terms that go beyond Oðg4Þ gives

1 (a) (b)

2 (c) (d) (e) (f) (g1) (g2) (c1) (c2)

FIG. 1. Singlet contributions to the ϕ†ϕ self energy. Oriented dashed lines refer to Higgs doublets, double lines to the singlet S, and the
two types of wiggly lines describe SU(2) and Uð1ÞY gauge propagators. Black blobs represent counterterm insertions. In our power
counting, two-loop diagrams involving cubic couplings a1 or b3 contribute at higher orders and are not shown. The diagrams were
drawn with AXODRAW [51].
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ΓðSÞ
ϕ†ϕ

¼ −
T2

24
a2 þ

Lb

2ð4πÞ2
�
a2m2

S þ
1

2
a21

�

þ a2Lb
T2

ð4πÞ2
�
5a2 þ 3b4 þ 6λ −

1

4
ξð3g2 þ g02Þ

�

þ T2

ð4πÞ2
1

2
a22

�
cþ ln

3T
μ̄

�
; ð26Þ

which is the Oðg4Þ correction to the Higgs self energy due
to hard singlet loops. There are also leftover 1=ϵ diver-
gences that are canceled by contributions from the soft
modes, but this is irrelevant for our present discussion. Here

c ¼ 1

2

�
ln
8π

9
þ ζ0ð2Þ

ζð2Þ − 2γ

�
≈ −0.348723: ð27Þ

The self energy (26) is to be reproduced by tree-level
terms in the EFT, so we match as

−δTm2
ϕ − ðm2

ϕ þ δTm2
ϕÞδTZϕ ¼ ΓðSÞ

ϕ†ϕ
ð28Þ

fromwhich thematchingcorrection δTm2
ϕ can be solved order

by order, i.e., the one-loop result is used in the δTm2
ϕδTZϕ

term (them2
ϕ term actually contains no singlet contributions).

Accounting for the full SM part, given in Eq. (A28) of [55],
our result for the effective Higgs mass parameter is

m2
ϕ;3 ¼ ðm2

ϕÞSM þ T2

24
a2 −

Lb

2ð4πÞ2
�
a2m2

S þ
1

2
a21

�

þ a2T2

ð4πÞ2
�
1

24
Lb

�
3

4
ð3g2 þ g02Þ − 6λ − 5a2 − 3b4

�

−
1

8
y2t Lf

�
−

T2

ð4πÞ2
1

2
a22

�
cþ ln

�
3T
μ̄

��
; ð29Þ

where gauge dependence duly canceled. This is a two-loop
generalization of the thermal Higgs mass.
Equation (29) can be improved by considering RG

behavior of the 3D EFT. Applying RG evolution to the
parameters in (29), one can check that apart from the
lnð3T=μ̄Þ term, the effective mass is RG invariant up to
higher-order effects. This means that RG evolution down
from the matching scale is governed by the lnð3T=μ̄Þ
term. But we can also solve the running directly in the
super-renormalizable EFT, using the renormalization
scale μ̄3, to obtain an exact6 RG equation at two-loop
order [36,37]. Replacing the lnð3T=μ̄Þ term with the
solution of this RG equation incorporates higher-order
effects to the running of m2

ϕ;3, in this case we simply
replace

1

2
T2a22

�
cþ ln

�
3T
μ̄

��
→

1

2
a22;3

�
cþ ln

�
3T
μ̄3

��
; ð30Þ

and similarly in the SM part (c.f., [55]). Written in this
form, the effective mass is independent of the matching
scale μ̄ at order Oðg4Þ. We apply this same improvement
to parameters b1;3 and m2

S;3 below, while all couplings are
RG invariant in 3D. This is an example of a higher-order
improvement that is difficult to incorporate directly in the
4D effective potential. Numerically the effect is small, for
instance in benchmark points BM2 and BM6 below the
difference between improved and unimproved results is
less than 1%.
The matching calculation outlined above is straightfor-

ward to generalize to other parameters in the effective
theory (13). At Oðg4Þ, the results are

m2
S;3 ¼ m2

S þ T2

�
1

6
a2 þ

1

4
b4

�
−

Lb

ð4πÞ2
�
2b23 þ

1

2
a21 þ 2a2m2

ϕ þ 3b4m2
S

�

þ T2

ð4πÞ2
�
2þ 3Lb

24
ð3g2 þ g02Þa2 − Lb

��
λþ 7

12
a2 þ

1

2
b4

�
a2 þ

9

4
b24

�
−
1

4
a2y2t ð3Lb − LfÞ

�

þ 1

ð4πÞ2 ðð3g
2
3 þ g023Þa2;3 − 2a22;3 − 6b24;3Þ

�
cþ ln

�
3T
μ̄3

��
; ð31Þ

b1;3 ¼
1ffiffiffiffi
T

p
�
b1 þ

T2

12
ðb3 þ a1Þ −

Lb

ð4πÞ2 ða1m
2
ϕ þ b3m2

SÞ

þ T2

ð4πÞ2
�
2þ 3Lb

48
ð3g2 þ g02Þa1 −

Lb

2

��
λþ 7

12
a2

�
a1 þ

�
1

3
a2 þ

3

2
b4

�
b3

�
−
1

8
a1y2t ð3Lb − LfÞ

��

−
1

ð4πÞ2
�
2b3;3b4;3 −

1

2
a1;3ð3g23 þ g023 − 2a2;3Þ

��
cþ ln

�
3T
μ̄3

��
; ð32Þ

6In the running we actually neglect terms containing ω3 or couplings between the singlet and adjoint scalars. Because logarithmic
divergences in 3D appear first at two-loop level, our RG running is exact up to terms of order ω2

3 ∼ g8. There are no further corrections to
the running at higher orders.
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λ3 ¼ Tλþ T
ð4πÞ2

�
2 − 3Lb

16
ð3g4 þ 2g2g02 þ g04Þ þ 3y2t Lfðy2t − 2λÞ þ Lb

�
3

2
ð3g2 þ g02Þλ − 12λ2 −

1

4
a22

��
; ð33Þ

b3;3 ¼
ffiffiffiffi
T

p
b3 −

ffiffiffiffi
T

p

ð4πÞ2 3Lb

�
1

2
a1a2 þ 3b4b3

�
; ð34Þ

b4;3 ¼ Tb4 −
T

ð4πÞ2 Lbða22 þ 9b24Þ; ð35Þ

a1;3 ¼
ffiffiffiffi
T

p
a1 þ

ffiffiffiffi
T

p

ð4πÞ2
�
Lb

�
3

4
ð3g2 þ g02Þa1 − 2b3a2 − ð6λþ 2a2Þa1

�
− 3Lfy2t a1

�
; ð36Þ

a2;3 ¼ Ta2 þ
T

ð4πÞ2
�
Lb

�
3

4
ð3g2 þ g02Þ − 6λ − 2a2 − 3b4

�
a2 − 3Lfy2t a2

�
: ð37Þ

Matching the interactions between adjoint fields and the
singlet at one-loop level gives

x3 ¼
T

ð4πÞ2 g
2a1; ð38Þ

x03 ¼
T

ð4πÞ2 g
02a1; ð39Þ

y3 ¼
T

ð4πÞ2
1

2
g2a2; ð40Þ

y03 ¼
T

ð4πÞ2
1

2
g02a2: ð41Þ

Couplings between S and the temporal gluon C0 do not
appear at one loop.
The remaining parameters mD; m0

D; m
00
D; h3; h

0
3; h

00
3;ω3

receive no contributions from the singlet at this order
and the results can be read from Eqs. (A10)–(A12) and
(A18)–(A20) in Ref. [55] (by setting Nt → 0; a2 → 0 in
those expressions).7 For the Debye masses a one-loop
matching is sufficient, as they contribute to the Higgs
effective potential only through loops.
In practice, we have automated the matching calculation

using in-house FORM [56] software based on a standard
Laporta algorithm [57] for the reduction of sum integrals.
All required integrals can be read from [48], and [49]
collects them in a reduced form. While installing a general
covariant gauge, we have verified that all matching rela-
tions are manifestly gauge invariant and independent of
the matching scale up to higher-order corrections. For the
ensuing numerical analysis we fix the matching scale μ̄ ¼
4πe−γT ≈ 7T, for which the Lb terms vanish identically and

which should be optimal for minimizing higher-order
logarithms [36].
For later convenience, we also match a set of dimension

five and six operators (in 4D language). These are used
merely to estimate the accuracy of our EFT and are
excluded from the numerical analysis below. The effective
potential is most sensitive to nonderivative operators
constructed from ϕ and S. Up to dimension six, these are

Vð3DÞ
≤6 ¼ c0;5S5 þ c2;3ϕ†ϕS3 þ c4;1ðϕ†ϕÞ2Sþ c6;0ðϕ†ϕÞ3

þ c0;6S6 þ c4;2ðϕ†ϕÞ2S2 þ c2;4ϕ†ϕS4; ð42Þ

where the coefficients are to be matched at one loop. In the
SM, the operator c6;0ðϕ†ϕÞ3 is dominated by contributions
from the top quark [37]. Here we include the top quark loop
and pure scalar contributions at Oðg6Þ in our power
counting. Corrections from gauge fields are neglected,
because we expect dominant effects to come from the
scalar sector.8 At leading order in high-T expansion, the
matching reads

c0;5 ¼
ζð3Þ

ð4πÞ4 ffiffiffiffi
T

p
�
18b24b3 þ

1

2
a22a1

�
; ð43Þ

c2;3 ¼
ζð3Þ

ð4πÞ4 ffiffiffiffi
T

p a2
4
ð8ða2 þ 3b4Þð2b3 þ a1Þ þ 24λa1Þ;

ð44Þ

c4;1 ¼
ζð3Þ

ð4πÞ4 ffiffiffiffi
T

p ð12a1a2λþ 2a22ðb3 þ a1Þ þ 24λ2a1Þ;

ð45Þ

7Equation (A12) in [55] should read m00
D
2 ¼ g2s T2ð1þ nf

3
Þ with

nf ¼ 3.

