
 

Is negative kinetic energy metastable?
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1Dipartimento di Fisica “E. Fermi”, Università di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
2INFN, Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy

(Received 10 November 2020; accepted 3 June 2021; published 22 June 2021)

Local minima of the potential can be metastable up to cosmologically long times thanks to energy
conservation. We explore the possibility that theories with negative kinetic energy (ghosts) can be
metastable up to cosmologically long times. In classical mechanics, ghosts undergo spontaneous lockdown
rather than run away if weakly coupled and nonresonant. Physical examples of this phenomenon are
shown. In quantum mechanics, this leads to metastability similar to vacuum decay. In classical field theory,
lockdown is broken by resonances and ghosts behave statistically, drifting toward infinite entropy as no
thermal equilibrium exists. We analytically and numerically compute the runaway rate finding that it is
cosmologically slow in four-derivative gravity, where ghosts have gravitational interactions only. In
quantum field theory, the ghost runaway rate is naively infinite in perturbation theory, analogously to what
is found in early attempts to compute vacuum tunnelling; we do not know the true rate.
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I. INTRODUCTION

A tentative quantum theory of gravity and matter is
obtained writing the most generic action with renormaliz-
able terms, taking into account that the graviton gμν has
mass dimension 0. Such action is [1],

S ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p �
R2

6f20
þ

1
3
R2 − R2

μν

f22
−
1

2
M̄2

PlRþ Lmatter

�
ð1Þ

where Rμν is the Ricci tensor, R is the curvature, and Lmatter

contains scalars, fermions, and vectors. The first two terms,
suppressed by the dimensionless gravitational couplings f0
and f2 (in the notation of [2]), are graviton kinetic terms
with four derivatives.
However, a classical degree of freedom with four

derivatives can be rewritten as 2 degrees of freedom with
two derivatives, and one of the two (dubbed ghost) has
negative kinetic energy [3]. Gravity is no exception. The
four-derivative graviton splits into the massless graviton
and a ghost graviton with mass M2 ¼ f2M̄Pl=

ffiffiffi
2

p
. The full

action in split form can be found in [4], and the negative
kinetic energy can be seen through the following simple
argument. Omitting Lorentz indices, the propagator of the
four-derivative graviton is
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�
; ð2Þ

where the minus sign indicates negative kinetic energy.1 It
makes the theory renormalizable, canceling the graviton
propagator at large energy p ≫ M2. We explore the
possibility that the degrees of freedom with negative kinetic
energy are physical, unlike what happens in gauge theories,
where similar states are unphysical, introduced as math-
ematical tools to deal with gauge redundancies.
A classical degree of freedom with positive kinetic

energy interacting with negative kinetic energy has run-
away solutions, where the total energy is conserved while
individual energies diverge. Thereby, negative kinetic
energy is dubbed “ghost,” meaning an unphysical object
to be excluded from sensible theories. However, theories
with negative and even unbounded-from-below potential
energy can give sensible metastable physics around a false
vacuum. Can unbounded-from-below kinetic energy sim-
ilarly give rise to metastability?
To explore this issue, we will consider theories featuring

some positive-energy degree of freedom q1ðtÞ interacting
with a ghost q2ðtÞ as described by Lagrangians, such as

L ¼ m1

�
_q21
2
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1Thereby, many authors searched for a positive-energy quan-
tization [5–13], analogously to what happens for fermions
(classically their kinetic energy is undefined, but a sensible
positive-energy quantum theory exists). It is unclear what is
their large-action limit that possibly modifies classical physics
into some positive-energy version.

PHYSICAL REVIEW D 103, 115025 (2021)

2470-0010=2021=103(11)=115025(24) 115025-1 Published by the American Physical Society

https://orcid.org/0000-0003-3271-8941
https://orcid.org/0000-0002-4482-9545
https://orcid.org/0000-0003-2522-8792
https://orcid.org/0000-0002-9697-8702
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.115025&domain=pdf&date_stamp=2021-06-22
https://doi.org/10.1103/PhysRevD.103.115025
https://doi.org/10.1103/PhysRevD.103.115025
https://doi.org/10.1103/PhysRevD.103.115025
https://doi.org/10.1103/PhysRevD.103.115025
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


as well as the analogous relativistic theory of fields
φ1;2ðx⃗; tÞ (scalars, for simplicity) with Lagrangian density,

L ¼ ð∂μφ1Þ2 −m2
1φ

2
1

2
� ð∂μφ2Þ2 −m2

2φ
2
2

2
−
λ

2
φ2
1φ

2
2: ð4Þ

In both cases, the ghost is obtained for � ¼ −1.
We preliminarily need to address the concerns of those

authors who, at this point, dismiss the study with the
motivation that an unbounded-from-below Hamiltonian is
inconsistent, for example, because it allows for classical
solutions that hit singularities. These authors also view as
inconsistent positive kinetic energies but with unbounded-
from-below potentials.
What we want to study is how long the physical system

can stay around a “false vacuum” before falling to other
regions. In the case of potential metastability, the WKB
approximation in quantum mechanics shows that the
metastability time is determined only by the potential
barrier, irrespectively of the fate beyond the barrier. The
potential beyond the barrier might be unbounded from
below (giving rise to singular solutions) or have a true
minimum; this does not affect the metastability time. The
fate beyond the barrier depends on possibly unknown high-
energy theory. In effective quantum field theories (QFT),
one considers extra nonrenormalizable terms that stabilize
an unbounded-from-below potential. As such operators
have negligible impact at low field values, the metastability
time is computable in terms of low-energy physics.
Returning back from the analogy to the argument of the

present study, we want to explore if a theory with negative
kinetic energy might similarly be metastable up to cosmo-
logically large times. Let us consider, for example, the
model in Eq. (3). Its Hamiltonian is unbounded from below
but can be modified, for example, into

H ¼
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1

2m1

þm1ω
2
1

q21
2

�
−
�

p2
2

2m2

þm2ω
2
2

q22
2

�

þ 1

2E0

�
p2
2

2m2

þm2ω
2
2

q22
2

�
2

þ λ

2
q21q

2
2; ð5Þ

which is bounded from below and negligibly differs from
the original theory at energies E ≪ E0. The energy of the
2nd degree of freedom has a Mexican-hat form that avoids
singularities, replacing them with a generalization of “ghost
condensation” [14], such that q2 reaches a constant but
finite velocity. The critical energy E0 plays a role analogous
to coefficients of nonrenormalizable operators: In the limit
where it is much higher than the energies available around
the false vacuum, it plays no role until the escape event
happens. In the following, we can thereby study the
metastability issue in the simpler model of Eq. (3) where
energy is unbounded from below.

In order to see if a ghost is really excluded, we start
studying the problem in the simplest limit, classical
mechanics.
It has been noticed that, in classical mechanics, some

theories containing an interacting ghost have stable classical
solutions with appropriate initial conditions dubbed “islands
of stability” [15–24]. This happens even when interactions
are generic enough that no constant of motion forbids
interacting ghosts to evolve toward catastrophic runaway
instabilities. Rather, ghosts undergo spontaneous lockdown,
with energies that vary but remain in a nontrivial restricted
range. Studies based on numerical computations of classical
time evolution cannot reach cosmological metastability
times, so an analytic understanding is needed. Extending
earlier works [16], wewill show that the neededmathematics
had been already developed to understand a related problem:
Why is the solar system metastable, despite that no constant
of motion forbids planets to escape? Oversimplifying, it has
been shown that classical systems that can be approximated
as oscillators plus small interactions tend to undergo ordered
epicyclelike motions, while large interactions lead to chaos.
We will see that this implies that ghosts with large inter-
actions run away, but ghosts with generic small interactions
are stable. Weakly coupled theories contain hidden quasi-
constants of motion. Since this might appear exotic, in
Appendix A, we recall that known physical systems exhibit
this behavior: Asteroids around the Lagrangian point L4 and
electrons in magnetic fields plus repulsive potentials are
described by a ghost degree of freedom, and yet they are
metastable.
Since classical mechanics does not exclude ghosts, in

Sec. III, we study quantum mechanics, finding that met-
astability persists: A ghost (negative kinetic energy, K
instability) is not qualitatively less metastable than a
negative potential energy (V instability).
However, resonances [as ω1 ¼ ω2 in Eq. (3)] can lead to

ghost runaway even at small coupling, depending on the
specific form of the interaction. Studying in Sec. IV
classical field theory, we encounter an infinite number of
resonances by expanding a field in Fourier modes. While
local field theories can give resonances of benign type, the
infinite number of resonances removes the hidden constants
of motion. We then perform a statistical analysis, showing
that systems containing ghosts do not have a thermal state:
Heat keeps flowing from ghost fields to positive-energy
fields because this increases entropy. We compute the rate
of this instability through Boltzmann equations, finding a
rate not exponentially suppressed by small couplings.
Nevertheless, in the special case of four-derivative gravity,
the graviton ghost has Planck-suppressed interactions,
which are small enough that the ghost runaway rate is
not problematic in cosmology. We validate this analytic
understanding through classical lattice simulations.
In Sec. V, we finally consider relativistic quantum field

theory, which is the relevant but most difficult theory. By
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performing the zero-temperature limit of Boltzmann equa-
tions, we find a divergent tree level ghost runaway rate.
Such divergence arises because the initial vacuum state is
Lorentz invariant, giving rise to an integral over the
noncompact Lorentz group that describes a boost of the
final state. The same Lorentz integral arose in earlier
computations of V-instability tunneling, but Coleman later
argued that vacuum decay can be computed in terms of a
Lorentz-invariant instanton, the “bounce,” and its rate is
exponentially suppressed at small coupling. We don’t know
if something similar holds for K instability.
Conclusions are presented in Sec. VI.

II. GHOST METASTABILITY IN
CLASSICAL MECHANICS

We consider a degree of freedom qðtÞ in 0þ 1 dimen-
sions with four-derivative kinetic term,

L ¼ −
1

2
q

� ∂2

∂t2 þ ω2
1

�� ∂2

∂t2 þ ω2
2

�
q − VIðq; q̈Þ; ð6Þ

where the first term is quadratic in q, and VI contains
interactions. We add zero as a perfect square containing an
auxiliary degree of freedom q̃ with no kinetic term:

L ¼ 1

2
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Expanding the square cancels both the second-order and
the fourth-order kinetic terms, leaving

L ¼ −
q̃ q̈
2

þ ðω2
1 − ω2

2Þ2
q2

8
− ðω2

1 þ ω2
2Þ
q̃q
4

þ q̃2

8
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ð8Þ

The kinetic and mass terms are diagonalized, performing
the field redefinition,(

q̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
2 − ω2

1

p
ðq1 − q2Þ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
2 − ω2

1

p
;

ð9Þ

obtaining, after an integration by parts,

L ¼ _q21 − ω2
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ω2
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1
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: ð10Þ

We can thereby focus on the toy model of Eq. (3) that
captures the relevant physics. This classical theory only has
one free physical parameter, ω1=ω2, plus the initial

conditions for its time evolution. Indeed, without loss of
generality, we can rescale q1 and q2 to set m1 ¼ m2 ¼ 1.
By rescaling t, we can set ω1 ¼ 1. Furthermore, classical
physics is invariant under a multiplicative rescaling of L so
that we could set λ ¼ 1. To improve readability, we keep
ω1, ω2, and λ as apparent parameters, but it should be clear
that our following analysis is general.
The classical equations of motion are

q̈1 þ ω2
1q1 þ λq1q22 ¼ 0; q̈2 þ ω2

2q2 − λq2q21 ¼ 0:

ð11Þ
The only constant of motion is the total energy
E ¼ E1 − E2 þ VI , which is conserved, where

Ei ¼
_q2i
2
þ ω2

i
q2i
2
> 0; VI ¼

λ

2
q21q

2
2; ð12Þ

whileE1 andE2 are not conserved; e.g., _E1¼−λq22dðq21Þ=dt.
No conservation law prevents rapid ghost runaway to
E1; E2 → ∞. Numerical evolution shows that solutions
starting from jE1 − E2j≳ VI quickly undergo runaway.
On the other hand, for solutions starting from small enough
initial energies E1; E2 ≪ VI , E1ðtÞ and E2ðtÞ evolve,
remaining confined to a small range, for a time longer than
what can benumerically computed.2Analyticwork is needed
to understand this surprising phenomenon.

A. Action-angle variables

A technique used to study perturbed quasiperiodic
motions in celestial mechanics is useful. Considering
one pair ðq; pÞ of Hamiltonian variables, it is useful to
pass to canonical action-angle variables ðΘ; JÞ, such that
the Hamiltonian only depends on J, and motion is
immediately solved.
In the simplest case of an harmonic oscillator, this gives

H ¼ p2

2m
þmω2

2
q2 ¼ ωJ; ð13Þ

where m > 0 (m < 0) for a normal particle (a ghost). The
canonical transformation is

q ¼
ffiffiffiffiffiffiffi
2J
mω

r
sinΘ; p ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2mωJ

p
cosΘ; ð14Þ

and its inverse is

Θ ¼ arccos
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ ðmωqÞ2
p ; J ¼ p2 þ ðmωqÞ2

2mω
:

ð15Þ

2In agravity, this kind of initial conditions correspond to
small gradients, which might be selected by inflationary cosmol-
ogy [23].
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One can verify that ½Θ; J� ¼ ð∂Θ=∂qÞð∂J=∂pÞ −
ð∂Q=∂pÞð∂J=∂qÞ ¼ 1 or, more formally, write the gen-
erator of the canonical transformation,

Wðq; JÞ ¼
Z

pdq ¼ 1

2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mωð2J −mωq2Þ

q

þ J arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

mωq2

2J

r
: ð16Þ

In action-angle variables, H ¼ ωJ so that motion of a
harmonic oscillator is trivially solved by Θ ¼ Θ0 þ ωt,
J ¼ E=ω. For a generic anharmonic oscillator, the

transformation to action-angle variables such that H
depends only on Ji cannot be written analytically.
Going to action-angle variables for the two free harmonic

oscillators, our toy ghost model of Eq. (3) becomes

H ¼ ω1J1 − ω2J2 þ ϵJ1J2sin2Θ1sin2Θ2;

where ϵ ¼ 2λ

ω1ω2

; ð17Þ

and Ei ¼ ωiJi ≥ 0. The − signals a ghost. The change of
variables makes numerics stable up to longer time scales.
Starting from t ¼ 0, Fig. 1 shows the time tend at which the

FIG. 1. We consider the ghost model of Eq. (3) with n ¼ 2 degrees of freedom and quartic coupling λ. The dots are numerical results of
observed ghost instability. The black curve is the analytic lower bound on the ghost stability time, computed up to 20th order in λ.

