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We study an extended 2 Higgs doublet model (2HDM) in which the Standard Model (SM) Yukawa
interactions are forbidden due to a global Uð1Þ0 symmetry, but may arise via mixing with vectorlike
families. In this model, the hierarchical structure of Yukawa couplings of quarks and leptons in the SM
arises from the heavy masses of the fourth and fifth vectorlike families. Within this model, we consider
various nonstandard contributions to the electron and muon anomalous magnetic moments. We first
consider theW exchange at one-loop level, consistent with the μ → eγ constraint, and show that it yields a
negligible contribution to both electron and muon anomalous magnetic moments. We then consider Higgs
scalar exchange, together with vectorlike leptons, at one-loop level and show that it is possible to have
nonstandard contributions to the electron and muon anomalous magnetic moments within the 1σ constraint
of certain experiments. We present some benchmark points for both the muon and the electron anomalies,
together with some numerical scans around these points, which indicate the mass regions of the Higgs
scalars of the 2HDM in this scenario.
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I. INTRODUCTION

The Standard Model (SM) has made many successful
predictions for the phenomenology of both quark and
lepton sectors with very high accuracy. However there
are long-established anomalies which are not addressed
by the SM such as muon and electron anomalous mag-
netic moments aμ ¼ ðg − 2Þμ=2; ae ¼ ðg − 2Þe=2. The
muon anomalous magnetic moment reported by the
Brookhaven E821 experiment at BNL [1] and the elec-
tron anomaly have confirmed þ3.5σ and −2.5σ deviations
from the SM, respectively. Detailed data analysis of
the Standard Model predictions for the muon anoma-
lous magnetic moment are provided in [2–6]. The exper-
imentally observed values for the muon and electron

anomalies at 1σ of experimental error bars, respectively,
read1:

Δaμ ¼ aExpμ − aSMμ ¼ ð26.1� 8.0Þ × 10−10

Δae ¼ aExpe − aSMe ¼ ð−0.88� 0.36Þ × 10−12: ð1Þ

When trying to explain both anomalies to within 1σ, a
main difficulty arises from the sign of each anomaly: the
muon anomaly requires positive definite nonstandard con-
tributions, whereas the electron anomaly requires such
contributions to contribute with a negative sign [8].
Without loss of generality, the Feynman diagrams corre-
sponding to the contributions for the muon and electron
anomalies take the same internal structure at one-loop
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1It is worth mentioning that the experimental value of the
anomalous magnetic moment of the electron is sensitive to the
measurement of the fine-structure constant α. The experimental
value of Δae ¼ ae;exp − aeðαBerkeleyÞ used in this work and given
in Eq. (1) is obtained using αBerkeley from caesium recoil
measurements by the Berkeley 2018 experiment [7]. As this
paper was being completed a different experiment [8] reported a
result that implies Δae ¼ aExpe − aSMe ¼ ð0.48� 0.30Þ × 10−12

which differs from the SM by þ1.6σ. The two experiments
appear to be inconsistent with each other, and our results here are
based on the earlier result in Eq. (1).
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except from the fact that the external particles are different.
The similar structure of the one-loop level contributions to
the muon and electron anomalous magnetic moments might
be able to be explained by the same new physics, but
accounting for the relative negative sign is challenging. For
example, considering the one-loop exchange of W or Z0
gauge bosons results in theoretical predictions for the muon
and electron anomalies having the same sign.
In this paper we take the view that both anomalies should

be explained to 1σ using the same internal structure at the
one-loop level by some new physics which is capable of
accounting for the correct signs of the anomalies. To
explain the muon and electron anomalies, we focus on a
well motivated model which is also capable of accounting
for origin of Yukawa couplings and hierarchies in the SM.
The model we consider will account for the Yukawa
coupling constant for the top quark being nearly 1 while
that for the electron is around 10−6, as well as all the other
fermion hierarchies in between, as well as the neutrino
masses and mixing. In order to achieve this we shall
introduce vectorlike particles, which are charged under a
globalUð1Þ0 symmetry. In a related previous work [9], with
a gauged Uð1Þ0 symmetry, the first family of quarks and
leptons remained massless when only one vectorlike family
is included. Here we shall modify the model to include two
vectorlike families charged under a global Uð1Þ0 to allow
also the first family to be massive and avoid Z0 constraints.
Then we shall apply the resulting model to the problem of
muon and electron anomalous magnetic moments. The
considered model is based on a 2 Higgs doublet model
(2HDM) extension of the SM, supplemented by a global
Uð1Þ0 symmetry, where the particle spectrum is enlarged by
the inclusion of two vectorlike fermion families, as well as
one singlet Higgs to break the Uð1Þ0 symmetry.2 The SM
Yukawa interactions are forbidden, but the Yukawa inter-
actions with vectorlike families charged under the Uð1Þ0
symmetry are allowed. Once the flavon develops a vev and
the heavy vectorlike fermions are integrated out, the

effective SM Yukawa interactions are generated, as indi-
cated in Fig. 1. Furthermore, this model also highlights the
shape of the 2HDM model type II, since in our proposed
model, one Higgs doublet (which in the alignment limit
corresponds to the SM Higgs doublet) couples with the up
type quarks whereas the other one features Yukawa
interactions with down type quarks and SM charged
leptons. Regarding the neutrino sector, since we consider
the SM neutrinos as Majorana particles, we have that this
sector requires another approach relying on the inclusion of
a new five dimensional Weinberg-like operator, which is
allowed in this model and which requires both SM Higgs
doublets to be present, namely the so called type Ib seesaw
model [11].
We shall show that the heavy vectorlike leptons are

useful and necessary to explain the anomalous electron and
muon magnetic moment deviations from the SM, of
magnitude and opposite signs given in Eq. (1). A study
of such g − 2 anomalies in terms of new physics and a
possible UV complete explanation via vectorlike leptons
was performed in [12], although the model presented here
is quite different, since our model is motivated by the
requirement of accounting also for the fermion mass
hierarchies. Other theories with extended symmetries and
particle spectrum have also been proposed to find an
explanation for the muon and electron anomalous magnetic
moments [12–58]. In the following we provide a brief
comparison of our model to other works, starting with the
model proposed in [49] where vectorlike leptons are also
present. The model of [49] corresponds to an extended type
X lepton specific 2HDMmodel of [49] having a Z2 discrete
symmetry under which one of the scalar doublets and the
leptonic fields are charged. In such model the vectorlike
leptons induces a one-loop level contribution to the electron
anomalous magnetic moment whereas the muon anoma-
lous magnetic moment is generated at two-loop via the
exchange of a light pseudoscalar. On the other hand, in our
proposed model a spontaneously broken global Uð1Þ0
symmetry is considered instead of the Z2 symmetry and
the vectorlike leptons generate one-loop level contributions
to the muon and electron anomalous magnetic moments
and at the same type produce the SM charged lepton
masses, thus providing a connection of the charged lepton

FIG. 1. Diagrams in this model which lead to the effective Yukawa interactions, where ψ ;ψ 0 ¼ Q, u, d, L, e (neutrinos will be treated
separately) i, j ¼ 1, 2, 3, k, l ¼ 4, 5, Mlk is vectorlike mass and H̃ ¼ iσ2H�; H ¼ Hu;d

2An example of a multi-Higgs doublet model that uses a flavor
dependent global Uð1Þ0 symmetry to explain the SM charged
fermion mass hierarchy by hierarchies of the vacuum expectation
values of the Higgs doublets is provided in [10].
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mass generation mechanism and the g − 2 anomalies,
which is not given in the model of [49]. It is also worth
emphasizing that our model is very different from other
models proposed in the literature based on the Universal
Seesaw mechanism [59–76]. Universal Seesaw models are
typically based on the left-right symmetric model with
electroweak singlet fermions only, while our vectorlike
fermions involves complete families, including electroweak
doublets which are typically the lightest ones. Some
examples of theories relying on the Universal Seesaw
mechanism to explain the SM charged fermion mass
hierarchy are provided in [59–76].
In the approach followed in this paper the large third

family quark and lepton Yukawa couplings are effectively
generated via mixing with a vectorlike fourth family of
electroweak doublet fermions, which are assumed to be
relatively light, with masses around the TeV scale. The
smallness of the second family quark and lepton Yukawa
couplings is due to their coupling to heavier vectorlike
fourth family electroweak singlet fermions. Similar con-
siderations apply to the lightest first family quarks and
leptons which couple to heavy fifth family vectorlike
fermions. It may seem that the problem of the hierarchies
of SM fermions is not solved but simply reparametrized in
terms of unknown vectorlike fermion masses. However,
there are four advantages to this approach. First, the
approach is dynamical, since the vectorlike masses are
new physical quantities which could in principle be
determined by a future theory. Second, it has experimental
consequences, since the new vectorlike fermions can be
discovered either directly, or (as in this paper) indirectly via
their loop contributions. Third, this approach can also
account for small quark mixing angles [9], as well as large
lepton mixing angles via the type Ib seesaw mechanism
[11]. Fourth, the effective Yukawa couplings are propor-
tional to a product of two other dimensionless couplings, so
a small hierarchy in those couplings can give a quadrati-
cally larger hierarchy in the effective couplings. For all
these reasons, the approach we follow in this paper is both
well motivated and interesting.
Returning to our proposed model framework, we first

consider the contribution of W boson exchange with
neutrinos to the electron and muon anomalous magnetic
moments at the one-loop level. Since this model involves
the vectorlike neutrinos, the sensitivity of the branching
ratio of μ → eγ decay can be enhanced with respect to the
observable level and the muon and electron anomalous
magnetic moments are studied while keeping the μ → eγ
constraint. As a result, we find that the impact of our
predictions withW exchange at one-loop level is negligible
when compared to their experimental bound. We then
consider the contributions from the 2HDM scalar
exchange. To study the implications of the one-loop level
scalar exchange in the muon and electron anomalous
magnetic moments, we first construct a scalar potential

and derive the mass squared matrix for CP-even, CP-odd,
and charged Higgses assuming there is no mixing between
the SM Higgs h and two non-SM physical scalars H1;2. A
diagonal Yukawa matrix for charged leptons implies the
absence of mixing between charged leptons, resulting in
vanishing branching ratio for the μ → eγ decay, which in
turn leads to a fulfillment of the charged lepton flavor
violating constraints in this scenario. In such a framework
we show that both anomalies can successfully explain both
anomalies, including their opposite signs, at the 1σ level.
We present some benchmark points for both the muon and
the electron anomalies, together with some numerical scans
around these points, which indicate the mass regions of the
Higgs scalars of the 2HDM in this scenario. We also
provide some analytic arguments to augment the numerical
results.
The layout of the remainder of the paper is as follows. In

