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We use the framework of asymptotic safety above the Planck scale to constrain the parameter space of
simple models of new physics that can accommodate the measured value of the anomalous magnetic
moment of the muon and the relic density of dark matter. We couple parametrically to the trans-Planckian
quantum physics a set of SUð2ÞL ×Uð1ÞY invariant extensions of the Standard Model, each comprising an
inert scalar field and one pair of colorless fermions that communicate to the muons through Yukawa-type
interactions. The presence of an interactive UV fixed point in the system of gauge and Yukawa couplings
imposes a set of boundary conditions at the Planck scale, which allow one to derive unique
phenomenological predictions in each case and distinguish the different representations of the gauge
group from one another. We apply to the models constraints from the h → μμ signal strength at ATLAS and
CMS, direct LHC searches for electroweak production with leptons and missing energy in the final state,
and the dark matter relic density. We find that they further restrict the available parameter space.
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I. INTRODUCTION

Asymptotically safe quantum gravity [1] has emerged
in the last few decades as a potentially very predictive
framework for a Wilsonian description of the fundamental
nature of quantum field theories. Following the develop-
ment of functional renormalization group techniques [2,3],
numerous studies [4–7] have shown that the quantum
fluctuations of the metric field can induce in the extreme
trans-Planckian regime an interactive fixed point for the
renormalization group (RG) system of the couplings of the
effective action. In its minimal truncation the latter com-
prises the cosmological constant and the Ricci scalar, but
extensions of the minimal case to include gravitational
effective operators of increasing mass dimension [8–16]
seem to confirm the persistence of trans-Planckian fixed
points, which also appear with the introduction of matter-
field operators in the Lagrangian. An ambitious program
has thus taken shape around the enticing possibility that the
full system of gravity plus matter may be proven to be
nonperturbatively renormalizable [17–32].
Among the many successes of the asymptotic safety

(AS) program, stands the fact that an ultraviolet (UV)
fixed point of gravitational origin can cure the pathological

high-energy behavior of the hypercharge gauge coupling of
the Standard Model (SM) [29,33,34], all the while the
gauge couplings of isospin and color remain asymptotically
free [24–26]. More in general, the fact that a particle theory
coupled to gravity may feature interactive UV fixed points
bears important consequences for the predictivity of the
particle theory itself. Lagrangian parameters that are
thought to be free in the stand-alone theory, may in fact
turn out to be calculable when coupled to gravity, if they
correspond to an irrelevant direction of the trans-Planckian
flow near the fixed point. The predictions emerging from
following the RG flow of the system along a UV-safe
trajectory all the way down to the electroweak symmetry-
breaking (EWSB) scale can eventually be confronted with
experiment. In this context, the emergence of a trans-
Planckian fixed point in the beta function of the Higgs
quartic coupling has led to a fairly accurate predictions
for the Higgs boson mass [35]; and a fixed point in the flow
of the top Yukawa coupling of the SM turns out to be
consistent with its measured EWSB-scale value [36]. The
framework of asymptotically safe quantum gravity has also
been used for constraining extensions of the SMwith scalar
fields, with potential consequences for Higgs-portal dark
matter (DM) [37] and inflation [38].
Even in the absence of an explicit calculation of the

quantum gravity contribution to the matter beta functions, an
effective approach based on a parametric description of the
gravitational couplings has proven to increase efficiently the
predictivity of the SM [39,40]. The same effective approach
has then recently been adopted to boost the predictivity of
certain models of new physics (NP) for which the current
existing information is incomplete [41–46].
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In the context of NP models associated with the flavor
anomalies (see, e.g., Ref. [47] for a recent review), we
performed in Ref. [45] a trans-Planckian fixed-point
analysis of two simple scenarios, obtained by adding a
scalar leptoquark to the SM and parametrically coupling the
system to gravity. After following the RG flow down to the
EWSB scale we determined the size of the leptoquark
Yukawa couplings and combined that prediction with the
expectations for the Wilson coefficients of the effective
field theory (EFT) extracted from global fits to the full set
of b → s transition data. By matching those two pieces of
information we obtained a fairly precise determination for
the mass of the leptoquark, at 4–7 TeV.
On the other hand, unlike in the b → s transition case,

leptoquark explanations for the anomalies in b → c tran-
sitions [47] could be made only partially consistent with AS
in Ref. [45]. This is because, on the one hand, the NP
competes in the b → c case with a tree-level SM process, so
that the NP Yukawa couplings emerging from the Planck-
scale boundary conditions are generally too small to fit the
data. On the other hand, the specific features of the beta
functions of the leptoquark model addressing the b → c
anomalies in Ref. [45] were leading to slightly too large
low-scale values for the top and charm Yukawa couplings.
Whether the framework of asymptotically safe gravity may
be applied successfully to different anomalies and/or
models of NP remains therefore an open question, which
we fear will have to be addressed on a case-by-case basis.
In this paper, we seek to apply the strategy introduced

in our previous article to NP scenarios associated with the
anomalous magnetic moment of the muon, ðg − 2Þμ. The
recent measurement of ðg − 2Þμ by the E989 experiment at
Fermilab [48] reports a 3.3σ discrepancy between the
observed value and the SM expectation. When the new
measurement is statistically combined with the previous
experimental determination, obtained a couple of decades
ago at Brookhaven [49], one obtains a global deviation at
the 4.2σ level. The anomalous magnetic moment will be
probed again in the near future at J-Park [50,51].
We focus here on the minimal, renormalizable,

SUð2ÞL ×Uð1ÞY invariant models introduced, e.g., in
Refs. [52–54]. They comprise a set of heavy, color-neutral
scalar and fermion multiplets, coupling to the muon via
Yukawa interactions, providing at one loop an enhance-
ment of the right amount in the anomalous magnetic
moment. Like in Refs. [52–54], the NP is additionally
assumed to be protected by a symmetry which renders the
lightest new particle stable and endows these scenarios with
a weakly interactive massive particle (WIMP) that plays the
role of DM. The relic abundance can then be used as an
extra constraint to restrict the parameter space.
The low-scale phenomenology of these constructions

was studied in great detail in Refs. [52–54]. It was shown
there that in many cases the parameter space consistent with
ðg − 2Þμ and DM is excluded almost entirely by LHC direct

bounds from multilepton plus missing energy searches
[55,56]. Specifically, if only the Yukawa coupling to either
the left- or the right-handed component of the muon is
allowed by gauge invariance, the model cannot enhance the
anomalous magnetic moment via chiral effects. NP par-
ticles thus tend to feature a relatively light mass and large
couplings to the SM, and they find themselves inevitably at
odds with the most recent LHC constraints. On the other
hand, the Lagrangians introduced in Refs. [52–54] can also
bear the presence of Yukawa interactions between the NP
fields and the Higgs doublet of the SM, which yield,
after EWSB, the required chiral enhancement to boost the
value of ðg − 2Þμ. Since in that case the NP masses are
allowed to be much larger, LHC and DM limits can be
evaded with extreme ease. As a side effect, the models lose
all predictivity so that additional information on the size of
the Yukawa couplings can be helpful. In this study, we
intend to derive this missing information from the fixed-
point analysis in the AS framework, under the assumption
that the system couples parametrically to gravity above the
Planck scale.
We recall finally that, besides ðg − 2Þμ, a recent deter-

mination of the fine structure constant from measurements
of Cs [57] appeared to highlight an additional ∼2.5σ
discrepancy from the SM in the anomalous magnetic
moment of the electron, ðg − 2Þe , with opposite sign with
respect to the muon. However, a more recent still, very
precise determination of the fine structure constant in
Rb [58] is showing consistency with the SM. For this
reason we will not focus on ðg − 2Þe in this work, but we
will comment on how our results modify if the measure-
ment of Ref. [57] is confirmed in the future.
The paper is organized as follows. In Sec. II we recall

the general structure of NP models in which a large
anomalous magnetic moment is generated via Yukawa
interactions with the SM leptons and we review the
experimental constraints associated with a large value
of ðg − 2Þμ. We introduce in subsections the Lagrangian
and describe its DM properties. In Sec. III we present in
detail the trans-Planckian fixed-point analysis. The result-
ing phenomenology, with predictions for the physics
of the low scale, is presented in Sec. IV. We finally
summarize our findings and conclude in Sec. V.
Appendices feature the explicit form of the one-loop beta
functions, and a discussion of the treatment of quartic
couplings in the scalar potential.

II. MINIMAL MODELS FOR THE LEPTON g − 2

The value of the anomalous magnetic moment of the
muon has been recently measured in the E989 experiment
at Fermilab [48]. The current measurement shows a
deviation from the SM value [59–79] at the level of
3.3σ. As the latest measurement confirms the discrepancy
observed two decades ago at Brookhaven National Lab
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(BNL) [49], one obtains from the statistical combination of
the two determinations

δðg − 2Þμ ¼ ð2.51� 0.59Þ × 10−9; ð1Þ

which corresponds to a 4.2σ anomaly. The discrepancy will
be soon resolved or confirmed by the Japanese experiment
at J-Park [50,51].
In this paper we apply the framework of asymptotically

safe gravity to a class of relatively simple renormalizable

models that can explain δðg − 2Þμ by adding to the particle
content of the SM a certain number of heavy scalar fields ϕi
and fermions ψ j, i; j ¼ 1; 2; 3;…. [80–83].
If the heavy particles couple to a SM lepton, ψ l, via

Yukawa couplings of the type yijlL ϕiψ̄ jPLψ l, and

yijlR ϕiψ̄ jPRψ l, a well-known contribution to the anomalous
magnetic moment arises at one loop from diagrams like the
one in Fig. 1(a) and reads

δðg − 2Þl ¼
X
i;j

�
−

M2
l

16π2m2
ϕi

ðjyijlL j2 þ jyijlR j2Þ½QjF 1ðxijÞ −QiG1ðxijÞ� −
Mlmψj

16π2m2
ϕi

ReðyijlL yijl�R Þ½QjF 2ðxijÞ −QiG2ðxijÞ�
�
;