FIG. 2. Time evolution of the two quasiconserved energies ðJ01; J02Þ computed at 0th order (lighter, J0i ¼ Ji), 1st order (medium), 2nd
order (darker) in λ. For small λ (left plot), time evolutions remain in a confined region that gets smaller and smaller as higher orders are
included. Metastability is lost above some critical value of the coupling λ (right plot), when the Birkhoff series in λ stops converging.
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ghost runaway happens as function of λ for some fixed
initial conditions and given ω2=ω1. We see a chaotic
behavior at larger λ that sharply starts above some critical
value.
Figure 2(a) shows that, for small λ, J1 and J2 remain

confined in a well-defined region up to long times, while
Θ1 and Θ2 evolve almost linearly in time. Analytic work is
needed to know if smaller λ leads to metastability or to
absolute stability. The region in the ðJ1; J2Þ plane extends
with increasing λ until suddenly chaos and ghost runaway
take over.
This behavior is characteristic of near-integrable system.

Integrable systems (such as n independent oscillators) are
those for which any trajectory evolves along tori in phase
space, rather than filling higher-dimensional subspaces up
to the whole phase space. Adding small interactions, a near-
ordered behavior persists because the system can be
computed perturbatively. In the case of ghosts, this implies

their metastability. For large coupling, the perturbative
expansion fails, and the system becomes chaotic. If the
system contains ghosts, this leads to runaways.
For small ϵ, we can analytically solve the equations of

motion as power series in ϵ. At 0th order in ϵ ¼ 2λ=ω1ω2,
the equations of motion are solved by

JiðtÞ ¼ Ji0; Θ1ðtÞ ¼ Θ1ð0Þ þ ω1t;

Θ2ðtÞ ¼ Θ2ð0Þ − ω2t: ð18Þ

We see that JiðtÞ ¼ Ji0 are constant, for both i ¼ f1; 2g.
Their equations of motion at 1st order,

J01 ¼ −ϵJ10J20 sinð2ω1tÞ sinðω2tÞ2;
J02 ¼ ϵJ10J20 sinð2ω2tÞ sinðω1tÞ2; ð19Þ

are solved by

J1ðtÞ ¼ J10 þ ϵJ10J20
ω1ω2−1 cosð2tω1þ2Þ þ ω1þ2ð2ω1−2 cos ð2tω1Þ − ω1 cosð2tω1−2ÞÞ þ 2ω2

2

8ω1ðω1 − ω2Þðω1 þ ω2Þ
; ð20Þ

having defined ω1−2 ¼ ω1 − ω2 etc. The dimensionless
expansion parameter is ∼ϵJ=ω, which describes the energy
in the interaction term divided by the energy in the free
quadratic part of the Hamiltonian. This 1st order approxi-
mation fails after some oscillations; nevertheless, for small
ϵ, it approximates well the range of ðJ1; J2Þ covered by the
full numerical solution. The 1st order perturbation diverges
if ω1 ¼ �ω2. More in general, higher orders diverge if ω1

and ω2 are “commensurable,” namely if the resonance
condition N1ω1 þ N2ω2 ¼ 0 is satisfied for some integers
N1;2.

3

A more important problem is that the perturbative series
in ϵ (or λ) is not convergent but at most asymptotic.
Thereby, its existence does not imply absolute stability, and
a more complicated analysis is needed, yielding stability
over exponentially long times.

B. Perturbative Birkhoff series

We consider the toy model described by the Hamiltonian
of Eq. (17). Rather than finding solutions perturbatively in
ϵ, we follow a more general, equivalent, approach. We seek
to “diagonalize” the classical Hamiltonian. Namely, we
search for a canonical transformation Ji → J0i and Θi → Θ0

i
such that the Hamiltonian does not depend on Θ0

i:

HðJi;ΘiÞ ¼ H0ðJ0iÞ: ð21Þ

We perform a generic canonical transformation with
generator,

J0iΘiþWðJ0;ΘÞ; i:e:; J¼ J0 þ ∂Θi
W; Θ0 ¼Θþ ∂J0W:

ð22Þ
So, defining f ¼ sin2 Θ1 sin2Θ2, one gets

H0ðJ0Þ ¼ HðJÞ ¼ ω1ðJ01 þ ∂Θ1
WÞ − ω2ðJ02 þ ∂Θ2

WÞ
þ ϵfðJ01 þ ∂Θ1

WÞðJ02 þ ∂Θ2
WÞ: ð23Þ

If we could solve this equation, all J0i would be exact
constants of motion, and the system would be integrable.
However, we can only expand and perturbatively solve
Eq. (23) in powers of ϵ,

W ¼ ϵWð1Þ þ ϵ2Wð2Þ þ � � � ;
H0 ¼ H þ ϵHð1Þ þ ϵ2Hð2Þ þ � � � : ð24Þ

Since the system is not integrable, the Birkhoff series is
only asymptotic, and J0i are the approximated constants of
motion observed in numerics. Because of the periodicity in
Θ⃗≡ ðΘ1;Θ2Þ, we expand each term in Fourier series, e.g.,

WðnÞðΘ1;Θ2Þ ¼ −i
X∞

N1;N2¼−∞
eiN⃗·Θ⃗WðnÞ

N⃗
; N⃗ ¼ ðN1; N2Þ:

ð25Þ

3These resonances correspond to what in field theory are on-
shell scattering and decay processes; in zero spatial dimensions,
ωi do not depend on momenta so that on-shell processes are only
possible among appropriate integer numbers Ni of modes.
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The only nonzero coefficient of the Fourier series of
f¼PN⃗ e

iNiΘifN⃗ are f00 ¼ 1=4, f�2;�2 ¼ f�2;∓2 ¼ 1=16,
f�2;0 ¼ f0;�2 ¼ −1=8.

1. First order in the coupling

Expanding Eq. (23) at first order gives

Hð1Þ ¼ ω1

∂Wð1Þ

∂Θ1

− ω2

∂Wð1Þ

∂Θ2

þ J01J
0
2fðΘ1;Θ2Þ: ð26Þ

The first term involves derivatives of a periodic function
with period 2π, by the very definition of the angle variables
Θi. Therefore, its average over a period is zero. Averaging
over Θi we get

Hð1Þ ¼ J01J
0
2

4
i:e: H0 ¼ ω1J01 − ω2J02 þ ϵ

J01J
0
2

4
þOðϵ2Þ:

ð27Þ

We next compute the canonical transformation Wð1Þ

through the Fourier expansion. We get Wð1Þ
00 ¼ 0 and

Wð1Þ
N1N2

¼ J01J
0
2fN1N2

N2ω2 − N1ω1

ð28Þ

for N1; N2 ≠ 0. Summing over the nonvanishing N⃗, this
means

Wð1Þ ¼ J01J
0
2

8ðω2
2 − ω2

1Þ
��

ω1 cosð2Θ2Þ − ω1 þ
ω2
2

ω1

�
sinð2Θ1Þ

þ
�
ω2 cosð2Θ1Þ − ω2 þ

ω2
1

ω2

�
sinð2Θ2Þ

�
; ð29Þ

and thereby,

J01 ¼ J1 þ ϵ
J1J2

4ω1ðω2
1 −ω2

2Þ
½cos2Θ1ðω2

2 −ω2
1 þω2

1 cos2Θ2Þ

−ω1ω2 sin2Θ1 sin2Θ2� þOðϵ2Þ; ð30Þ

which gives the extra approximate integral of motion (in
addition to energy, an exact constant). At this order, the
only resonance is ω1 ¼ �ω2. The perturbative expansion
fails close to the resonance. The numerical solution shows
that J01 is an approximate pseudointegral of motion for
small ϵ, unless ω1 ≈ ω2.

2. Generic order in the coupling

Equation (23) expanded at order n > 1 (n ¼ 1 is
special) is

HðnÞðJ01; J02Þ

¼ ω1

∂WðnÞ

∂Θ1

− ω2

∂WðnÞ

∂Θ2

þ fðΘ1;Θ2Þ

×

�
J01

∂Wðn−1Þ

∂Θ2

þ J02
∂Wðn−1Þ

∂Θ1

þ
Xn−2
m¼1

∂WðmÞ

∂Θ1

∂Wðn−1−mÞ

∂Θ2

�
:

ð31Þ

At each order n, only a finite set of coefficients of WðnÞ
N1N2

are non-zero, since f only has few nonzero Fourier
coefficients. The constant term (p1 ¼ p2 ¼ 0) allows
one to find explicitly the Hamiltonian, whereas the other
terms give the canonical transformation. We may fix the
freedom of performingΘ-only transformations by choosing

WðnÞ
00 ¼ 0, finding

HðnÞ ¼
X
q⃗þr⃗¼0⃗

ðr2J01 þ r1J02Þfq⃗Wðn−1Þ
r⃗

þ
Xn−2
m¼1

X
q⃗þr⃗þs⃗¼0⃗

r1s2fq⃗W
ðmÞ
r⃗ Wðn−1−mÞ

s⃗ ; ð32Þ

WðnÞ
N⃗

¼ 1

N2ω2 − N1ω1

� X
q⃗þr⃗¼p⃗

ðr2J01 þ r1J02Þfq⃗Wðn−1Þ
r⃗

þ
Xn−2
m¼1

X
q⃗þr⃗þs⃗¼p⃗

r1s2fq⃗W
ðmÞ
r⃗ Wðn−1−mÞ

s⃗

�
; ð33Þ

which are explicit equations for the Hamiltonian and the
canonical transformation at order n in terms of the lower
orders. HðnÞ is a polynomial of degree nþ 1 in J01;2 with
coefficients that depend on ωi.

4

C. Stability estimates

For typical interacting systems, frequencies vary depend-
ing on initial conditions and can thereby hit resonances,
invalidating the Birkhoff series that guarantees stability.
Kolmogorov proved that instability only happens for a
subset of values of initial conditions that are as rare as
rational numbers within real numbers; most initial con-
ditions lead to stable motion. For systems with 2 degrees of
freedom and conserved energy, this is enough to guarantee
exact stability because there is only one quasiconstant of
motion, say J01. Any initial condition is “surrounded” by
nearby values so that stability holds. On the other hand,
with more than 2 degrees of freedom, there are two or more

4Relations such asWðnÞ
−N1;N2

ðω1;ω2Þ ¼ ð−1ÞnWðnÞ
N1;N2

ð−ω1;ω2Þ
allow one to compute only for positive N1;2 ≥ 0, if ωi are left
generic. However, this produces cumbersome expressions, and
computations are more efficiently performed setting ωi to
numerical values, such that each term is a short polynomial in J0i.

GROSS, STRUMIA, TERESI, and ZIRILLI PHYS. REV. D 103, 115025 (2021)

115025-6



quasiconstants J0i so that they can undergo Arnold diffu-
sion; their values slowly drift through the rare instabilities,
not being surrounded by stable values. This drift is not
visible in perturbation theory because it takes place for
“rational” values of ωi, such that perturbation theory fails.
Nekhoroshev estimated that the drift is nonperturbatively
slow, giving rise to an exponentially large instability
time [25].
In concrete systems, the metastability time can be

computed as follows. The perturbative Birkhoff series
allows one to remove interactions up to an arbitrarily large
power ϵk so that the remaining small interaction can destroy
stability on long enough time-scales, of order ϵ−k. As the
Birkhoff series is only asymptotic, stability estimates are
obtained by computing up to some high optimal order in
the asymptotic expansion. For example, [26] computed the
metastability time of asteroids around the Lagrangian point
L4, which contain a ghost degree of freedom.
In our model, we can compute the time τnðJinmax → JmaxÞ,

for which, we are guaranteed that any evolution starting
from J0i ≤ Jinmax remains within J0i ≤ Jmax > Jinmax. We maxi-
mize over Jmax, when possible, having in mind Lyapunov
stability so that τnðJinmaxÞ≡maxJmax

τnðJinmax → JmaxÞ.
Computing at different orders n in the expansion give

different J0i and different times τn; because of the asymp-
totic character of the Birkhoff series, stability is guaranteed
up to the largest τn. Nonconservation of J0i happens because
interactions δH remain at higher order:

HðJi;ΘiÞ ¼ Hð≤nÞðJ0iÞ þ δHðJ0i;ΘiÞ; ð34Þ

where Hð≤nÞ ¼Pn
k¼0 ϵ

kHðkÞ includes terms up to order n.
The leading-order contribution to the residual is

δH¼−ϵnþ1

�
ω1

∂Wðnþ1Þ

∂Θ1

−ω2

∂Wðnþ1Þ

∂Θ2

�
þOðϵnþ2Þ: ð35Þ

Such term can be computed from its Fourier coefficients,

δHðnþ1Þ
N⃗

¼
�
Hðnþ1Þ forn⃗ ¼ 0⃗

ðN2ω2 − N1ω1ÞWðnþ1Þ
N⃗

forn⃗ ≠ 0⃗
: ð36Þ

The residual time evolution of J0i is given by its
Hamiltonian equation of motion,

_J0i ¼ −
∂
∂Θ0

i
δH; ð37Þ

where, at leading order in the residual, we can approximate
∂=∂Θ0

i ≃ ∂=∂Θi and thereby avoid reexpressing Θ in terms
of Θ0 in δH. A lower bound on the stability time is obtained
by substituting _J0i with its maximal value. Neglecting
higher orders in ϵ,

���� ∂
∂Θ0

i
δH

����≤X
p⃗

���� ∂
∂Θ0

i
δHðnÞ

p⃗

����¼ X
N1;N2

jNiðN2ω2−N1ω1ÞWðnÞ
N⃗
j;

ð38Þ

having used the triangular inequality. Higher orders in ϵ
weaken the bound in Eq. (38) by a factor of 2 [26].