Sec. II we discuss the origin of Yukawa couplings from a
fourth and fifth vectorlike family, within a mass insertion
formalism. In Sec. III we construct the effective Yukawa
matrices using a more detailed mixing formalism which
goes beyond the mass insertion formalism. In Sec. IV we
consider W exchange contributions to ðg − 2Þμ; ðg − 2Þe
and BRðμ → eγÞ based on the type Ib seesaw mechanism
within our model and show that the contributions are too
small. In Sec. V we turn to Higgs scalar exchange
contributions to ðg − 2Þμ; ðg − 2Þe and BRðμ → eγÞ, focus-
sing on analytical formulas. Then in Sec. VI we give a full
numerical analysis of such contributions, showing that they
can successfully explain the anomalies, presenting some
benchmark points for both the muon and the electron
anomalies, together with some numerical scans around
these points, which indicate the mass regions of the Higgs
scalars of the 2HDM in this scenario. Section VII concludes
the main body of the paper. Appendix A provides a
discussion of the quark mass matrices in two bases.
Appendix B includes a brief discussion of heavy scalar
production at a proton-proton collider.

II. THE ORIGIN OF YUKAWA COUPLINGS
FROM A FOURTH AND FIFTH

VECTORLIKE FAMILY

We start by asking a question: what is the origin of the
SM Yukawa couplings? In addressing such question, we
assume that the SM Yukawa Lagrangian is the low energy
limit of an extended theory with enlarged symmetry and
particle spectrum, and arises after the spontaneous breaking
of an Uð1Þ0 global symmetry at an energy scale as low as
TeV. Therefore, understanding the origin of the Yukawa
interaction naturally leads to the presence of another
Higgses whose masses are higher than the mass of the
SM Higgs. Furthermore, the SM Yukawa interactions are
forbidden by the global Uð1Þ0 symmetry, however the
Yukawa interaction with the vectorlike particles are
allowed. With these considerations in place, the possible
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diagrams generating the Yukawa interactions can be drawn
as indicated in Fig. 1.
There are two key features in Fig. 1, one of which is the

presence of the assumed flavon ϕ and the other one is
the vectorlike mass M. Once the flavon ϕ develops its vev,
the effective Yukawa interactions ψ̄ iLH̃ψ jR are generated
with a coupling constant proportional to hϕi=M, assumed
to be less than unity, which appears in front of the usual
Yukawa constant. The proportional factor hϕi=M plays a
crucial role in explaining why one Yukawa constant can be
relatively smaller or bigger than the other ones since the
magnitude of each Yukawa constant is accompanied by the
mass of the vectorlike particles. The effective Lagrangian in
this diagram reads in the mass insertion formalism:

LYukawa
eff ¼ yψikðM−1

ψ 0 Þklxψ
0

lj hϕiψ̄ iLH̃ψ jR

þ xψikhϕiðM−1
ψ Þklyψljψ̄ iLH̃ψ jR þ H:c: ð2Þ

where ψ ;ψ 0 ¼ Q, u, d, L, e (neutrinos will be treated
separately) and x is a Yukawa constant in the interaction
with ϕ and y is in the interaction with H̃ as per Fig. 1.
Throughout this work, we take a view that the Yukawa
constant y can be ideally of order unity while the x is small
compared to the y. We shall also use a mixing formalism
rather than the mass insertion formalism.

A. The model with Uð1Þ0 global symmetry

For an analysis of the phenomenology described above,
we extend the SM fermion sector by adding two vectorlike
fermions, the SM gauge symmetry by including the global
Uð1Þ0 symmetry and the scalar sector of the 2HDM model
is enlarged by considering a gauge scalar singlet, whose
VEV triggers the spontaneous breaking of the Uð1Þ0
symmetry. The scalar sector of the model is composed
of by two SUð2Þ doublet scalarsHu;d and one flavon ϕ. Our
extended 2HDM with enlarged particle spectrum and
symmetries has the interesting feature that the SM
Yukawa interactions are forbidden due to the global
Uð1Þ0 symmetry whereas the Yukawa interactions of SM
fermions with vectorlike families are allowed. Furthermore,
such vectorlike families have mass terms which are allowed

by the symmetry. Thus, the SM charged fermions masses
are generated from a universal seesaw mechanism mediated
by heavy vectorlike fermions. Unlike the Uð1Þ0 model
proposed in [77], we assume that the Uð1Þ0 symmetry is
global instead of local. This allows us more flexibility in the
allowed range for the scale where the Uð1Þ0 symmetry is
broken. On top of that, the up-type quarks feature Yukawa
interaction with the up-type Higgs whereas the down-type
ones interact with down-type Higgs. In this BSM model,
the SM particles are neutral under the Uð1Þ0 symmetry,
while the vectorlike particles and all other scalars are
charged under the symmetry. The particle content and
symmetries of the model are shown in Table I.
The right-handed neutrinos νiR are absent in this model

since we treat the left-handed neutrinos in the lepton
doublet as Majorana particles and they are only extended
by vectorlike neutrinos. The vectorlike particles and their
partners have exact opposite charge to each other under the
extended gauge symmetry to cancel out chiral anomaly.
Lastly, the SM Higgses Hu;d are negatively charged under
the Uð1Þ0 symmetry to forbid the renormalizable SM
Yukawa interactions.

B. Mass insertion formalism

The renormalizable Yukawa interactions and mass terms
for both up and down quark sectors read:

LYukawaþMass
q ¼ yuikQ̄iLH̃uukR þ xukiϕ ¯̃ukLuiR þ xQikϕQ̄iLQ̃kR

þ yukiQ̄kLH̃uuiR þ ydikQ̄iLH̃ddkR

þ xdkiϕ
¯̃dkLdiR þ ydkiQ̄kLH̃ddiR

þMu
kl
¯̃ulLukR þMd

kl
¯̃dlLdkR

þMQ
klQ̄kLQ̃lR þ H:c: ð3Þ

where i, j ¼ 1, 2, 3, k, l ¼ 4, 5 and H̃ ¼ iσ2H�. The
possible diagrams contributing to the low energy quark
Yukawa interaction are given in Fig. 2:
The above two diagrams correspond to the up-type quark

sector whereas the below two diagrams correspond to the
down-type quark sector. The model under consideration is
an extended 2HDMwhere the up-type HiggsHu is relevant

TABLE I. This model is an extended 2HDM by the global Uð1Þ0 symmetry with two vectorlike families plus one flavon and reflects
the property that the SM Yukawa interactions are forbidden. All SM particles ψ i (i ¼ 1, 2, 3) are neutral under the Uð1Þ0 symmetry and
the right neutrinos νiR are not considered. Notice that this model involves two right-handed vectorlike neutrinos νkR; ν̃kR. The SM
particles are extended by two vectorlike families where k ¼ 4, 5 and two SM HiggsesHu;d are charged negatively under Uð1Þ0 to forbid
the renormalizable SM Yukawa interactions. The flavon field ϕ plays a role of breaking the Uð1Þ0 symmetry at TeV scale.

Field QiL uiR diR LiL eiR QkL ukR dkR LkL ekR νkR Q̃kR ũkL d̃kL L̃kR ẽkL ν̃kR ϕ Hu Hd

SUð3ÞC 3 3 3 1 1 3 3 3 1 1 1 3 3 3 1 1 1 1 1 1
SUð2ÞL 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 2
Uð1ÞY 1

6
2
3

− 1
3

− 1
2

1 1
6

2
3

− 1
3

− 1
2

−1 0 1
6

2
3

− 1
3

− 1
2

−1 0 0 1
2

− 1
2

Uð1Þ0 0 0 0 0 0 1 −1 −1 1 −1 −1 1 −1 −1 1 −1 −1 1 −1 −1
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for the up-type quark sector whereas the down-type Higgs
Hd is suitable for the down-type quark and charged lepton
sectors. Like in the quark sector, the Yukawa interactions
and mass terms for charged leptons can be written in a
similar way:

LYukawaþMass
e ¼ yeikL̄iLH̃dekRþxekiϕ ¯̃ekLeiRþxLikϕL̄iLL̃kR

þyekiL̄kLH̃deiRþMe
kl
¯̃elLekRþML

klL̄kLL̃lR

þH:c: ð4Þ

Then, the possible diagrams giving rise to the charged
lepton Yukawa interactions are shown in Fig. 3:
As for the neutrinos, its behavior is different as compared

to the quarks or charged leptons since there exists only
Majorana neutrinos in this model so initial and final
neutrinos in mass insertion formalism diagrams must be
same. The Yukawa interactions and mass terms for the
neutrino sector are given by:

LYukawaþMass
ν ¼ yνikL̄iLH̃uνkR þ xLikL̄iLHd

¯̃νkR þMM
kl
¯̃νlRνkR

þH:c: ð5Þ

Here, one important feature in Eq. (5) is the presence of
the vectorlike mass M. From the two Yukawa interactions
in Eq. (5), it follows that both νR and ν̃R have a lepton
numberþ1 and they are different particles. And then taking
a look at the vectorlike mass term in Eq. (5), it can be
confirmed that the vectorlike mass is not a strict Majorana
mass because νR and ν̃R are different particles but plays a
role of Majorana mass since the mass term violates the
lepton number conservation. The corresponding diagram
for the neutrino sector in the mass insertion formalism is
given in Figure 4. However for our calculations we use a
mixing formalism (see next section).
The operator L̄iL̄jH̃uHd resulting from Fig. 4 gives rise

to the so called type Ib seesaw mechanism [11] which
differs from the usual type Ia seesaw mechanism corre-
sponding to the Weinberg operator L̄iL̄jH̃uH̃u and will be
discussed later in detail.