ð2Þ

where Ml is the SM lepton mass, mϕi
the physical mass of

the heavy scalar, mψj
the fermion mass, and the electric

charges of ϕi, ψ j, ψ l, are related via the convention
Qi þQj ¼ Ql ¼ −1. The loop functions are defined in
terms of xij ¼ m2

ψj
=m2

ϕi
and read

F 1ðxÞ ¼
1

6ð1 − xÞ4 ð2þ 3x − 6x2 þ x3 þ 6x ln xÞ ð3Þ

F 2ðxÞ ¼
1

ð1 − xÞ3 ð−3þ 4x − x2 − 2 ln xÞ ð4Þ

G1ðxÞ ¼
1

6ð1 − xÞ4 ð1 − 6xþ 3x2 þ 2x3 − 6x2 ln xÞ ð5Þ

G2ðxÞ ¼
1

ð1 − xÞ3 ð1 − x2 þ 2x ln xÞ: ð6Þ

We remind the reader that the first term of Eq. (2) stems
from a chirality-flip insertion in the external leg of the
diagram in Fig. 1(a), whereas the second term is due to a
mass insertion directly in the loop, which provides a chiral

enhancement by a factor mψj
=Ml. A rough quantitative

estimate of the contribution from the first term of Eq. (2)
can be obtained in the case of one NP scalar and one NP
fermion (i ¼ j ¼ 1), both of mass approximately mNP,
coupling only to the left-(right-)chiral component of the
SM lepton. One gets

jδðg − 2Þlj ≃ ð10−4 − 10−3Þjy11lLðRÞj2
M2

l

m2
NP

: ð7Þ

Direct LHC bounds on the mass of new heavy charged
particles imply mNP ≫ 100 GeV [52], which means that in
order to explain a muon magnetic moment anomaly of the
size of 10−9 one needs Yukawa couplings at the very upper
bound of perturbativity. To avoid the strong LHC con-
straints with ease it is then desirable to focus on models that
can couple simultaneously to both the chiral states of the
muon, so that the diagram receives the chiral enhancement
given in the second term of Eq. (2).
On the other hand, an explicit chirality-flip contribution

in the loop of Fig. 1(a) yields a correction to the lepton
mass, whose finite part reads

FIG. 1. (a) The 1-loop contribution to δðg − 2Þl in the presence of new scalar fields ϕi and fermions ψ j. A photon line attached to
whichever particle is electrically charged is implied. (b) Example 1-loop vertex correction to the h → μþμ− decay process in the
presence of new scalar fields ϕi and fermions ψ j;k.
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Σl ¼
1

16π2
X
i;j

ReðyijlL yijl�R Þmψj
HðxijÞ; ð8Þ

whereHðxÞ ¼ −1þ x ln x=ðx − 1Þ . For coupling sizes and
NP mass values appropriate for a solution to δðg − 2Þμ, Σμ

can be as large as several tens of MeV, which implies a
cancellation between the tree level and one-loop compo-
nent of the muon mass.
Remarkably, mass correction (8) is observable via its

contribution to the effective Yukawa coupling of the muon,

yμ;eff ¼
Mμ þ Σμ

vh=
ffiffiffi
2

p þ Λμ; ð9Þ

where vh is the SM vacuum expectation value (vev) and Λμ

is the vertex correction depicted in Fig. 1(b). Equation (9) is
finite and does not need regularization. The finite part ofΛμ

is given by

Λμ ¼ −
1

16π2
X
i;j;k

YjkReðyijμL yikμ�R Þ

×

�
1

2
þ Iðxij; xikÞ þ J ðxij; xikÞ

�
; ð10Þ

plus terms directly proportional to the scalar quartic
couplings which, as we shall see in Sec. III A, can be
safely neglected in the AS framework adopted in this work.
Yjk is the tree-level coupling of the Higgs field to new
fermions ψ j;k and the loop functions read

Iðxij; xikÞ ¼ 2

Z
1

0

dx0

×
Z

1−x0

0

dy0 ln ð1 − x0 − y0 þ x0xij þ y0xikÞ;

ð11Þ

J ðxij; xikÞ ¼
Z

1

0

dx0
Z

1−x0

0

dy0
ðxijxikÞ1=2

1 − x0 − y0 þ x0xij þ y0xik
:

ð12Þ

The effective Yukawa coupling can be constrained by the
recent measurement of the Higgs decay to muons at
ATLAS [84] and CMS [85]. Reference [85] reports

σðpp → h → μþμ−Þ
σðpp → h → μþμ−ÞSM

¼ 1.19� 0.41� 0.17: ð13Þ

As we shall see in Sec. IV, Eq. (13) can place a very
powerful constraint on the class of models considered
in this work and in general on any scenario giving large
ðg − 2Þμ via chiral enhancements [86,87].

We conclude with a few words on the recent determi-
nations of the electromagnetic fine structure constant, in Cs
[57] and Rb [58], which differ from one another by several
sigmas and lead to different implications for the anomalous
magnetic moment of the electron. While the latter, most
recent, is in agreement with the SM, the former seems to
point to a ∼2.5σ discrepancy of the opposite sign with
respect to the muon, which has generated much activity
in the literature—see, e.g., Refs. [88–93] for early work
exploring the NP implications of the combined anomaly in
muon and electron. In this paper we will adopt the default
assumption of a SM-like ðg − 2Þe, but our results can be
straightforwardly extended to the case of an anomaly in the
electron magnetic moment. We will comment on how our
results would have to be modified in case the discrepancy
from the SM were confirmed in ðg − 2Þe by future
measurements.

A. Lagrangian of the models

We extend the particle content of the SM by a set of
heavy scalar and fermion fields. Since the SM fermions
are chiral particles, obtaining their mass after EWSB, one
needs either two NP scalar fields or two fermions, belong-
ing to different representations of the SUð2ÞL group, to
generate both yijμL and yijμR . For simplicity, we focus in this
paper on the latter case, i.e., we introduce scalar fields
belonging to one and the same representation of SUð2ÞL
whereas fermions, which can be vectorlike (VL) or
Majorana, come in pairs whose elements belong to different
representations.
The SUð2ÞL × Uð1ÞY invariant Lagrangian is most

economically expressed in terms of multiplets of left-chiral
(undaggered) 2-component spinors. We thus adopt
the convention that the Dirac spinor of SM leptons is
constructed out of two left-chiral fields eL;l, eR;l as
ψ l ¼ ðeL;l; e†R;lÞT , where the eL;l belongs to an SUð2ÞL
doublet, ll ¼ ðνL;l; eL;lÞT , whereas eR;l is a singlet. New
complex scalars belong to an SUð2ÞL multiplet S, and we
introduce two pairs of fermion multiplets: E, F and the
left-chiral multiplets belonging to the conjugate represen-
tation, E0, F0.
In agreement with the assumptions of Refs. [52–54], we

introduce a global symmetry, Uð1Þgl, that endows models
engineered for a solution to the ðg − 2Þμ anomaly with a
viable WIMP DM candidate. This is a desirable feature
per se [94–98], but also helps to reduce the number of free
parameters in the system and thus simplify the trans-
Planckian fixed-point analysis. We assume that all SM
fields are neutral under Uð1Þgl while the NP ones are
charged. For clarity of notation, we indicate the former with
lowercase letters and the latter with capital letters. The
chiral enhancement in Eq. (2) is generated after EWSB by
the coupling of the NP fermions to the Higgs boson
doublet, h ¼ ðhþ; h0ÞT .
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The Lagrangian can be written simply as

LNP ⊃ −ðYRμRE0Sþ YLF0S†lμ þ Y1Eh†F

þ Y2F0hE0 þ H:c:Þ − Vðjhj2; jSj2Þ; ð14Þ

where SU(2) and spinor indices are contracted trivially
following matrix multiplication and we have further sim-
plified the notation by defining μR ≡ eR;μ. We assign Uð1Þgl
charge þ1 to E, E0 and charge −1 to F, F0, and S. Explicit
mass terms for the fermions are not allowed by the global
symmetry. For phenomenological viability we assume
that terms

mEEE0 þmFF0F þ H:c: ð15Þ

softly break Uð1Þgl at their corresponding mass scale, and
decouple from the RG flow for lower energies (a similar
assumption is adopted, e.g., in Ref. [99], see also
Ref. [100]).
The gauge quantum numbers of the SM fields plus S, E,

and F, for representations up to the triplet and hypercharge
up to 2, are reported in Table I. We show only those
configurations that allow for a DM candidate, i.e., they
admit at least one neutral NP particle. Additionally, in the
fourth column we indicate whether a given model is not

currently excluded by DM direct detection (DD) con-
straints, more on this later.
The Uð1Þgl-symmetric scalar potential reads

Vðjhj2; jSj2Þ ¼ −μ2h†hþ λ

2
ðh†hÞ2 þ μ2SS

†Sþ λS
2
ðS†SÞ2

þ λhSðS†SÞðh†hÞ; ð16Þ

where μ2 and λ are, respectively, the mass parameter and
quartic coupling of the SM, μ2S and λS are the NP mass
parameter and quartic coupling, and λhS is the portal
coupling. The NP scalar fields are assumed to be inert,
in the sense that they do not develop a vev.
We work under the assumption that the couplings of

Lagrangian (14) to the gravitational field in the trans-
Planckian UV give rise to interactive fixed points.1 Fixed-
point values that correspond to the irrelevant directions in
theory space provide effectively a set of unique boundary
conditions at the Planck scale for the gauge-Yukawa
system. By following the system to the infrared (IR)
through the RG flow one obtains predictions for the
couplings that can be combined with the information from
the anomalous magnetic moment and DM to restrict the
spectrum and distinguish the models of Table I from one
another (a recent study that derives predictions for lepton
magnetic moments from theoretical constructions leading
to nonquantum-gravity-based AS can be also found in
Ref. [104]).
Explicit expressions for the parameters BY and B2 in

Table I can be found in Appendix A. They are related to the
one-loop beta function of the gauge couplings:

dgY
dt

¼ g3Y
16π2

BY ð17Þ

dg2
dt

¼ g32
16π2

B2: ð18Þ

Only the five models underlined are consistent with AS, as
in all other cases we observe that either BY is too large to
allow gY to remain perturbative below the Planck scale,
or that B2 > 0, so that g2 is not asymptotically free. The
renormalization group equations (RGEs) of the five models
underlined in Table I, and the explicit values of their loop
coefficients are also presented in Appendix A.