8In fact, gauge contributions to the dimension five and six
operators are generally gauge dependent at one loop, whereas
those from scalars and the top quark are not.
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c6;0 ¼
ζð3Þ
ð4πÞ4

�
80λ3 − 28y6t þ

1

3
a32

�
; ð46Þ

c0;6 ¼
ζð3Þ
ð4πÞ4

�
1

6
a32 þ 9b34

�
; ð47Þ

c4;2 ¼
ζð3Þ
ð4πÞ4 a2ð24λ

2 þ 2a22 þ a2ð12λþ 3b4ÞÞ; ð48Þ

c2;4 ¼
ζð3Þ
ð4πÞ4 ða

3
2 þ 9a2b24 þ 3a22λþ 6a22b4Þ: ð49Þ

Since the Yukawa and BSM contributions to c6;0 come with
opposite signs, the error from neglecting the ðϕ†ϕÞ3
operator can be smaller than in the minimal SM.

VI. INTEGRATING OUT THE DEBYE
SCREENED GAUGE FIELDS

As a final step of our EFT construction we integrate out
the adjoint fields A0, B0, C0, incorporating additional ring
resummations at the soft scale. These are not typically
included if calculating the potential directly in 4D. This
procedure is possible because the scale gT of electric
Debye screening is parametrically larger than that of
magnetic screening, g2T. The resulting EFT is simply

S̄3D ¼
Z

d3x

�
1

4
Fa
ijF

a
ij þ

1

4
BijBij

þ jDiϕj2 þ
1

2
ð∂iSÞ2 þ V3Dðϕ; SÞ

�
; ð50Þ

where the scalar potential is as in (14) but with modified
parameters, which we denote by an additional overline (for
instance m2

ϕ;3 → m̄2
ϕ;3). Likewise, the gauge couplings are

ḡ3; ḡ03. Again, the notation is left unchanged for fields.
Matching proceeds in complete analogy to that of the

dimensional reduction step. Because the singlet couples to
the adjoint fields only at Oðg4Þ, corrections to couplings
ā1;3; ā2;3; b̄3;3; b̄4;3 start at Oðg5Þ and can be dropped. For S
and SS correlators at two loop, we likewise neglect
diagrams containing singlet-adjoint vertices. This leaves
diagrams where the interaction with adjoint scalars occurs
through the Higgs, but these are proportional to mD=mϕ;3

and are absorbed by one-loop diagrams involving a
counterterm in the IR theory (this is analogous to the
cancellation of mixed hard and soft loops due to a thermal
counterterm in dimensional reduction). Thus one-loop
matching is sufficient for b̄1;3; m̄2

S;3:

b̄1;3 ¼ b1;3−
1

4π
ð3mDx3þm0

Dx
0
3Þ;

m̄2
S;3 ¼m2

S;3−
1

2π

�
3mDy3þm0

Dy
0
3þ

3x23
2mD

þ x023
2m0

D

�
: ð51Þ

Even these are formally higher-order corrections, but we
nevertheless retain them here.
For the Higgs mass parameter, we again neglect all two-

loop contributions involving singlet-adjoint couplings.
Then the result for m̄2

ϕ;3 is the same as in the SM:

m̄2
ϕ;3 ¼ m2

ϕ;3 −
1

4π
ð3h3mD þ h03m

0
D þ 8ω3m00

DÞ
þ ðtwo-loopÞ: ð52Þ

The two-loop part can be read from Eq. (B.97) of [53]. In
our power counting the SU(3) term ω3m00

D is Oðg5Þ; the
reason we include it here is because ω3 ∼ g2s y2t is numeri-
cally large and affects the mass more than the hypercharge
contribution. The remaining parameters obtain no BSM
corrections at one loop:

ḡ23 ¼ g23

�
1 −

g23
6ð4πÞmD

�
; ð53Þ

ḡ03
2 ¼ g023 ; ð54Þ

λ̄3 ¼ λ3 −
1

2ð4πÞ
�
3h23
mD

þ h023
m0

D
þ h003

2

mD þm0
D

�
: ð55Þ

Finally, corrections to the higher-dimensional operators in
Eqs. (43)–(49) are numerically small compared to the hard
scale contributions [37] and will be neglected in our error
estimates. This completes the construction of our EFT.

VII. THE EFFECTIVE POTENTIAL

We are now ready to construct the effective potential Veff
using the EFT (50), with resummation of hard thermal loops
implemented by the 4D → 3D matching relations (29)–(41)
and the Debye screened adjoint fields integrated out. The
effective potential can be obtained by integrating over all
nonzero momentum modes in the path integral around con-
stant background fields. In 3D this is essentially a zero-
temperature calculation: temperature dependence appears
only in the definitions of the renormalized 3D parameters.
We shift the Higgs field in analogy to Eq. (3), denoting

the associated background field in 3D units by v̄, and the
singlet is shifted as S → Sþ x̄. The background fields v̄
and x̄ are treated as free real parameters. As in the zero-
temperature case, the neutral components of ϕ and Smix to
form eigenstates h1, h2, but now the mixing angle depends
on the background fields. In the diagonal basis, obtaining
the one-loop correction to Veff is straightforward [36].
Including the gauge fields, the 3D effective potential up to
one-loop order is
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V0 þ V1 ¼ b̄1;3x̄þ
1

2
m̄2

ϕ;3v̄
2 þ 1

2
m̄2

S;3x̄
2 þ 1

3
b̄3;3x̄3 þ

1

4
ā1;3v̄2x̄þ

1

4
λ̄3v̄4 þ

1

4
b̄4;3x̄4 þ

1

4
ā2;3v̄2x̄2

þ 2ðd − 1ÞJ3ðm̄WÞ þ ðd − 1ÞJ3ðm̄ZÞ þ J3ðm̄h;1Þ þ J3ðm̄h;2Þ þ 3J3ðm̄GÞ; ð56Þ

where d ¼ 3 − 2ϵ, and we have used Landau gauge ξ ¼ 0.
The integral appearing at one-loop is UV finite and
given by

J3ðmÞ ¼ 1

2

Z
d3p
ð2πÞ3 lnðp

2 þm2Þ ¼ −
m3

12π
: ð57Þ

Masses of the gauge and would-be Goldstone fields are

m̄2
W ¼ 1

4
ḡ23v̄

2; m̄2
Z ¼ 1

4
ðḡ23 þ ðḡ03Þ2Þv̄2 ð58Þ

m̄2
G ¼ m̄2

ϕ;3 þ λ̄3v̄2 þ
1

2
ā1;3x̄þ

1

2
ā2;3x̄2; ð59Þ

while m̄h;1 and m̄h;2 are given in Appendix B.
The two-loop correction to Veff requires more work but

is straightforward, as there is no need for further resum-
mations and the required integrals are known [29]. The
correction is obtained from two-loop vacuum diagrams in
the shifted theory and is UV divergent, unlike the one-loop
correction. Details of the calculation are relegated to
Appendix B.
A qualitative difference to 4D effective potentials is that

in 3D, RG evolution starts only at two-loop order and
can be solved exactly, with no corrections at higher
orders (ignoring the running of field-independent additive
terms). The only parameters requiring renormalization are
b̄1;3; m̄2

ϕ;3; m̄
2
S;3, whose values depend on the 3D renorm-

alization scale μ̄3, see Sec. V. Accounting for their running
in the tree-level part yields a manifestly RG-invariant result
for the two-loop Veff [36]. In practice, we use the RG-
evolved parameters even inside the loop corrections. This
results in residual μ̄3 dependence that would be canceled by
logarithms at three- and four-loop orders.
The vacuum structure can be studied by minimizing

the effective potential perturbatively around the tree-level
minima, i.e., v̄ ¼ v̄0 þ ℏv̄1 þ ℏ2v̄2 þ � � � where ℏ is a
formal loop-counting parameter (and similarly for x̄).
This “ℏ expansion” gives gauge-invariant results for Veff
in its minima, order by order in ℏ [58,59]. Unfortunately,
this construction can fail near phase transitions [44]. For
instance in the Z2 symmetric XSM, the critical temperature
for “symmetric → Higgs” type transitions is determined, at
tree level, by the condition m̄2

ϕ;3ðTcÞ ¼ 0. In the ℏ expan-
sion one needs the two-loop correction evaluated at the
tree-level minimum, i.e., at vanishing m̄2

ϕ;3. This leads to an
explicit IR divergence in the two-loop potential, invalidat-
ing the method near Tc [29,60].

Such divergences can be avoided by solving the equa-
tions ∂Veff=∂v̄ ¼ ∂Veff=∂x̄ ¼ 0 “exactly,” in practice by
minimizing the potential numerically. This sums a subset of
one-particle-reducible corrections that render the potential
IR finite at its minima, and the difference to a strict ℏ
expansion is formally of higher order [44]. However, the
exact minimization generally introduces residual gauge
dependence to the results that is only canceled at higher
loop orders.
In this paper, wewill take the latter approach andminimize

Veff numerically in Landau gauge. Our reasons for not
implementing a gauge-invariant ℏ expansion are as follows:
(1) We will study the XSM near the Z2 symmetric limit,

where the tree-level condition for EWPT is
m̄2

ϕ;3ðTcÞ ≈ 0 and performance of the ℏ expansion
is questionable.

(2) For small gauge parameters jξj≲ 1, one expects the
remaining gauge dependence to be numerically
comparable to the gauge-independent corrections
from higher loop orders. Landau gauge ξ ¼ 0 should
minimize this effect, and earlier studies in other
models support this assumption [61,62].

(3) Many existing studies in the XSM apply Landau
gauge, and since our goal is to investigate the con-
vergence of perturbation theory in a typical BSM
setting it makes sense to present our results in the
same gauge.