1. Stability at lowest order

To start, we outline the procedure at lowest order, such
that the approximately conserved quantities are simply
J0i ¼ Ji, and the remainder in the Birkhoff series simply is
the whole interaction,

δHð0Þ ¼ 2λ
J1J2
ω1ω2

sin2 Θ1 sin2 Θ2: ð39Þ

To compute the stability time, we use the inequality,

jJ0iðtÞ − J0ið0Þj ≤ t max
J0i≤Jmax

j _J0ij ≤ t
2λJ2max

ω1ω2

: ð40Þ

The region can be abandoned only after a time,

t ≥ τ0ðJinmax → JmaxÞ ¼ ω1ω2

Jmax − Jinmax

2λJ2max
: ð41Þ

Its maximal value, achieved for Jmax ¼ 2Jinmax, is the
Lyapunov stability time:

τ0ðJinmaxÞ ¼
ω1ω2

8λJinmax
: ð42Þ

2. Stability at generic order

The above discussion is easily generalized at order n.
The residual time evolution is bounded by

max
i;J0i≤Jmax

���� ∂
∂Θi

δH

����
≤ 2ϵnþ1 max

i;J0i≤Jmax

X
N1;N2

jNiðN2ω2 − N1ω1ÞWðnþ1Þ
N⃗

j

≡ ϵnþ1Jnþ2
maxβn; ð43Þ

where we included the factor of 2 due to higher orders,
maximized over the free index i ¼ 1, 2, and used the fact
that the remainder is a homogeneous polynomial in J0i of
order nþ 2. The function βnðω1;ω2Þ can be computed
numerically and diverges close to resonances:

τnðJinmax → JmaxÞ ¼
Jmax − Jinmax

ϵnþ1Jnþ2
maxβn

: ð44Þ
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The Lyapunov stability time is

τnðJinmaxÞ ¼
1

βn

ðnþ 1Þnþ1

ðnþ 2Þnþ2

�
ω1ω2

2λJinmax

�
nþ1

: ð45Þ

In view of the asymptotic character of the Birkhoff series,
for each value of ρ0, there is an optimal order n that gives
the strongest bound.
As an example, in Fig. 1(a), we show the stability bound

computed for ω2=ω1 ¼
ffiffiffi
2

p
. The numbers on the curve

indicate the optimal order. Some order dominates for a
larger range when it contains enhanced denominators. Our
example contains enhanced denominators at 7th order
(1=ð7ω1 − 5ω2Þ) and 17th order. Something similar hap-
pens in Fig. 1(b), where we consider ω2=ω1 ¼ π2. In both
cases, we keep fixed J01;2 ¼ 1 at any given order, which
approximatively means J1;2 ¼ 1 for values of λ, small
enough that the series converges.
For small enough couplings, we proved ghost metasta-

bility up to cosmological times that cannot be probed by
numerical studies. We consider a specific model that
contains no special features; a similar analysis can be
performed for any other model.

D. Resonances i.e., on-shell processes

The previous perturbative approximation becomes less
accurate close to resonances. The most dangerous reso-
nance corresponds to ω1 ¼ ω2, as 1=ðω1 − ω2Þ enhance-
ments occur at leading order in the coupling. As a
result, the Birkhoff series already fails for Eint=Efree≳
ðω1 − ω2Þ=ω1;2, instead of holding, as usual, when the
energy in the interaction terms is smaller than the free
energy. Numerical solutions in our model with resonant
ω1 ≈ ω2 (and very small λ such that interactions negligibly
modify frequencies) show that a linear combination of J1;2
fails to be quasiconstant of motion but remains bounded so
that runaways remain avoided.

We extend analytic techniques to study resonances as
they will be important in our subsequent study of classical
and quantum field theories.5

As described in advanced books about analytic mechan-
ics [27], resonant processes can be analytically studied by
modifying the Birkhoff normal form into a “resonant
normal form” that avoids the enhanced terms by selectively
downgrading the goal of canceling all dependence on the
angle variables. One needs to keep those that give resonant
combinations, obtaining a more complex but still manage-
able partially diagonalized Hamiltonian. Some combina-
tions of J0 remain quasiconserved, whereas others evolve as
governed by the resonant form.

1. Example: ghost that remains stable
close to resonance

To clarify with a worked example, we reconsider our
model of Eq. (17) in the resonant case ω2 → ω1. We
perform a canonical transformation analogous to Eq. (28)
(at leading order) but omitting the singular Fourier modes
with N1 ¼ N2 ≡ N̄, which multiply Θ1 þ Θ2. A straight-
forward but tedious change of variables gives

H0 ¼ ω1J01 −ω2J02 þ ϵ
J01J

0
2

4

�
1þ 1

2
cos2ðΘ0

1 þΘ0
2Þ
�
þ � � � :

ð46Þ
The same result can be reobtained by expanding Eq. (26) in
Fourier modes and taking into account that off-diagonal

elements of Wð1Þ
N1N2

cancel the contribution from fN1N2
,

while diagonal elements Wð1Þ
N̄ N̄ vanish, leaving the

Hamiltonian Fourier coefficients Hð1Þ
N̄ ¼ J01J

0
2fN̄ N̄ so that

FIG. 3. Phase portrait of the auxiliary system close to the resonance. The thick line is the separatrix between the different kinds of
motion. The shaded gray region in phase space cannot be accessed with J01;2 ≥ 0.

5By expanding fields into Fourier modes, one gets an infinite
number of interactions, which always contain resonancesP

i ω
in
i ¼Pj ω

out
j , giving rise to decays and other on-shell

process, using the standard terminology of quantum field theory
(when E ¼ ℏω the resonance condition becomes conservation of
energy and momentum).
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Hð1Þ ¼
X
N̄

eiN̄ðΘ1þΘ2ÞHð1Þ
N̄ ð47Þ

gives again Eq. (46), after taking into account that Θi ≃ Θ0
i.

The series expansion is no longer singular at the resonance
so that its first order is accurate at small coupling. We can
use it to study the dynamics close to the resonance finding
that, since 1þ 1

2
cos 2ðΘ1 þ Θ2Þ > 0, motion remains

bounded. This can be better seen by performing the
canonical transformation,

Q≡ Θ0
1 þ Θ0

2

2
; J ≡ J01 þ J02; E ≡ J01 − J02; ð48Þ

such that, writing ω≡ ðω1 þ ω2Þ=2, Δω≡ ω1 − ω2, the
Hamiltonian becomes

H0 ≃ ωE þ Δω
J
2
þ ϵ

16
ðJ 2 − E2Þ

�
1þ 1

2
cos 4Q

�
: ð49Þ

H0 and E are constants of motion,6 while J is no longer
conserved and forms, together with Q, a system with
1 degree of freedom, simple enough that it can be analy-
tically studied. The key point is that its Hamiltonian is
bounded so that J , despite not being constant, is bounded,
and the action variables J01;2 are bounded too. The possible
motions are shown in Fig. 3. Typical trajectories move
away from the resonance and then go back to it. J max=J min

is generically of order one, with the maximal variation
ffiffiffi
3

p
obtained for Δω ¼ E ¼ 0. For Δω sufficiently large, some
of the trajectories in phase space oscillate. All trajectories
are bounded.
In conclusion, the ghost system with quartic interaction

q21q
2
2 is stable when perturbed around the noninteracting

equilibrium point. Away from resonances, stability follows
from the Birkhoff expansion and the KAM theorem
[27,28]; the latter states that away from resonances, most
trajectories in phase space are still confined to be toroidal,
even in the presence of small interactions. Close to the
ω1 ≃ ω2 resonance, stability follows because the extra
system is not a ghost, so its motion is bounded; higher-
order resonances are not dangerous because their resonant
normal forms remain dominated by leading-order nonreso-
nant terms.

2. Example: ghost that undergoes runaway
close to resonance

The safe situation found in the previous model is not
generic. In other models, a ghost can become unstable close
to resonances. This happens when the auxiliary dynamics
that approximates the system close to a resonance is
ghostlike, and the resonant surface in phase space extend-
ing to J0 → ∞ (at fixed energy/approximate integrals of
motion) is attractive.
This happens, for example, replacing the quartic inter-

action q21q
2
2 with a cubic interaction q

2
1q2. The Hamiltonian

in action-angle variables is

H ¼ ω1J1 − ω2J2 þ ϵJ1
ffiffiffiffiffi
J2

p
sin2 Θ1 sinΘ2; ð51Þ

and the dangerous resonance is ω2 ≈ 2ω1 that (loosely
speaking) allows for a q1 → q1 þ q2 decay. The resonant
Birkhoff form at first order is

H0 ¼ ω1J01 − ω2J02 −
ϵ

4
J01

ffiffiffiffiffi
J02

q
sinð2Θ0

1 þ Θ0
2Þ: ð52Þ

The sign of sinð2Θ0
1 þ Θ0

2Þ now qualitatively impacts the
system. This can be seen performing the canonical trans-
formation, E≡ J01 − 2J02,J ≡ ðJ01þ 2J02Þ=4,Q≡ 2Θ0

1þΘ0
2,

such that

H0 ¼ ω̃E þ ΔωJ −
ϵ

4

�
E
2
þ 2J

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
J −

E
4

r
sinQ; ð53Þ

with ω̃ ¼ ð2ω1 þ ω2Þ=4, Δω ¼ 2ω1 − ω2. The auxiliary
system is now a ghost: The resonant (Δω ¼ 0) trajectories
at fixedE extends toJ → ∞, e.g., the trajectorywithQ ¼ 0.
Moreover, these trajectories are attractive. At the resonance,
all trajectories are unbounded. Moving away from the
resonance, some stable KAM tori appear “on one side”
for J small enough, but nothing protects stability on the
other side (large J ).
Notice that the condition of ghost safety is independent

from the condition of bounded-from-below potential.
For example, consider a model with quartic interactions
H ⊃ λðq21q22 þ κq31q2Þ=2. Close to the resonance ω2 ≃ 3ω1,
we find that the ghost is safe for jκj < 2=

ffiffiffi
3

p
, despite the

potential is unstable for any κ ≠ 0 (for instance, along
the line q2 ¼ 1, q1 → −∞). Conversely, the potential with
quartic interactions H ⊃ λ0ðq41 þ κq31q2Þ is stable for any
finite value of κ, but the ghost causes runaway for
jκj > 3

ffiffiffi
3

p
.

The above considerations generalize to systems with
more degrees of freedom. For instance, let us consider a
system of 3 degrees of freedom with interaction q1q2q3,
where q2 is a ghost. The Hamiltonian in action-angle
variables is

6In terms of original variables, the “resonant” constant of
motion E ≡ J01 − J02 is

E ¼ J1 − J2 þ
λJ1J2
2ω1ω2

�
cos 2ðΘ1 − Θ2Þ

ω1 þ ω2

−
cos 2Θ1

ω1

−
cos 2Θ2

ω2

�
þOðλ2Þ: ð50Þ
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H¼ω1J1 −ω2J2þω3J3þ ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J1J2J3

p
sinΘ1 sinΘ2 sinΘ3:

ð54Þ

The first-order resonant form close to the dangerous
resonance ω1 − ω2 þ ω3 ≡ Δω ≃ 0 is

H ≃ −ω2E2 þ ω3E3 þ Δω
J
3

−
ϵ

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J
3

�
J
3
þ E2

��
J
3
þ E3

�s
sin 3Q; ð55Þ

where Ei ≡ J0i − J01, Q ¼ ðΘ0
1 þ Θ0

2 þ Θ0
3Þ=3, and

J ¼ 3J01. The extra-system Hamiltonian is unbounded
and as a consequence the system, on resonance, undergoes
ghost runaway.
The discussion of various examples allows one to

identify a useful general property; only the part of the
Hamiltonian at most quadratic in J0 is typically relevant for
stability, since close enough to the origin, cubic and quartic
interactions dominate over higher orders. In the presence of
both cubics and quartics, quartic interactions generically
stabilize the otherwise unsafe behavior of cubic-only
interactions. This can be seen by noticing that resonant
normal forms of quartic interactions contain stabilizing
terms ∼J02 [as in Eq. (46)], which dominate with respect to
the dangerous dynamical terms ∼J03=2fðΘÞ for sufficiently
large J.
In conclusion, ghost stability in classical mechanics is

generic at small coupling away from resonances. In most
models, resonances do not lead to ghost runaway but only
to partial energy flow.

III. GHOST METASTABILITY IN
QUANTUM MECHANICS

Moving from classical to quantum mechanics, we again
consider the prototype model of Eq. (3), described by the
Hamiltonian,

H ¼ p2
1

2
−
p2
2

2
þ V; V ¼ ω2

1

q21
2
− ω2

2

q22
2
þ λ

2
q21q

2
2; ð56Þ

which leads to the Schroedinger equation for the wave-
function ψðq1; q2Þ,

−
ℏ2

2

∂2ψ

∂q21 þ
ℏ2

2

∂2ψ

∂q22 ¼ ðE − VÞψ : ð57Þ

We remind the following features of the Schroedinger
equation in the absence of ghosts and relevant for comput-
ing vacuum tunneling through a potential barrier:
(1) the sign of E − V tells one in which regions ψ

oscillates or gets exponentially suppressed;

(2) the vanishing of E − V determines the “release
point” q� on the other side of the potential barrier
after which classical motion is unstable;

(3) the tunneling rate is exponentially suppressed by the
WKB bounce actionW ¼ min

R q�
0 dq

ffiffiffiffiffiffi
2V

p
=ℏ, where

the integral is along the path in multidimensional
field space that minimizes W.