TABLE I. SUð2ÞL × Uð1ÞY quantum numbers of the NP
models considered in this work and associated SM fields. All
models in the table explain δðg − 2Þμ and potentially allow for a
WIMP DM candidate. The exclusion mark ✗ in the fourth column
indicates that the model is excluded by null searches in DM direct
detection. The exclusion marks in the fifth and the sixth columns
indicate that either BY is so large that it makes gY nonperturbative
below the Planck scale, or that B2 > 0, so that g2 is not
asymptotically free. Only the five underlined models present a
phenomenology potentially consistent with AS and DM.

S E F DD BY B2

M1 ð1; 0Þ ð1; 1Þ ð2;− 1
2
Þ ✓ ✓ ✓

M2 ð1;−1Þ ð1; 0Þ ð2; 1
2
Þ ✓ ✓ ✓

M3 ð2;− 1
2
Þ ð2; 1

2
Þ ð1; 0Þ ✓ ✓ ✓

M4 ð2; 1
2
Þ ð2; 3

2
Þ ð1;−1Þ ✓ ✗ ✓

M5 ð2;− 3
2
Þ ð2;− 1

2
Þ ð1; 1Þ ✗ ✓ ✓

M6 ð2;− 1
2
Þ ð2; 1

2
Þ ð3; 0Þ ✓ ✓ ✓

M7 ð2; 1
2
Þ ð2; 3

2
Þ ð3;−1Þ ✓ ✗ ✗

M8 ð2;− 3
2
Þ ð2;− 1

2
Þ ð3; 1Þ ✗ ✓ ✗

M9 ð3; 0Þ ð3; 1Þ ð2;− 1
2
Þ ✓ ✓ ✗

M10 ð3;−1Þ ð3; 0Þ ð2; 1
2
Þ ✓ ✓ ✓

M11 ð3; 1Þ ð3; 2Þ ð2;− 3
2
Þ ✓ ✗ ✗

M12 ð3;−2Þ ð3;−1Þ ð2; 3
2
Þ ✗ ✗ ✗

SM h μR lμ

ð2; 1
2
Þ ð1; 1Þ ð2;− 1

2
Þ

1The current literature seems to suggest that asymptotically
safe gravity preserves the global symmetries, at least under all the
truncations that have been investigated so far in the functional
renormalization group [32]. An apparent discrepancy with gen-
eral arguments that point to the violation of global symmetries
in quantum gravity might be resolved in AS by the existence
of black hole remnants [101], which may potentially provide
protection against the disappearance of conserved global
charges [102,103].
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In model M1 the heavy electrically charged lepton, E,
and the charged component of the doublet F mix after
EWSB, generating two VL fermions that couple to the
muon [52–54]. The mass matrix takes the form

M ¼
�mF

Y2vffiffi
2

p

Y1vffiffi
2

p mE

�
; ð19Þ

and is diagonalized in the usual way by two unitary
matrices, U and V, such that the diagonal matrix
D ¼ U†MV . The NP particle content includes a complex
neutral scalar of mass mS, the two heavy aforementioned
charged fermions of mass approximately (but not exactly)
equal to mE and mF, and one heavy Dirac neutrino of mass
mF. The required enhancement in ðg − 2Þμ is provided by
the coupling of the scalar field to the charged heavy leptons
j ¼ 1, 2 via y1jμL ¼ YLU

†
j1, ðy1jμR Þ� ¼ YRV2j.

In M2, M3, M6, and M10 on the other hand, the
Lagrangian defines a mixed Majorana-Dirac sector, which
after EWSB gives rise to three heavy, electrically neutral
Majorana fermions coupling to the muon. In M2, after a
redefinition mE → 1=2mE in Eq. (14), the mass matrix
takes the form

M ¼ 1

2

0
BBB@

mE
Y1vffiffi
2

p Y2vffiffi
2

p

Y1vffiffi
2

p 0 mF

Y2vffiffi
2

p mF 0

1
CCCA; ð20Þ

which is diagonalized by one orthogonal matrix R,
such that D ¼ RMRT . The NP particle content includes,
besides the three Majorana fermions that follow from
diagonalizing Eq. (20), one heavy charged fermion of
mass mF, and a charged scalar S� of mass mS. The chiral
enhancement of Eq. (2) stems from the couplings of the
muon to S� and the neutral Majorana fermions j ¼ 1, 2, 3
via y1jμL ¼ YLRT

3j, ðy1jμR Þ� ¼ YRRT
1j.

In M3 the roles of mE and mF are switched with respect
to M2. The NP particle content includes, besides the three
Majorana fermions, heavy charged fermion, and heavy
charged scalar that could be found also in model M2, an

additional neutral scalar field of mass mS that can couple
to the right-handed component of the muon. However, the
contribution to the anomalous magnetic moment is
dominated by the chiral-enhancement term, obtained
by the couplings of the muon to S� and the neutral
Majorana fermions.
Model M6 is strongly reminiscent of wino-Higgsino

mixing in supersymmetry. One finds that the particle
content is similar to M3, with the addition of 2 charged
fermions belonging to the SUð2ÞL triplet F. They mix with
the charged components of E, E0 after EWSB.
Finally, inM10 one finds a particle content similar toM6,

with the role of E and F swapped, and the low-energy
spectrum also includes a doubly charged scalar field that
interacts with both the chiral states of the muon.

B. Dark matter

The lightest of the particles charged under Uð1Þgl plays
the role of DM. If the WIMP is a scalar, ϕi ∈ S, two
mechanisms for pair annihilation into the SM in the early
Universe apply, with relative efficiency that depends on the
size of the Lagrangian couplings. If the portal coupling,
L ∼ λhϕi

jϕij2jhj2, is much larger than the Yukawa coupling

yijμL;R, the DM relic abundance originates from the annihi-
lation of the WIMP pair into Higgs bosons or other SM
products, as depicted in the three diagrams on the left in
Fig. 2 (see Refs. [105–111] for early papers exploring the
Higgs portal). It is well known that the λhϕi

vs DM-mass
parameter space is subject to the strong bounds from DD
searches [112], which exclude the mass range ∼10 GeV −
1 TeV under the assumption that the entirety of DM is
generated through the Higgs portal (e.g., Ref. [113]).
The second mechanism of WIMP annihilation yields

muons via the t-channel exchange of a heavy fermion, like
in the diagram on the right in Fig. 2. This mechanism, also
known as bulk [114–116] or lepton portal [117], becomes
dominant if the WIMP contributes to δðg − 2Þμ via the first
term of Eq. (2) only. In that case, the Yukawa couplings
must adopt quite large values [52,53], which make the
efficiency of the bulk overcome the effects of the Higgs
portal. Even when the Lagrangian particle content is large
enough to allow for a chiral enhancement, however, the

FIG. 2. Starting from the left, the first 3 diagrams show the scalar portal interactions potentially leading to the correct DM relic
abundance. The last diagram on the right depicts the “bulk”mechanism of WIMP annihilation via t-channel fermion exchange, which is
often dominant in this work.
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bulk can emerge as the predominant mechanism for the
relic abundance. This is true, in fact, in this work, where in
order to keep the quartic coupling of the Higgs potential
small, as required by the Higgs mass at 125 GeV, the
interaction of gravity with the scalar sector in the trans-
Planckian regime is tuned to induce an almost Gaussian
irrelevant fixed point for all the quartic couplings of the
system. The boundary condition for λhϕi

at the Planck scale
is thus set extremely close to zero [44,118,119] (see
discussion in Appendix B).
The bulk provides a viable scenario for WIMP anni-

hilation if the lightest neutral particle is a fermion,
through a diagram corresponding to the one on the right
in Fig. 2, in which the role of ϕi and ψ j are swapped.
Analytical formulas for the bulk mechanism of WIMP
annihilation in the models that we treat in this work can
be found, e.g., in Sec. 3.2 of Ref. [53] and in Appendix A
of Ref. [54].
Note, incidentally, that in cases where the couplings yijμL;R

are not large enough to guarantee sufficient reduction of the
DM relic density via the bulk mechanism, coannihilation
between the lightest neutral NP particle and the next-to-
lightest, which can happen if those states are almost
degenerate in mass [120], can increase the efficiency of
the process at freeze out and lead to the correct value ofΩh2
in the early Universe.
We finally conclude this section by pointing out that,

for WIMPs with mass larger than ∼80 GeV belonging to a
multiplet of the SUð2ÞL group, the DM relic density can be
obtained via their annihilation into SM gauge bosons.
In that case, however, an additional constraint may arise
from DD searches, which are very sensitive to SUð2ÞL
multiplets undergoing elastic scattering with the nucleon
via Z-boson exchange and have for long excluded the
typical spin-independent cross sections obtained in these
cases, of the order of 10−39 cm2. The bounds can be
evaded if splitting between the components of the SUð2ÞL
multiplet is generated, which can be achieved either by
non-zero portal couplings of the scalar potential in the
case of scalar DM, or through the mixing between a Dirac
and a Majorana fermion in the case of fermionic WIMPs.
We mark in column 4 of Table I the models that can avoid
these bounds.