FIG. 2. Diagrams in this model which lead to the effective Yukawa interactions for the up quark sector(two above diagrams) and the
down quark sector(two below diagrams) in mass insertion formalism, where i, j ¼ 1, 2, 3 and k, l ¼ 4, 5 and Mlk is vectorlike mass.

FIG. 3. Diagrams in this model which lead to the effective Yukawa interactions for the charged lepton sector in mass insertion
formalism, where i, j ¼ 1, 2, 3 and k, l ¼ 4, 5 and Mlk is vectorlike mass.
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III. EFFECTIVE YUKAWA MATRICES USING
A MIXING FORMALISM

As seen from Eq. (2), we need to mix Higgses with the
flavon to generate the effective Yukawa Lagrangian
required to produce the SM fermion mass hierarchy.
Since there is no an extra symmetry or constraint to keep
the mixing between Higgses and flavon from taking place,
it is natural to assume their mixing.

A. The 7 × 7 matrix

Consider the 7 × 7 mass matrix for Dirac fermions:

Mψ ¼

0
BBBBBBBBBBBBBBB@

ψ1R ψ2R ψ3R ψ4R ψ5R ψ̃4R ψ̃5R

ψ̄1L 0 0 0 yψ14hH̃0i yψ15hH̃0i xψ14hϕi xψ15hϕi
ψ̄2L 0 0 0 yψ24hH̃0i yψ25hH̃0i xψ24hϕi xψ25hϕi
ψ̄3L 0 0 0 yψ34hH̃0i yψ35hH̃0i xψ34hϕi xψ35hϕi
ψ̄4L yψ41hH̃0i yψ42hH̃0i yψ43hH̃0i 0 0 Mψ

44 Mψ
45

ψ̄5L yψ51hH̃0i yψ52hH̃0i yψ53hH̃0i 0 0 Mψ
54 Mψ

55

¯̃ψ4L xψ
0

41hϕi xψ
0

42hϕi xψ
0

43hϕi Mψ 0
44 Mψ 0

45 0 0

¯̃ψ5L xψ
0

51hϕi xψ
0

52hϕi xψ
0

53hϕi Mψ 0
54 Mψ 0

55 0 0

1
CCCCCCCCCCCCCCCA

; ð6Þ

with the coefficients y and x being Yukawa constants where
the former is expected to be of order unity whereas the latter
is smaller than y. Furthermore, the 125 GeV SM like Higgs
boson H will corresponds to the lightest of the CP even
neutral scalar states arising fromHu,Hd, and ϕ, whereasM
is the vectorlike mass. The column vector located at the
lower left block in Eq. (6) consists of left-handed particles
while the row vector at the upper right block are made up of
right-handed particles. The zeros in the 3 × 3 upper block
in Eq. (6) mean that no SM Yukawa interactions take
place due to charge conservation as well as zeros in two
2 × 2 blocks. Since we are interested in explaining the

muon and electron anomalous magnetic moments in this
model, we first focus on the lepton sector in the next
subsection and the method used for obtaining the low
energy SM Yukawa matrices in the lepton sector can be
applied to the quark sector in the same way with a slight
change so that the quark sector will be discussed in
Appendix A.

B. A convenient basis for charged leptons

From Eq. (6), we can take a specified basis by rotating
some fields as below:

Me ¼

0
BBBBBBBBBBBBBBB@

e1R e2R e3R e4R e5R L̃4R L̃5R

L̄1L 0 0 0 0 ye15vd 0 xL15vϕ
L̄2L 0 0 0 ye24vd ye25vd 0 xL25vϕ
L̄3L 0 0 0 ye34vd ye35vd xL34vϕ xL35vϕ
L̄4L 0 0 ye43vd 0 0 ML

44 ML
45

L̄5L ye51vd ye52vd ye53vd 0 0 0 ML
55

¯̃e4L 0 xe42vϕ xe43vϕ Me
44 0 0 0

¯̃e5L xe51vϕ xe52vϕ xe53vϕ Me
54 Me

55 0 0

1
CCCCCCCCCCCCCCCA

; ð7Þ

FIG. 4. Type Ib seesaw diagram [11] which leads to the
effective Yukawa interactions for the Majorana neutrinos in mass
insertion formalism, where i, j ¼ 1, 2, 3 and k, l ¼ 4, 5 and Mlk
is vectorlike mass.
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where vd ¼ hH0
di and νϕ ¼ hϕi. We start by pointing out

the reason why we take this specific basis for the charged
leptons. The reason is that the strong hierarchical structure
of the SM fermion Yukawa couplings can be implemented
by the rotations with a simple assumption in this model to
be specified below. In order to arrive from Eq. (6) to Eq. (7),
we rotate the leptonic fields L4L and L5L to turn offML

54 and
rotate e4R and e5R to turn off Me

45. Then, we can rotate L1L

and L3L to set xL14vϕ to zero and then rotate L2L and L3L to
set xL24vϕ to zero. The same rotation can be applied to
e1R;2R;3R to set ye41;42vd to zero. Finally, we can further
rotate L1L and L2L to switch off ye14vd and this rotation also
goes for e1R;2R to switch off xe41vϕ. The above given mass
matrix includes three distinct mass scales which are the vev
vd of the neutral component of the Higgs doublet Hd, the

vev vϕ of the flavon ϕ and the vectorlike massesM, whose
orders of magnitude can be in principle be different.
Therefore, the mass matrix will be diagonalized by the
seesaw mechanism step-by-step instead of diagonalizing it
at once. This mechanism is also known as universal seesaw,
and was proposed for the first time, in the context of a left-
right symmetric model in [59].

C. A basis for decoupling heavy fourth
and fifth vectorlike family

As mentioned in the previous Sec. III B, the mass
matrix in Eq. (7) involves three distinct mass scales vd,
vϕ, and M so it is possible to split this whole mass matrix
by partial blocks to group mass terms with vev of Hd as
in Eq. (8)

Me ¼

0
BBBBBBBBBBBBBBB@

e1R e2R e3R e4R e5R L̃4R L̃5R

L̄1L 0 0 0 0 ye15vd 0 xL15vϕ
L̄2L 0 0 0 ye24vd ye25vd 0 xL25vϕ
L̄3L 0 0 0 ye34vd ye35vd xL34vϕ xL35vϕ
L̄4L 0 0 ye43vd 0 0 ML

44 ML
45

L̄5L ye51vd ye52vd ye53vd 0 0 0 ML
55

¯̃e4L 0 xe42vϕ xe43vϕ Me
44 0 0 0

¯̃e5L xe51vϕ xe52vϕ xe53vϕ Me
54 Me

55 0 0

1
CCCCCCCCCCCCCCCA

; ð8Þ

and then elements of the blocks involving ϕ can be rotated away to make those zeros by unitary mixing matrices of Eq. (10)
as per Eq. (9):

Me ¼

0
BBBBBBBBBBBBBBB@

e1R e2R e3R e4R e5R L̃4R L̃5R

L̄1L 0 0

L̄2L 0 0

L̄3L ỹ0eαβvd 0 0

L̄4L M̃L
44 M0L

45

L̄5L 0 M̃L
55

¯̃e4L 0 0 0 M̃e
44 0 0 0

¯̃e5L 0 0 0 M00e
54 M̃e

55 0 0

1
CCCCCCCCCCCCCCCA

; ð9Þ

where the indices α, β run from 1 to 5, and tilde, primes
repeated in the mass matrix mean that the parameters are
rotated. The unitary 5 × 5 matrices are defined to be

VL ¼ VL
45V

L
35V

L
25V

L
15V

L
34V

L
24V

L
14;

Ve ¼ Ve
45V

e
35V

e
25V

e
15V

e
34V

e
24V

e
14; ð10Þ

where each of the unitary matrices Vi4;5 are parameterized
by a single angle θi4;5 describing the mixing between the ith
chiral family and the 4,5th vectorlike family. The 5 × 5

Yukawa constant matrix in a mass basis (primed) can be
diagonalized by the unitary rotation matrices as below:

ỹeαβ ¼ VLỹ0eαβV
†
e ð11Þ

From Eq. (7), we can read off the 5 × 5 upper block and
confirm that the (3,4),(1,5),(2,5),(3,5) mixings in the L
sector and (2,4),(3,4),(1,5),(2,5),(3,5) mixings in the e
sector are required to go to the decoupling basis. The
unitary matrices of Eq. (10) and mixing angles appearing in
the unitary matrices are parameterized by
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VL ¼ VL
35V

L
25V

L
15V

L
34

¼

0
BBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 cL35 0 sL35
0 0 0 1 0

0 0 −sL35 0 cL35

1
CCCCCA

0
BBBBB@

1 0 0 0 0

0 cL25 0 0 sL25
0 0 1 0 0

0 0 0 1 0

0 −sL25 0 0 cL25

1
CCCCCA

0
BBBBB@

cL15 0 0 0 sL15
0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

−sL15 0 0 0 cL15

1
CCCCCA

0
BBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 cL34 sL34 0

0 0 −sL34 cL34 0

0 0 0 0 1

1
CCCCCA

≈

0
BBBBB@

1 0 0 0 sL15
0 1 0 0 sL25
0 0 1 sL34 sL35
0 0 −sL34 1 0

−sL15 −sL25 −sL35 0 1

1
CCCCCA;

sL34 ¼
xL34hϕiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxL34hϕiÞ2 þ ðML
44Þ2

p ; sL15 ¼
xL15hϕiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxL15hϕiÞ2 þ ðML
55Þ2

q ;

sL25 ¼
xL25hϕiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxL25hϕiÞ2 þ ðM0L
55Þ2

q ; sL35 ¼
x0L35hϕiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx0L35hϕiÞ2 þ ðM00L
55 Þ2

q ;

x0L35hϕi ¼ cL34x
L
35hϕi þ sL34M

L
45; M0L

45 ¼ −sL34xL35hϕi þ cL34M
L
45 M̃L

44 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxL34hϕiÞ2 þ ðML

44Þ2
q

;