These features are now lost because the ghost appears
with an opposite sign in Eq. (57). So, the classically
metastable ghost q2 might become unstable if the wave
function ψðq1; q2Þ of any state extends along the classically
allowed region q1 ≈ q2, reaching the large values where
classical motion leads to runaway.

A. Model computation

In the presence of a ghost, an infinite numbers of states
have E ¼ 0, or any other value. The same happens, without
ghosts, in the presence of a potential like V ¼ ω2q2=2þ
λq4=2 with negative λ: Despite that V is unbounded from
below, the lowest-energy bound state is special. We focus
on the analogous of this state for the ghost system. In the
free theory, such groundlike bound state has minimal
positive energy and maximal negative energy. Thanks to
this property, it might be selected by cosmological evolu-
tion. We now show that the groundlike state is metastable.
We start by numerically computing the ghost model

described by the Hamiltonian of Eq. (56). If the coupling λ
vanishes, it reduces to two decoupled harmonic oscillators,
with the usual eigenstates jn1; n2i. The groundlike state is
j0; 0i with wave function ψ00ðq1; q2Þ ¼ ψ0ðq1Þψ0ðq2Þ
with ψ0ðqiÞ ∝ e−q

2
iωi=2ℏ. For λ ≠ 0, the groundlike state

is the one that tends to j0; 0i as λ → 0, and that thereby, at
small λ, has a maximal projection along j0; 0i. Its wave
function ψðq1; q2Þ has no nodes around q1 ∼ q2 ∼ 0 and
can be computed either numerically solving the
Schroedinger Eq. (57) or by writing the Hamiltonian H
of Eq. (56) as a matrix in the jn1; n2i basis and diagonal-
izing it. Matrix elements of the interaction term λq21q

2
2=2 are

computed, using

hq2i inimi
¼ ℏ
2ωi

8>>>>><
>>>>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðmiþ 1Þðmiþ 2Þp
ni ¼miþ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðniþ 1Þðniþ 2Þp
mi ¼ niþ 2

2niþ 1 ni ¼mi

0 otherwise:

ð58Þ

Figure 4 shows examples of numerical results in a
nonresonant case ω1 ≠ ω2: The ghost model gives a
jψðq1; q2Þj2 qualitatively similar to what is obtained in a
model with two positive energy q1;2 and an unbounded-
from-below potential with λ < 0. Inside the barrier at
q1 ∼ q2 ∼ 0, the wave function is the usual Gaussian;
outside, it has an oscillatory pattern with exponentially
suppressed amplitude. In our approximation, the wave
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function is real, but one can compute a more accurate
bound state with complex wave function, such that the
exponentially suppressed probability current is outflowing
only. Its flux equals the vacuum decay rate, and the energy
eigenvalue acquires a correspondingly exponentially sup-
pressed imaginary part (see e.g., [29]).
The ghost case qualitatively differs from the negative-

potential case only in the resonant situation ω1 ¼ ω2; the
ghost groundlike state does not reduce to j0; 0i as λ → 0.

B. The WKB approximation

Ghost metastability can be understood more in general,
taking into account that tunneling can be approximated
a la WKB. Writing the wave function as ψ ¼ eiS=ℏ, the
Schroedinger equation reduces to the classical Hamilton-
Jacobi (HJ) equation,

∂S
∂t ¼ −H

�
qi; pi ¼

∂S
∂qi
�
; ð59Þ

plus extra terms 1
2
iℏ∂2S=∂q2i neglected at leading order in

the semiclassical expansion, which is enough to approxi-
mate vacuum decay at weak coupling.
In Hamiltonian mechanics, Eq. (59) is obtained by

demanding that S generates a classical canonical trans-
formation, such that the transformed Hamiltonian vanishes.
Its solution is the classical action Sðq; tÞ ¼ R q;t0;0 LðqclÞdt
computed along the classical particle trajectory going from
q ¼ 0 at time t ¼ 0 to q at time t. Thereby, the HJ wave
equation provides a bridge between waves and particles: S
respects the good hidden properties of a classical ghost
discussed in Sec. II. To make better contact with the
formalism of Sec. II, we consider a Hamiltonian H that

does not depend on time. Then, Eq. (59) can also be solved
by separating variables as Sðq; tÞ ¼ WðqÞ − Et, where E ¼
H is the constant energy, and W generates a canonical
transformation to action-angle variables ðΘi; JiÞ, such that
H only depends on Ji. The “reduced action”W satisfies the
wave equation,

E ¼ H

�
qi; pi ¼

∂W
∂qi
�

⇒ W ¼
Z

pidqi: ð60Þ

The classical change of variables to action-angle coordi-
nates essentially is a “diagonalization” of the classical
Hamiltonian. Equation (59) [Eq. (60)] approximates the
time-dependent (time-independent) Schroedinger equation
Eq. (57), with the first (second) form being more useful for
computing the propagator (energy eigenstates).
The hidden constants of motion that in the classical

theory forbid motion into the dangerous region q1 ≈ q2 still
play a role in the semiclassical approximation. No new
dramatically fast ghost instabilities appear in the quantum
theory as, going away from the origin q1 ∼ q2 ∼ 0, the
wave function gets exponentially suppressed by the semi-
classical WKB factorW. Having a quantum Hamiltonian in
action-angle variables, H ¼ ωðJÞJ, its eigenstates are the
jJi states with eigenvalues E ¼ HðJÞ and wave function
hΘjJi ¼ eiJΘ=ℏ so that its periodicity demands J ¼ nℏ with
n an integer.
To obtain tunneling rates, we need to compute how the

wave function extends into the classically forbidden region:
As well-known it is useful to perform an analytic continu-
ation to Euclidean time, tE ¼ it and solve the Euclidean HJ
equation with LE ¼ 1

2
ðdq⃗=dtEÞ2 − VE and inverted poten-

tial VE ¼ −V. A well-known computational simplification
allows one to approximate potential tunneling in the

FIG. 4. Isocurves of the groundlike state wave function jψðq1; q2Þj2 for different values of the quartic coupling λ between the positive-
energy q1 and the negative-energy q2. Contour curves are separated by 1 order of magnitude.
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absence of ghosts; the vacuum decay rate is approximated
by e−B, where the bounce action B ¼ minWE is computed
along the classical Euclidean trajectory in field space that
connects the false vacuum to the other side of the potential
barrier with minimal WE. For example,

B ¼ minWE ¼ min SE ¼ min lim
tE→þ∞

Z
q⃗�;tE

0;0
LEdtE

¼ min
Z

q⃗�

0

dq
ffiffiffiffiffiffiffiffiffi
2VE

p
; ð61Þ

for the ground state with E → 0þ. This simplification holds
in the presence of multiple degrees of freedom and thereby,
allows to compute vacuum decay in quantum field
theory [30].
A similar result holds in the presence of ghosts only, with

the only difference that boundary conditions (normalizable
wave function) now demand picking the opposite-sign
solution to the HJ equation. The sign of W is not fixed
because H contains p2 ¼ ð∂W=∂qÞ2. For the ground state
E → 0−, the bounce action is similar to Eq. (61) but with
tE → −∞. Equivalently, an opposite-sign Wick rotation is
needed to make the Euclidean ghost action positive.
In the presence of positive-energy particles that interact

with ghosts, the desired solution to the HJ equation can be
found numerically or perturbatively up to q2 ≲ ω=λ,

WEðq1; q2ÞjE¼0

¼ 1

2
q21ω1 þ

1

2
q22ω2 þ

λq21q
2
2

4ðω1 − ω2Þ

þ λ2ðq22q41ω1 − 2q22q
4
1ω2 − 2q42q

2
1ω1 þ q42q

2
1ω2Þ

16ðω1 − ω2Þ2ð2ω1 − ω2Þðω1 − 2ω2Þ
þ � � �

ð62Þ

but we don’t know how to compute vacuum decay
bypassing a full solution to the HJ equation [31].
Physically, the new complication arises because we are
interested in the groundlike state, which is neither the
lowest nor the highest energy state so that selecting it gets
more complicated.

IV. GHOST METASTABILITY IN CLASSICAL
FIELD THEORY

A field φðx⃗; tÞ can be decomposed as an infinite number
of Fourier modes qn⃗ðtÞ. An infinite numbers of degrees of
freedom allows for new phenomena. Some of them make
any interacting classical field theory problematic; others are
a problem for theories containing ghosts. As ghosts are at
most a comorbidity of the theory, one needs to address and
disentangle the new intertwined issues.
(1) In order to compute numerically one has to regu-

larize the theory by introducing a cut off on the
number of degrees of freedom, usually realized by a

minimal length a, such as a lattice discretisation of
space-time. Typical discretised field equations do no
conserve energy and can lead to fake runaway
behaviors when evolving configurations with ex-
cited modes near the cut off (the ones where energy
conservation is badly violated). We will define
special discretized classical equations that exactly
conserve total energy, but hidden pseudoconstants of
motion can be violated by the regularization.

(2) At some moment and in some region of space, some
modes can acquire a higher energy density and
overcome the energy barrier between stability and
instability. In thermal field theories with local
minima in the potential, this is the well-known
thermal tunneling, characterized by a space-time
tunneling probability density.7 The same mechanism
contributes to ghost instabilities.

(3) General initial field configurations tend to thermal-
ize. However, a thermal state is impossible in
classical field theory, as each one of the infinite
modes should have the same energy ∼T. In electro-
magnetism, this is the well known black-body
problem. An interacting field theory gives rise to
a cascade of energy toward higher-frequency modes,
and the temperature evolves toward T → 0. On a
lattice, this cascade stops when the problematic
modes at the cut off thermalize.

(4) The above issue is solved by quantum mechanics.
For a thermal state, classical field theory only holds
for modes with E≲ T and is replaced by quantum
field theory for modes with E≳ T that get sup-
pressed energy density:

f ¼ 1

eE=T − 1
; fE ≃

�
T E ≪ T

Ee−E=T E ≫ T
: ð63Þ

(5) Finally, the main new point. Field theory contains an
infinite number of modes qn⃗ðtÞ with frequencies ωn,
so resonances are always possible. These resonances
are the usual on-shell processes such as decays and
scatterings. In the presence of ghosts, resonances can
lead to partial or total loss of hidden constants of
motion as discussed in Sec. II D.

In Sec. IVA, we decompose fields φðx; tÞ into modes qnðtÞ,
and in Sec. IV B, we perform a stability analysis of the
resonances: Hidden constant of motion persist up to Oð1Þ,
but the number of resonance is so large that dangerous

7Some authors claim that they can approximate quantum
vacuum decay rate by classically evolving a field starting
from quantum-like initial conditions [32,33] and waiting for a
large enough energy fluctuation that goes over the potential
barrier. However, this can only be a rough approximation because
an interacting classical field theory tends to evolve toward a
thermal state where energy is equipartitioned among all modes.
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energy transfer between normal fields and ghosts can take
place. As a consequence, assuming no protection, in
Sec. IV D, we use statistical methods to compute the
energy transfer between normal fields and ghost fields.
Finally, in Sec. IV E, we compare analytic results to
numerical classical lattice simulations (using the conven-
ient discretized field equations described in Appendix C).

A. Classical equations of motion
in momentum space

We consider a scalar field φðx; tÞ in 1þ 1 dimensions. In
a box 0 ≤ x ≤ L with periodic boundary condition, the
scalar field is expanded in normal modes qn as

φðx; tÞ ¼ 1ffiffiffiffi
L

p
X∞
n¼−∞

qnðtÞeiknx kn ¼
2πn
L

: ð64Þ

We consider a real scalar field, so q−n ¼ q�n. The
Lagrangian density Lφ ¼ ð∂μφÞ2=2 −m2φ2=2þ LI gives
the Lagrangian,

L¼
Z

L

0

dxLφ ¼
_q20 −m2q20

2
þ
X∞
n¼1

ðj _qnj2−ω2
njqnj2ÞþLI;

ω2
n ¼m2þ k2n: ð65Þ

The dx integral is simply given by L times the expansion of
L, keeping only those terms such that their eikx factors
multiply to 1. The classical equations of motion are

q̈n þ ω2
nqn ¼

∂LI

∂qn : ð66Þ

Classical evolution can be restricted to real qn, which
means zero momentum for each mode. The averaged free
classical Hamiltonian is

hHi ¼
Z

dx
1

2
h _φ2 þ φ02 þm2φ2i ¼

Xþ∞

n¼−∞
ω2
nhqnq−ni

ð67Þ
so that the classical thermal state with equipartition of
relativistic energy corresponds to qn ¼

ffiffiffiffi
T

p
=ωn, which

is the (UV divergent) classical limit of the Bose-
Einstein distribution, hqnq−ni ¼ ℏð1=2þ fnÞ=ωn with f ¼
1=ðeE=T − 1Þ → T=E ≫ 1 at E ≪ T. The extra 1=2 is the
purely quantum fluctuation. hHi is UV divergent both in
classical physics at finite temperature T and in quantum
physics.

B. Analytic study of one ghost resonance
in field theory

As a prototypical field theory containing a normal fieldφ1

interacting with a ghost field φ2, we consider the Lagrangian
of Eq. (4) where the ghost is obtained setting � ¼ −1. For
simplicity, we here compute in 1þ 1 dimensions, as this is
enough to encounter the new key phenomena. The two fields
φ1;2 have positive and negative kinetic energy, respectively.
We expand each of them in normal modes qn1 and qn2 as
outlined in the previous section. The interactions among
momentum modes qni are complicated because locality
is not manifest. Let us focus on four generic modes: n1
and n01 for φ1 and n2 and n02 for φ2. We assume that
kn1 þ kn0

1
þ kn2 þ kn0

2
¼ 0. Then, their interaction term is

Z
dxφ2

1φ
2
2 ¼

4

L
ðqn1qn01qn2qn02 þ q−n1q−n01q−n2q−n02 þ qn1q−n1qn2q−n2

þþqn0
1
q−n0

1
qn2q−n2 þ qn1q−n1qn02q−n02 þ qn0

1
q−n0

1
qn0

2
q−n0

2
þ � � �Þ: ð68Þ

The frequencies are generically off resonance, but for some choice of momenta, they satisfy resonant conditions such as
N1ωn1 þ N2ωn0

1
− N3ωn2 − N4ωn0

2
even for Ni ¼ �1, giving rise to on-shell processes.