III. TRANS-PLANCKIAN FIXED POINTS

A. General notions

The SM and the particles of the models in Table I couple
to gravitational interactions above the Planck scale,
MPl ¼ 1019 GeV, in such a way that the trans-Planckian
RG flow develops a fixed point for the beta functions of all
dimensionless couplings.
The Lagrangian of Eq. (14) comprises new Yukawa

couplings. One can thus schematically write down the beta
functions of the gauge-Yukawa system as

βg ¼ βSMþNP
g − gfg;

βy ¼ βSMþNP
y − yfy; ð21Þ

where βx ≡ dx=d logQ, and we include in the first term on
the right-hand side standard contributions from the SM to the
gauge couplings g and Yukawa couplings y, besides NP. We
parameterize the effects of gravitational interactions with
effective couplings fg and fy. The quantum gravity terms are
universal in the sense that gravity distinguishes only between
different types of matter interactions. Note that in Eqs. (21)
we neglect possible quantum gravity effects proportional to
higher powers in the matter couplings.
In the context of AS, fg and fy should be eventually

determined from the gravitational dynamics [23–28,31,32].
In particular, it has long been known that a direct
calculation with functional renormalization group tech-
niques yields nonnegative fg, irrespective of the chosen RG
scheme [26], and that fg > 0 is required to enforce
asymptotic freedom in the gauge sector. In this sense,
one is inclined to choose an RG scheme in which the
leading non-universal coefficient is non-zero to be con-
sistent with the low-energy phenomenology and to avoid
having to compute higher-order contributions, which
would instead be required to determine the fate of theories
with fg ¼ 0. Note that a nontrivial combined fixed point in
a coupled system of gravity and matter has also been found
in Ref. [31], where it was proven that gravity can be
asymptotically safe, while the gauge sector remains asymp-
totically free.
Conversely, the leading-order gravitational term fy is,

to some extent, unknown. In the case of the gravitational
contribution to the Yukawa coupling a set of simplified
models has been analyzed in the literature [22,23,27,28],
but no general results and definite conclusions regarding
the size and sign of fy are available.
Large uncertainties are associated with determinations

of the impact of matter on the gravity sector. They relate to
the choice of truncation of the gravitational action and,
within a chosen truncation, the cutoff-scheme dependence
[6,121]. In early calculations of asymptotically safe
Einstein-Hilbert gravity two operators were retained in
the scale-dependent effective action, leading to the gravi-
tational dynamics being governed exclusively by the
Newton and cosmological constants [4]. Inclusion of
higher-order interactions enriches the theory by additional
free parameters [8,13,122–124] and various results can
differ by up to 50%–60% [125].
For all these reasons, we follow the effective approach

adopted in some recent articles [36,39,40,44,45] and treat
the gravitational contributions fg and fy as free parameters
determined by the low-scale experimental constraints.
Their specific values define a particular set of boundary
conditions at the Planck scale.
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A few words need to be spent, finally, on the quartic
couplings of the scalar potential. As they do not affect the
gauge-Yukawa system (21) at one loop they do not
influence the value of δðg − 2Þμ. On the other hand, they
are directly related to the Higgs mass value and the
mechanism for the relic abundance so that one cannot
decouple the scalar sector completely from the analysis.
Under several (but not all) choices of the truncation of the
matter-gravity action in the functional renormalization
group it has been shown that the system develops an
(almost) Gaussian irrelevant UV fixed point for the SM
and NP quartic couplings [38,118,119,126]. As we shall
see in more detail in Appendix B, this is generally the case
in this study if we assume that the interaction of scalar
matter with quantum gravity leads to a correction in the
beta function that is proportional the quartic couplings,
βλ ¼ βSMþNP

λ − λfλ, similarly to Eq. (21). As a word of
caution one should thus make sure that this assumption is
satisfied when attempting to embed the parameteric results
of this study in a well-defined UV completion above the
Planck scale.
A fixed point of the system is given by any set

fg�; y�; λ�g, generically indicated with an asterisk, such
that βgðg�;y�;λ�Þ¼βyðg�;y�;λ�Þ¼βλðg�;y�;λ�Þ¼0. One
determines the structure of the fixed point by linearizing
the RG equation system of the couplings fαig≡ fg; y; λg
around the fixed point, and deriving the stability matrix,M,

Mij ¼ ∂βi=∂αjjfα�i g; ð22Þ

whose eigenvalues define the opposite of the critical
exponents θi, and characterize the power-law evolution
of the couplings in the vicinity of fα�i g.
If θi is positive the corresponding, UV-attractive,

eigendirection is dubbed as relevant. All the RG tra-
jectories along this direction will asymptotically reach
the fixed point. A deviation of a relevant coupling from
the fixed point introduces a free parameter in the theory
and this freedom can be used to fine tune the coupling at
some high scale to match an eventual measurement in
the IR. If θi is negative, the corresponding, UV-repul-
sive, eigendirection is dubbed as irrelevant. In this case
there exist only one trajectory the coupling’s flow can
follow in its run to the IR, thus providing potentially a
clear prediction for its value at the experimentally
accessible scale. Finally, θi ¼ 0 corresponds to a mar-
ginal eigendirection. The RG flow along this direction is
logarithmically slow and one needs to go beyond the
linear approximation to decide whether a fixed point is
attractive or repulsive.

B. Fixed-point analysis

Given the models of Table I, the gauge-Yukawa system
consists of 10 parameters,

g3; g2; gY; yt; yb; yμ; YL; YR; Y1; Y2; ð23Þ

where g3, g2, and gY are the couplings of the gauge
symmetry groups SUð3Þc, SUð2ÞL, and Uð1ÞY , respectively,
while yt, yb, and yμ, denote the Yukawa couplings of the
corresponding SM quarks and lepton. Note that yt and yb are
not decoupled from the leptonic sector, as the chiral
enhancement in the second term of Eq. (2) hinges on the
coupling of NP to the Higgs boson, and is therefore
influenced by the RG evolution of the heaviest SM fermions.
The fixed-point analysis proceeds along similar lines for

the five models that admit a viable IR limit, as they all
present the same set of relevant and irrelevant directions at
the UV fixed-point. We can thus present the main features
for model M1 and let the reader extrapolate the discussion
to the remaining models. We limit our analysis to the case
of real Yukawa couplings.
We do not include in the system the Yukawa couplings of

the quarks of the first two generations since, due to their
small size, they do not affect the running of other SM
parameters. For the same reason we can omit the RGE
contribution from yτ and ye. All these negligible parameters
can be associated with relevant directions of a Gaussian
fixed point in the trans-Planckian UV [40] and therefore
we will always be able to match them onto their IR values.
On the other hand, the muon Yukawa coupling, yμ, cannot
be easily neglected, as the beta function receives non-
multiplicative contributions of the form ∼Y2YLYR (see
Appendix A). As Eq. (14) shows, Y2 connects the Higgs
doublet to the primed fermions, which in turn couple
directly to the chiral states of the muon. Because of these
additive contributions to the beta functions, it is not a priori
guaranteed that the muon Yukawa coupling can be matched
to its SM value. As a matter of fact, we shall see that the
requirement to reproduce the experimentally measured
mass of the muon introduces an important constraint on
the structure of the UV fixed-point of the system.
The dimensionless parameters of the scalar potential do

not enter at one loop the RGEs of the gauge-Yukawa
system. However, as was discussed in Sec. II B, the size of
the Higgs-portal quartic coupling can affect the predomi-
nant mechanism of scalar WIMP annihilation in the early
Universe. We show in Appendix B that all quartic cou-
plings develop an almost Gaussian fixed point along
irrelevant directions in the trans-Planckian regime if the
coupling fλ between the fields of the scalar potential and
the graviton is large enough. This is consistent with the
measured value of the Higgs boson mass [35] and with the
assumptions adopted in a recent study of Higgs portal DM
from AS [44]. It is also in agreement with existing explicit
calculations [118,119]. Under this assumption, the low-
scale value of the NP Yukawa couplings predominantly
determines the mechanism of WIMP annihilation, which
can be either the bulk, or the coannihilation of several
fermions and scalars.
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We are now ready to proceed to the fixed-point analysis
of the one-loop system given in Appendix A. In what
follows, the fixed-point values of dimensionless couplings
will be indicated with an asterisk. In agreement with the
low-energy phenomenology, the non-Abelian gauge cou-
plings remain asymptotically free:

g�3 ¼ 0; g�2 ¼ 0: ð24Þ

Both g3 and g2 correspond to relevant directions in the
coupling space and constitute free parameters of the theory.
Conversely, gY develops an interactive fixed point and
corresponds to an irrelevant direction in the coupling space.
By matching gY onto its phenomenological value in the IR
one can uniquely determine the parameter fg,

g�Y ¼ 4π

ffiffiffiffiffiffi
fg
BY

s
; ð25Þ

where for the different models BY takes the values given in
Appendix A.2

The second quantum gravity parameter, fy, can also be
fixed if, in addition to gY , a UV interactive fixed point is
presented by one of the SM Yukawa couplings [39], which
we choose to be yt,

y�t ¼ Fðfg; fyÞ: ð26Þ

In this case the freedom of fy allows one to match the flow
of the top Yukawa coupling toward the IR onto the value of
the experimentally measured top quark mass. The remain-
ing SM couplings, yb, and yμ, will develop non-interactive
fixed-points,

y�b ¼ 0; y�μ ¼ 0; ð27Þ

associated with relevant directions.
Let us now discuss the fixed-point structure of the NP

sector. As was mentioned in Sec. II, non-multiplicative
contributions to the lepton Yukawa beta functions depend
on Y2. As a consequence, Oð1Þ values of yμ would be
generated radiatively if Y2 assumed a nonzero fixed-point
value. We thus require, for a phenomenologically viable
solution,

Y�
2 ¼ 0: ð28Þ

On the other hand, one can infer from Eq. (A8) in
Appendix A that additive terms depending directly on Y1

do not enter the renormalization of yμ at one loop. Since at
least one among Y1 and Y2 is expected to be large in order
to generate the chiral enhancement in Eq. (2), we select