M0L
55 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxL15hϕiÞ2 þ ðML

55Þ2
q

; M00L
55 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxL25hϕiÞ2 þ ðM0L

55Þ2
q

; M̃L
55 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0L35hϕiÞ2 þ ðM00L

55 Þ2
q

ð12Þ

Ve ¼ Ve
35V

e
25V

e
15V

e
34V

e
24

¼

0
BBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 ce35 0 se35
0 0 0 1 0

0 0 −se35 0 ce35

1
CCCCCA

0
BBBBB@

1 0 0 0 0

0 ce25 0 0 se25
0 0 1 0 0

0 0 0 1 0

0 −se25 0 0 ce25

1
CCCCCA

0
BBBBB@

ce15 0 0 0 se15
0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

−se15 0 0 0 ce15

1
CCCCCA

×

0
BBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 ce34 se34 0

0 0 −se34 ce34 0

0 0 0 0 1

1
CCCCCA

0
BBBBB@

1 0 0 0 0

0 ce24 0 se24 0

0 0 1 0 0

0 −se24 0 ce24 0

0 0 0 0 1

1
CCCCCA ≈

0
BBBBB@

1 0 0 0 θe15
0 1 0 θe24 θe25
0 0 1 θe34 θe35
0 −θe24 −θe34 1 0

−θe15 −θe25 −θe35 0 1

1
CCCCCA;

se24 ≈
xe42hϕi
Me

44

; se34 ≈
xe43hϕi
M0e

44

; se15 ≈
xe51hϕi
Me

55

; se25 ≈
x0e52hϕi
M0e

55

; se35 ≈
xe53hϕi
M00e

55

;

x0e52hϕi ¼ ce24x
e
52hϕi þ se24M

e
54; M0e

54 ¼ −se24xe52hϕi þ ce24M
e
54;

x0e53hϕi ¼ ce34x
e
53hϕi þ se34M

0e
54; M00e

54 ¼ −se34xe53hϕi þ ce34M
0e
54;

M0e
44 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxe42hϕiÞ2 þ ðMe

44Þ2
q

; M̃e
44 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxe43hϕiÞ2 þ ðMe

44Þ2
q

;

M0e
55 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxe51hϕiÞ2 þ ðMe

55Þ2
q

; M00e
55 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0e52hϕiÞ2 þ ðM0e

55Þ2
q

; M̃e
55 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0e53hϕiÞ2 þ ðM00e

55Þ2
q

: ð13Þ
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Given the above unitary rotations, the 5 × 5 Yukawa matrices are computed in terms of the mixing angles and the upper
3 × 3 block would be the effective SM Yukawa matrix. Assuming all cos θ to be 1 and neglecting order of θ square or more
than that, we have a simple 3 × 3 Yukawa matrix of Eq. (14).

yeij ¼

0
B@

sL15y
e
51 þ ye15θ

e
15 sL15y

e
52 þ ye15θ

e
25 sL15y

e
53 þ ye15θ

e
35

sL25y
e
51 þ ye25θ

e
15 sL25y

e
52 þ ye24θ

e
24 þ ye25θ

e
25 sL25y

e
53 þ ye24θ

e
34 þ ye25θ

e
35

sL35y
e
51 þ ye35θ

e
15 sL35y

e
52 þ ye34θ

e
24 þ ye35θ

e
25 sL34y

e
43 þ sL35y

e
53 þ ye34θ

e
34 þ ye35θ

e
35

1
CA ð14Þ

D. A convenient basis for neutrinos

The relevant Yukawa and mass terms of the neutrino sector give rise to the following neutrino mass matrix:

Mν ¼

0
BBBBBBBBBBBBB@

L1L L2L L3L ν̄4R ν̄5R ν̃4R ν̃5R

L1L 0 0 0 yν14vu yν15vu xL14vd xL15vd
L2L 0 0 0 yν24vu yν25vu xL24vd xL25vd
L3L 0 0 0 yν34vu yν35vu xL34vd xL35vd
ν̄4R yν14vu yν24vu yν34vu 0 0 Mν

44 Mν
54

ν̄5R yν15vu yν25vu yν35vu 0 0 Mν
45 Mν

55

ν̃4R xL14vd xL24vd xL34vd Mν
44 Mν

45 0 0

ν̃5R xL15vd xL25vd xL35vd Mν
54 Mν

55 0 0

1
CCCCCCCCCCCCCA

ð15Þ

Here, the zeros in the upper 3 × 3 block of Eq. (15) mean
that neutrinos remain massless in the SM. Therefore, the
SM neutrinos can be massive via the inclusion of two
vectorlike families. In order to make this mass matrix as
simple as possible, the only choice left is to rotate ν4R and
ν5R to turn off Mν

45 since rotations between L1L;2L;3L are
already used in the charged lepton sector.

IV. W BOSON EXCHANGE CONTRIBUTIONS
TO ðg − 2Þμ;ðg− 2Þe, AND BRðμ → eγÞ

Within the framework of our proposed model, we start
by investigating the muon and electron anomalous mag-
netic moments with W boson exchange first. Given that

such W boson exchange contribution also involves virtual
neutrinos in the internal lines of the loop, we revisit the
mass matrix for neutrinos. In this mass matrix, we remove
fifth vectorlike neutrinos ν5R and ν̃5R since they are too
heavy to contribute to the phenomenology under study. As
mentioned in the previous section, we stick to a condition
where the coefficient y is expected to be of order unity,
whereas the coupling x is expected to be smaller than y.
Such condition can be easily seen by substituting the
coefficients yνi4 by yνi and the coefficients xLi4 by ϵyν0i where
ϵ is a suppression factor. Putting all these considerations
together, the mass matrix for neutrinos in Eq. (15) after
electroweak symmetry breaking takes the form:

Mν ≈

0
BBBBBBBBB@

ν1L ν2L ν3L ν̄4R ν̃4R

ν1L 0 0 0 yν1vu ϵyν01 vd
ν2L 0 0 0 yν2vu ϵyν02 vd
ν3L 0 0 0 yν3vu ϵyν03 vd
ν̄4R yν1vu yν2vu yν3vu 0 Mν

44

ν̃4R ϵyν01 vd ϵyν02 vd ϵyν03 vd Mν
44 0

1
CCCCCCCCCA

≡
�

0 mD

mT
D MN

�
; ð16Þ

where vuðvdÞ is the vev of H̃uðHdÞ, vu runs from 246=
ffiffiffi
2

p
GeV ≃ 174 GeV to 246 GeV and v2u þ v2d ¼ ð246 GeVÞ2.
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A. Type 1b seesaw mechanism

Now that we constructed the neutrinomassmatrix for this
task, the next step is to read off the operator which gives rise
to the neutrino mass from the mass matrix. Generally, the
well-known operator for neutrino mass is the Weinberg
operator (type 1a seesaw mechanism) 1

ΛLiLjHH. A main
feature of the Weinberg operator is the same SM Higgs
should be repeated in the operator, however that property is
not present in our model since the Higgs doublets Hu;d are
negatively charged under the Uð1Þ0 symmetry, which
implies the corresponding Weinberg operator having such
fields will not be invariant under the Uð1Þ0 unless an
insertion of a quadratic power of the gauge singlet scalar
ϕ is considered. However we do not consider the operators
1
Λ3 ðL̄iH̃uÞðH̃uLC

j Þðϕ�Þ2 and 1
Λ3 ðL̄iHdÞðHdLC

j Þϕ2 in the
neutrino sector, since they are very subleading and thus
will give a tiny contribution to the light active neutrino
masses. Instead of relying on a seven dimensionalWeinberg
to generate the tiny masses for the light active neutrinos, we
take another approach named type 1b seesaw mechanism
(we call theWeinberg operator “type 1a seesawmechanism”
to differentiate with) where the mixing of different
SUð2Þ Higgs doublets can appear satisfying charge con-
servation. Diagrams for the operators are given in Fig. 5 for
comparison:
The diagrams in Fig. 5 clearly tell the difference between

Majorana mass and vectorlike mass. They share a common
property that they violate the lepton number conservation,
whereas the particles appearing in a Majorana mass term
are same but those ones involved in vectorlike mass terms

are different. As the type 1b seesaw mechanism only works
in this model, we make use of this seesaw mechanism for
the analysis of neutrinos. With the operator, the renorma-
lizable Lagrangian for neutrinos can be written as:

LYukawaþMass
ν ¼ yνi L̄iLH̃uνkR þ ϵyν0i L̄iLHd

¯̃νkR þMM
kk
¯̃νkRνkR

þ H:c:; ð17Þ

where i ¼ 1, 2, 3 and k ¼ 4. The renormalizable
Lagrangian of Eq. (17) above the electroweak scale gen-
erates an effective Lagrangian after decoupling the heavy
vectorlike neutrinos, which is suitable for study of low
energy neutrino phenomenology. The effective Lagrangian
for neutrino at electroweak scale is given by [11].