(4) For strong transitions in the XSM, we expect that
dominant uncertainties come from residual RG scale
dependence in scalar loops and not from gauge loops
where the gauge dependence appears. This expect-
ation is supported by the one-loop study of Ref. [21].

It is worth noting that the residual gauge dependence arises
only in the effective potential, while our 4D → 3Dmatching
relations are gauge invariant.
Of course, while the gauge-dependent approach avoids

explicit IR divergences at two-loop, it does not remove the
fundamental IR problem of high-T perturbation theory,
which is an intrinsic property of the Matsubara zero modes.
There can still be divergences at higher orders due to mass-
less gauge bosons in the symmetric phase, and slow con-
vergence is to be expected if the scalars are light compared to
the dimensionful couplings in the 3D scalar potential.

VIII. NUMERICAL RESULTS

To identify phase transitions, we look for temperatures
where the effective potential has degenerate local minima.
For a set of input parameters Mh2 ; sin θ; b3; b4; a2 and the
temperature T, the analysis consists of the following steps:
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(1) Solve the renormalized parameters at MS scale μ̄ ¼
MZ from the one-loop corrected relations (A27)–
(A34) in Appendix A.

(2) Run the parameters to thematching scale μ̄ ¼ 4πe−γT
using one-loop β functions (c.f., Appendix A). This
ensures that any leftover μ̄ dependence in the EFT
matching is of higher order than the calculation.

(3) Obtain the EFT parameters from Eqs. (29)–(40) and
(51)–(54). In the final EFT, we set the renormaliza-
tion scale to μ̄3 ¼ T.

(4) Obtain the two-loop effective potential from Eq. (56)
and Appendix B and minimize Veffðv̄; x̄Þ with
respect to the background fields using a differential
evolution algorithm.

Steps 2 through 4 are repeated for different temperatures
until a critical temperature Tc is found (we vary T in steps
of 0.1 GeV). Outside the minimum Veff can develop an
imaginary part, signaling an unstable field configuration
[63]. In such cases, we simply discard the imaginary part.
At Tc, we calculate the jumps Δv and Δx in scalar VEVs

across the phase transition, and the latent heat L ¼
TΔð∂Veff=∂TÞ. To avoid confusion, we use familiar 4D
units when discussing the results: ½v� ¼ ½x� ¼ ½T� and
½Veff � ¼ ½T4�, i.e., Veff and the fields in 3D get rescaled
by approriate powers of T. We also compute the disconti-
nuity in the quadratic Higgs condensate, Δhϕ†ϕi ¼
Δð∂Veff=∂m̄2

ϕ;3Þ, which provides a gauge-invariant defini-

tion of the Higgs VEV through vphys ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δhϕ†ϕi

p
[32]

(although our results contain residual gauge dependence,

see above). The difference between Δv and vphys is small in
all of our benchmarks. We do not study metastability ranges
of the phases nor nucleation processes, so our latent heat
will be given at Tc instead of the nucleation temperature.
Therefore our results give a lower bound on the actual
transition strength.
We focus mainly on strong transitions with Δv=Tc ≳ 1.0

and examine how the transition changes as the two-loop
correction is included. In searching for strong transitions
we make use of the one-loop parameter scans appearing in
[19,35]. In this paper we concentrate our discussion on
selected benchmark (BM) points that represent typical
strong-EWPT scenarios, rather than full-fledged scans of
the free parameter space. This approach suffices to quantify
the effect of two-loop corrections on basic quantities like
Δv=Tc, but it would be interesting to perform systematic
two-loop scans over the free parameters in a future study.
Table I collects our results for direct transitions between

the EW symmetric and broken minima. In the non-Z2

symmetric XSM, the minima are separated by a potential
barrier already at tree level due to the singlet VEV being
nonzero (points BM1-BM5), while in the Z2 symmetric
limit the barrier is generated radiatively (BM6 and BM7).
In the Z2 symmetric case there are also two-step transi-
tions where the EWPT is preceeded by spontaneous
breakdown of the Z2 symmetry, which is restored in
the final EW minimum.9 Here we consider only the second,

TABLE I. Benchmark scenarios for direct, one-step EWPT.
Points BM6 and BM7 are in the Z2-symmetric XSM. δEFT
estimates the validity of our dimensionally reduced theory as
described around Eq. (60). The numbers are obtained using fixed
RG scale μ̄3 ¼ T.

BM1 BM2 BM3 BM4 BM5 BM6 BM7

Mh2 [GeV] 300 300 350 370 440 350 450
sin θ 0.05 0.05 −0.08 0.07 0.07 0 0
a2 2.75 3.0 3.0 3.2 3.9 3.5 4.0
b3 [GeV] 50 50 40 −25 70 0 0
b4 0.50 0.50 0.30 0.30 0.6 0.3 0.3

One loop
Tc [GeV] 163.7 135.6 163.9 171.5 220.7 181.5 224.3
vphys=Tc 1.10 1.91 1.19 1.10 1.12 0.98 0.89
Δv=Tc 1.10 1.86 1.21 1.11 1.15 1.02 0.93
Δx=Tc 0.27 0.97 0.24 0.17 0.17 0 0
L=T4

c 0.27 0.57 0.32 0.27 0.13 0.22 0.12

Two loop
Tc [GeV] 128.3 100.8 123.5 127.0 119.7 135.3 139.3
vphys=Tc 1.06 2.10 1.24 1.03 1.13 0.28 0.25
Δv=Tc 1.07 2.06 1.24 1.03 1.14 0.29 0.29
Δx=Tc 0.25 1.02 0.25 0.15 0.13 0 0
L=T4

c 0.37 0.91 0.51 0.38 0.51 0.037 0.038
δEFT 0.0014 0.0075 0.0057 0.0057 0.020 0.0015 0.0024

TABLE II. Collected results for two-step EWPT in chosen
benchmark points. We consider only transitions in the Higgs
direction.

BM8 BM9 BM10 BM11 BM12

Mh2 [GeV] 200 250 325 350 400
sin θ 0 0 0 0 0
a2 1.5 2.25 3.5 4.0 5.0
b3 [GeV] 0 0 0 0 0
b4 0.3 0.3 0.3 0.3 0.3

One loop
Tc [GeV] 159.7 125.2 104.2 83.8 79.0
vphys=Tc 0.96 2.02 2.82 3.64 4.08
Δv=Tc 0.90 1.94 2.72 3.53 3.97
Δx=Tc 0.73 1.48 1.94 2.42 2.56
L=T4

c 0.13 0.58 1.40 2.78 5.08

Two loop
Tc [GeV] 131.9 99.5 100.3 59.4 78.7
vphys=Tc 1.20 2.26 2.17 4.35 3.05
Δv=Tc 1.14 2.14 2.06 4.15 2.92
Δx=Tc 0.92 1.68 1.52 2.94 1.92
L=T4

c 0.26 0.70 0.42 0.89 0.46
δEFT 0.0025 0.0034 0.018 0.066 0.11

9We expect the Z2-breaking transition to be of second order,
but this cannot be verified within perturbation theory.
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EW-breaking transition, for which our results in the two-
step scenario are in Table II. Because the Z2-breaking phase
remains metastable even at zero temperature, a realistic
two-step scenario necessitates rapid enough nucleation
into the EW phase to avoid contradictions with standard
cosmology. While this requirement can restrict the param-
eter space of allowed two-step EWPT considerably [19],
accounting for it requires calculation of the bubble nucle-
ation rate and will not be considered further in this paper.
Evolution of the background fields in the different types of
EWPT are illustrated in Fig. 2.
For comparison, we show also the results from a one-

loop calculation. Here “one loop” refers to the one-loop
potential in (56) with the EFT parameters matched at
Oðg2Þ, in other words it is the daisy-resummed 4D potential
to leading order in high-T expansion (with an additional
resummation of A0 loops), correct at Oðg3Þ. “Two loop”
refers to the full Oðg4Þ calculation described in detail in
the above sections and in Appendix B. In both cases we
use the same T ¼ 0 renormalization prescription for input
parameters.
In all of our benchmarks we consistently find lower

critical temperatures at two-loop order and the difference to
the one-loop temperature is quite large in almost all points.
We expect this shift to originate from theOðg4Þ corrections
to thermal masses. For one-step transitions with a tree-level
barrier, we observe that transitions tend to be stronger
at two loop, and the latent heat is increased by at least
20% relative to the one-loop result. In contrast, two-loop
corrections make the transition significantly weaker in the
Z2 symmetric XSM. Here, the transition may appear to be
strongly first order at one loop, but the radiatively generated
potential barrier can be destroyed by higher-order effects if
the perturbative expansion convergences slowly. In fact,
scanning over Mh2 ∈ ½150; 450� GeV and a2 ∈ ½1; 5� with
b4 ¼ 0.3 in the Z2 symmetric case, we found no transitions
that would remain strong (Δv=Tc > 1.0) at the two-loop
level. Indeed, one-loop results should be taken with a grain

of salt when the coupling a2 is this strong. These consid-
erations call for more thorough investigations of higher-
order effects in the Z2 symmetric XSM in the future.
Two-step transitions are quite sensitive to the singlet self-

interaction and here we concentrate on b4 ¼ 0.3. Contrary
to naive expectations, we find the transition strength to be
very sensitive to two-loop corrections, despite the presence
of a tree-level barrier. Particularly in BM12 the latent heat is
an order of magnitude smaller than the one-loop value,
signaling definite breakdown of perturbation theory at least
at low orders, probably due to the large value of a2. For
points BM8 and BM9 where the coupling is smaller, two-
loop effects are moderate but quantitatively important. We
conclude that transitions involving a tree-level barrier in the
potential are not protected from large loop corrections.
The presence of such a barrier implies that loop effects from
the Matsubara zero modes are relatively less important than
in radiatively induced transitions. This argument does not
apply to loop corrections involving hard Matsubara loops,
whose effect is to modify the long-distance coefficients
of the zero-mode EFT. Large loop corrections for two-
step transitions were also reported in [29] in a triplet-
extended model.
Our analysis was performed at a fixed renormalization

scale μ̄3 ¼ T and it is important to estimate how sensitive
the results are to variations of this scale (as discussed
above, the remaining scale dependence is of higher order
than the calculation at hand). In our EFT approach the soft
IR modes evolve according to the exact RG equations in
3D, so we may expect weaker scale dependence than what
is observed in 4D effective potentials. In Fig. 3 we plot the
effective potential at different values of μ̄3 in three bench-
mark points, together with the one-loop potential for
comparison. The scale dependence is seen to be extremely
mild when the transition occurs through a tree-level barrier.
For the radiatively generated transition in BM6 the scale
variations can shift the critical temperature by a few GeV,
but the transition itself is so weak that perturbation theory
may not be accurate due to nonperturbative gauge loops.