Y�
1 ≠ 0: ð29Þ

Finally,

Y�
L ≠ 0; Y�

R ≠ 0; ð30Þ

as is required for a NP contributions to δðg − 2Þμ consistent
with the measured value.
It should be mentioned here that alternative fixed-point

structures could also lead to phenomenological predictions
in agreement with Eq. (1). For example, a fully-Gaussian
UV fixed point exists, for which all the NP Yukawa
couplings correspond to relevant directions in the coupling
space, and as such constitute free parameters of the models.
Note, however, that such a setup does not increase the
predictivity of the system with respect to the framework of
the EFT or simplified models, and would thus undermine
the main reason for embedding these scenarios in the
framework of AS. We thus limit the following discussion to
the fixed-point structure given in Eqs. (28)–(30).
In Table II we present the numerical fixed-point values

of the irrelevant couplings of the system (23), as well as
the values of the quantum gravity parameters fg and fy, as
required by matching onto the SM. Several comments are
in order here. Different values of fg characterizing different
models are directly related to the quantum numbers of the
heavy fermions and scalars through the one-loop RGE
coefficient, Eq. (25). Since g�Y is proportional to BY , fg
increases with the size of the one-loop coefficient. The
other gravity-related parameter, fy, can in principle be fixed
by the value of yt corresponding to the experimentally
measured top mass. On the other hand, matching to the top
mass is not always consistent with our assumption of real
Yukawa couplings.
This point is made transparent by presenting the fixed-

point values of the irrelevant parameters as a function of

TABLE II. fg, fy and fixed-point values of the irrelevant
couplings for the models defined in Table I.

fg fy g�Y y�t Y�
L Y�

R Y�
1

M1 0.016 0.006 0.54 0.41 0.15 1.15 0.78
M2 0.012 0.007 0.50 0.58 0.54 0.82 0.04
M3 0.012 0.002 0.50 0.39 0.01 0.72 0.21
M6 0.012 0.002 0.50 0.38 0.01 0.71 0.27
M10 0.015 0.005 0.52 0.52 0.80 0.67 0.01

2Note that in the models characterized by B2 > 0 in Table I it
would not be possible to match gY and g2 simultaneously onto
their phenomenological value at the low scale since their fixed
point is expected to be determined by the same parameter fg in
asymptotically safe gravity. A direct consequence of this fact is
that the models marked with ✗ in the sixth column of Table I are
not consistent with AS.
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fg, fy for different models in Table III. The presence of
square roots implies that matching fy to the EWSB-scale
value of the top Yukawa coupling may result in some of the
NP Yukawa couplings becoming imaginary. When this
happens to be the case in a model, we retain the minimal fy
corresponding to all Yukawa couplings remaining real,
which in turn can lead to the top Yukawa coupling
exceeding its measured value at the EWSB scale. This is
what happens in models M2, M3, and M10.
The fixed-point values of YL and YR are crucial for

the size of the NP contribution to the muon anomalous
magnetic moment. As is reflected in Table II, while Y�

R is of
the same order in all the considered scenarios, that is not the
case for Y�

L. For the latter, in fact, the fixed point can be
schematically written as

Y�
L ≈ Bg�2Y þ 16π2fy −A: ð31Þ

The size of A is driven by the loop coefficients C6, C8, and
C9 (see Table VII in Appendix A). C8 and C9 are of similar

order in all the analyzed models, but C6 differs from zero
in M3 and M6. For this reason the corresponding Y�

L is
much smaller. Note also that a smaller Y�

L indicates a
smaller IR value of Y2, as this is generated radiatively by
the term ∼yμYLYR.
Similarly, the fixed-point value of Y1 is obtained by

modifying the contribution of the parameter A in Eq. (31),
which becomes driven in this case by C4, C5, C6, and C7.
One can insert the coefficients of Table VII in the RGEs of
Appendix A to confirm that Y�

1 is smaller in M2 and M10

than in the other models. We shall see in Sec. IV, that the
different values of Y�

L and Y�
1 in modelsM2 andM3 lead to

different mechanisms for the relic density of DM in these
two models, which behave otherwise similarly with respect
to the other phenomenological constraints.
For all of the phenomenologically viable models, most of

the couplings of the system (23) correspond to eigendir-
ections of the stability matrix. The only exception is the
pair ðyμ; Y2Þ. In that case the flow of Y2 close to the fixed
point is entirely dictated by the UV hypercritical surface

TABLE III. Fixed-point values of the irrelevant parameters as a function of fg, fy for different models investigated in this work.

M1 M2 M3 M6 M10

y�t 4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−5fgþ318fy

p ffiffiffiffiffiffiffi
1749

p 4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
289fgþ940fy

p ffiffiffiffiffiffiffi
4935

p 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð887fgþ5060fyÞ

p
3
ffiffiffiffiffiffiffi
1311

p 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1613fgþ7084fyÞ

p ffiffiffiffiffiffiffiffiffi
19389

p 4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
346fgþ1173fy

p
3
ffiffiffiffiffiffi
731

p

Y�
1 4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
101fgþ106fy

p ffiffiffiffiffiffi
583

p 4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−136fgþ235fy

p ffiffiffiffiffiffiffi
1645

p 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð41fgþ92fyÞ

p ffiffiffiffiffiffiffi
1311

p 4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð−31fgþ2300fyÞ

p ffiffiffiffiffiffiffiffiffi
19389

p 4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð−307fgþ867fyÞ

p
3
ffiffiffiffiffiffi
731

p

Y�
L 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−18fgþ53fy

p ffiffiffiffi
53

p 4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð−17fgþ235fyÞ

p ffiffiffiffiffiffiffi
1645

p 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð−425fgþ2116fyÞ

p
3
ffiffiffiffiffiffi
437

p 4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð−875fgþ4876fyÞ

p ffiffiffiffiffiffiffiffiffi
19389

p 4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð155fgþ2091fyÞ

p
3
ffiffiffiffiffiffi
731

p

Y�
R 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
90fgþ53fy

p ffiffiffiffi
53

p 4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
417fgþ235fy

p ffiffiffiffiffiffiffi
1645

p 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1709fgþ2300fyÞ

p
3
ffiffiffiffiffiffi
437

p 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2879fgþ3220fyÞ

p ffiffiffiffiffiffiffi
6463

p 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð91fgþ159fyÞ

p
3
ffiffiffiffi
43

p

gY

g2

g3

yt

YR

YL

MPL

Y1

Q0

Model 1

0 50 100 150

0.2

0.4

0.6

0.8

1.0

1.2

Log Q 1016 GeV

(a)

gY
g2

g3

yt

YR

YL

MPL

Y1

Q0

Model 2

0 50 100 150

0.2

0.4

0.6

0.8

1.0

1.2

Log Q 1016 GeV

(b)

FIG. 3. RG flow of the gauge and Yukawa couplings from the trans-Planckian energies down to the EWSB scale in scenario (a) M1,
and (b) M2. Vertical solid and dashed lines indicate the Planck scale, MPl ¼ 1019 GeV, and the reference phenomenological scale
Q0 ¼ 2 TeV, respectively.
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relating it with the relevant Yukawa coupling of the SM
muon: Y2ðQÞ≡ F ðyμðQÞÞ. This is an important feature,
as the requirement of matching the muon coupling onto
its IR value controls the running of Y2ðQÞ as well. The
trans-Planckian flow of the parameters of the system is
presented in Fig. 3(a) for scenario M1 and in Fig. 3(b) for
scenario M2.
In Table IV we show the low-scale values of all the NP

Yukawa couplings, as well as the corresponding value for
the top Yukawa. All the parameters are evaluated at the
reference scale Q0 ¼ 2 TeV. The value of ytðQ0Þ indicates
to what extent a given model is able to reproduce the
prediction of the SM. One can see that in M1 and M6 the
top mass can be fitted with a very good precision, while in
M2, M3, and M10 it results to be too large by 5–10%.
Radiatively generated low-scale values of Y2 are of the

size of the corresponding muon coupling. The only
exceptions are scenarios M3 and M6, as the product
YLYR that drives the running of Y2 is in these cases almost
two orders of magnitude smaller that in the other models.

IV. PHENOMENOLOGY

The fixed-point analysis of the gauge-Yukawa system
coupled to quantum gravity allows one to compute the
specific low-scale values of the irrelevant couplings, which
are given in Table IV. With the couplings fixed,3 the
remaining free parameters of the models are the fermion
masses mE, mF and the scalar mass mS.
We combine the information extracted from the fixed-

point UV analysis with low-energy experimental con-
straints to obtain the favored regions of the parameter
space. Our goal is that of providing some guidance for
current and future direct tests of these models. We apply
the following constraints to the parameter space: the
measurement of δðg − 2Þμ , Eq. (1); the determination of
the relic abundance of DM by Planck [127], Ωh2 ¼
0.1188� 0.0010, to which we add in quadrature a
∼10% theoretical uncertainty; the measurement of the
signal strength h → μþμ−, Eq. (13), which is directly

imposed on the value of the effective Yukawa coupling
of the muon, Eq. (9). We then apply direct LHC searches
for electroweak particle production with hard [55] and soft
[56] leptons plus missing energy in the final state.
Additionally, we have confronted numerically the mod-

els of Table IV with bounds on the Z → μþμ− effective
couplings from the Z-boson line shape [128] and, where
applicable, from the current LHC measurement of the
h → γγ signal strength [129],

σðpp → h → γγÞ
σðpp → h → γγÞSM

¼ 1.02� 0.14: ð32Þ

The impact of these two constraints is negligible in our
models.