We isolate a subsystem of four such degrees of freedom qni . For simplicity, we can assume that their initial conditions are
real so that they remain real and we can treat qn ¼ q−n as a single degree of freedom. Moving to action-angle variables and
simplifying the notation, we write their pulsations as ω1;2;3;4 and their actions as J1;2 (positive energy) and J3;4 (negative
energy). The Hamiltonian of the subsystem is

H ¼ ω1J1 þ ω2J2 − ω3J3 − ω4J4 þ ϵ

 
J1
ω1

J3
ω3

sin2 Θ1 sin2Θ3 þ
J1
ω1

J4
ω4

sin2Θ1 sin2Θ4

þþ J2
ω2

J3
ω3

sin2 Θ2 sin2Θ3 þ
J2
ω2

J4
ω4

sin2Θ2 sin2Θ4 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J1
ω1

J2
ω2

J3
ω3

J4
ω4

s
sinΘ1 sinΘ2 sinΘ3 sinΘ4

!
; ð69Þ
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where ϵ ¼ 8λ=L. Off resonance, the system is stable, and we now study the possibly dangerous resonant case, assuming
ω1 þ ω2 − ω3 − ω4 ≡ Δω ≃ 0.8 Close to resonance, the normal resonant form at leading order is

H ≃ ω1J10 þ ω2J20 − ω3J30 − ω4J40 þ
ϵ

4

 
J10

ω1

J30

ω3

þ J10

ω1

J40

ω4

þ J20

ω2

J30

ω3

þ J20

ω2

J40

ω4

þþ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J10

ω1

J20

ω2

J30

ω3

J40

ω4

s
cosðΘ1

0 þ Θ2
0 þ Θ3

0 þ Θ4
0Þ
!
: ð70Þ

We isolate the auxiliary system by the canonical change of variables generated by

W ¼ J ðΘ0
1 þ Θ0

2 þ Θ0
3 þ Θ0

4Þ=4þ E2Θ0
2 þ E3Θ0

3 þ E4Θ0
4; ð71Þ

i.e., 4Q ¼ Θ0
1 þ Θ0

2 þ Θ0
3 þ Θ0

4 and J01 ¼ J =4, J0i ¼ J =4þ Ei. The resonant form becomes

H ≃ ω2E2 − ω3E3 − ω4E4 þ Δω
J
4
þ ϵ

4

"
1

ω1ω3

J
4

�
J
4
þ E3

�
þ 1

ω1ω4

J
4

�
J
4
þ E4

�

þþ 1

ω2ω3

�
J
4
þ E2

��
J
4
þ E3

�
þ 1

ω2ω4

�
J
4
þ E2

��
J
4
þ E4

�

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1ω2ω3ω4

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J
4

�
J
4
þ E2

��
J
4
þ E3

��
J
4
þ E4

�s
cos 4Q

#
ð72Þ

so that E1;2;3 are constant of motion; i.e., all J0i vary by a
common amount J =4. The important result is that
cos 4Q cannot dominate over the sum of other terms
so that this resonance does not lead to ghost runaway, but
only to a partial violation up to Oð1Þ factors of the
hidden conservation law. This means that the local
interaction φ2

1φ
2
2 of field theory gives, when expanded

in normal modes, a specific set of interactions among
them such that each on-shell resonance allows an order
one energy transfer among the modes, but no ghost
runaway.

C. Analytic study of multiple ghost resonances
in field theory

We next need to study what is the collective effect of the
infinite number of such resonances present in the con-
tinuum limit: the number of modes N ¼ L=a diverges
when the lattice cut off a becomes infinitesimally small, or
the box size L infinitely large. The Hamiltonian in action-
angle variables is an infinite sum of terms like those
discussed in the previous section,

H ¼
Xþ∞

n1¼−∞
ωn1Jn1 −

Xþ∞

n2¼−∞
ωn2Jn2

þ ϵ
X

n1;n01;n2;n
0
2

δ0;n1þn0
1
þn2þn0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jn1Jn01Jn2Jn02

q

× sinΘn1 sinΘn0
1
sinΘn2 sinΘn0

2
; ð73Þ

with ϵ ¼ 2λ=Lðωn1ωn0
1
ωn2ωn2Þ1=2. The rough argument

goes as follows. At small coupling, the theory contains
2N quasi-integral of motion: one for each degree of
freedom. In the continuum limit, the number of resonances
scales as N2 (out of the 4 momenta, two combinations are
fixed by momentum conservation and resonance condition,
i.e., energy conservation). Each resonance produces the
partial loss of a quasi-integral of motion E. Asymptotically,
all quasi-integrals of motion are lost, and the available
phase space is filled up, allowing for ghost runaway.
The argument above can be made more precise. A

combination is resonant if the detuning Δω≡ ωn1 þ ωn0
1
−

ωn2 − ωn2 is smaller than the expansion parameter ϵJ,
where J is the typical value of the actions, e.g., J ¼ T=ω
for a thermal state. For finite L, the resonance is not exactly
satisfied and the expansion parameter is finite. Both
quantities go to zero in the continuum limit, so a careful
analysis is needed. Let us consider modes up to an UV cut
off k≲ kmax. A resonance that would be perfect in the
continuum acquires, in view of the discreteness δk ¼ 2π=L,

8We assume for now that no other combinations are vanishing
so that resonances do not “overlap”. In Appendix B, we show that
the case of all frequencies close to each other leads to similar
conclusions as the ones discussed here.
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a typical detuning Δω ≈ ð8π=LÞðkmax=ωmaxÞ. Here, ωmax
is the frequency corresponding to kmax having ignored,
for simplicity, that it differs for fields φ1 and φ2 if
m1 ≠ m2. The fraction of such interactions that are
resonant for finite L is f ¼ ϵJ=Δω. This stays finite in
the continuum limit, as both ϵ and Δω scale as 1=L. So,
the ghost is not protected when fN2 ≳ N i.e.,
N ¼ L=a≳ 1=f ∼ ω3=λT. Then, the action Jn of one
typical microscopic mode can change by order one on
a time-scale Γ ∼ λT=ω2, linear in λ at leading order. As
discussed in the next section, the macroscopic properties
of the system evolve on a slower time-scale
1=τ ¼ Γ=N ∼ λ2T2=ω5. As we will see, this is the scale
of the instability time. If, instead, there were no micro-
scopic protection for the single modes, the instability time
would have been much faster, linear in λ.

D. The ghost runaway rate

Based on the previous discussion, we assume that
the extra quasiconserved energies get violated in field
theory by resonances. Then, the system evolves statistically
toward the direction that increases total entropy S¼S1þS2,
where 1 is the positive-energy sector and 2 is the ghost. We
define the ghost temperature T2 as the average ghost energy
E2 ≤ 0 per degree of freedom, T2 ¼ E2=N ≤ 0. Let us
compute S2. The volume in phase space is easily found in
action-angle variables:

V2 ¼ ð2πÞN NN jT2jN
N!

: ð74Þ

The factor of ð2πÞN is the contribution of the angle
variables, whereas the remaining factor is the volume

of the simplex
P

ωnJn ≤ jE2j. Therefore, the ghost
entropy is

S2 ¼ N log jT2j ð75Þ

up to a T2-independent constant. The total entropy S ¼
S1 þ S2 of the system at fixed total energy E1 þ E2 is
maximal when

δS ¼ ∂S
∂E1

δE1 þ
∂S
∂E2

δE2 ¼ δE1

�
1

T1

−
1

T2

�
¼ 0; ð76Þ

which can only occur for T1 → ∞ and T2 → −∞. Heat
flows from the ghost to the positive-energy system, and the
thermodynamic evolution eventually causes the runaway
on a time-scale τ, which we now compute.
We consider a theory in d spatial dimensions with the

Lagrangian of Eq. (4). To set the formalism, we first assume
that both fields φ1;2 have positive kinetic energy. Then,
starting from temperatures T1;2 ≥ 0, they thermalize toward
the equilibrium statewith a common temperature T ¼ ðT1 þ
T2Þ=2 via the λφ2

1φ
2
2=2 interaction. The thermalization

process can be computed using Boltzmann equations. We
consider their well-known quantum expression and perform
its classical limit, to later compare with numerical classical
evolution on a lattice. In order to keep ℏ factors explicit, it is
convenient to express quadrimomenta Pμ in terms of wave

vectors, Pμ ¼ ðE; p⃗Þ ¼ ℏKμ ¼ ℏðω; k⃗Þ. The Lagrangian L
contains no ℏ factors, so the mass parameters m1;2 have
dimension 1/time. The contribution of 12 ↔ 1020 scatterings
to the Boltzmann equation for the energy density ρ1
(assumed to be spatially homogeneous) of φ1 at leading
order in the interaction λ is

_ρ1 ¼ −
Z

dk⃗1dk⃗2dk⃗
0
1dk⃗

0
2E1ð2πÞdþ1δðK1 þ K2 − K0

1 − K0
2ÞjAj2F; ð77Þ

where A ¼ 2ℏλ is the amplitude; dk⃗ ¼ ddk=2ωð2πÞ3 is the usual relativistic phase space; one can symmetrize
E1 → ðE1 − E0

1Þ=2. Finally, F depends on particle number densities dni ¼ fiddki=ð2πÞd:
F ¼ f1ðE0

1Þf2ðE0
2Þ½1þ f1ðE1Þ�½1þ f2ðE2Þ� − f1ðE1Þf2ðE2Þ½1þ f1ðE0

1Þ�½1þ f2ðE0
2Þ�: ð78Þ

It vanishes when Bose-Einstein distributions fðEÞ ¼ 1=ðeE=T − 1Þ realize thermal equilibrium. Total energy is conserved, so
_ρ2 ¼ − _ρ1. The quantumBoltzmannEq. (77) has two classical limits: particle andwave. The particle limit corresponds to small
occupation numbers f ≪ 1 such that 1þ f ≃ 1 and f ≃ e−E=T . We are here interested in the wave classical limit, which
corresponds to large occupation numbers f ≃ T=E ≫ 1. The classical wave term arises at leading order f3 [34,35], where

F ≃ f1ðE1Þf2ðE2Þ½f1ðE0
1Þ þ f2ðE0

2Þ� − f1ðE0
1Þf2ðE0

2Þ½f1ðE1Þ þ f2ðE2Þ�: ð79Þ
In this limit, ℏ factors cancel leaving the classical Boltzmann equation,

_ρ1 ¼ −4λ2
Z

dk⃗1dk⃗2dk⃗
0
1dk⃗

0
2ω1ð2πÞdþ1δðK1 þ K2 − K0

1 − K0
2Þ ×

ω1 − ω0
1

ω1ω
0
1ω2ω

0
2

T1T2ðT1 − T2Þ; ð80Þ

where the latter term is ℏ3F. One can similarly compute the contribution to _ρ1 from 110 ↔ 220 scatterings. Furthermore, a
gφ2

1φ2=2 interaction among positive-energy fields φ1;2 gives rise to 2 ↔ 110 decays for m2 > 2m1 such that
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_ρ1 ¼ −
Z

dk⃗1dk⃗
0
1dk⃗

0
2ω1ð2πÞdþ1δðK1 þ K0

1 − K2ÞjAj2F; ð81Þ

with A ¼ gℏ1=2 and

F ¼ f1ðE1Þf2ðE0
1Þ½1þ f2ðE2Þ� − f2ðE2Þ½1þ f1ðE0

1Þ�½1þ f2ðE0
1Þ� ≃

T1ðT1 − T2Þ
E1E0

1

ð82Þ

in the classical limit.
We can now repeat the computation assuming that φ2 is a

ghost. Boltzmann equations again involve a sum over on-
shell processes, and the resonance condition among ω’s
now has an extra − sign when a ghost is involved; see, e.g.,
Eq. (28). This is equivalent to telling that ghosts appear
with negative energy in the quantum Boltzmann equations.
One can reexpress the unusual (negative-energy) kinemati-
cal integrals in terms of usual (positive-energy) ones by
rewriting each ghost wave vector as Kμ ¼ −K̃μ so that a
negative-energy particle in the initial (final) state becomes a
positive-energy particle in the final (initial) state. In the
limit where each field is thermal, the Bose-Einstein dis-
tribution satisfies the identity fðE=TÞ ¼ −ð1þ fð−E=TÞÞ,
so statistical factors too match those of the positive-energy
process, up to an overall − sign when an odd number of
ghosts is flipped. Let us consider some examples:

(i) A φ2
1φ

2
2 ghost interaction allows the kinematically

open on-shell processes 12 ↔ 1020 and 110220 ↔ ∅,
which become 12̃0 ↔ 12̃ and 110 ↔ 2̃2̃0. In the
classical limit, one then has _ρ1 ∝ þT1T2ðT2 − T1Þ
both in the ghost and the nonghost cases.

(ii) A φ1φ
2
2 ghost interaction allows the kinematically

open on-shell process 1220 ↔ ∅, which becomes a
1 ↔ 2̃2̃0 decay. In the classical limit one then has _ρ1 ∝
þT2ðT2 − T1Þ both in the ghost and the non-
ghost cases.

(iii) A φ2
1φ2 ghost interaction allows the kinematically

open on-shell process ∅ ↔ 1102 that becomes a
2̃ ↔ 110 decay. In the classical limit, one then has
_ρ1 ∝ þT1ðT2 − T1Þ in the nonghost case, which
becomes _ρ1 ∝ −T1ðT2 − T1Þ in the ghost case.