(a) BM2 (b) BM6 (c) BM10

FIG. 2. Evolution of Higgs and singlet VEVs, v and x, respectively, in different types of transitions: (a) symmetric→ broken transition
in the presence of a tree-level barrier, (b) radiatively generated symmetric → broken transition in the Z2 symmetric case, (c) two-step
phase transition with spontaneously broken Z2 symmetry (restoration of this symmetry occurs at a high temperature and is not shown
here). The dashed lines are predictions from a one-loop calculation.
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What is not shown in Fig. 3 is possible sensitivity to the
matching scale at which the EFT is constructed, corre-
sponding to residual scale dependence of the hard thermal
corrections. By varying the matching scale in the interval
½5T; 9T� we have checked that this scale ambiguity affects
the two-loop results even less than the residual dependence
on the 3D scale μ̄3. In contrast the one-loop potential is
quite sensitive to the matching scale, which is not surpris-
ing since we already concluded that two-loop corrections
are non-negligible. Dependence on the renormalization
scale is further discussed in [64].
The validity of our high-T prescription is estimated as

follows. After minimizing the two-loop potential at a given
T, we add to tree-level Veff the dimension five and six
operators from Eq. (42) that capture the dominant higher-
order corrections to our high-T EFT. We then locate the
minimum once more using the modified potential and look
at the relative change in the Higgs VEV,

δEFT ¼
				 v − vmod

v

				: ð60Þ

This quantity estimates the effect of higher-dimensional
operators, that were neglected in the main analysis, on
properties of the broken phase and particularly on the
transition strength. The tables show values of δEFT at Tc,
where δv is evaluated on the v ≠ 0 side of the transition. We
also considered the shift in the singlet VEV, but in all of our
points it was smaller than the respective change in v. In
most of our benchmarks the relative error is small, less than
1%. Hence our 3D EFT should give a very accurate
description of at least the broken phase. The excellent
performance of high-T approximations has also been
demonstrated in [27] for a two-Higgs doublet model.
The above accuracy considerations suggest that the

uncertainty in our two-loop results should be ∼10% and
probably even less in most points. One exception is BM12,

where the a2 coupling runs rapidly to nonperturbative
values. Of course, the simple arguments presented here
cannot conclusively rule out the possibility of sizable
corrections at higher loop orders or at the nonperturbative
level. Considering how much the two-loop terms affect Tc

and L=T4
c in several points, we may even anticipate large

higher-order effects in at least some region of the interest-
ing parameter space.

IX. DISCUSSION

In the paper at hand, we carried out a two-loop study of
the electroweak phase transition in the singlet-XSM,
quantifying the magnitude of two-loop corrections on
equilibrium characteristics of the transition. The study
involved radiatively induced transitions and transitions
through a tree-level barrier, as well as two-step phase
transitions. In all cases we found considerable deviations
from one-loop predictions, in particular the critical temper-
ature and latent heat typically change by at least 20%, but
particularly for very strong two-step transitions the
differences can be 100% or more.
Although we focused on a limited selection of points in

the free parameter space of the XSM, the main conclusion
should be clear: one-loop analyses are generally not very
accurate in predicting the strength nor the interesting
temperature range(s) of the EWPT. In our opinion, this
result by itself is not very surprising, because strong
transitions in the XSM are typically associated with at
least Oð1Þ coupling constants in the scalar sector, and
because the perturbative expansion converges more slowly
at high temperature than it does at T ¼ 0. We consequently
anticipate that two-loop corrections can significantly
impact predictions of, for example, the bubble nucleation
rate and other quantities relevant for gravitational waves
and baryogenesis. Our results strongly motivate improved
studies of the EWPT and its cosmological consequences at

(a) BM2 (b) BM6 (c) BM10

FIG. 3. Real part of the effective potential, plotted in the Higgs direction at one and two loops at their respective critical temperatures.
In (a) and (c) we have accounted for the changing singlet VEV. In (b), the potential barrier vanishes almost completely at two-loop level.
The dashed and dotted lines correspond to variations of the RG scale μ̄3. The potential generates an imaginary part near the local
maximum as a scalar eigenstate becomes tachyonic, and at specific values of v=T there is a massless mode. In (a) and (c), this results in
“kinks” in the two-loop potential, since 3D perturbation theory is not well behaved at such points. This complication does not affect our
numerical results, which depend only on properties of the potential in its local minima.
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the two-loop level, not only in the XSM but also in other
scalar extensions.
On the technical side, we wish to emphasize that the

dimensionally reduced approach to the EWPT described in
this paper provides a systematic and very intuitive approach
to thermal resummations beyond one-loop level. It is also
quite straightforward to apply the method to other BSM
models and in fact, dimensionally reduced investigations
have already been performed in several such models
[25,28,29]. The approach is limited to theories in the
formal high-T limit, but tests of its validity indicate good
accuracy even when there are relatively heavy excitations in
the spectrum [27–29]. In the present paper, we found
dimensional reduction accurate also in the XSM. This
observation motivates one more approach of studying
phase transitions in the XSM, namely that of nonperturba-
tive 3D simulations, which allow for a very accurate
determination of the relevant thermodynamics at the cost
of increased numerical effort.

ACKNOWLEDGMENTS

We thank Oliver Gould, Michael J. Ramsey-Musolf,
Kari Rummukainen, and Juuso Österman for helpful
discussions. L. N. is supported by the Jenny and Antti
Wihuri Foundation and by Academy of Finland Grant
No. 308791. P. S. has been supported by the European
Research Council, Grant No. 725369, and by the Academy
of Finland, Grant No. 1322507.

APPENDIX A: RENORMALIZATION AND
INPUT PARAMETERS

In this appendix, we discuss one-loop corrections to
the parametrization discussed in Sec. II. The goal is to
relate the renormalized parameters g; g0; yt, and those
appearing in the potential (2), to experimental observables
such as particle masses. We apply the MS prescription for
all counterterms (i.e., only the 1=ϵ poles are subtracted),
but the overall procedure is similar to standard EW
precision calculations that often use the on shell scheme.
Our approach is a straightforward generalization of that
described in Sec. 5 of [37], also in the context of high-T
physics. References [65–67] discuss renormalization of the
XSM in slightly different contexts. In this appendix only,
we work in Minkowski space at zero temperature.

1. Counterterms

The Lagrangian (1) is written in terms of bare (non-
renormalized) parameters. Working in D ¼ 4 − 2ϵ dimen-
sions, we renormalize the Higgs doublet as

ϕ → Z1=2
ϕ ϕ ¼ ð1þ δZϕÞ1=2ϕ; ðA1Þ

and similarly for the other fields (Aμ; Bμ; qt; t; S) appearing
in the bare Lagrangian.10 Our renormalized parameters are
obtained from the bare quantities by

g → μϵðgþ δgÞ; g0 → μϵðg0 þ δg0Þ; yt → Z−1=2
ϕ Z−1=2

qt Z−1=2
t μϵðyt þ δytÞ;

m2
ϕ → m2

ϕ þ δm2
ϕ; m2

S → m2
S þ δm2

S; b1 → Z−1=2
S μ−ϵðb1 þ δb1Þ;

λ → Z−2
ϕ μ2ϵðλþ δλÞ; b4 → Z−2

S μ2ϵðb4 þ δb4Þ; a2 → Z−1
ϕ Z−1

S μ2ϵða2 þ δa2Þ;
b3 → Z−3=2

S μϵðb3 þ δb3Þ; a1 → Z−1
ϕ Z−1=2

S μϵða1 þ δa1Þ: ðA2Þ

Here μ is the scale associated with dimensional regularization. Running will be given in terms of the MS scale
μ̄2 ¼ 4πe−γμ2.
We present the counterterms in a general Rξ gauge. At one loop, they read

δZϕ ¼ 1

ð4πÞ2
1

ϵ

�
3

4
ð3 − ξÞg2 þ 1

4
ð3 − ξÞg02 − 3y2t

�
; ðA3Þ

δZS ¼ 0; ðA4Þ

δZA ¼ g2

ð4πÞ2
1

ϵ

�
25

6
−
4

3
nf − ξ

�
; ðA5Þ

10Renormalization of the leptonic and QCD sectors can be ignored in our discussion.
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δZB ¼ −
g02