A. Model M1

We present in Fig. 4 the summary of experimental
constraints forM1, in the plane of fermion mass parameters
(mF, mE), for fixed values of the scalar mass mS. To
roughly account for the LEP II limits, we apply a default
hard cut on the mass of new charged particles,
mE;mF > 100 GeV. The parameter space allowed at 2σ
by the Fermilabþ BNL combination measurement of
δðg − 2Þμ is shown as a red band. The gray shading
indicates the 95% C.L. exclusion bound from the
h → μþμ− signal strength, cf. Eq. (13), which proves to
be a very strong constraint for models in which ðg − 2Þμ is
chirally enhanced.
The only possible DM candidate is in this case the

neutral scalar singlet S, as the mixing between E and F
given in Eq. (19) splits the masses of the electroweak
doublet making the charged component lighter than the
neutral one. The part of the parameter space not featuring a
scalar DM candidate is marked as a striped light-blue
shading. Two viable strongly hierarchical mass spectra
emerge in Fig. 4: mS ≲mE ≪ mF, and mS ≲mF ≪ mE,
where mS is bounded to the range ∼100–800 GeV, beyond
which it becomes impossible to satisfy the ðg − 2Þμ con-
straint while at the same time remaining consistent with the
measured value of the h → μþμ− signal strength.
The fermion mass parameters can be further constrained

by the calculation of the DM relic density, which we
perform with MICROMEGAS V4.3.1 [130]. The parameter
space allowed at 2σ (including a ∼10% theory error) is
shown in green. Since the quartic couplings in the scalar
potentials are assumed to be negligibly small (see dis-
cussion in Sec. II B and Appendix B), there remain two
main mechanisms to reduce the relic abundance in the early
Universe: bulk annihilation into muons via t-channel
exchange of a VL fermion, and coannihilation of the scalar
WIMP with the lightest VL fermion. The latter predom-
inates in two narrow stripes of the parameter space where
mE ≈mS, or mF ≈mS, and the second heavy fermion is
effectively decoupled at a higher scale. In this case one can

TABLE IV. Low-energy value (Q0 ¼ 2 TeV) of the Yukawa
couplings of the models investigated in this work.

jytðQ0Þj jYLðQ0Þj jYRðQ0Þj jY1ðQ0Þj jY2ðQ0Þj
M1 0.91 0.21 0.91 0.62 9 × 10−4

M2 1.07 0.65 0.59 0.03 6 × 10−4

M3 0.95 0.01 0.77 0.18 3 × 10−5

M6 0.93 0.04 0.78 0.65 9 × 10−5

M10 1.03 0.98 0.87 0.03 1 × 10−3

3Note that the RG running of the NP Yukawa couplings is very
slow over the phenomenologically interesting energy range
1–100 TeV, therefore the low-scale values of the couplings Y1,
Y2, YL, and YR can be treated as approximately constant.
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neglect the mixing of Eq. (19): the coupling of F0ðE0Þ to S
is a close-to-pure YLðYRÞ and the p-wave term dominates
the annihilation cross section, leading to its strong sup-
pression at freeze out [116]. The correct Ωh2 can thus be
obtained only if the scalar and fermion next to it in mass
coannihilate. The typical mass splitting between the scalar
and the lightest charged fermion is about a dozen GeV, so
that when combined with the LEP limit the requirement to
reproduce simultaneously the correct Ωh2 and δðg − 2Þμ
yields the lower bound mS ≳ 88 GeV.
The bulk can make up for the full relic density budget for

NP masses not far above the EWSB and large Yukawa

couplings, or for non-negligible fermion mixing. This can
be seen in Fig. 4(a) for mS < mE ≈mF, where the mixing
of the two heavy fermions induces s-wave annihilation of
the WIMP, and for mE ≈ 200 GeV ≪ mF, as the coupling
of relevance is there YR ¼ 0.91. Conversely, Fig. 4(c)
shows that, for large mS, only the coannihilation of the
WIMP with the doublet F is efficient enough to reduce the
relic abundance in the early Universe, as the fermions in F
can annihilate into the massive gauge bosons of the SM,
enhancing the cross section.
Further constraints on the M1 mass spectrum arise from

collider searches. Charged fermions, E�, can be produced

FIG. 4. Experimental constraints on the parameter space ðmF;mEÞ in model M1 for selected values of the scalar mass mS. The NP
Yukawa couplings are fixed to the AS-induced values YL ¼ 0.21, YR ¼ 0.91 and Y1 ¼ 0.62 (Y2 is negligible). In red the 2σ region
allowed by δðg − 2Þμ is shown. In gray, the 95% C.L. exclusion limit from the h → μþμ− signal strength is indicated [85].Ωh2 ≈ 0.12 is
obtained in the part of the parameter space marked in green. The orange band is excluded at the 95% C.L. by the 13 TeVATLAS 2 hard
leptons search [55], whereas a blue band shows the exclusion by the ATLAS compressed spectra search [56].
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at the LHC via Drell-Yan processes and subsequently decay
as E� → Sμ�, where the final-state scalar escapes unde-
tected and adds to the missing energy (MET). This scenario
can therefore be tested by employing dedicated LHC
searches for the production of heavy NP particles, MET
and 2 muons in the final state. If final-state leptons are
“hard” (pT > 10 GeV), the strongest exclusion bound
comes from ATLAS, in the search for electroweak pro-
duction of charginos, sleptons, and neutralinos, based on
139=fb of data [55]. The most relevant simplified model
employed by the experimental collaboration assumes that
all supersymmetric particles but the lightest slepton l̃�, and
neutralino χ̃0 are decoupled, with BRðl̃�→ χ̃0μ�Þ¼100%.
Implementing a full numerical recasting of the ATLAS

search, which would be required to extract the most
accurate estimate of its reach in our models, exceeds the
purpose of this paper. As a rough approximation, we plot in
Fig. 4 the corresponding exclusion bound on the slepton
mass at face value, indicated here with an orange band.
Note that the ATLAS hard-lepton bound can only affect the
parameter space in agreement with Ωh2 ≈ 0.12 when the
annihilation is bulklike, like in Fig. 4(a). The search in fact
loses sensitivity for a mass differencemE� −mS≲100GeV.
To constrain smaller differences we use the ATLAS
search for electroweak production of supersymmetric
particles with compressed mass spectra with 139=fb
[56], whose face-value exclusion is shown in Fig. 4 as
a blue band. The impact of this search is very strong as it
excludes coannihilation with the fermion doublet for
scalar masses up to 200 GeV, above which the search
loses sensitivity.

To summarize, a combination of low-energy constraints
applied to the parameter space emerging from the trans-
Planckian fixed-point analysis has highlighted a few
specific regions, characterized by a mass spectrum of
the “split” type: mS ≈ 200–800 GeV, mFðmEÞ ≈mS,
and mEðmFÞ ≈ 5–50 TeV , and mS ≈ 100 GeV, mE ≈
160–190 GeV, mF ≈ 15–80 TeV.4

B. Model M2

M2 presents a radically different parameter space with
respect toM1. The first important distinction pertains to the
size of the Yukawa coupling Y1, which controls the mixing
of the Majorana fermions defined after Eq. (20). As
Table IV shows, it is significantly smaller than in M1,
so that we expect the chirality-flip contribution in the
second term of Eq. (2) to be suppressed with respect toM1.
A correlated effect is that the mass correction of Eq. (8) will
also be smaller than in M1 or, in other words, the physical
muon mass will be closer to its running value at the EWSB
scale. As a consequence, the h → μþμ− constraint will not
be effective in reducing the parameter space in model M2.
The second difference pertains to the nature of DM,

which is now going to be a neutral fermion with properties
not dissimilar from those of a “well-tempered” neutralino
[133] in supersymmetry. We show in Figs. 5(a) and 5(b) the
2σ-allowed parameter space for δðg − 2Þμ in the (mF, mE)
plane for fixed values of the scalar massmS. The color code

FIG. 5. Experimental constraints on the parameter space ðmF;mEÞ in model M2 for selected values of the scalar mass mS. The NP
Yukawa couplings are fixed to the AS-induced values YL ¼ 0.65, YR ¼ 0.59 and Y1 ¼ 0.03 (Y2 is negligible). The color code is the
same as in Fig. 4. Additionally, the dashed gray line shows the lower bound on NP masses obtained in the ATLAS 3-lepton and MET
search [134], in the supersymmetric simplified model (SMS) selected by the experimental collaboration.

4New heavy particles associated with a large δðg − 2Þμ may
be directly probed in the future with a multi-TeV muon
collider [131,132].
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is the same as in Fig. 4. The parameter space shrinks for
increasingmS and there remains no solution for the ðg − 2Þμ
anomaly at 2σ with scalar mass above mS ≈ 430 GeV.
The parameter space corresponding to the correct value

of Ωh2 is indicated, again, as a green stripe. For mS ¼
100 GeV the fermion WIMP, whose gauge content is
predominantly the SUð2ÞL singlet E, must be lighter than
mS. In the region below the green stripe, DM overcloses the
Universe, as the bulk mechanism is not efficient enough
at the values of Yukawa couplings extracted from the AS
analysis. The green stripe, where the correct Ωh2 is due to
the coannihilation of the fermion and scalar in the early
Universe, is excluded by the ATLAS soft-lepton search,
which is very effective with compressed spectra.
The dashed gray line indicates the 95% C.L. ATLAS

exclusion bound from a search for charginos, sleptons, and
neutralinos with 3 leptons and MET in the final state [134].
As a very rough approximation, we report the bound
corresponding to the simplified model of supersymmetric
spectrum selected by the experimental collaboration for
their presentation of results. One must keep in mind,
however, that the limit is extremely sensitive to the exact
position of the intermediate mass mS with respect to
mE, mF—see, e.g., Refs. [135,136]—and it may not be
accurate to interpret the exclusion line at face value. A full
numerical recasting, which would be necessary in this case,
exceeds the purposes of this paper.
At mS ¼ 200 GeV and larger, there exists above the

green stripe potentially viable parameter space for a WIMP
belonging predominantly to the SUð2ÞL doublet F. This
neutral fermion co-annihilates very efficiently with its
isospin partner via the s-channel exchange of a W boson,
so that Ωh2 ≪ 0.12 in that region of the parameter space.

C. Model M3

Model M3 bears resemblance to model M2, where the
roles of E and F are exchanged. The DM properties of the
fermion WIMP would be expected naively to be the same
in both scenarios. This is however not the case, and the
observed difference in behavior results entirely from AS.
The parameter space consistent with LEP limits on the
scalar mass and with δðg − 2Þμ is very limited in modelM3,
allowing mS in a narrow range, ð100–146Þ GeV. The
difference with M2 stems from the fact that Yukawa
coupling YL is here smaller by roughly two orders of
magnitude than in model M2.
The 2σ-allowed parameter space for δðg − 2Þμ in the

(mF, mE) plane is shown in Fig. 6. The color code is the
same as in Fig. 4. The narrow region of the parameter space
where the correct DM relic abundance is obtained via the
coannihilation of the predominantly singlet heavy fermion
with a scalar is shown as a green vertical stripe. The ATLAS
soft-lepton search excludes this region, which correspond
precisely to what is observed for M2 in Fig. 5(a).