The factors F vanish in the thermal limit with a common
temperature, fðEÞ ¼ 1=ðeE=T − 1Þ. However, ghosts have
E2 < 0, so that a physical fðE2Þ ≥ 0 is obtained for
T2 ≤ 0: ghosts must have a negative temperature.9 We

now see the key difference that arises in the presence of a
ghost; there is no thermal equilibrium at common T such
that the factor F vanishes thanks to detailed balance,
because the two systems have opposite-sign energies and
thereby temperatures. In all cases listed above, this means
that the nonghost system heats up, _ρ1 > 0. This sign of the
heat flow agrees with our earlier considerations about
increase of entropy _S ≥ 0: both jT1j and jT2j increase,
as higher temperature allows for more states. Boltzmann
equations add that the energy flow rate is proportional to
the coupling squared.
The purely quantum effect will be studied in Sec V. We

here study the classical effect, which can be isolated as long
as the low-frequency modes excited classically ω≲ ωmax
are separated from the high-frequency modes at which the
divergent quantum effect starts giving a larger contribution
to _ρ1. In such a case, the quantum contribution is smaller
than the classical contribution assuming a cut
off ΛUV ≳ ωmax.
We next compare these analytic results with numerical

classical simulations in toy models and finally provide
estimates for situations of physical interests.

E. Results

First, we simulate the classical thermalization among
two positive-energy fields, finding that the simulated rate
agrees with the rate obtained from Boltzmann equations,
such as Eq. (77).
We next consider a positive-energy field φ1 interacting

with a ghost field φ2. We numerically simulate their time
evolution for m1;2 ¼ 1 and λ ¼ 0.01 in 1þ 1 dimensions
on a lattice with spacing a ¼ 0.1 and size L ¼ 200. We
start from a thermal-like distribution with T1;2 ¼ 1 cut at
the maximal momentum kmax ¼ 200 · 2π=L. This means
that each excited mode has an initial amplitude as extracted
from the thermal distribution and a random phase.
Figure 5(a) shows that the system undergoes ghost run-
away. Figure 6 shows the energy spectra of φ1 (left) and φ2

(right) at some selected times. We see that modes at higher
k get progressively excited: Energy cascades toward the
UV giving rise to the usual black-body instability of
interacting field theories (see e.g., [40,41]). In order to
disentangle this phenomenon (that lowers T1) from ghost
runaway (that increases T1), we choose a small enough
kmax such that modes around the cut off are still negligibly
excited when ghost runaway happens.

9We verified that the nonequilibrium Kadanoff-Baym formal-
ism (see e.g., [36]) gives the same Boltzmann equations. In
particular, for a ghost, the form of its two thermal Wightman
propagators is exchanged with respect to positive-energy fields so
that initial-state ghosts are equivalent to final-state normal
particles. In this formalism, f ≥ 0 because it is the expectation
value of a positive number operator.
Previous literature studied possible thermal equilibrium thermo-
dynamics for Lee-Wick resonances with negative classical energy
[37–39] finding contradictory results. We now see that there is no
thermal equilibrium.
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Each random initial condition with fixed temperatures
produces final runaway times that differ by order one. In
order to better compare with the analytic approach, which
predicts the average energy flow _ρ1 between the two fields,
we run for a short time many different simulations with the
same initial temperatures and average over them. Having
assumed one spatial dimension and m1 ¼ m2, we can
analytically perform the integrals in the Boltzmann Eq. (80),

_ρ1 ¼
λ2T1T2ðT2 − T1Þ

4π2m4
1;2

�
ðln 4 − 1Þ þ 1

2

�
1þ ln

Lm
8π

��
;

ð83Þ
where we added, in the second term, the contribution of
110 ↔ 220 scatterings. This process contains a logarithmic
IR divergence at vanishing relative velocity between the

particles, which is typical of field theory in 1 spatial
dimension.10 Despite this aside issue, Fig. 5(b) shows that
the analytic rate agrees with the numerical rate. We can next
compute ρ1 in terms of T1,

FIG. 6. Energy spectrum of the normal field (left) and of the ghost field (right) at some fixed times.

FIG. 5. Left: time evolution of the total energies of the normal field, of the ghost field, of their interaction energy, of the total conserved
energy. The continuous curve is the analytic approximation. Right: heat flow dρ1=dt as function of the coupling. The data point are from
lattice simulations, for different small values of dt. The black curve is the analytic result; we also show the analytic result without the IR-
divergent diagram that might contribute in the numerics on longer time-scales (dashed curve).

10In order to isolate the IR divergence, it is useful to put the
110 ↔ 220 contribution to _ρ1 into the form,

T1T2ðT2 − T1Þ
2λ2

π2

Z
∞

4m2

ds
Z

∞ffiffi
s

p dK0

×
s2K2

0

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

0 − s
p

ðs − 4m2Þðs2 þ 4m2ðK2
0 − sÞÞ2 : ð84Þ

In lattice simulations, the IR divergence gets regulated by the
finite box size L so that the lower limit of s integration changes
into ð2mþ 2π=LÞ2 ≃ 4m2 þ 8πm=L.
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ρ1 ¼
Z

E1dn1 ¼ T1

Z
kmax

2π=L

dk1
2π

;

and obtain a differential equation _T1 ¼ γT1T2ðT2 − T1Þ ¼
− _T2 that can be solved,

T1ðtÞ ¼
T10 þ T20

2

×

�
1þ

�
1þ 4T10T20

ðT10 þ T20Þ2
eγtðT10þT20Þ2=2

�
−1=2

�
;

ð85Þ

obtaining the average time evolution [one example is plotted
in Fig. 5(a)].
We next vary the lattice spacing, box size, and number of

digits used in the numerics, finding consistent results. We
also run for different values of the physical parameters;
additional IR divergences arise when a field is massless.
Running for special initial conditions, such as starting from
a single excited mode, fðEÞ ∝ δðE − E0Þ blocks or delays
the ghost runaway until when enough modes can get
excited so that many resonances can happen.
Based on the above experience, we can now consider the

more complicated theory of possible physical interest: four-
derivative gravity. First, the resonances caused by cubic
interactions present in four-derivative gravity, while poten-
tially unsafe, are stabilized by quartic and higher inter-
actions, as argued at the end of Sec. II D. Then, each
resonance causes an Oð1Þ energy flow variation and the
system as a whole evolves statistically, as described above.
The massive ghost present in four-derivative gravity only
has Planck-suppressed nonrenormalizable interactions.
Thereby, its runaway rate Γ≡ _ρ=ρ ∼ T3=M2

Pl is smaller
than the Hubble cooling rate H ∼ T2=MPl. As usual,
gravitational short-range interactions give negligible effects
in big-bang cosmology.
Furthermore, inflation with Hubble constant H roughly

behaves as a thermal bath with temperature T ∼H, pro-
ducing a spectrum of primordial inflationary fluctuations
for the graviton, its ghost, and the other fields.
In conclusion, a ghost undergoes runaway in classical

field theory, but in four-derivative gravity, ghost runaway is
negligibly slow on cosmological time-scales.

V. GHOST METASTABILITY IN QUANTUM
FIELD THEORY

We again consider a field theory with two scalars φ1

(positive energy) and φ2 (negative-energy ghost) in d space
dimensions. We want to compute the purely quantum rate
for the qualitatively new processes where particles are
emitted from the Lorentz-symmetric vacuum. For example,
a gφ2

1φ2=2 interaction allows for the three-body proc-
ess ∅ ↔ 1102.

The rates of such processes can be obtained from the
finite-temperature rates discussed in the previous section in
the limit T1 → 0þ, T2 → 0− and thereby f1;2 → 0,
1þ f1;2 → 1. Following the discussion in Sec. IV D, it
is convenient to rewrite the Boltzmann equation in terms of
positive energies 2̃ ↔ 110 by defining K̃2 ¼ −K2. Since
f2ð−E2=T2Þ → −1, the statistical factor at zero temper-
ature is F → −1, while it would be F ¼ 0 for a usual
process involving only positive-energy particles. The result-
ing quantum rate for the three-body process ∅ ↔ 1102,

_ρ1 ¼
ℏ2g2

23d−1πd−1Γðd=2Þ2
ðm2

2 − 4m2
1Þ

d
2
−1

m2

×
Z

∞

m2

dK0K0ðK2
0 − sÞd2−1; ð86Þ

contains a UV-divergent integral over K0.
Similarly, an interaction λφ2

1φ
2
2=2 allows for the four-

body process∅ ↔ 110220 that leads to the energy flow rate,

_ρ1 ¼
Z

dk⃗1dk⃗
0
1dk⃗2dk⃗

0
2E1ð2πÞdþ1

× δðK1 þ K0
1 − K̃2 − K̃0

2Þ
1

2
jAj2: ð87Þ

By introducing K ≡ K1 þ K0
1 ¼ K̃2 þ K̃0

2 and s≡ K2, it
becomes

_ρ1 ¼
ℏ3λ2

25d−3π
3d
2
−1Γðd=2Þ3

Z
∞

4m2

ds
ðs − 4m2Þd−2

s

×
Z

∞ffiffi
s

p dK0K0ðK2
0 − sÞd2−1: ð88Þ

Again, the integral over K0 is UV divergent.
This new divergence arises because, unlike in the

thermal case, the vacuum initial state ∅ is now Lorentz-
invariant so that the final state too must be the same in all
frames. This is why the rate contains a dK0 integral over the
noncompact Lorentz group.
This is the same divergent boost integral discussed by

[42,43] (and, more recently, by [44]). These early studies of
vacuum decay considered a theory containing a scalar with
positive kinetic energy (no ghost) and assumed that its
potential V contains a local minimum e.g., with V ¼ 0 and
a deeper minimum with V < 0. The vacuum decay bubble
with mass m ¼ 0 can appear with any initial velocity,
giving rise to the divergent Lorentz integral [42,43].
Furthermore, by, e.g., increasing its radius, one obtains
field configurations with generic m2 < 0 that thereby have
negative energy with K2 ¼ ðm2; 0⃗Þ. Such ghost configu-
rations can be emitted from the vacuum together with one
particle with positive energy K1¼ðm1; 0⃗Þ, form1þm2 ¼ 0.
Due to relativistic invariance, this process happens with the
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same amplitude for arbitrarily boosted K2 and K1, giving
rise to a divergent dK0 integral over boosts [44].
One then wonders if both K instability (ghosts) and V

instability (vacuum tunneling) proceed with infinite rate, in
contradiction with our usual understanding of vacuum
tunneling as exponentially slow [44].
In the case of V instability, Coleman [30] and more

recently [45] interpreted the Lorentz boost divergence as
emission of lots of extra quanta, i.e., that the naive
perturbative computation is not expanding the path integral
around the right saddle point.11 These authors argue that
vacuum tunneling must instead be computed expanding
around a Lorentz-invariant bounce configuration, such that
an integral over the Lorentz group is not needed because it
would be an overcounting of the same configuration.
Accepting this argument, the WKB approximation allows
one to find the desired configuration as the bounce
instanton that minimizes an effective Euclidean action.
The bounce is the solution to the scalar field equations that
only depends on the Euclidean r2E ¼ x2 þ y2 þ z2 þ ðitÞ2
(the Euclidean Lorentz group is compact) and has the
desired boundary conditions: false vacuum at r → ∞ and
over the barrier at r → 0:

�
φiðrÞ ¼ 0 as r → ∞; false vacuum

_φiðrÞ ¼ 0 as r → 0; true vacuum
: ð89Þ

The resulting vacuum decay rate is exponentially sup-
pressed by the coupling, e−Oð1Þ=λ.
In the ghost case, we do not have a similarly simple

formulation nor a positive Euclidean action. Unless a
suitable continuation is found, a brute-force computation
is needed to establish if the ghost decay rate is exponen-
tially suppressed (restricting the action to Lorentz-invariant
field configurations removes field-theory resonances but
leads to r-dependent frequencies). We speculate that, if the
vacuum decay rate will turn out to be exponentially
suppressed, the difficulties that seem to hinder unitarity
and/or renormalizability of Minkowskian theories with
ghosts (see e.g., [49–52]) will turn out to be similarly
suppressed by similar factors.

VI. CONCLUSIONS

Systems containing positive kinetic energy K1 interact-
ing with negative kinetic energy K2 can undergo a runaway
where the total energy E ¼ K1 þ K2 þ V is constant while
jKij → ∞. Thereby, negative kinetic energy is considered
as unphysical and dubbed ghost. We explored the possibil-
ity that negative kinetic energy can be physically acceptable
because metastable up to cosmological times, similarly to
negative potential energy. In order to exclude this

possibility, we started from the simplest limit (classical
mechanics), but we found that a weakly-interacting ghost
behaves almost as well as a free ghost:

(i) In Sec. II, we found that ghosts are metastable in
classical mechanics. Recent numerical studies redis-
covered that, in some cases, energies of individual
degrees of freedom surprisingly remain confined to a
finite region despite that no constant of motion
imposes such lock-down. Ghost metastability is
understood using the same mathematical techniques
developed in the past centuries to study if multibody
systems like the solar system are stable up to cosmo-
logical times despite that individual planets can
acquire enough energy to escape. One diagonalizes
the classical Hamiltonian by performing a perturba-
tive expansion around the limit where each degree of
freedom undergoes periodic motion with pulsation
ωi. Technically, this means finding a canonical trans-
formation to action-angle variables such that the
Hamiltonian does not depend on angle variables. If
interactions are strong, outside the convergence radius
of the perturbative series, motion is chaotic, planets
escape, and ghosts runaway. If interactions are weak,
the perturbative series is convergent; planets undergo
quasiperiodic motion with epicycles, and ghosts are
stable. The dimensionless expansion parameter is the
energy in the interaction term divided by the energy in
the free quadratic part of the Hamiltonian. Ghost
lockdown within finite regions of phase space is
understood as being due to hidden quasiconstants
of motion present in almost generic theories at weak
coupling. Extending toward infinite time reveals an
exponentially suppressed runaway rate, which we
controlled in some model.

Actually, some physical systems are metastable
ghosts, such as asteroids around the Lagrangian
point 4 (Appendix A 1) or electrons in magnetic fields
plus a destabilizing radial force (Appendix A 2).