ð4πÞ2
1

ϵ

1

6

�
1þ 40

3
nf

�
; ðA6Þ

δZq ¼ −
1

ð4πÞ2
1

ϵ

�
1

2
y2t þ

3

4
g2ξþ 1

36
g02ξþ 4

3
g2s ξ

�
; ðA7Þ

δZt ¼ −
1

ð4πÞ2
1

ϵ

�
y2t þ

4

9
g02ξþ 4

3
g2s ξ

�
; ðA8Þ

δg ¼ −
g3

ð4πÞ2
1

ϵ

�
43

12
−
2

3
nf

�
; ðA9Þ

δg0 ¼ g03

ð4πÞ2
1

ϵ

1

12

�
1þ 40

3
nf

�
; ðA10Þ

δyt ¼ −
yt

ð4πÞ2
1

ϵ

�
3

4
g2ξþ 1

3

�
1þ 13

12
ξ

�
g02 þ 4

�
1þ 1

3
ξ

�
g2s

�
; ðA11Þ

δm2
ϕ ¼ 1

ð4πÞ2
1

ϵ

1

4
ð24λm2

ϕ þ 2a2m2
S þ a21 −m2

ϕð3g2 þ g02ÞξÞ; ðA12Þ

δm2
S ¼

1

ð4πÞ2
1

ϵ

1

2
ð6b4m2

S þ 4a2m2
ϕ þ 4b23 þ a21Þ; ðA13Þ

δb1 ¼
1

ð4πÞ2
1

ϵ
ðb3m2

S þ a1m2
ϕÞ; ðA14Þ

δb3 ¼
1

ð4πÞ2
3

2

1

ϵ
ð6b3b4 þ a1a2Þ; ðA15Þ

δa1 ¼
1

ð4πÞ2
1

ϵ
2

�
3a1λþ ðb3 þ a1Þa2 −

1

8
ð3g2 þ g02Þξa1

�
; ðA16Þ

δb4 ¼
1

ð4πÞ2
1

ϵ
ð9b24 þ a22Þ; ðA17Þ

δλ ¼ 1

ð4πÞ2
1

ϵ

�
3

16
ð3g4 þ 2g2g02 þ g04Þ þ 12λ2 þ 1

4
a22 − 3y4t −

1

2
λð3g2 þ g02Þξ

�
; ðA18Þ

δa2 ¼
1

ð4πÞ2
1

ϵ
a2

�
6λþ 2a2 þ 3b4 −

1

4
ð3g2 þ g02Þξ

�
: ðA19Þ

In the above, nf ¼ 3 stands for the number of active
fermion generations. The one-loop counterterms are suffi-
cient to render finite the EFT matching relations at leading
order in high-T expansion (Sec. V) and the zero-temper-
ature self-energies in the calculation below. To eliminate
dependence on the matching scale in Eqs. (29)–(40), β
functions are needed at one loop. These are obtained in the
usual fashion by requiring that the bare parameters are
independent of the RG scale. The resulting expressions can
be read from Sec. 3.2 of Ref. [68] (after converting their
scalar potential into our notation).

2. MS parameters in terms of physical observables

In the EW sector our choice of observables are the Fermi
constant Gμ and pole masses of the top quark, theW and Z
bosons, and that of the observed Higgs boson. Numerical
values are [69] Gμ ¼ 1.1663787 × 10−5 GeV−2 and

ðMt;MW;MZ;Mh1Þ
¼ ð172.76; 80.379; 91.1876; 125.10Þ GeV: ðA20Þ

The BSM parameters are fixed by specifying the pole mass
of the new scalar, Mh2 , and by giving sin θ; b3; b4; a2
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directly in the MS scheme. For the QCD coupling, we use
the value g2s ¼ 1.48409 and neglect its running.
As in Sec. II, we introduce VEVs so that the scalar

potential is minimized at tree level, with hSi ¼ 0. Mixing
angle θ is taken to diagonalize the scalar mass matrix at tree
level, and in what follows we identify the lighter eigenstate
with the SM Higgs, Mh1 ≤ Mh2 . If the lighter h1 is instead
taken to be the BSM excitation, the expressions below are
valid after interchanging Mh1 ↔ Mh2 and cos θ ↔ sin θ.
The two-point functions are, in terms of the MS

renormalized masses mðμ̄Þ, of the form

hhið−pÞhiðpÞi ¼ i
1

p2 −m2
hi
ðμ̄Þ þ Πhiðp2Þ ;

hZμð−pÞZνðpÞi ¼ −i
gμν − pμpν=p2

p2 −m2
Zðμ̄Þ þ ΠZðp2Þ

þ longitudinal part;

hψαðpÞψ̄βðpÞi ¼ i

�
1

pμγ
μ −mfðμ̄Þ þ ΣðpÞ

�
αβ

; ðA21Þ

and the W boson propagator is analogous to that of Zμ. In
addition to the usual 1PI contributions, the self energies
contain one-loop diagrams involving one-particle-reducible
h1 or h2 lines (“tadpoles”), because the scalar potential is
minimized only at tree level.
The pole-mass conditions for bosons are of the form

m2ðμ̄Þ ¼ M2 þ ReΠðM2Þ, from which the renormalized
masses can be solved. We write the fermionic self
energies as

ΣðpÞ ¼ mfðμ̄ÞΣsðp2Þ þ γμpμðp2Þ þ γμpμγ5Σaðp2Þ;
ðA22Þ

and treating the top the top quark as an asymptotic state,
only the scalar (Σs) and vector (Σv) parts contribute to its
pole condition:

m2ðμ̄Þ ¼ M2
t ð1þ 2Re½ΣsðM2

t Þ þ ΣvðM2
t Þ�Þ: ðA23Þ

The SUð2ÞL gauge coupling can be fixed by relating it to
Fermi constant, which describes muon decay in the low-
energy theory obtained by integrating out weak inter-
actions. Conventionally, the matching relation between
the full EW theory and the Fermi EFT is written, in the
on shell scheme, as

Gμffiffiffi
2

p ¼ 1

8M2
W

g2os
1 − Δr

: ðA24Þ

Δr contains contributions from weak gauge bosons and
scalars, but not from the QED sector, which cancels
when performing the matching. The on shell (OS)
coupling is related to our MS gauge coupling by g2ðμ̄Þ ¼
g2osð1þ δg2os=g2osÞ, where δg2os is the regularized OS counter-
term (this relation follows because the bare coupling must
be equal in both schemes).
In Feynman-t’Hooft gauge and with our sign conven-

tions, Δr is given at one-loop by [70]

Δr ¼ −
ReΠWðM2

WÞ − ΠWð0Þ
M2

W
þ δg2os

g2os

þ g2os
16π2

�
4 ln

μ̄2

M2
W
þ
�
7

2

M2
Z

M2
Z −M2

W
− 2

�
ln
M2

W

M2
Z
þ 6

�
þ ΔrBSM: ðA25Þ

Contributions to muon decay from BSM physics appear both in the self energy ΠW and ΔrBSM, the latter of which collects
diagrams involving interactions of the scalars with light fermions. However, such contributions are suppressed by light
fermion masses and are neglected in our analysis; hence we take ΔrBSM ¼ 0. We now define

g20 ≡ g2os
1 − Δr

¼ 8M2
WGμffiffiffi
2

p ðA26Þ

and replace g2os → g20 inside one-loop corrections. The difference is of higher order. Therefore,

g2ðμ̄Þ ¼ g20

�
1þ δg2

g20

�
; ðA27Þ

where

δg2

g20
¼ ReΠWðM2

WÞ − ΠWð0Þ
M2

W
−

g20
16π2

�
4 ln

μ̄2

M2
W
þ
�
7

2

M2
Z

M2
Z −M2

W
− 2

�
ln
M2

W

M2
Z
þ 6

�
: ðA28Þ
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This fixes the gauge coupling at a given scale; in practice we choose μ̄ ¼ MZ.
Expanding Eqs. (5)–(9), the defining relations for g02; y2t and the VEV v2 ¼ 4m2

W=g
2 to linear order in the (regularized)

self energies and δg2=g20, the remaining MS parameters read

g02ðμ̄Þ ¼ g20
M2

W

�
ðM2

Z −M2
WÞ

�
1þ δg2

g20

�
−M2

Z
ReΠWðM2

WÞ
M2

W
þ ReΠZðM2

ZÞ
�
; ðA29Þ

y2t ðμ̄Þ ¼
g20
2

M2
t

M2
W

�
1þ δg2

g20
−
ReΠWðM2

WÞ
M2

W
þ 2ReðΣsðM2

t Þ þ ΣvðM2
t ÞÞ

�
; ðA30Þ

m2
ϕðμ̄Þ ¼ −

1

4
½M2

h1
þM2

h2
þ ðM2

h1
−M2

h2
Þ cos 2θ þ 2ReΠh1ðM2

h1
Þcos2θ

þ 2ReΠh2ðM2
h2
Þsin2θ�; ðA31Þ

m2
Sðμ̄Þ ¼

1

2
½M2

h1
þM2

h2
þ ðM2

h2
−M2

h1
Þ cos 2θ þ 2ReΠh1ðM2

h1
Þ sin2 θ

þ 2ReΠh2ðM2
h2
Þcos2θ� − a2

2M2
W

g20

�
1 −

δg2

g20
þ ReΠWðM2

WÞ
M2

W

�
; ðA32Þ

b1ðμ̄Þ ¼ −
MW

g0
ðM2

h2
−M2

h1
Þ cos θ sin θ

×

�
1 −

1

2

δg2

g20
þ ReΠh2ðM2

h2
Þ − ReΠh1ðM2

h1
Þ

M2
h2
−M2

h1

þ 1

2

ReΠWðM2
WÞ

M2
W

�
; ðA33Þ

a1ðμ̄Þ ¼
g0
MW

ðM2
h2
−M2

h1
Þ cos θ sin θ

×

�
1þ 1

2

δg2

g20
þ ReΠh2ðM2

h2
Þ − ReΠh1ðM2

h1
Þ

M2
h2
−M2

h1

−
1

2

ReΠWðM2
WÞ

M2
W

�
; ðA34Þ

λðμ̄Þ ¼ g20
16M2

W

�
ðM2

h1
þM2

h2
þ ðM2

h1
−M2

h2
Þ cos 2θÞ

�
1þ δg2

g20
−
ReΠWðM2

WÞ
M2

W

�

þ 2ReΠh1ðM2
h1
Þcos2θ þ 2ReΠh2ðM2

h2
Þsin2θ

�
: ðA35Þ

Once the self energies are known, Eqs. (A27) through (A35) give one-loop corrected relations between the renormalized
parameters and physical input.