A specific feature of model M3 is the presence of
additional parameter space consistent with the correct
value of Ωh2 and not excluded by the 2-lepton collider
searches. Its bell shape and mass clearly indicates resonant
WIMP annihilation through the s-channel exchange of the
Z and Higgs bosons. We did not observe the same region in
modelM2, as the value of Y1 is an order of magnitude lower
there, making resonant annihilation not effective enough.
This is a perfect example of the way in which AS can yield
distinctive phenomenological predictions in NP models
which otherwise would look the same.
Note that we report again with a dashed gray line the

lower bound on the mass obtained for a supersymmetric
simplified model in the ATLAS 3-lepton and MET search.
It is tempting to interpret the line as excluding M3 in its
entirety. The same caveats we introduced when discussing
M2, however, apply here, particularly in light of the fact
that the mass mS is favored to be very close to the fermion
massesmE,mF and the spectrum is compressed. As was the
case for model M2, a full numerical recasting would be
necessary to estimate the accurate position of the exclusion
line in M3.
To summarize, model M3 leads to a quite precise

prediction for the NP particle masses: mF ≈ 40–70 GeV,
mS ≈ 100–146 GeV, and mE ≈ 100–300 GeV.

D. Model M6

Of a completely different nature are the solutions
expected in models M6 and M10. The spectrum of M6

resembles closely the case of supersymmetry, with E
playing the role of the Higgsino doublet, F that of the

FIG. 6. Experimental constraints on the parameter space
ðmF;mEÞ in model M3 for the scalar mass mS ¼ 100 GeV.
The NP Yukawa couplings are fixed to the AS-induced values
YL ¼ 0.01, YR ¼ 0.77 and Y1 ¼ 0.18 (Y2 is negligible). The
color code is the same as in Figs. 4 and 5.
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wino adjoint triplet, and S that of a slepton doublet. The
relic density Ωh2 ≈ 0.12 is obtained when the particles
belonging to the same SUð2ÞL multiplet annihilate and
coannihilate into electroweak gauge bosons. One typically
obtains the correct relic abundance with a scalar DM
particle at mS ≳ 700 GeV [52], with a 1 TeV Higgsino-
like fermion belonging to E, or with a 2.5–3 TeV wino-like
fermion belonging to F.
The possibility of scalar DM is in strong tension with DD

bounds: the global symmetry forbids in fact the quartic
coupling that would be responsible for tree-level mass
splitting between the scalar and pseudoscalar component of
the DM particle, which becomes then allowed to couple
directly to the Z boson. On the other hand, it is well known
from the supersymmetry case that there exist no available
parameter space consistent with δðg − 2Þμ when the low-
energy spectrum admits a wino/Higgsino thermal DM
candidate saturating the relic abundance. We find that
the same conclusion applies to model M6, given the size
of the couplings YL, YR in Table IV.

E. Model M10

Model M10 presents a similar DM content as model M6

but a different conclusion when it comes to δðg − 2Þμ,
thanks to the presence of an additional doubly-charged
scalar in the low-energy spectrum, which can boost the
value of the anomalous magnetic moment of the muon. The
parameter space for δðg − 2Þμ, consistent with a Higgsino-
like DM particle at ∼1 TeV is shown in Fig. 7. Conversely,
there is no parameter space where the anomalous magnetic

moment measurement can be accommodated with a wino-
like DM particle.
The results presented in this section are summarized

in Table V.

F. A note about the electron g − 2

The results of this paper have been derived under the
assumption that the NP particles couple only to leptons of
the second generation, so that ðg − 2Þe is SM-like, in
agreement with the average of determinations of the fine
structure constant from Cs [57] and Rb [58]. On the other
hand, it is perhaps worth spending a few words on how
our results will have to be modified if additional determi-
nations in the future confirm the experimental anomaly
reported in Ref. [57] rather than a SM-like value in
agreement with [58].
It was pointed out early on [88,90] that NP models

explaining simultaneously δðg − 2Þμ and δðg − 2Þe at one
loop are in general subject to the strong 90% C.L.
experimental bound on BRðμ → eγÞ from MEG, BRðμ →
eγÞexp < 4.2 × 10−13 [137], which all but forbids NP states
that couple to the electron and muon with comparable
strength. Because of this bound, the most straightforward
way to extend our results to the case of a ðg − 2Þe anomaly
will be by adding one extra heavy fermion pair E1, F1 with
the same quantum numbers of E and F. One also needs
conjugate representations E0

1; F
0
1.

In the presence of E1, F1, all couplings in Eq. (14) are
promoted to matrices in lepton-flavor space. If only the
flavor-diagonal couplings develop interactive fixed point
in the trans-Planckian UV, the MEG bound will not be
violated (by the multiplicative nature of the Yukawa-
coupling beta functions, a generic off-diagonal term of
the type Yij runs like βYij ∼ YiiYijYjj, so that matrices that
respect the approximate flavor symmetry at the boundary

FIG. 7. In the ðmS;mEÞ plane of model M10, the region of the
parameter space consistent at 2σ with δðg − 2Þμ when the thermal
DM particle is a Higgsino-like fermion F at ∼1 TeV. The NP
Yukawa couplings are fixed at the AS-induced values YL ¼ 0.98,
YR ¼ 0.87, Y1 ¼ 0.03 (Y2 is negligible).

TABLE V. Summary of the predictions for masses mS, mE, mF
in the models investigated in this work. They are obtained by
combining the information on the NP Yukawa couplings, derived
by the trans-Planckian fixed-point analysis, with low-energy
constraints from δðg − 2Þμ, the LHC, and the relic abundance
of DM. Checkmarks indicate the WIMP DM candidate in each
case.

Scenario mS mE mF

M1 100 GeV ✓ ≈160–190 GeV 15–80 TeV
200–600 GeV ✓ ≈mS 5–50 TeV

5–50 TeV ≈mS
600–800 GeV ✓ ≈mS ≈10 TeV

M2 100–430 GeV 100 GeV to mS ✓ mE to 4 TeV
M3 100–146 GeV 100–300 GeV 40–70 GeV ✓
M6 No common parameter space for ðg − 2Þμ and DM
M10 1.4–2.5 TeV 2–6 TeV ∼1 TeV ✓
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condition maintain the same symmetry through the whole
RG flow at one loop).
Given a nonzero determination of δðg − 2Þe, the con-

straint on the mass of the additional heavy fermions
follows, as before, from Eq. (2). Both the chiral enhance-
ment in Eq. (2) and the trans-Planckian beta functions may
change sign by changing the sign of one Yukawa coupling,
but the analysis remains unaltered with respect to the
current case. On the other hand, the results of Figs. 4–6 are
completely independent on whether the theory includes E1,
F1, as the RG flow is not modified significantly with
respect to Appendix A with the addition of one pair of
heavy fermions.
The only difference of substance in Figs. 4–6 would

pertain to the parameter space consistent with the DM relic
abundance. The correct value of Ωh2 could in fact be
obtained by WIMP annihilation via the t-channel exchange
of the lightest of fermions E1, F1, or by the coannihilation
of the latter with the scalar S. In that case, masses mE and
mF would result less constrained than in Figs. 4–6 and the
available parameter space would not be limited, in fact, to
the green stripes in the figures.
The presence of additional fermions in the spectrum

affects the value of the one-loop coefficients collected in
Table VI and Table VII in Appendix A. In particular, the
coefficient of the beta function of the gauge coupling g2,
B2, will turn positive in scenariosM6 andM10 if E1, F1 are
added to the spectrum. Since the matching with the SM is
only possible if g2 is asymptotically free, we deduce that
M6 and M10 would not be consistent with AS if both
the ðg − 2Þμ and ðg − 2Þe anomalies were expected to be
explained in this framework.

V. SUMMARY AND CONCLUSIONS

In this work we have used the framework of asymptotic
safety to boost the predictivity of a class of simple NP
models known to produce at one loop the observed
deviation in the anomalous magnetic moment of the muon
through a chiral enhancement. The considered models are
consistent with the relic density of DM thanks to the
presence of a global Abelian symmetry. All models contain,
besides the SM particle content, an inert scalar field and
two colorless fermions that transform according to different
representations of SUð2ÞL. While these SM extensions can
easily accommodate the measured values of δðg − 2Þμ and
Ωh2, they fail to provide constraining information regard-
ing the scale and specific representation of the NP fields,
due to the large dimensionality of their parameter space.
As a possible solution to the lack of predictive exper-

imental information, we have completed the models in
the UV by parametrically coupling their fields to trans-
Planckian quantum effects potentially induced by asymp-
totically safe quantum gravity. The trans-Planckian
couplings flow into a perturbative interactive fixed-point

reminiscent of many matter-gravity systems. By imposing
the requirement that the gauge couplings of the SM remain
perturbative up to the Planck scale, we found that only the
five models with at least one NP particle in the singlet/
adjoint representation of SUð2ÞL remain allowed.
In the presence of a gravity-induced UV fixed point, the

values of the Yukawa couplings between the SM leptons
and the NP sector are fixed, as they correspond to irrelevant
directions in the coupling space. Their RG flow toward
the low energies is exclusively determined by the relevant
couplings of the SM, whose IR values are set by the
experiment. As a consequence, the NP fermion and scalar
masses remain as the only free parameters of the models
and they are then determined by low-energy constraints.
We found that in the AS setup the combined bounds from