(ii) However, the perturbative series contains terms
proportional to 1=ðN1ω1 − N2ω2Þ where Ni are
integers that grow at higher orders. One can thereby
encounter resonances where such terms are large or
divergent. The most dangerous case arises at leading
order N1;2 ¼ 1 when ω1 ¼ ω2. We studied what
happens using resonant normal forms: Some inter-
actions lead to ghost runaway, and others only to
order-one violations of hidden quasiconstant of
motion. We argued that the latter situation seems
quite generic in the presence of multiple interactions.

In order to exclude a ghost, we then moved to less simple
limits:

(i) In Sec. III, we argued that ghosts are metastable in
quantum mechanics. We first performed a brute-
force computation in our toy model. Wave functions
with no nodes (the groundlike state with lowest
positive energy and highest negative energy) get

11Other authors regulate the boost divergence through cosmol-
ogy adding a Lorentz-breaking or nonlocal cutoff [46–48].
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exponentially suppressed away from the origin even
into the dangerous new region that leads to ghost
runaway (large jKij and small K1 þ K2). The ghost
runaway time is thereby exponentially suppressed at
small coupling analogously to usual tunneling. In
general, tunneling can be approximated in the semi-
classical limit, which inherits the good properties of
ghosts in classical mechanics. We could however not
generalise theWKB simple formula to the ghost case.

(ii) In Sec. IV, we studied classical field theory. The
infinite number of degrees of freedom give rise to
new phenomena. One is the black-body problem of
interacting classical field theories, which compli-
cates our study. More relevant for us is the presence
of an infinite number of modes with different
frequencies and thereby an infinite number of
resonances, which correspond to the usual on-shell
decays and scatterings. Each resonance is potentially
deadly in the presence of ghosts. By expanding
examples of local interactions in terms of momen-
tummodes, we found specific resonances that do not
immediately lead to runaways, but only to partial
loss of hidden constants of motion. Nevertheless, we
argued that the infinite number of resonances makes
ghosts unprotected in the continuum limit. Based on
general entropy arguments, we found that there is no
thermal state when a system with positive temper-
ature T1 > 0 interacts with a ghost system with
negative T2 < 0; heat keeps flowing such that both
jT1;2j increase up to infinity. By writing Boltzmann
equations in specific models, we computed the rate
of such process, finding that it is quadratic in the
couplings, rather than nonperturbatively suppressed.
We validated this finding by evolving classical field
theories on appropriate lattice discretizations. In
principle, both our analytic understanding and the
numerics might have missed hidden properties that
keep ghosts stable, but various checks do not find
evidence in this sense.
We next considered the case of four-derivative

gravity—a renormalizable theory of gravity contain-
ing a spin-2 field with negative kinetic energy and
gravitational interactions only—finding that the
ghost runaway time is negligible on cosmological
time-scales.

In order to exclude such ghost, we finally considered the
theory currently considered as fundamental.

(i) In Sec. V, we considered relativistic quantum field
theory in the presence of a ghost. Since the initial
vacuum state is Lorentz invariant (unlike a thermal
state), the naive tree-level vacuum decay rate con-
tains a divergent integral over the noncompact
Lorentz group, which describes an arbitrary boost
of the same final state. We recalled that this same
problem was encountered in early computations of
vacuum decay due to potential instability; even in

the absence of a ghost, negative potential energy
gives rise to field configurations that behave as a
ghost. Using WKB Euclidean techniques, Coleman
argued that the vacuum decay rate is finite and
exponentially suppressed. We could not extend such
tecniques to the case of ghost instability, so we do
not know if it is fast (thereby ruling out theories
containing ghosts) or exponentially suppressed at
small couplings.

It will be important to fully clarify if negative kinetic
energy can be metastable up to cosmological time-scales, as
the negative-energy quantization of four-derivative gravity
would provide a renormalizable theory of quantum gravity.
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APPENDIX A: PHYSICAL SYSTEMS DESCRIBED
BY GHOSTS

1. Asteroids around the Lagrangian point L4

Let us consider an asteroid with negligible mass around
Lagrangian point L4 of the Sun and Jupiter system. The
quadratic part of the asteroid Hamiltonian contains a
negative frequency (see e.g., [26]); we next show that it
is a ghost degree of freedom (negative kinetic energy).
The Hamiltonian of a free particle with mass m in a

reference frame rotating with angular velocity ω around the
z axis is Hfree ¼ p⃗2=2mþ ωðypx − xpyÞ. We compute the
Hamiltonian of an asteroid in the center-of-mass frame of
the Sun and Jupiter system, where the Sun is fixed at x⃗S ¼
ð−μ; 0; 0Þ and Jupiter at x⃗J ¼ ð1 − μ; 0; 0Þ. In suitable
units, their masses are MJ ¼ μ and MS ¼ 1 − μ. The
asteroid Hamiltonian in the x, y plane is

H ¼ p⃗2

2
þ ypx − xpy −

MS

jx⃗ − x⃗Sj
−

MJ

jx⃗ − x⃗Jj
: ðA1Þ

The momentum p has a possible stationary point at z ¼ 0,
px ¼ −y and py ¼ x. Inserting this in H gives an effective
potential with stationary points along the x axis, as well as
at the L4 points x ¼ 1

2
− μ and y ¼ � ffiffiffi

3
p

=2. Interesting
motion happens along the xy plane, and we can ignore
motion along the z axis.
Expanding H around L4 gives, at quadratic order,

H2 ¼
p2
x þp2

y

2
þ ypx − xpy þ

x2

8
−
5y2

8
þ

ffiffiffiffiffi
27

p

4
ð2μ− 1Þxy:

ðA2Þ
Writing such quadratic part of the Hamiltonian as H2 ¼
1
2
viĤijvj where v≡ ðx; y; px; pyÞ, the Hamilton equations

are _v ¼ Ĵ Ĥ v, where
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Ĵ ¼
�

02×2 1I2×2
−1I2×2 02×2

�
ðA3Þ

is the symplectic invariant tensor. The eigenvalues of Ĵ Ĥ
give the frequencies of the normal modes. Since Ĥ is real
and symmetric, if λ is an eigenvalue, then −λ; λ�;−λ� too
are eigenvalues. Thus, we can write the four eigenvalues as
ðiω1;−iω1; iω2;−iω2Þ. We are interested in the case where
ω1;2 are real so that the solutions to the equations of
motions for the linearized Hamiltonian H2 are stable
oscillations rather than exponential tachyonic solutions
(a free 2 × 2 Hamiltonian has eigenvalues �iω, such that
e�iωt solutions give sine and cosine). Restricting without
loss of generality to the interval 0 < μ < 1=2, the eigen-
values are imaginary for 0 < μ < μRouth where μRouth ¼
1
2
ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffi

23=27
p Þ ≈ 3.9 × 10−2 (the Jupiter-Sun system cor-

responds to μ ≈ 0.95 × 10−3). One finds the frequencies

ω1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� r
2

r
where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 27μð1 − μÞ

p
: ðA4Þ

H2 is not positive definite, signaling the presence of a
tachyon (negative potential energy) and/or of a ghost
(negative kinetic energy). To clarify, we identify the normal
modes by bringing H2 to normal form through a linear
change of variables v ¼ N̂v0, where N̂ must be real and
symplectic (i.e., N̂TĴ N̂ ¼ Ĵ) in order to preserve the
Hamiltonian structure of the equations of motion. The
needed Sp(4) rotation is [53]

N̂ ¼
�
Reðz1Þffiffiffiffiffiffiffijc1j
p ;

Reðz2Þffiffiffiffiffiffiffijc2j
p ; signðc1Þ

Imðz1Þffiffiffiffiffiffiffijc1j
p ; signðc2Þ

Imðz2Þffiffiffiffiffiffiffijc2j
p �

;

ðA5Þ
where zj are the complex eigenvectors of Ĵ Ĥ corres-
ponding to the eigenvalues þiωj (the opposite convention
is also applicable), and cj ¼ ReðzjÞTĴImðzjÞ. Writing
v0 ¼ ðq1; q2; p1; p2Þ, the diagonalized Hamiltonian is

H2 ¼ ω1

p2
1 þ q21
2

− ω2

p2
2 þ q22
2

: ðA6Þ

As expected,H2 is not positive definite, and the ghost is q2,
p2. At linear order the system is stable, because the two
oscillators do not interact. At higher order, the ghost
couples to the normal oscillator, and one might expect
quick runaway. Still, asteroids remain close to L4 for
exponentially long time [26].
One can maybe more intuitively see how a positive-

energy particle written in a rotating frame becomes a ghost
in the Lagrangian formalism. A free particle is described
by L ¼ ð _x2 þ _y2Þ=2þ ωðx _y − y _xÞ þ ω2ðx2 þ y2Þ=2. The
second term is the Coriolis force. The third term is the
centrifugal force; kinetic energy becomes a potential term.

Thereby, extra potential terms (such as gravity) can modify
the kinetic term, giving rise to a ghost.

2. Charged particle in a magnetic field

The Hamiltonian of a nonrelativistic particle with mass
m and electric charge e in a constant magnetic field B⃗ ¼
ð0; 0; BzÞ described by the vector potential A⃗ ¼ B⃗ × r⃗=2 is

H0 ¼
ðp⃗ − eA⃗Þ2

2m
þ eφ ¼ p⃗2

2m
þ ωBðypx − xpyÞ

þm
2
ω2
Bðx2 þ y2Þ: ðA7Þ

The first two terms are equal to the Hamiltonian of a
free particle written in a frame rotating with cyclotron
frequency ωB ¼ eBz=2m. The equations of motion give
m _x⃗ ¼ p⃗ − eA⃗, showing that the magnetic force does not
affect energy. We add to H0 a destabilizing potential
δH ¼ −mω2

0ðx2 þ y2Þ=2, H ¼ H0 þ δH. The eigenvalues
of Ĵ Ĥ are �iω�, with

ω� ¼ ωB � δω where δω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
B − ω2

0

q
: ðA8Þ

For 0 < ω2
0 < ω2

B, one has ωþ > ω− > 0 and, diagonaliz-
ing H via a canonical transformation,

H ¼ ωþ
p2þ þ q2þ

2
− ω−

p2
− þ q2−
2

ðA9Þ

shows that the − mode is a ghost. The two pulsations ω�
become degenerate for ω2

0 ¼ ω2
B (in this limit one has the

same H as a free particle seen from a rotating frame), and
tachyons appear for ω2

0 > ω2
B.

APPENDIX B: RESONANT FORM FOR
OVERLAPPING RESONANCES

In this Appendix, we repeat the argument of Sec. IV B
for the case of multiple resonances. For the system
considered in Sec. IV B, this can happen if and only if
all frequencies are approximately equal, ω. Therefore, three
resonant combinations are now present:

4Θs ≡ Θ0
1 þ Θ0

2 þ Θ0
3 þ Θ0

4;

4Θt ≡ Θ0
1 − Θ0

2 − Θ0
3 þ Θ0

4;

4Θu ≡ Θ0
1 − Θ0

2 þ Θ0
3 − Θ0

4: ðB1Þ
The corresponding resonant form is

H ≃ωðJ01 þ J02 − J03 − J04Þ þ
ϵ

4

h
J01J

0
3 þ J01J

0
4 þ J02J

0
3 þ J02J

0
4

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J01J

0
2J

0
3J

0
4

q
ðcos4Θs þ cos4Θt þ cos4ΘuÞ

i
; ðB2Þ

The only quasi-integral of motion (in addition to H) is
E ≡ J01 þ J02 − J03 − J04. The Hamiltonian of the extra-
system can be easily obtained from Eq. (B2) and, recalling
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that the combination E is approximately constant, is found
to be bounded (this can be seen by noticing that the
absolute value of the oscillatory term in the square brackets
is smaller than 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J01J

0
2J

0
3J

0
4

p
and using twice the inequality

2
ffiffiffiffiffi
xy

p
< xþ y between arithmetic and geometric means).

APPENDIX C: CLASSICAL LATTICE
SIMULATIONS

We consider the Lagrangian of Eq. (4) with a λφ2
1φ

2
2=2

interaction in 1þ 1 dimensions with coordinates ðx0; x1Þ.
We express all dimensionful quantities in units of the ghost
mass m2 by introducing the dimensionless coordinates t≡
m2x0 and x≡m2x1, as well as the dimensionless param-
eters κ ≡m2

1=m
2
2 and λ̄≡ λ=m2

2. Then, we obtain the
dimensionless Lagrangian,

L
m2

2

≡ L̄¼ 1

2
½ð _φ1

2−φ02
1 − κφ2

1Þ− ð _φ2
2−φ02

2 −φ2
2Þ− λ̄φ2

1φ
2
2�:

ðC1Þ

The equations of motion are

�
φ̈1 − φ00

1 þ φ1ðκ þ λ̄φ2
2Þ ¼ 0

φ̈2 − φ00
2 þ φ2ð1 − λ̄φ2

1Þ ¼ 0:

These nonlinear 2nd-order hyperbolic partial differential
equations can be solved with finite-difference lattice
methods. For a φ4 theory, this has been done in 1þ 1
[40] and 3þ 1 [41] dimensions using a light cone lattice
(namely, a square lattice in x� t coordinates) and an
exactly conserved energy on the lattice. We generalize this
procedure to two fields. This is nontrivial, as one needs to
achieve energy conservation around cut off scales while
avoiding choices that lead to impractically complicated
discretized field equations.
The continuum Hamilton density is H̄ ¼ 1

2
½ðπ21 þ

φ02
1 þ κφ2

1Þ − ðπ22 þ φ02
2 þ φ2

2Þ þ λ̄φ2
1φ

2
2� where πi ¼ _φi.