Ld¼5 ¼ cd¼5
ij ððLT

i H̃uÞðHT
dLjÞ þ ðLT

i HdÞðH̃T
uLjÞÞ; ð18Þ

where the coefficient cd¼5
ij is suppressed by a factor of the

vectorlike mass M. The neutrino mass matrix of Eq. (16)
can be diagonalized by the unitary matrix U as below:

UT

�
0 mT

D

mD MN

�
U ¼

�
mdiag

ν 0

0 Mdiag
N

�
; ð19Þ

where mdiag
ν is a diagonal matrix for the light left-handed

neutrinos νiL and Mdiag
N is that for the heavy vectorlike

neutrinos ν4R; ν̃4R. Here, the unitary mixing matrix U is
defined by multiplication of two unitary matrices which we
call UA and UB, respectively [78]:

U¼UA ·UB

UA ¼ exp

�
0 Θ

−Θ† 0

�
≃
�
I−ΘΘ†

2
Θ

−Θ† I−ΘΘ†

2

�
at leading order inΘ

UB ¼
�
UPMNS 0

0 I

�
ð20Þ

The unitary matrix UPMNS in UB is the well-known Pontecorvo-Maki-Nakagawa-Sakata matrix and is parametrized
by [11,79].

FIG. 5. Diagrams which lead to effective Weinberg operators for the Majorana and vectorlike mass in the mass insertion formalism,
where i, j ¼ 1, 2, 3 and k ¼ 4, respectively. The left is the Weinberg operator(or type 1a seesaw mechanism) in which mass M is
Majorana mass and the right is Weinberg-like operator(or type 1b seesaw mechanism) in which mass M is vectorlike mass.
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UPMNS ¼

0
B@
1 0 0

0 cosθ23 sinθ23
0 − sinθ23 cosθ23

1
CA
0
B@

cosθ13 0 sinθ13e−iδCP

0 1 0

−sinθ13eiδCP 0 cosθ13

1
CA
0
B@

cosθ12 sinθ12 0

−sinθ12 cosθ12 0

0 0 1

1
CA
0
B@
e−iα

0=2 0 0

0 e−iα=2 0

0 0 1

1
CA;

ð21Þ

where the Majorana phase α0 is set to zero in this model.
The mixing matrices UA;B are unitary, however the 3 × 3

upper block of the unitary matrixU is not unitary due to the
factor ðI − ΘΘ†=2Þ for the light neutrinos. An interesting
feature of the unitary matrix U is it is unitary globally, but
nonunitary locally and this nonunitarity contributes to
explain muon and electron anomalous magnetic moments.
Replacing the unitary matrices in Eq. (20) back to Eq. (19),
the result is simplified with the assumption MN ≫ mD to
the conventional seesaw mechanism:

Θ ≃m†
DM

−1
N

U�
PMNSm

diag
ν U†

PMNS ≃ −mT
DM

−1
N mD ≡ −m

Mdiag
N ≃MN; ð22Þ

wherem is the effective mass matrix resulted from Eq. (16).

mij ¼
ϵvuvd
Mν

44

ðyνi yν0j þ yν0i y
ν
jÞ: ð23Þ

Therefore, smallness of the light neutrino masses can be
understood not only from mass of vectorlike mass Mν

44 but
also from the suppression factor ϵ and the presence of ϵ
allows more flexibility in the allowed mass values of the
vectorlike neutrinos. Revisiting nonunitarity part for the
light neutrinos from the unitary matrix U [78,80], it reads:

�
I −

ΘiΘ
†
j

2

�
UPMNS ¼ ðI − ηijÞUPMNS ð24Þ

The nonunitarity η is associated with the presence of the
heavy vectorlike neutrinos and can be derived from a
coefficient of the effective Lagrangian at dimension 6 [81]:

Ld¼6 ¼ cd¼6
ij ððL†

i H̃uÞi=∂ðH̃†
uLjÞ þ ðL†

i HdÞi=∂ðH†
dLjÞÞ ð25Þ

Once the SM Higgs doublets in Eq. (25) develop its vev,
the Lagrangian at dimension 6 causes nondiagonal kinetic
terms for the light neutrinos and it gives rise to deviations of
unitarity when it is diagonalized. The deviations of unitarity
can be expressed in terms of the coefficient at dimension 6
ηij ≡ v2cd¼6

ij =2.

ηij ¼
ΘiΘ

†
j

2
¼ 1

2

m†
DmD

M2
N

¼ 1

2Mν2
44

ðv2uyν�i yνj þ ϵ2v2dy
ν0�
i yν0j Þ ≃

v2u
2Mν2

44

yν�i yνj ð26Þ

From the fourth term in Eq. (26), the term with ϵ2 can be
safely ignored due to both relative smallness of vd and the
suppression factor ϵ. Thus, the deviation of unitarity η
consists of the vectorlike mass Mν

44 and the Yukawa
couplings yνi;j. As an interesting example, it is possible
that the Yukawa couplings yνi;j can be obtained from the
observables such as the PMNSmixing matrix and two mass
squared splitting, Δm2

sol and Δm2
atm, in the neutrino osci-

llation experiments. Since the hierarchy between the light
neutrinos is not yet determined, there are two possible
scenarios, normal hierarchy(NH) and inverted hierarchy
(IH), and the lightest neutrino remains massless, whereas
two other neutrinos get massive. The Yukawa couplings
yν;ν0i for the NH(m1 ¼ 0) are determined by

yνi ¼
yffiffiffi
2

p ð
ffiffiffiffiffiffiffiffiffiffiffi
1þ ρ

p
ðU�

PMNSÞi3 þ
ffiffiffiffiffiffiffiffiffiffiffi
1 − ρ

p
ðU�

PMNSÞi2Þ

yν0i ¼ y0ffiffiffi
2

p ð
ffiffiffiffiffiffiffiffiffiffiffi
1þ ρ

p
ðU�

PMNSÞi3 −
ffiffiffiffiffiffiffiffiffiffiffi
1 − ρ

p
ðU�

PMNSÞi2Þ; ð27Þ

where y and y0 are real numbers and ρ¼ð1− ffiffiffi
r

p Þ=ð1þ ffiffiffi
r

p Þ
with r≡ jΔm2

solj=jΔm2
atmj ¼ Δm2

21=Δm2
31, whereas the

Yukawa couplings yν;ν0i for the IN(m3 ¼ 0) are

yνi ¼
yffiffiffi
2

p ð
ffiffiffiffiffiffiffiffiffiffiffi
1þ ρ

p
ðU�

PMNSÞi2 þ
ffiffiffiffiffiffiffiffiffiffiffi
1 − ρ

p
ðU�

PMNSÞi1Þ

yν0i ¼ y0ffiffiffi
2

p ð
ffiffiffiffiffiffiffiffiffiffiffi
1þ ρ

p
ðU�

PMNSÞi2 −
ffiffiffiffiffiffiffiffiffiffiffi
1 − ρ

p
ðU�

PMNSÞi1Þ; ð28Þ

where ρ ¼ ð1 − ffiffiffiffiffiffiffiffiffiffiffi
1þ r

p Þ=ð1þ ffiffiffiffiffiffiffiffiffiffiffi
1þ r

p Þ with r≡
jΔm2

solj=jΔm2
atmj ¼ Δm2

21=Δm2
32.

B. The charged lepton flavor violation(CLFV)
μ → eγ decay

Consider the three light neutrinos in the SM for the
CLFV μ → eγ decay first. In this case, the unitary mixing
matrix becomes just the PMNS mixing matrix and the GIM
mechanism which suppresses flavor-changing process
works, therefore it leads quite suppressed sensitivity for
BRðμ → eγÞ about 10−55 [82], which is impossible to
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observe with the current sensitivity of μ → eγ decay. This
impractical sensitivity can be enhanced to the observable
level by introducing the heavy vectorlike neutrinos which
give rise to deviation of unitarity. With the presence of
heavy vectorlike neutrinos, the GIM mechanism is gone
and the factor suppressed by GIM mechanism can survive
with a factor of deviation of unitarity, which plays a crucial
role to increase significantly order of theoretical prediction
for μ → eγ decay [83]. Therefore, the strongest constraint
for deviation of unitarity in the modified PMNS mixing
matrix comes from CLFV μ → eγ decay. The possible one-
loop diagrams for the CLFV μ → eγ with all neutrinos in
this model are given in Figure 6.
The amplitude from above diagrams in Figure 6

reads [82]:

Mðμ → eγÞ ¼ ūeiσμνqνðF1 þ F2γ
5Þuμϵ�μ

¼ ūeiσμνqνðARPR þ ALPLÞuμϵ�μ; ð29Þ

where u is Dirac spinor for the muon and electron, q is four
momentum of an outgoing photon, F1;2 are form factors,
AL;R are left- and right-handed amplitude defined to be
AL;R ¼ F1 � F2 and lastly PL;R are projection operators.
From the amplitude, the helicity flip between initial
particle and final particle should arise and this makes
the helicity flip process takes place on one of external legs
since theW gauge boson couples only to left-handed fields.
Comparing the left diagram with the right, the left is
proportional to the muon mass, while the right is propor-
tional to the electron mass, which means that impact of the
right is ignorable. The unpolarized squared amplitude jMj2
takes the form:

jMj2 ¼ m4
μðAR þ ALÞ2 ≃m4

μðARÞ2 ð30Þ

Then, the decay rate is given by

Γðμ → eγÞ ¼ jMj2
16πmμ

¼ m3
μ

16π
jARj2 ð31Þ

where AR is expressed by [82,84]3

AR ¼ g2e
128π2

mμ

M2
W

X
n¼1;2;3;4;5

U2nU�
1nFðxnÞ

�
1 −

1

3

ln ξ
ξ − 1

þ 1

ξ − 1

�
ξ ln ξ
ξ − 1

− 1

��
ð32Þ

Taking the unitary gauge into account, ξ → ∞, the
additional ξ-dependent terms in AR all are cancelled by
contribution of Goldstone bosons so AR is gauge invariant.
Substituting the gauge invariant AR back into the decay rate
of Eq. (31) and dividing the expanded decay rate by the
total muon decay rate Γðμ → eνν̄Þ ¼ G2

Fm
5
μ=192π3, we

have the prediction for μ → eγ decay [11,82]:

BRðμ → eγÞ ¼ Γðμ → eγÞ
Γðμ → eνμν̄eÞ

¼ 3α

32π

jP5
n¼1U2nU

†
n1FðxnÞj2

ðUU†Þ11ðUU†Þ22
; ð33Þ

where xn ¼ M2
n=M2

W and the loop function FðxnÞ is

FðxnÞ ¼
10 − 43xn þ 78x2n − ð49 − 18 log xnÞx3n þ 4x4n

3ðxn − 1Þ4 :

ð34Þ

Numerator in Eq. (33) can be simplified by separating
the light neutrinos and heavy vectorlike neutrinos as below
(Contribution of the fifth neutrino ν̃4R is safely ignored both
by the suppression factor ϵ and by relative smallness of vd
compared to vuÞ:

FIG. 6. Diagrams for CLFV μ → eγ decay with all neutrinos. Here n ¼ 1, 2, 3, 4, 5.