DM and collider searches, the measurements of δðg − 2Þμ,
and the measured h → μþμ− signal strength, allowed us to
pinpoint quite precisely the mass of the inert scalar, which
reads mS≈100–800GeV in modelM1, mS≈100–430GeV
in model M2, and mS ≈ 100–146 GeV in model M3.
Additionally, a strongly hierarchical spectrum was pre-
dicted for the fermion pair: the lightest fermion needs to be
close in mass to the scalar, mEðFÞ ≈mS, while the mass of
the heavier fermion is determined by δðg − 2Þμ and falls
into the ballpark of 5–80 TeV in modelM1, 200–4000 GeV
in modelM2, and 100–300 GeV in modelM3. In modelM6

there does not exist any common parameter space region
for DM and the ðg − 2Þμ anomaly under the assumption
of AS, whereas in model M10 a large swath of available
parameter space can be found, consistent with a DM
particle at 1 TeV reminiscent of a supersymmetric
Higgsino.
All in all, our results provide another instructive illus-

tration of how the framework of AS can be adopted to
derive specific predictions about the scale of NP. Such
information could prove to be useful for the experimental
collaborations as an indication and guideline for future
search strategies. The construction presented in this study
could be also extended to alternative NP models and
observational phenomena.
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APPENDIX A: RGEs OF THE
GAUGE-YUKAWA SYSTEM

We present in this Appendix the trans-Planckian renorm-
alization group equations (RGEs) for the gauge-Yukawa
system of the five models highlighted in Table I.
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The underlined are the only models for which AS is
consistent with a realistic phenomenology at the low scale,
as for the others either the hypercharge coupling cannot
remain perturbative along the entire flow between the
EWSB and the Planck scale, or the particle content does
not support asymptotic freedom for the non-Abelian gauge
couplings. The parameters B2 and BY used to sort the
models of Table I read

B2 ¼ −
19

6
þ 1

3
S2ðRSÞ þ

4

3
½κFS2ðRFÞ þ κES2ðREÞ� ðA1Þ

BY ¼ 41

6
þ 1

3
dðRSÞY2

S þ
4

3
½κFdðRFÞY2

F þ κEdðREÞY2
E�;
ðA2Þ

where S2ðRÞ is the Dynkin index of representation R, dðRÞ
is the dimension of R, and Y denotes the hypercharge of the
particle indicated in the subscript. Additionally, κ ¼ 1=2

for the adjoint representation of SUð2ÞL and κ ¼ 1 in all
other cases.
The gauge-Yukawa system is coupled to gravity, which

is parameterized by fg for the gauge couplings and by fy
for the Yukawa couplings. The 1-loop RGEs are computed
with SARAH v4.14.0 [138] and RGBeta [139]. In
Table VI we present the coefficients multiplying the gauge
couplings in the beta functions of the five highlighted
models. Table VII features instead the coefficients multi-
plying combinations of Yukawa couplings. As functions of
the coefficients of Table VI and Table VII, the RGEs of the
models are the following (t ¼ logQ):

dg3
dt

¼ −7
g33

16π2
− fgg3 ðA3Þ

dg2
dt

¼ g32
16π2

B2 − fgg2 ðA4Þ

dgY
dt

¼ g3Y
16π2

BY − fggY ðA5Þ

dyt
dt

¼ 1

16π2

�
3

2
y2b þ

9

2
y2t þ C1ðY2

1 þ Y2
2Þ −

17

12
g2Y −

9

4
g22 − 8g23

�
yt − fyyt ðA6Þ

dyb
dt

¼ 1

16π2

�
9

2
y2b þ

3

2
y2t þ C1ðY2

1 þ Y2
2Þ −

5

12
g2Y −

9

4
g22 − 8g23

�
yb − fyyb ðA7Þ

dyμ
dt

¼ 1

16π2

��
3y2b þ 3y2t þ C1

�
Y2
1 þ Y2

2 þ
1

2
Y2
L

�
þ C2Y2

R −
15

4
g2Y −

9

4
g22

�
yμ þ C3Y2YRYL

�
− fyyμ ðA8Þ

dY1

dt
¼ 1

16π2
½3y2b þ 3y2t þ C4Y2

1 þ C5Y2
2 þ C6Y2

L þ C7Y2
R − GYg2Y −G2g22�Y1 − fyY1 ðA9Þ

dY2

dt
¼ 1

16π2

��
3y2b þ 3y2t þ C5Y2

1 þ C4Y2
2 þ C8Y2

L þ 1

2
Y2
R −GYg2Y −G2g22

�
Y2 þ 2yμYLYR

�
− fyY2 ðA10Þ

dYL

dt
¼ 1

16π2

��
C6Y2

1 þ C8Y2
2 þ C9Y2

L þ Y2
R þ 1

2
y2μ −HYg2Y −H2g22

�
YL þ 2yμYRY2

�
− fyYL ðA11Þ

dYR

dt
¼ 1

16π2
f½C10Y2

1 þ C11Y2
2 þ 2C11Y2

L þ C12Y2
R þ y2μ − JYg2Y − J2g22�YR þ 4C11yμYLY2g − fyYR: ðA12Þ

TABLE VII. One-loop RGE coefficients associated with
Yukawa-coupling terms for the five models highlighted in Table I.

Scenario C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

M1 1 1
2

2 5
2

1 0 0 1
2

3 0 1 2
M2 1 1

2
2 5

2
4 0 1

2
1
2

3 1 1 2
M3 1 1 2 5

2
4 1 0 1 5

2
0 1

2
5
2

M6
3
4

1 3
2

11
8

1
2

1
4

0 1
4

11
8

0 3
8

5
2

M10
3
4

3
2

3
2

11
8

1
2

0 1
2

3
8

5
4

1
4

1
4

3

TABLE VI. One-loop RGE coefficients associated with the
gauge couplings for the five models highlighted in Table I.

Scenario B2 BY G2 GY H2 HY J2 JY

M1 − 5
2

53
6

9
4

15
4

9
2

3
2

0 6
M2 − 5

2
47
6

9
4

3
4

9
2

3
2

0 3
M3 − 7

3
23
3

9
4

3
4

9
4

3
4

9
4

15
4

M6 −1 23
3

33
4

3
4

33
4

3
4

9
4

15
4

M10 − 1
2

17
2

33
4

3
4

9
2

3
2

6 3
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APPENDIX B: QUARTIC COUPLINGS
IN MODEL M1

We dedicate this Appendix to discussing the trans-
Planckian behavior of the dimensionless couplings of the
scalar potential in M1 under the assumption, discussed in
Sec. III A, that the functional renormalization group trun-
cation gives rise to a beta function term linear in the quartic
coupling: βλ ¼ βSMþNP

λ − λfλ. The conclusions we derive
are generic and will apply to all five viable models with just
small numerical modifications.

The scalar field content in M1 is characterized by the
Higgs doublet h and a complex neutral scalar S, whose
quantum numbers are listed in Table I. The scalar potential
is given in Eq. (16). Equation (16) can be extended to other
models with no loss of generality. In the case of modelsM3

and M6 there can appear an additional quartic coupling for
the operator jS†hcj2.
We derive the one-loop beta functions of the quartic

couplings:

16π2
dλ
dt

¼ ð−3g2Y − 9g22 þ 12y2b þ 4y2μ þ 12y2t þ 4Y2
2 þ 4Y2

1 þ 12λÞλ

þ 3

4
g4Y þ 3

2
g2Yg

2
2 þ

9

4
g42 − 4Y4

2 − 4Y4
1 − 12y4b − 4y4μ − 12y4t þ 2λ2hS − fλλ ðB1Þ

16π2
dλS
dt

¼ ð10λS þ 8Y2
L þ 4Y2

RÞλS − 8Y4
L − 4Y4

R þ 4λ2hS − fλλS ðB2Þ

16π2
dλhS
dt

¼
�
−
3

2
g2Y −

9

2
g22 þ 6y2b þ 6y2t þ 2y2μ þ 2Y2

1 þ 2Y2
2 þ 4Y2

L þ 2Y2
R þ 4λhS þ 6λþ 4λS

�
λhS

− 4Y2
2Y

2
L − 4Y2

2Y
2
R − 4y2μY2

L − 4y2μY2
R þ 8yμY2YLYR − fλλhS: ðB3Þ

A quick inspection of Eq. (B3) suffices to realize that the term in parentheses depend directly on λhS itself, whereas
all other elements are proportional to couplings that admit a Gaussian fixed point for the gauge-Yukawa system,
cf. Eqs. (27), (28). The full gauge-Yukawa-quartic system therefore admits a fixed point with λ�hS ¼ 0.
By adopting the values of the interactive fixed point reported in Table III one obtains, for the remaining quartic couplings,

λ� ¼
2
	
−13.152þ 583fλ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1320.42 − 15335.2fλ þ 339889f2λ

q 

π2

1749

λ�S ¼
4
	
−1.818þ 53fλ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
34.2288 − 192.708fλ þ 2809f2λ

q 

π2

265
: ðB4Þ

Equations (B4) feature two monotonic positive-definite
functions of fλ. It follows straightforwardly that fλ < 0 can
be adjusted to yield a (pseudo-)Gaussian fixed point for all
three quartic couplings, and that this fixed point spans three
irrelevant directions.
One direct consequence of λ�hS ¼ 0 is that the low-energy

value of the portal coupling λhS is negligibly small, so that
WIMP annihilation proceeds predominantly through the
bulk mechanism. Another one, is that the scalar mass terms
in Eq. (16) do not receive large renormalization from
additive contributions to the beta functions, βμ2 ∼ λhSμ

2
S and

βμ2S ∼ λhSμ
2, and they thus remain natural.

Equations (B1)–(B3) are modified in M2, M3, M6,
and M10 by terms involving the gauge couplings of
SUð2ÞL ×Uð1ÞY , which kick in as S is not a gauge singlet
in those models. The same set of interactive fixed points as
in Table III will correspond in M2, M3, M6 and M10 to an
interactive λ�hS ≠ 0. The overall conclusion does not
change, however, as one still remains with the freedom
of adjusting fλ to yield a pseudo-Gaussian fixed point
along irrelevant directions for the three quartic couplings.
Moreover, the same conclusion holds if the system is
extended by additional quartic couplings.
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