3. Expressions for the self-energies

The zero-temperature self-energies can be evaluated using a standard set of Passarino-Veltman integrals. We denote, in
D ¼ 4 − 2ϵ dimensions,

AðmÞ ¼ μ2ϵ
Z

dDp
ið2πÞD

1

p2 −m2
¼ m2

ð4πÞ2
�
1

ϵ
þ 1þ ln

μ̄2

m2

�
; ðA36Þ

B0;μ;μνðk;m1; m2Þ ¼ μ2ϵ
Z

dDp
ið2πÞD

1;pμ;pμpν

ðp2 −m2
1Þððpþ kÞ2 −m2

2Þ
: ðA37Þ

Here

B0ðk;m1; m2Þ ¼
1

ð4πÞ2
�
1

ϵ
þ 1þ 1

2
ln

μ̄2

m2
2

þ 1

2
ln

μ̄2

m2
1

−
1

2

m2
1 þm2

2

m2
1 −m2

2

ln
m2

1

m2
2

þ Fðk;m1; m2Þ
�
; ðA38Þ
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where the function Fðk;m1; m2Þ is defined in Appendix B of Ref. [71] and vanishes for k2 ¼ 0. The vector and tensor
integrals have decompositions

Bμðk;m1; m2Þ ¼ kμB1ðk;m1; m2Þ; ðA39Þ

Bμνðk;m1; m2Þ ¼ gμνB00ðk;m1; m2Þ þ ðkμkνpartÞ; ðA40Þ

with

B00ðk;m1; m2Þ ¼
1

2ðD − 1Þ ð2m
2
1B0ðk;m1; m2Þ

þ Aðm2Þ − ðm2
2 −m2

1 − k2ÞB1ðk;m1; m2ÞÞ; ðA41Þ

B1ðk;m1; m2Þ ¼
1

2k2
ððm2

2 −m2
1 − k2ÞB0ðk;m1; m2Þ þ Aðm1Þ − Aðm2ÞÞ: ðA42Þ

We also define

Kðk;m1; m2; a; b; cÞ ¼
Z
p

ap2 þ bkμpμ þ c

ðp2 −m2
1Þððpþ kÞ2 −m2

2Þ
;

¼ a½Aðm2Þ þm2
1B0ðk;m1; m2Þ� þ bk2B1ðk;m1; m2Þ þ cB0ðk;m1; m2Þ: ðA43Þ

Several special cases of the B integrals are needed and can be obtained using the expression for Fðk;m1; m2Þ in [71] and the
definitions of B1, B00, for example

B00ð0; m1; m2Þ ¼
1

D
ðAðm2Þ þm2

1B0ð0; m1; m2ÞÞ: ðA44Þ

We present the self-energies in the ξ ¼ 1 Rξ gauge. The resulting expressions for renormalized parameters are gauge

invariant because Δr and self energies at their respective poles are. Below we denote Nf
c ¼ 3 for quarks and Nf

c ¼ 1 for
leptons, and fermions apart from the top quark are taken to be massless in the following expressions. Useful shorthand
notation for couplings between h1, h2 and the would-be Goldstones are

c111 ¼ −3v−1m2
h1
cos3θ − 3va2 cos θsin2θ þ 2b3sin3θ; ðA45Þ

c222 ¼ −3v−1m2
h2
sin3θ − 3va2 sin θcos2θ − 2b3cos3θ; ðA46Þ

c112 ¼
sin θ
2v

ðv2a2 − 2m2
h1
−m2

h2
þ ð3v2a2 − 2m2

h1
−m2

h2
Þ cos 2θÞ − 2b3 cos θsin2θ; ðA47Þ

c122 ¼
cos θ
2v

ðv2a2 −m2
h1
− 2m2

h2
− ð3v2a2 −m2

h1
− 2m2

h2
Þ cos 2θÞ þ 2b3 sin θcos2θ; ðA48Þ

c1111 ¼ −
3cos4θ
2v2

ðm2
h1
þm2

h2
þ ðm2

h1
−m2

h2
Þ cos 2θÞ − 6ðb4sin2θ þ a2cos2θÞsin2θ; ðA49Þ

c2222 ¼ −
3sin4θ
2v2

ðm2
h1
þm2

h2
þ ðm2

h1
−m2

h2
Þ cos 2θÞ − 6ðb4cos2θ þ a2sin2θÞcos2θ; ðA50Þ

c1122 ¼ −
3sin22θ
8v2

ðm2
h1
þm2

h2
þ ðm2

h1
−m2

h2
Þ cos 2θÞ − 1

4
ð3b4 þ a2 þ 3ða2 − b4Þ cos 4θÞ; ðA51Þ

ch1h1GG ¼ −
cos2θ
2v2

ðm2
h1
þm2

h2
þ ðm2

h1
−m2

h2
Þ cos 2θÞ − a2sin2θ; ðA52Þ
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ch2h2GG ¼ −
sin2θ
2v2

ðm2
h1
þm2

h2
þ ðm2

h1
−m2

h2
Þ cos 2θÞ − a2cos2θ: ðA53Þ

Tadpole diagrams with an external h1 or h2 leg sum up to

th1 ¼ −4 cos θNt
c
m2

t

v
AðmtÞ þ

1

4
ðD − 1Þv cos θð2g2AðmWÞ þ ðg2 þ g02ÞAðmZÞÞ

þm2
h1

2v
cos θð2AðmWÞ þ AðmZÞÞ −

1

2
ðc111Aðmh1Þ þ c122Aðmh2ÞÞ; ðA54Þ

th2 ¼ −4 sin θNt
c
m2

t

v
AðmtÞ þ

1

4
ðD − 1Þv sin θð2g2AðmWÞ þ ðg2 þ g02ÞAðmZÞÞ

þm2
h2

2v
sin θð2AðmWÞ þ AðmZÞÞ −

1

2
ðc112Aðmh1Þ þ c222Aðmh2ÞÞ: ðA55Þ

The full self-energies, including tadpole insertions, are as follows:

Πh1ðk2Þ ¼
c111
m2

h1

th1 þ
c112
m2

h2

th2 − 2cos2θNt
cy2t Kðk;mt; mt; 1; 1; m2

t Þ

−
1

4
cos2θð2g2Kðk;mW;mW; 1; 4; 4k2Þ þ ðg2 þ g02ÞKðk;mZ;mZ; 1; 4; 4k2ÞÞ

þ 1

16
cos2θf8Dg2AðmWÞ þ 4Dðg2 þ g02ÞAðmZÞ

þ ð2D − 1Þv2ð2g4B0ðk;mW;mWÞ þ ðg2 þ g02Þ2B0ðk;mZ;mZÞÞg

þm4
h1
cos2θ

v2

�
B0ðk;mW;mWÞ þ

1

2
B0ðk;mZ;mZÞ

�

þ 1

2
ðc2111B0ðk;mh1 ; mh1Þ þ 2c2112B0ðk;mh1 ; mh2Þ þ c2122B0ðk;mh2 ; mh2ÞÞ

−
1

2
ðc1111Aðmh1Þ þ c1122Aðmh2Þ þ 2ch1h1GGAðmWÞ þ ch1h1GGAðmZÞÞ; ðA56Þ

Πh2ðk2Þ ¼
c122
m2

h1

th1 þ
c222
m2

h2

th2 − 2sin2θNt
cy2t Kðk;mt; mt; 1; 1; m2

t Þ

−
1

4
sin2θð2g2Kðk;mW;mW; 1; 4; 4k2Þ þ ðg2 þ g02ÞKðk;mZ;mZ; 1; 4; 4k2ÞÞ

þ 1

16
sin2θf8Dg2AðmWÞ þ 4Dðg2 þ g02ÞAðmZÞ

þ ð2D − 1Þv2ð2g4B0ðk;mW;mWÞ þ ðg2 þ g02Þ2B0ðk;mZ;mZÞÞg

þm4
h2
sin2θ

v2

�
B0ðk;mW;mWÞ þ

1

2
B0ðk;mZ;mZÞ

�

þ 1

2
ðc2222B0ðk;mh2 ; mh2Þ þ 2c2122B0ðk;mh1 ; mh2Þ þ c2112B0ðk;mh1 ; mh1ÞÞ

−
1

2
ðc2222Aðmh2Þ þ c1122Aðmh1Þ þ 2ch2h2GGAðmWÞ þ ch2h2GGAðmZÞÞ: ðA57Þ

For gauge bosons,
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ΠWðk2Þ ¼ −
1

2
g2v

�
cos θ
m2

h1

th1 þ
sin θ
m2

h2

th2

�
þ g2

X
families

Nf
c ð2B00ðk; 0; mfÞ − Kðk; 0; mf; 1; 1; 0ÞÞ

þ 1

4
g2ðcos2θAðmh1Þ þ sin2θAðmh2Þ þ 2AðmWÞ þ AðmZÞÞ

− g2ðcos2θB00ðk;mh1 ; mWÞ þ sin2θB00ðk;mh2 ; mWÞ þ B00ðk;mZ;mWÞÞ

þ 1

4
g4v2ðcos2θB0ðk;mh1 ; mWÞ þ sin2θB0ðk;mh2 ; mWÞÞ

þ 1

4

g2g02

g2 þ g02
v2ðg2B0ðk;mW; 0Þ þ g02B0ðk;mW;mZÞÞ

þ ðD − 1Þg2
�
AðmWÞ þ

g2

g2 þ g02
AðmZÞ

�

−
2g2

g2 þ g02

�
ð2D − 3Þðg2B00ðk;mW;mZÞ þ g02B00ðk;mW; 0ÞÞ − g2B00ðk;mW;mZÞ

− g02B00ðk;mW; 0Þ þ
1

2
g2Kðk;mW;mZ; 2; 2; 5k2Þ þ

1

2
g02Kðk;mW; 0; 2; 2; 5k2Þ

�
: ðA58Þ

Here the sum runs over quark and lepton families (six total), and mf ¼ mt for the top quark and zero otherwise.