3Since the PMNS mixing matrix is multiplied by a factor of
deviation of unitarity, it is not unitary anymore. Therefore, the
first term of sum over neutrino eigenstates in Eq. (28) of [82] does
not vanish and come in our prediction with a loop function FðxnÞ.
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����X5
n¼1

U2nU
†
n1FðxnÞ

����2 ≃ jU2iU
†
i1Fð0Þ þU24U

†
41Fðx4Þj2

U2iU
†
i1 ¼ −η�12 − η21 ¼ −2η21

U24U
†
41 ¼ Θ24Θ�

14 ¼ 2η21����X5
n¼1

U2nU
†
n1FðxnÞ

����2 ≃ j4η21j2ðFðx4Þ − Fðx0ÞÞ2 ð35Þ

The final form for the CLFV μ → eγ decay in this model
reads:

BRðμ → eγÞ ¼ 3αem
8π

jη21j2ðFðx4Þ − Fð0ÞÞ2; ð36Þ

where αem is the fine structure constant. We find that our
theoretical prediction for the μ → eγ decay can be
expressed in terms of the deviation of unitarity η21.

C. The anomalous muon magnetic moment g− 2
We derive our prediction for the muon anomalous

magnetic moment in this section and confirm the derived
expression can be consistent with an expression of the
theoretical prediction for μ → eγ in Refs. [82,85]. Consider
two possible diagrams for muon anomalous magnetic
moment at one-loop level in Fig. 7.
The amplitude for the muon anomalous magnetic

moment at one-loop level is

MðΔaμÞ ¼ ūμiσμνqνðF1 þ F2γ
5Þuμϵ�μ

¼ ūμiσμνqνðARPR þ ALPLÞuμϵ�μ: ð37Þ
Unlike the CLFV μ → eγ decay, muon anomaly dia-

grams have the same structure for helicity flip process.
So we conclude AR is equal to AL and can make use of other
expression of this amplitude to derive our own expression
for Δaμ [85].

V ¼ ūμiσαβqβemμðAM
μμ þ γ5AE

μμÞuμϵ�α
¼ ūμiσαβqβemμððAM

μμ þAE
μμÞPR þ ðAM

μμ −AE
μμÞPLÞuμϵ�α:

ð38Þ

Comparing Eq. (37) with Eq. (38), we confirm that

AR ¼ emμðAM
μμ þ AE

μμÞ
AL ¼ emμðAM

μμ − AE
μμÞ: ð39Þ

Here, we can use the condition that AR ¼ AL identified
in Fig. 7 and can rearrange AL;R in terms of AM;E

μμ , which are
essential to derive our theoretical muon anomaly predic-
tion. Then, we find our desirable form AM;E

μμ for the muon
anomalous magnetic moment.

AM
μμ ¼

1

emμ
AR ¼ g2

128π2
1

M2
W

X
n¼1;2;3;4;5

U2nU�
2nFðxnÞ

AE
μμ ¼ 0: ð40Þ

Using the definition for both the muon anomalous
magnetic moment and branching ratio of μ → eγ decay
in [85], we can check our analytic argument for the
observable and constraint are correct.

Δaμ ¼ AM
μμm2

μ

BRðμ → eγÞ ¼ 3ð4πÞ3αem
4G2

F
ðjAM

μej2 þ jAE
μej2Þ: ð41Þ

One difference between AM;E
μμ and AL;R is that AM;E

μμ is
only determined by the internal structure of the loop in
Figure 7, whereas AL;R is the extended factor by multiply-
ing AM;E

μμ by the helicity flip mass in one of the external
legs. Therefore, it is natural to think AM;E

μμ is the same as
AM;E
μe since their internal structure of loop are exactly same.4

The muon anomalous magnetic moment and the branching
ratio of μ → eγ take the form:

FIG. 7. Diagrams for muon anomalous magnetic moment with all neutrinos. Here n ¼ 1, 2, 3, 4, 5.

4One can concern the coefficient at the vertex with electron.
However, this change is already reflected on the loop integration
AR of Eq. (32) by U1n. For the muon anomaly, the coefficient is
simply replaced by U2n, therefore, modification of the coefficient
at the vertex does not harm our argument.
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Δaμ ¼
αW
32π

m2
μ

M2
W

X
n¼1;2;3;4;5

U2nU�
2nFðxnÞ

BRðμ → eγÞ ¼ 3αem
32π

���� X
n¼1;2;3;4;5

U2nU�
1nFðxnÞ

����2 ð42Þ

where the αW is the weak coupling constant. As for the
branching ratio of μ → eγ in Eq. (42), we showed that
substituting Aμe back into the branching ratio in Eq. (41) is
exactly consistent with the one in Eq. (33). Expanding the
unitary mixing matrices in the muon anomaly prediction in
Eq. (42), yields the following relation:

Δaμ ¼
αW
32π

m2
μ

M2
W
ðð1 − 2η22ÞFð0Þ þ 2η22Fðx4ÞÞ: ð43Þ

Looking at Eq. (43), it is clear that the SM part which is
without η and the BSM having η are entangled together.
We arrive at the right prediction for the muon anomaly at
one-loop by removing the SM part from Eq. (43)

Δaμ ¼
αW
16π

m2
μ

M2
W
η22ðFðx4Þ − Fð0ÞÞ: ð44Þ

Similarly to the branching ratio of μ → eγ decay, it can
be confirmed that the prediction for the muon anomaly also
consists of the factor of deviation of unitarity η.

D. The anomalous electron magnetic moment g − 2
As in the muon anomalous magnetic moment, the same

diagrams with external particles replaced by electrons can
be generated in Fig. 8.
Using the complete form of the muon anomaly predic-

tion in Eq. (44), we can derive the right prediction for the
electron anomalous magnetic moment with slight modifi-
cations mμ → me; η22 → η11.

Δae ¼
αW
16π

m2
e

M2
W
η11ðFðx4Þ − Fð0ÞÞ: ð45Þ

E. Numerical analysis of W exchange contributions

The presence of heavy vectorlike neutrinos leads to the
deviation of unitarity and the observables Δaμ;e and
constraint BRðμ → eγÞ can be written in terms of the
factor of nonunitarity η.

BRðμ → eγÞ ¼ 3αem
8π

jη21j2ðFðx4Þ − Fð0ÞÞ2

Δaμ ¼
αW
16π

m2
μ

M2
W
η22ðFðx4Þ − Fð0ÞÞ

Δae ¼
αW
16π

m2
e

M2
W
η11ðFðx4Þ − Fð0ÞÞ: ð46Þ

1. The branching ratio of μ → eγ decay

We consider the branching ratio of μ → eγ decay first.
Since we assume that mass of heavy vectorlike neutrinos
are heavier than 1 TeV, the value of Fð0Þ for the light
neutrinos converges to approximately 3.3, while that of
Fðx4Þ for the heavy vectorlike neutrino converges to 1.3.
Therefore, the branching ratio of μ → eγ decay can be
reduced to[11].

BRðμ → eγÞ ¼ 3αem
8π

jη21j2ðFðx4Þ − Fð0ÞÞ2

≤
3αem
2π

jη21j2: ð47Þ

The nonunitarity η of Eq. (26) consists of four free
parameters: mass of heavy vectorlike neutrinos Mν

44, a real
number y, a CP violation phase δ, and a Majorana phase α.
The experimental branching ratio of μ → eγ decay con-
strains the minimal parameter space in terms of Mν

44 and y,
while setting up two phases δ, α which maximize or
minimize the branching ratio of μ → eγ [11], and the
minimal parameter space is shown in Fig. 9.
The left plot in Fig. 9 is an available parameter space for

mass of the vectorlike neutrino versus the free parameter y
times SM up-type Higgs vev vu. The blue bold line
corresponds to bound of the branching ratio of μ → eγ
decay at the normal hierarchy with CP violation phase
δ ¼ 0 and Majorana phase α ¼ 0 and this line can be

FIG. 8. Diagrams for electron anomalous magnetic moment with all neutrinos. Here n ¼ 1, 2, 3, 4, 5.
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relaxed up to the blue dotted line where δ ¼ 0, α ¼ 2π.
The green bold(dotted) line corresponds to the inverted
hierarchy with δ ¼ π=2ð0Þ and α ¼ 9π

10
ð0Þ. Since we are

especially interested in the range of SM up-type Higgs vev
vu from 174 to 246 GeV, the right plot consistent with the
interested range is extracted from the left after replacing vu
by tan β ¼ vu=vd using the relation v2uþv2d¼ð246GeVÞ2.
As for the constraint of deviation of unitarity η with the

CLFV μ → eγ decay at 1σ, it is given by [86,87].

jη21j ≤ 8.4 × 10−6: ð48Þ

2. The muon and electron anomalous
magnetic moments Δaμ;e

As in the constraint for η21 in Eq. (48), the other
nonunitarities η11;22 for the electron and muon anomalous
magnetic moment are given by [11,86].

η11< 4.2×10−4 ðfor NHÞ; <4.8×10−4 ðfor IHÞ
η22< 2.9×10−7 ðfor NHÞ; <2.4×10−7 ðfor IHÞ: ð49Þ
With the constraints η11;22 in Eq. (49), we can calculate

impact of the muon and electron anomalous magnetic
moments at NH (IH) using Eq. (46).