We introduce two lattice Hamilton densities,

H� ¼ 1

2
½ðπ21� þ φ02

1� þ κφ2
1�Þ − ðπ22� þ φ02

2� þ φ2
2�Þ þ λ̄½φ2

1φ
2
2���; ðC2Þ

where we defined

π2i� ¼
�
2φiðx; t�Þ − φiðx−; tÞ − φiðxþ; tÞ

2a

�
2

φ02
i� ¼

�
φiðx−; tÞ − φiðxþ; tÞ

2a

�
2

φ2
i� ¼ 2φiðx; t�Þ2 þ φiðx−; tÞ2 þ φiðxþ; tÞ2

4

½φ2
1φ

2
2�� ¼ φ1ðx−; tÞφ2ðx−; tÞ þ φ1ðxþ; tÞφ2ðxþ; tÞ

2
φ1ðx; t�Þφ2ðx; t�Þ: ðC3Þ

Here, a is the dimensionless lattice distance and we abbreviated x� ¼ x� a and t� ¼ t� a. In the continuum limit,
πi� → _φi. The definition ½φ2

1φ
2
2�� of the lattice interaction term significantly simplifies equations compared to the naive

interaction term φ2
1�φ

2
2�. In the continuum limit, Hþ and H− both approach the continuum Hamilton density:

lima→0H� ¼ H̄. Their difference can be expressed as

Hþ −H− ¼ φ1ðx; tþÞ − φ1ðx; t−Þ
2a2

Q1 −
φ2ðx; tþÞ − φ2ðx; t−Þ

2a2
Q2; ðC4Þ

where

Q1 ¼ ½φ1ðx; tþÞ þ φ1ðx; t−Þ�ð1þ κa2=2Þ − ½φ1�aðx; tÞ þ
λ̄a2

4
½φ2ðx; tþÞ þ φ2ðx; t−Þ�½φ1φ2�aðx; tÞ

Q2 ¼ ½φ2ðx; tþÞ þ φ2ðx; t−Þ�ð1þ a2=2Þ − ½φ2�aðx; tÞ −
λ̄a2

4
½φ1ðx; tþÞ þ φ1ðx; t−Þ�½φ1φ2�aðx; tÞ; ðC5Þ

and we defined

½φi�aðx; tÞ ¼ φiðx−; tÞ þ φiðxþ; tÞ
½φ1φ2�aðx; tÞ ¼ φ1ðx−; tÞφ2ðx−; tÞ þ φ1ðxþ; tÞφ2ðxþ; tÞ: ðC6Þ
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Energy is exactly conserved on the lattice if Q1 ¼ Q2 ¼ 0. In the continuum limit, this condition becomes the equations of
motion in Eq. (C2):

φ̈1 − φ00
1 þ φ1ðκ þ λ̄φ2

2Þ ¼ −a2
�
κ

2
φ̈1 þ

φ⃜1 − φ⁗
1

12
þ λ̄

2
φ2ððφ1φ2Þ00 þ φ1φ̈2Þ

�
þOða4Þ

φ̈2 − φ00
2 þ φ2ð1 − λ̄φ2

1Þ ¼ −a2
�
1

2
φ̈2 þ

φ⃜2 − φ⁗
2

12
−
λ̄

2
φ1ððφ1φ2Þ00 þ φ̈1φ2Þ

�
þOða4Þ: ðC7Þ

So, by imposing Q1 ¼ Q2 ¼ 0 and solving for φ1ðx; tþÞ and φ2ðx; tþÞ, we get discretized equations of motion that exactly
conserve energy:

φ1ðx; tþÞ ¼ −φ1ðx; t−Þ þ
ð1þ a2=2Þ½φ1�aðx; tÞ − ðλ̄a2=4Þ½φ2�aðx; tÞ½φ1φ2�aðx; tÞ

ð1þ a2=2Þð1þ κa2=2Þ þ ðλ̄a2=4Þ2½φ1φ2�2aðx; tÞ

φ2ðx; tþÞ ¼ −φ2ðx; t−Þ þ
ð1þ κa2=2Þ½φ2�aðx; tÞ þ ðλ̄a2=4Þ½φ1�aðx; tÞ½φ1φ2�aðx; tÞ

ð1þ a2=2Þð1þ κa2=2Þ þ ðλ̄a2=4Þ2½φ1φ2�2aðx; tÞ
: ðC8Þ

For zero interaction λ ¼ 0, the energies of φ1 and φ2 are separately exactly conserved. The method can be extended to cubic
interactions.

[1] K. S. Stelle, Phys. Rev. D 16, 953 (1977).
[2] A. Salvio and A. Strumia, J. High Energy Phys. 06 (2014)

080.
[3] M. Ostrogradski, Mem. Ac. St. Petersbourg VI, 385 (1850).
[4] A. Hindawi, B. A. Ovrut, and D. Waldram, Phys. Rev. D 53,

5583 (1996).
[5] A. Pais and G. E. Uhlenbeck, Phys. Rev. 79, 145 (1950).
[6] T. D. Lee and G. C. Wick, Nucl. Phys. B9, 209 (1969).
[7] A. V. Smilga, Phys. Lett. B 632, 433 (2006).
[8] R. P. Woodard, Lect. Notes Phys. 720, 403 (2007).
[9] C. M. Bender and P. D. Mannheim, Phys. Rev. Lett. 100,

110402 (2008).
[10] A. Mostafazadeh, Phys. Lett. A 375, 93 (2010).
[11] A. Salvio and A. Strumia, Eur. Phys. J. C 76, 227 (2016).
[12] A. Strumia, MDPI Phys. 1, 17 (2019).
[13] D. Anselmi, J. High Energy Phys. 02 (2018) 141.
[14] N. Arkani-Hamed, H. C. Cheng, M. A. Luty, and S.

Mukohyama, J. High Energy Phys. 05 (2004) 074.
[15] H. Narnhofer and W. E. Thirring, Phys. Lett. 76B, 428

(1978).
[16] E. Pagani, G. Tecchiolli, and S. Zerbini, Lett. Math. Phys.

14, 311 (1987).
[17] A. V. Smilga, Nucl. Phys. B706, 598 (2005).
[18] M. Pavšič, Mod. Phys. Lett. A 28, 1350165 (2013).
[19] M. Pavšič, Int. J. Geom. Methods Mod. Phys. 13, 1630015

(2016).
[20] M. Avendaño-Camacho, J. A. Vallejo, and Y. Vorobiev,

J. Math. Phys. (N.Y.) 58, 093501 (2017).
[21] N. Boulanger, F. Buisseret, F. Dierick, and O. White,

Eur. Phys. J. C 79, 60 (2019).
[22] V. A. Abakumova, D. S. Kaparulin, and S. L. Lyakhovich,

Phys. Rev. D 99, 045020 (2019).
[23] A. Salvio, Phys. Rev. D 99, 103507 (2019).

[24] D. S. Kaparulin, S. L. Lyakhovich, and O. D. Nosyrev,
Phys. Rev. D 101, 125004 (2020).

[25] N. N. Nekhoroshev, Funct. Anal. Appl. 5, 338 (1972).
[26] A. Giorgilli and C. Skokos, Astron. Astrophys. 317, 254

(1997).
[27] V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathemati-

cal Aspects of Classical and Celestial Mechanics (Springer,
New York, 2006); See also V. I. Arnold, Mathematical
Methods of Classical Mechanics (Springer, New York,
1989).

[28] A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 98, 527
(1954); J. Moser, Nachr. Akad. Wiss. Göttingen
Math.-Phys. Kl. II 1962, 120 (1962); V. I. Arnold, Usp.
Mat. Nauk 18, 9 (1963).

[29] C. M. Bender and T. T. Wu, Phys. Rev. D 7, 1620 (1973).
[30] S. R. Coleman, Phys. Rev. D 15, 2929 (1977); 16, 1248

(E) (1977).
[31] S. K. Knudson, J. B. Delos, and D.W. Noid, J. Chem. Phys.

84, 6886 (1986).
[32] A. D. Linde, Nucl. Phys. B372, 421 (1992).
[33] J. Braden, M. C. Johnson, H. V. Peiris, A. Pontzen, and S.

Weinfurtner, Phys. Rev. Lett. 123, 031601 (2019).
[34] A. H. Mueller and D. T. Son, Phys. Lett. B 582, 279 (2004).
[35] S. Jeon, Phys. Rev. C 72, 014907 (2005).
[36] D. Teresi, Quantum field theory for the Early Universe.
[37] B. Fornal, B. Grinstein, and M. B. Wise, Phys. Lett. B 674,

330 (2009).
[38] J. R. Espinosa and B. Grinstein, Phys. Rev. D 83, 075019

(2011).
[39] R. F. Lebed, A. J. Long, and R. H. TerBeek, Phys. Rev. D

88, 085014 (2013).
[40] D. Boyanovsky, C. Destri, and H. J. de Vega, Phys. Rev. D

69, 045003 (2004).

IS NEGATIVE KINETIC ENERGY METASTABLE? PHYS. REV. D 103, 115025 (2021)

115025-23

https://doi.org/10.1103/PhysRevD.16.953
https://doi.org/10.1007/JHEP06(2014)080
https://doi.org/10.1007/JHEP06(2014)080
https://doi.org/10.1103/PhysRevD.53.5583
https://doi.org/10.1103/PhysRevD.53.5583
https://doi.org/10.1103/PhysRev.79.145
https://doi.org/10.1016/0550-3213(69)90098-4
https://doi.org/10.1016/j.physletb.2005.10.014
https://doi.org/10.1007/978-3-540-71013-4
https://doi.org/10.1103/PhysRevLett.100.110402
https://doi.org/10.1103/PhysRevLett.100.110402
https://doi.org/10.1016/j.physleta.2010.10.050
https://doi.org/10.1140/epjc/s10052-016-4079-8
https://doi.org/10.3390/physics1010003
https://doi.org/10.1007/JHEP02(2018)141
https://doi.org/10.1088/1126-6708/2004/05/074
https://doi.org/10.1016/0370-2693(78)90898-5
https://doi.org/10.1016/0370-2693(78)90898-5
https://doi.org/10.1007/BF00402140
https://doi.org/10.1007/BF00402140
https://doi.org/10.1016/j.nuclphysb.2004.10.037
https://doi.org/10.1142/S0217732313501654
https://doi.org/10.1142/S0219887816300154
https://doi.org/10.1142/S0219887816300154
https://doi.org/10.1063/1.5000382
https://doi.org/10.1140/epjc/s10052-019-6569-y
https://doi.org/10.1103/PhysRevD.99.045020
https://doi.org/10.1103/PhysRevD.99.103507
https://doi.org/10.1103/PhysRevD.101.125004
https://doi.org/10.1007/BF01086753
https://doi.org/10.1103/PhysRevD.7.1620
https://doi.org/10.1103/PhysRevD.15.2929
https://doi.org/10.1103/PhysRevD.16.1248
https://doi.org/10.1103/PhysRevD.16.1248
https://doi.org/10.1063/1.450693
https://doi.org/10.1063/1.450693
https://doi.org/10.1016/0550-3213(92)90326-7
https://doi.org/10.1103/PhysRevLett.123.031601
https://doi.org/10.1016/j.physletb.2003.12.047
https://doi.org/10.1103/PhysRevC.72.014907
https://doi.org/10.1016/j.physletb.2009.03.036
https://doi.org/10.1016/j.physletb.2009.03.036
https://doi.org/10.1103/PhysRevD.83.075019
https://doi.org/10.1103/PhysRevD.83.075019
https://doi.org/10.1103/PhysRevD.88.085014
https://doi.org/10.1103/PhysRevD.88.085014
https://doi.org/10.1103/PhysRevD.69.045003
https://doi.org/10.1103/PhysRevD.69.045003


[41] C. Destri and H. J. de Vega, Phys. Rev. D 73, 025014
(2006).

[42] Y. B. Zeldovich, Phys. Lett. 52B, 341 (1974).
[43] I. Y. Kobzarev, L. B. Okun, and M. B. Voloshin, Sov. J.

Nucl. Phys. 20, 644 (1975).
[44] G. Dvali, arXiv:1107.0956.
[45] J. Garriga, B. Shlaer, and A. Vilenkin, J. Cosmol. Astropart.

Phys. 11 (2011) 035.
[46] J. M. Cline, S. Jeon, and G. D. Moore, Phys. Rev. D 70,

043543 (2004).
[47] D. E. Kaplan and R. Sundrum, J. High Energy Phys. 07

(2006) 042.

[48] J. Garriga and A. Vilenkin, J. Cosmol. Astropart. Phys. 01
(2013) 036.

[49] R. E. Cutkosky, P. V. Landshoff, D. I. Olive, and J. C.
Polkinghorne, Nucl. Phys. B12, 281 (1969).

[50] N. Nakanishi, Phys. Rev. D 3, 811 (1971).
[51] T. D. Lee and G. C. Wick, Phys. Rev. D 3, 1046 (1971).
[52] D. G. Boulware and D. J. Gross, Nucl. Phys. B233, 1

(1984).
[53] Explicit expressions in English can be found in A. J.

Maciejewski and K. Godziewski, Astrophys. Space Sci.
179, 1 (1991); I. I. Shevchenko and A. G. Sokolsky,
Comput. Phys. Commun. 77, 11 (1993).

GROSS, STRUMIA, TERESI, and ZIRILLI PHYS. REV. D 103, 115025 (2021)

115025-24

https://doi.org/10.1103/PhysRevD.73.025014
https://doi.org/10.1103/PhysRevD.73.025014
https://doi.org/10.1016/0370-2693(74)90057-4
https://arXiv.org/abs/1107.0956
https://doi.org/10.1088/1475-7516/2011/11/035
https://doi.org/10.1088/1475-7516/2011/11/035
https://doi.org/10.1103/PhysRevD.70.043543
https://doi.org/10.1103/PhysRevD.70.043543
https://doi.org/10.1088/1126-6708/2006/07/042
https://doi.org/10.1088/1126-6708/2006/07/042
https://doi.org/10.1088/1475-7516/2013/01/036
https://doi.org/10.1088/1475-7516/2013/01/036
https://doi.org/10.1016/0550-3213(69)90169-2
https://doi.org/10.1103/PhysRevD.3.811
https://doi.org/10.1103/PhysRevD.3.1046
https://doi.org/10.1016/0550-3213(84)90167-6
https://doi.org/10.1016/0550-3213(84)90167-6
https://doi.org/10.1007/BF00642349
https://doi.org/10.1007/BF00642349
https://doi.org/10.1016/0010-4655(93)90032-8