ΠZðk2Þ ¼ −
1

2
vðg2 þ g02Þ

�
cos θ
m2

h1

th1 þ
sin θ
m2

h2

th2

�
þ 2g4

g2 þ g02
B00ðk;mW;mWÞ

þ 1

2
ðg2 þ g02Þ

X
f

Nf
c ð1þ afÞ

�
2B00ðk;mf;mfÞ − K

�
k;mf;mf; 1; 1;−

af
af þ 1

m2
f

��

þ 1

4
ðg2 þ g02Þðcos2θAðmh1Þ þ sin2θAðmh2Þ þ AðmZÞÞ þ

1

2

ðg2 − g02Þ2
ðg2 þ g02Þ AðmWÞ

−
2g4

g2 þ g02
ð1 −DÞAðmWÞ − ðg2 þ g02Þðcos2θB00ðk;mh1 ; mZÞ þ sin2θB00ðk;mh2 ; mZÞÞ

−
ðg2 − g02Þ2
g2 þ g02

B00ðk;mW;mWÞ þ
1

2

g2g04

g2 þ g02
v2B0ðk;mW;mWÞ

þ 1

4
ðg2 þ g02Þ2v2ðcos2θB0ðk;mh1 ; mZÞ þ sin2θB0ðk;mh2 ; mZÞÞ

−
2g4

g2 þ g02

�
ð2D − 3ÞB00ðk;mW;mWÞ þ

1

2
Kðk;mW;mW; 2; 2; 5k2Þ

�
: ðA59Þ

The constant af appearing in the fermionic part is

af ¼
4Qfg02

g2 þ g02

�
2g02

g2 þ g02
Qf � 1

�
; ðA60Þ

whereQf is the electric charge of a fermion in units of proton charge, and the minus sign is chosen for up-type quarks. Sum
is over all fermions.
Finally, for the top quark we have

Σsðk2Þ þ Σvðk2Þ ¼ −v−1
�
cos θ
m2

h1

th1 þ
sin θ
m2

h2

th2

�

þ 1

2
y2t fcos2θðB0ðk;mt; mh1Þ − B1ðk;mt; mh1ÞÞ

þ sin2θðB0ðk;mt; mh2Þ − B1ðk;mt;mh2ÞÞ − ðB0ðk;mt; mZÞ þ B1ðk;mt; mZÞÞg
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−
1

2
y2t B1ðk; 0; mWÞ −

1

4
ðD − 2Þg2B1ðk; 0; mWÞ

þ
�
D
9

�
3g2 − g02

g2 þ g02
g02B0ðk;mt; mZÞ −

�
D − 2

72

�
9g4 − 6g2g02 þ 17g04

g2 þ g02
B1ðk;mt; mZÞ

−
4

9

g2g02

g2 þ g02
ðDB0ðk;mt; 0Þ þ ðD − 2ÞB1ðk;mt; 0ÞÞ

−
4

3
g2s ðDB0ðk;mt; 0Þ þ ðD − 2ÞB1ðk;mt; 0ÞÞ: ðA61Þ

The parameters appearing in (A56)–(A61) are the MS
renormalized ones. As before, inside loop corrections
we replace these with the tree-level values, i.e., g → g0,
mi →Mi, y2t → g20M

2
t =ð2M2

WÞ;v2 → 4M2
W=g

2
0. In the above,

we have not written the counterterm contributions explic-
itly. It can be checked that all 1=ϵ poles cancel from the
self-energies once the counterterms from Sec. A 1 are taken
into account. The singlet can be decoupled by taking
θ; b3; b4; a2 → 0. In this limit, the self energies reduce to
their SM values and have been cross-checked against

Appendix A.2 of Ref. [53] (apart from the Z boson self
energy).

APPENDIX B: TWO-LOOP CORRECTION TO
THE 3D EFFECTIVE POTENTIAL

In this appendix we compute the required two-loop
vacuum diagrams for the 3D effective potential, completing
the calculation of Sec. VII. After introducing the back-
ground fields v̄ and x̄, mass eigenstates of the neutral
scalars h1, h2 are given by

m̄2
h;1 ¼

1

2
ðð6λ̄3v̄2 þ 2m̄2

ϕ;3 þ x̄ðā1;3 þ ā2;3x̄ÞÞc2θ̄ þ ðā2;3v̄2 þ 2m̄2
S;3 þ 4b̄3;3x̄þ 6b̄4;3x̄2Þs2θ̄

− v̄ðā1;3 þ 2ā2;3x̄Þ sinð2θ̄ÞÞ; ðB1Þ

m̄2
h;2 ¼

1

2
ðð6λ̄3v̄2 þ 2m̄2

ϕ;3 þ x̄ðā1;3 þ ā2;3x̄ÞÞs2θ̄ þ ðā2;3v̄2 þ 2m̄2
S;3 þ 4b̄3;3x̄þ 6b̄4;3x̄2Þc2θ̄

þ v̄ðā1;3 þ 2ā2;3x̄Þ sinð2θ̄ÞÞ; ðB2Þ

where cθ̄ ≡ cosðθ̄Þ and sθ̄ ≡ sinðθ̄Þ. The field-dependent mixing angle θ̄ is to be solved from

ðv̄2ðā2;3 − 6λ̄3Þ þ 2ðm̄2
S;3 − m̄2

ϕ;3Þ − x̄ðx̄ðā2;3 − 6b̄4;3Þ − 4b̄3;3 þ ā1;3ÞÞ
¼ 2v̄ð2x̄ā2;3 þ ā1;3Þ cotð2θ̄Þ: ðB3Þ

The mass eigenstates in the gauge sector are denoted as W�; Z; A, with A being massless, and in addition we need the
corresponding ghost fields c�; cZ; cA. We use Landau gauge where the ghosts decouple from the scalars.
The two-loop contribution to effective potential is obtained from the diagrams in Fig. 4:

V2 ¼ −ððSSSÞ þ ðVSSÞ þ ðVVSÞ þ ðVVVÞ þ ðVGGÞ þ ðSSÞ þ ðVSÞ þ ðVVÞÞ: ðB4Þ

In d ¼ 3 − 2ϵ dimensions, the diagrams give

FIG. 4. Diagram topologies contributing to the two-loop effective potential in the 3D EFT. Dashed lines denote scalars (S), wavy lines
denote vector bosons (V) and dotted lines refer to ghost fields (G).
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ðSSSÞ ¼ 1

12
C2
h1h1h1

DSSSðm̄h;1; m̄h;1; m̄h;1Þ þ
1

12
C2
h2h2h2

DSSSðm̄h;2; m̄h;2; m̄h;2Þ

þ 1

4
C2
h1GG

DSSSðm̄h;1; m̄G; m̄GÞ þ
1

4
C2
h1h1h2

DSSSðm̄h;1; m̄h;1; m̄h;2Þ

þ 1

4
C2
h2h2h1

DSSSðm̄h;2; m̄h;2; m̄h;1Þ þ
1

4
C2
GGh2

DSSSðm̄G; m̄G; m̄h;2Þ

þ 1

2
C2
h1GþG−DSSSðm̄h;1; m̄G; m̄GÞ þ

1

2
C2
h2GþG−DSSSðm̄h;2; m̄G; m̄GÞ; ðB5Þ

ðVSSÞ ¼ −
1

2
C2
h1GZ

DVSSðm̄h;1; m̄G; m̄ZÞ −
1

2
C2
h2GZ

DVSSðm̄h;2; m̄G; m̄ZÞ

þ 1

2
C2
GþG−ZDVSSðm̄G; m̄G; m̄ZÞ þ

1

2
C2
GþG−ADVSSðm̄G; m̄G; 0Þ

− Ch1GþW− × Ch1G−WþDVSSðm̄h;1; m̄G; m̄WÞ
− Ch2GþW− × Ch2G−WþDVSSðm̄h;2; m̄G; m̄WÞ
− CGGþW− × CGG−WþDVSSðm̄G; m̄G; m̄WÞ; ðB6Þ

ðVVSÞ ¼ 1

4
C2
ZZh1

DVVSðm̄h;1; m̄Z; m̄ZÞ þ
1

4
C2
ZZh2

DVVSðm̄h;2; m̄Z; m̄ZÞ

þ 1

2
C2
WþW−h1

DVVSðm̄h;1; m̄W; m̄WÞ þ
1

2
C2
WþW−h2

DVVSðm̄h;2; m̄W; m̄WÞ
þ CW−ZGþ × CWþZG−DVVSðm̄G; m̄W; m̄ZÞ
þ CW−AGþ × CWþAG−DVVSðm̄G; m̄W; 0Þ; ðB7Þ

ðVVVÞ ¼ 1

2
C2
WþW−ZDVVVðm̄W; m̄W; m̄ZÞ

þ 1

2
C2
WþW−ADVVVðm̄W; m̄W; 0Þ; ðB8Þ

ðVGGÞ ¼ −CWþc̄−cZ × CW−c̄ZcþDVGGðm̄WÞ
− CWþc̄Zc− × CW−c̄þcZDVGGðm̄WÞ
− CWþc̄−cA × CW−c̄AcþDVGGðm̄WÞ
− CWþc̄Ac− × CW−c̄þcADVGGðm̄WÞ