Δaμ ¼
αW
16π

m2
μ

M2
W
η22ðFðx4Þ − Fð0ÞÞ ≃ −6.6ð−5.5Þ × 10−16

Δae ¼
αW
16π

m2
e

M2
W
η11ðFðx4Þ − Fð0ÞÞ ≃ −2.2ð−2.6Þ × 10−17:

ð50Þ

There are two interesting features in the above prediction
for the muon and electron anomalous magnetic moments.
One feature is sign of each prediction. As mentioned in the
introduction, this prediction with the W exchange can not
flip the sign of each anomaly. In order to explain both
anomalies at 1σ, the prediction for both anomalies with
W exchange requires additional contributions such as Z0 or

scalar exchange. Another feature is magnitude of each
prediction. For the muon anomaly, the experimental order
of magnitude at 1σ is about 10−9, however our prediction is
much smaller than that of the experimental bound as well as
the electron anomaly, which means the nonunitarity derived
from the presence of heavy vectorlike neutrino can not
bring the anomalies to the observable level. This inadequate
prediction with W exchange has been a good motivation to
search for another possibility such as scalar exchange.

V. HIGGS EXCHANGE CONTRIBUTIONS
TO ðg − 2Þμ;ðg− 2Þe, AND BRðμ → eγÞ

The relevant sector for the muon and electron anomalous
magnetic moments with scalar exchange is the charged
lepton Yukawa matrix which can be expressed in the mass
insertion formalism as,

yeij ¼

0
BB@

0 0 0

0 ye24x
e
42 ye24x

e
43

0 ye34x
e
42 ye34x

e
43

1
CCA hϕi

Me
44

þ

0
BB@

ye15x
e
51 ye15x

e
52 ye15x

e
53

ye25x
e
51 ye25x

e
52 ye25x

e
53

ye35x
e
51 ye35x

e
52 ye35x

e
53

1
CCA hϕi

Me
55

þ

0
BB@

ye51x
L
15 ye52x

L
15 ye53x

L
15

ye51x
L
25 ye52x

L
25 ye53x

L
25

ye51x
L
35 ye52x

L
35 ye53x

L
35

1
CCA hϕi

ML
55

þ

0
BB@

0 0 0

0 0 0

0 0 xL34y
e
43

1
CCA hϕi

ML
44

ð51Þ

The effective Yukawa matrix of Eq. (51) in the mass
basis is diagonalized by the universal seesaw mechanism
due to involving a few of different mass scales. Therefore,

FIG. 9. The left plot is an available parameter space for two free parameters: mass of vectorlike neutrino Mν
44 and SM up-type Higgs

vev vu. Here, the free parameter y is set to 1. The right plot is the case where vev of the up-type Higgs is constrained from 246=
ffiffiffi
2

p
≃ 174

to 246 GeV or from tan β ¼ 1 to 50 in a same way.
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the only diagonal components should alive in the mass
matrix. In order to make the mass matrix diagonal, we
assume that ye34 ¼ xe43 ¼ ye15;25;35 ¼ xe51;52;53 ¼ xL25;35 ¼
ye52;53 ¼ 0. Then, the mass matrix is reduced to

yeij ¼

0
B@

0 0 0

0 ye24x
e
42 0

0 0 0

1
CA hϕi

Me
44

þ

0
B@

0 0 0

0 0 0

0 0 0

1
CA hϕi

Me
55

þ

0
B@

ye51x
L
15 0 0

0 0 0

0 0 0

1
CA hϕi

ML
55

þ

0
B@

0 0 0

0 0 0

0 0 xL34y
e
43

1
CA hϕi

ML
44

yeij ¼

0
B@

ye51s
L
15 0 0

0 ye24s
e
24 0

0 0 ye43s
L
34

1
CA; ð52Þ

where sL15 ≃ xL15hϕi=ML
55, se24 ≃ xe42hϕi=Me

44, sL34 ≃
xL34hϕi=ML

44 and the diagonal elements from top-left to
bottom-right should be responsible for electron, muon and
tau Yukawa constants, respectively. After removing all
irrelevant terms to both anomalies and applying the
assumption, the 7 × 7 mass matrix in the interaction basis
is also reduced to as below:

Me ¼

0
BBBBBB@

e1R e2R e4R L̃5R

L̄1L 0 0 0 xL15vϕ
L̄2L 0 0 ye24vd 0

L̄5L ye51vd 0 0 ML
55

¯̃e4L 0 xe42vϕ Me
44 0

1
CCCCCCA

ð53Þ

The reduced charged lepton mass matrix of Eq. (53)
clearly tells that no mixing between charged leptons arise
so the branching ratio of μ → eγ is naturally satisfied under
this scenario. The scalar exchange for both anomalies can
be realized by closing the Higgs sectors in Fig. 3 as
per Fig. 10.

In Figure 10, the CP-even non-SM scalars H1;2 and
CP-odd scalars A1;2 appear as a result of mixing between
Higgses Hu, Hd, and ϕ in the interaction basis. The Higgs
sector in the interaction basis is defined by

Hu ¼
� Hþ

u

vu þ 1ffiffi
2

p ðReH0
u þ iImH0

uÞ
�
;

Hd ¼
�
vd þ 1ffiffi

2
p ðReH0

d þ iImH0
dÞ

H−
d

�
;

ϕ ¼ 1ffiffiffi
2

p ðvϕ þ Reϕþ iImϕÞ: ð54Þ

For consistency, we equate vu, vd and vϕ to v1, v2, and
v3, respectively.

A. The 2HDM scalar potential

The scalar potential of the model under consideration
takes the form:

V ¼ μ21ðHuH
†
uÞ þ μ22ðHdH

†
dÞ þ μ23ðϕϕ�Þ

þ μ2sb½ϕ2 þ ðϕ�Þ2� þ λ1ðHuH
†
uÞ2 þ λ2ðHdH

†
dÞ2

þ λ3ðHuH
†
uÞðHdH

†
dÞ þ λ4ðHuH

†
dÞðHdH

†
uÞ

þ λ5ðεijHi
uH

j
dϕ

2 þH:cÞ þ λ6ðϕϕ�Þ2
þ λ7ðϕϕ�ÞðHuH

†
uÞ þ λ8ðϕϕ�ÞðHdH

†
dÞ; ð55Þ

where the λi (i ¼ 1; 2;…; 8) are dimensionless parameters
whereas the μj (j ¼ 1, 2, 3) are dimensionful parameters
and μsb is a dimensionful soft-breaking parameter. We
consider the Uð1Þ0 symmetry as global in this model so our
model does not feature Z0 boson and the scalar potential
requires the inclusion of the soft-breaking mass term
−μ2sb½ϕ2 þ ðϕ�Þ2� in order to prevent the appearance of a
massless scalar state arising from the imaginary part of ϕ.

FIG. 10. Diagrams contributing to the muon anomaly (left) and the electron anomaly (right) where H1;2 are CP-even non-SM scalars
and A1;2 are CP-odd scalars in the physical basis.
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The minimization conditions of the scalar potential yield the following relations:

μ21 ¼ −2λ1v21 − λ3v22 −
1

2
λ7v23 þ

λ5v2v23
2v1

;

μ22 ¼ −2λ2v22 − λ3v21 −
1

2
λ8v23 þ

λ5v23v1
2v2

;

μ23 ¼ −λ8v22 − λ6v23 þ v1ð2λ5v2 − λ7v1Þ − 2μ2sb: ð56Þ

B. Mass matrix for CP-even, CP-odd, neutral, and charged scalars

The squared mass matrix for the CP-even scalars in the basis ðReH0
u;ReH0

d;ReϕÞ takes the form:

M2
CP−even ¼

0
BB@

4λ1v21 þ λ5v2v23
2v1

− 1
2
λ5v23 þ 2λ3v1v2

ffiffiffi
2

p
v3ð−λ5v2 þ λ7v1Þ

− 1
2
λ5v23 þ 2λ3v1v2 4λ2v22 þ λ5v1v23

2v2

ffiffiffi
2

p
v3ð−λ5v1 þ λ8v2Þffiffiffi

2
p

v3ð−λ5v2 þ λ7v1Þ
ffiffiffi
2

p
v3ð−λ5v1 þ λ8v2Þ 2λ6v23

1
CCA: ð57Þ

From themassmatrix given above, we find that theCP-even
scalar spectrum is composed of the 125 GeV SM-like Higgs
h and two non-SMCP-even HiggsesH1;2. Furthermore, we
assume that nomixing between the SMphysicalHiggsh and
the two non-SM CP-even Higgses H1;2 arise and this
assumption constrains the (1,2), (1,3), (2,1), and (3,1)
elements of CP-even mass matrix of Eq. (57). The con-
straints are given by the following decoupling limit scenario

λ5 ¼
4v1v2
v23

λ3

λ7 ¼
v2
v1

λ5 ¼
4v22
v23

λ3; ð58Þ

and then the CP-even mass matrix of Eq. (57) with the
constraints is simplified to

M2
CP−even ¼

0
BBB@

4λ1v21 þ 2v22λ3 0 0

0 4λ2v22 þ 2v21λ3
ffiffiffi
2

p
v3
�
− 4v2

1
v2

v2
3

λ3 þ λ8v2
	

0
ffiffiffi
2

p
v3
�
− 4v2

1
v2

v2
3

λ3 þ λ8v2
	

2λ6v23

1
CCCA: ð59Þ

In the above given decoupling limit scenario, chosen in
order to simplify our analysis, the CP-even neutral scalar
states contained in the SUð2Þ doublet Hu will not mix with
theCP-even neutral ones contained inHd. In such limit, the
neutral CP-even states of Hu will not feature mixing with
the gauge singlet scalar ϕ. Thus, the lightest 125 GeV CP-
even scalar of our model will have couplings to the SM
particles close to the SM expectation, which is consistent
with the current experimental data.
Diagonalizing the simplified CP-even mass matrix, it

reveals masses of the physical SM Higgs h and non-SM
CP-even scalars H1;2 in the physical basis ðh;H1; H2Þ