−
1

2
C2
Zc̄þc−DVGGðm̄ZÞ −

1

2
C2
Zc̄−cþDVGGðm̄ZÞ; ðB9Þ

ðSSÞ ¼ 1

8
Ch1h1h1h1ðI31ðm̄h;1ÞÞ2 þ

1

8
Ch2h2h2h2ðI31ðm̄h;2ÞÞ2

þ 1

8
CGGGGðI31ðm̄GÞÞ2 þ

1

4
Ch1h1h2h2I

3
1ðm̄h;1ÞI31ðm̄h;2Þ

þ 1

4
Ch1h1GGI

3
1ðm̄h;1ÞI31ðm̄GÞ þ

1

4
CGGh2h2I

3
1ðm̄GÞI31ðm̄h;2Þ

þ 1

2
CGþG−GþG−ðI31ðm̄GÞÞ2 þ

1

2
Ch1h1GþG−I31ðm̄h;1ÞI31ðm̄GÞ

þ 1

2
Ch2h2GþG−I31ðm̄h;2ÞI31ðm̄GÞ þ

1

2
CGGGþG−ðI31ðm̄GÞÞ2; ðB10Þ
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ðVSÞ ¼ ðd − 1Þ
�
1

4
CZZh1h1I

3
1ðm̄h;1ÞI31ðm̄ZÞ þ

1

4
CZZh2h2I

3
1ðm̄h;2ÞI31ðm̄ZÞ

þ 1

4
CZZGGI31ðm̄GÞI31ðm̄ZÞ þ

1

2
CWþW−h1h1I

3
1ðm̄h;1ÞI31ðm̄WÞ

þ 1

2
CWþW−h2h2I

3
1ðm̄h;2ÞI31ðm̄WÞ þ

1

2
CWþW−GGI31ðm̄GÞI31ðm̄WÞ

þ 1

2
CZZGþG−I31ðm̄GÞI31ðm̄ZÞ þ CWþW−GþG−I31ðm̄GÞI31ðm̄WÞ

�
; ðB11Þ

ðVVÞ ¼ 1

2
CWþW−WþW−DVVðm̄W; m̄WÞ − CWþW−ZZDVVðm̄W; m̄ZÞ: ðB12Þ

The integrals D and I31 can be found in the Supplemental Material of Ref. [29]. In the above, cψ i…ψ j
denote vertex

coefficients for generic fields ψ i and are defined as minus the respective coefficient in the Lagrangian, including the
combinatorial factors arising from contractions. For momentum-dependent vertices the momentum is absorbed inside the
integral definition. An exhaustive list of required vertex coefficients read

Ch1h1h1h1 ¼ −6ðλ̄3c4θ̄ þ ā2;3c2θ̄s
2
θ̄
þ b̄4;3s4θ̄Þ; ðB13Þ

Ch2h2h2h2 ¼ −6ðb̄4;3c4θ̄ þ ā2;3c2θ̄s
2
θ̄
þ λ̄3s4θ̄Þ; ðB14Þ

CGGGG ¼ −6λ̄3; ðB15Þ

Ch1h1h2h2 ¼
1

4
ð−3λ̄3 − ā2;3 − 3b̄4;3 þ 3ðλ̄3 − ā2;3 þ b̄4;3Þ cosð4θ̄ÞÞ; ðB16Þ

Ch1h1GG ¼ Ch1h1GþG− ¼ −2λ̄3c2θ̄ − ā2;3s2θ̄; ðB17Þ

Ch2h2GG ¼ Ch2h2GþG− ¼ −ā2;3c2θ̄ − 2λ̄3s2θ̄; ðB18Þ

CGþG−GþG− ¼ −4λ̄3; ðB19Þ

CGGGþG− ¼ −2λ̄3; ðB20Þ

CZZh1h1 ¼ −
1

2
ðḡ23 þ ḡ023Þc2θ̄; ðB21Þ

CZZh2h2 ¼ −
1

2
ðḡ23 þ ḡ023Þs2θ̄; ðB22Þ

CZZGG ¼ −
1

2
ðḡ23 þ ḡ023Þ; ðB23Þ

CWþW−h1h1 ¼ −
1

2
ḡ23c

2
θ̄
; ðB24Þ

CWþW−h2h2 ¼ −
1

2
ḡ23s

2
θ̄
; ðB25Þ

CWþW−GG ¼ cWþW−GþG− ¼ −
1

2
ḡ23; ðB26Þ

CZZGþG− ¼ −
1

2

ðḡ23 − ḡ023Þ2
ḡ23 þ ḡ023

; ðB27Þ
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CWþW−WþW− ¼ −ḡ23; ðB28Þ

CWþW−ZZ ¼ ḡ43
ḡ23 þ ḡ023

; ðB29Þ

Ch1h1h1 ¼ −6v̄λ̄3c3θ̄ þ
3

2
ðā1;3 þ 2ā2;3x̄Þc2θ̄sθ̄ − 3v̄ā2;3cθ̄s

2
θ̄
þ 2ðb̄3;3 þ 3b̄4;3x̄Þs3θ̄; ðB30Þ

Ch2h2h2 ¼ −6v̄λ̄3s3θ̄ −
3

2
ðā1;3 þ 2ā2;3x̄Þs2θ̄cθ̄ − 3v̄ā2;3sθ̄c

2
θ̄
− 2ðb̄3;3 þ 3b̄4;3x̄Þc3θ̄; ðB31Þ

Ch1GG ¼ Ch1GþG− ¼ −2v̄λ̄3cθ̄ þ
1

2
ðā1;3 þ 2ā2;3x̄Þsθ̄; ðB32Þ

Ch1h1h2 ¼ −
1

2
ðā1;3 þ 2ā2;3x̄Þc3θ̄ þ 2v̄ð−3λ̄3 þ ā2;3Þc2θ̄sθ̄

þ ð−2b̄3;3 þ ā1;3 þ 2ā2;3x̄ − 6b̄4;3x̄Þcθ̄s2θ̄ − v̄ā2;3s3θ̄; ðB33Þ

Ch2h2h1 ¼
1

2
ðā1;3 þ 2ā2;3x̄Þs3θ̄ þ 2v̄ð−3λ̄3 þ ā2;3Þs2θ̄cθ̄

− ð−2b̄3;3 þ ā1;3 þ 2ā2;3x̄ − 6b̄4;3x̄Þsθ̄c2θ̄ − v̄ā2;3c3θ̄; ðB34Þ

CGGh2 ¼ Ch2GþG− ¼ −2v̄λ̄3sθ̄ −
1

2
ðā1;3 þ 2ā2;3x̄Þcθ̄; ðB35Þ

CZZh1 ¼ −
1

2
ðḡ23 þ ḡ023Þv̄cθ̄; ðB36Þ

CZZh2 ¼ −
1

2
ðḡ23 þ ḡ023Þv̄sθ̄; ðB37Þ

CWþW−h1 ¼ −
1

2
ḡ23v̄cθ̄; ðB38Þ

CWþW−h2 ¼ −
1

2
ḡ23v̄sθ̄; ðB39Þ

CW−ZGþ ¼ CWþZG− ¼ v̄
2

ḡ3ḡ023ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ḡ23 þ ḡ023

p ; ðB40Þ

CW−AGþ ¼ CWþAG− ¼ −
v̄
2

ḡ23ḡ
0
3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ḡ23 þ ḡ023
p ; ðB41Þ

Ch1GZ ¼ −
i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ḡ23 þ ḡ023

q
cθ̄; ðB42Þ

Ch2GZ ¼ −
i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ḡ23 þ ḡ023

q
sθ̄; ðB43Þ

CGþG−Z ¼ 1

2

ḡ023 − ḡ23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ḡ23 þ ḡ023

p ; ðB44Þ

CGþG−A ¼ −
ḡ3ḡ03ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ḡ23 þ ḡ023

p ; ðB45Þ
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Ch1GþW− ¼ −Ch1G−Wþ ¼ 1

2
ḡ3cθ̄; ðB46Þ

Ch2GþW− ¼ −Ch2G−Wþ ¼ 1

2
ḡ3sθ̄; ðB47Þ

CGGþW− ¼ CGG−Wþ ¼ −
i
2
ḡ3; ðB48Þ

CWþW−Z ¼ ḡ23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ḡ23 þ ḡ023

p ; ðB49Þ

CWþW−A ¼ ḡ3ḡ03ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ḡ23 þ ḡ023

p ; ðB50Þ

CWþc̄−cZ ¼ CW−c̄Zcþ ¼ −CWþc̄Zc− ¼ −CW−c̄þcZ ¼ −
ḡ23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ḡ23 þ ḡ023
p ; ðB51Þ

CWþc̄−cA ¼ CW−c̄Acþ ¼ −CWþc̄Ac− ¼ −CW−c̄þcA ¼ −
ḡ3ḡ03ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ḡ23 þ ḡ023

p ; ðB52Þ

CZc̄þc− ¼ −CZc̄−cþ ¼ −
ḡ23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ḡ23 þ ḡ023
p : ðB53Þ

UV divergences arising from the two-loop diagrams are canceled by introducing counterterms in the tree-level potential
(there is also an unphysical vacuum divergence which we ignore here). The required counterterms read

δm̄2
ϕ;3 ¼ −

1

ð4πÞ2
1

4ϵ

�
51

16
ḡ43 −

9

8
ḡ23ḡ

02
3 −

5

16
ḡ043 þ 9ḡ23λ̄3 þ 3ḡ023λ̄3 − 12λ̄23 −

1

2
ā22;3

�
;

δm̄2
S;3 ¼ −

1

ð4πÞ2
1

4ϵ
ð3ḡ23ā2;3 þ ḡ023ā2;3 − ā22;3 − 6b̄24;3Þ;

δb̄1;3 ¼ −
1

ð4πÞ2
1

4ϵ
ð−4b̄4;3b̄3;3 − 2ā2;3ā1;3 þ 3ḡ23ā1;3 þ ḡ023ā1;3Þ: ðB54Þ

A simple dimensional analysis in the super-renormalizable 3D theory shows that there are no new divergences at higher
loop orders, so these counterterms are exact. This completes our two-loop computation.
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