R†
CP−evenM

2
CP−evenRCP−even ¼ diagðm2

h; m
2
H1
; m2

H2
Þ: ð60Þ

The SM Higgs h is appeared as ReH0
u itself and the non-

SM CP-even scalars H1;2 are the states which ReH0
d is

mixed with Reϕ. Regarding the CP-odd scalar sector, we
find that the squared mass matrix for the CP-odd scalars in
the basis ðImH0

u; ImH0
d; ImϕÞ is given by:

M2
CP−odd ¼

0
BBB@

λ5v2v23
2v1

1
2
λ5v23

ffiffiffi
2

p
λ5v2v3

1
2
λ5v23

λ5v1v23
2v2

ffiffiffi
2

p
λ5v1v3ffiffiffi

2
p

λ5v2v3
ffiffiffi
2

p
λ5v1v3 4λ5v1v2 − 4μ2sb

1
CCCA:

ð61Þ

The squared CP-odd mass matrix is diagonalized in the
same way as in the CP-even mass matrix and the CP-odd
physical basis is given by ðGZ; A1; A2Þ where GZ is the
massless Goldstone bosons associated with the longitudinal
components of the Z gauge boson, whereas A1 and A2 are
massive non-SM CP-odd scalars
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R†
CP−oddM

2
CP−oddRCP−odd ¼ diagð0; m2

A1
; m2

A2
Þ: ð62Þ

Furthermore, the squared mass matrix for the electrically
charged scalars is given by:

M2
charged ¼

� λ4v22 þ λ5v2v23
2v1

λ4v1v2 þ 1
2
λ5v23

λ4v1v2 þ 1
2
λ5v23 λ4v21 þ λ5v1v23

2v2

�
: ð63Þ

The charged scalar mass matrix can be diagonalized in
the basis ðH�

1 ; H
�
2 Þ as in CP-even or -odd mass matrix:

R†
chargedM

2
chargedRcharged ¼ diagð0; m2

H�Þ: ð64Þ

Then, the electrically charged scalar sector contains the
massive scalars H� and the massless electrically charged
scalars G�

W which correspond to the Goldstone bosons
associated with the longitudinal components of the W�
gauge bosons. In the following sections we will analyze the
phenomenological implications of our model in the Higgs
diphoton decay as well as in the muon and electron
anomalous magnetic moments.

C. The Higgs diphoton signal strength

The rate for the h → γγ decay is given by:

Γðh→ γγÞ¼ α2emm3
h

256π3v2

����Xf
ahffNCQ2

fF1=2ðρfÞ

þahWWF1ðρWÞþ
ChH�H∓v
2m2

H�
F0ðρH�

k
Þ
����2; ð65Þ

where ρi are the mass ratios ρi ¼ m2
h

4M2
i
with Mi ¼ mf;MW ;

αem is the fine structure constant; NC is the color factor
(NC ¼ 1 for leptons and NC ¼ 3 for quarks) and Qf is the
electric charge of the fermion in the loop. From the
fermion-loop contributions we only consider the dominant
top quark term. Furthermore, ChH�H∓ is the trilinear
coupling between the SM-like Higgs and a pair of charged
Higges, whereas ahtt and ahWW are the deviation factors
from the SM Higgs-top quark coupling and the SM Higgs-
W gauge boson coupling, respectively (in the SM these
factors are unity). Such deviation factors are close to unity
in our model and they are defined as below:

ahtt ≃ 1; ahWW

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

p ∂
∂h

� X
i;j¼1;2;3

viðRT
CP−evenÞijðh;H1; H2Þj

�

¼ v1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

p ð66Þ

Furthermore, F1=2ðzÞ and F1ðzÞ are the dimensionless
loop factors for spin-1=2 and spin-1 particles running in the

internal lines of the loops. These loop factors take the
form:

F1=2ðzÞ ¼ 2ðzþ ðz − 1ÞfðzÞÞz−2;
F1ðzÞ ¼ −2ð2z2 þ 3zþ 3ð2z − 1ÞfðzÞÞz−2;
F0ðzÞ ¼ −ðz − fðzÞÞz−2; ð67Þ

with

fðzÞ ¼
8<
:

arcsin2
ffiffiffi
2

p
for z ≤ 1

− 1
4

�
ln

�
1þ

ffiffiffiffiffiffiffiffiffi
1−z−1

p
1−

ffiffiffiffiffiffiffiffiffi
1−z−1

p
−iπ

�
2
�

for z > 1
ð68Þ

In order to study the implications of our model in the decay
of the 125 GeV Higgs into a photon pair, one introduces the
Higgs diphoton signal strength Rγγ, which is defined as:

Rγγ ¼
σðpp → hÞΓðh → γγÞ

σðpp → hÞSMΓðh → γγÞSM
≃ a2htt

Γðh → γγÞ
Γðh → γγÞSM

: ð69Þ

That Higgs diphoton signal strength, normalizes the γγ
signal predicted by our model in relation to the one given
by the SM. Here we have used the fact that in our model,
single Higgs production is also dominated by gluon fusion
as in the Standard Model.
The ratio Rγγ has been measured by CMS and ATLAS

collaborations with the best fit signals [88,89]:

RCMS
γγ ¼ 1.18þ0.17

−0.14 and RATLAS
γγ ¼ 0.96� 0.14: ð70Þ

As it will be shown in the next subsection, the constraints
arising from the Higgs diphoton decay rate will be
considered in our numerical analysis.

D. The muon and electron anomalous
magnetic moments

The Yukawa interactions relevant for the computation of
the muon anomalous magnetic moment are

LΔaμ ¼ ye24μðReH0
d− iγ5ImH0

dÞē4
þxe42ẽ4ðReϕ− iγ5ImϕÞē2þMe

44ẽ4ē4þH:c: ð71Þ

where the Yukawa coupling constants ye24; x
e
42 are assumed

to be real, the scalar fields have been expanded by their real
and imaginary parts and the properties of the projection
operators PL;R acting on the charged leptonic fields have
been used.
By expressing the scalar fields in the interaction basis in

terms of the scalar fields in the physical basis, the charged
lepton Yukawa interactions relevant for the computation of
the g − 2 anomalies take the form:
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LΔaμ ¼ ye24μððRT
e Þ22H1 þ ðRT

e Þ23H2

− iγ5ðRT
oÞ22A1 − iγ5ðRT

oÞ23A2Þē4
þ xe42ẽ4ððRT

e Þ32H1 þ ðRT
e Þ33H2 − iγ5ðRT

oÞ32A1

− iγ5ðRT
oÞ33A2Þē2 þMe

44ẽ4ē4 þ H:c: ð72Þ

where we are using the unitary gauge where the contribu-
tions arising from unphysical Goldstone bosons to the

muon anomaly are excluded and we shorten the notations
RCP by ReðoÞ. Here Re and Ro are the rotation matrices
that diagonalize the squared mass matrices for the CP even
and CP odd scalars, respectively. Then, it follows that the
muon and electron anomalous magnetic moments in the
scenario of diagonal SM charged lepton mass matrix take
the form:

Δaμ ¼ ye24x
e
42

m2
μ

8π2
½ðRT

e Þ22ðRT
e Þ32IðμÞS ðme4 ; mH1

Þ þ ðRT
e Þ23ðRT

e Þ33IðμÞS ðme4 ; mH2
Þ

− ðRT
oÞ22ðRT

oÞ32IðμÞP ðme4 ; mA1
Þ − ðRT

oÞ23ðRT
oÞ33IðμÞP ðme4;mA2

Þ�

Δae ¼ ye51x
L
15

m2
e

8π2
½ðRT

e Þ22ðRT
e Þ32IðeÞS ðme5 ; mH1

Þ þ ðRT
e Þ23ðRT

e Þ33IðeÞS ðme5 ; mH2
Þ

− ðRT
oÞ22ðRT

oÞ32IðeÞP ðme5 ; mA1
Þ − ðRT

oÞ23ðRT
e Þ33IðEÞP ðme5 ; mA2

Þ�; ð73Þ

where the loop integrals are given by [85,90–93]:

Iðe;μÞSðPÞ ðmE4;5
; mSÞ ¼

Z
1

0

x2ð1 − x� mE4;5

me;μ
Þ

m2
e;μx2 þ ðm2

E4;5
−m2

e;μÞxþm2
S;Pð1 − xÞ dx ð74Þ

and SðPÞ means scalar (pseudoscalar) and E4;5 stands for
the vectorlike family. It is worth mentioning that E4 and E5

only contribute to the muon and electron anomalous
magnetic moments, respectively.

VI. NUMERICAL ANALYSIS OF THE HIGGS
EXCHANGE CONTRIBUTIONS

For the sake of simplicity, we consider the scenario of
absence of mixing between SM charged leptons, which
automatically prevents charged lepton flavor violating
decays. In our numerical analysis we have found that
the non-SM CP-even scalar mass can reach values around
200 GeV. Despite the fact that the non-SM CP-even scalar
is quite light and can have a sizeable decay mode into a
bottom-antibottom quark pair, its single LHC production
via gluon fusion mechanism is strongly suppressed since it
is dominated by the triangular bottom quark loop. Such
non-SM CP-even scalar H can also be produced by vector
boson fusion but such production is expected to have a low
total cross section due to small HWW and HZZ couplings,
which are proportional to vd. In this section we will discuss
the implications of our model in the muon and electron
anomalous magnetic moments.

A. The fitting function χ 2 and free parameter setup

For the first approach to both anomalies, we construct the
fitting function χ2

χ2 ¼ ðmThy
h −mCen

h Þ2
ðδmDev

h Þ2 þ ðaThyhWW − aCenhWWÞ2
ðδaDevhWWÞ2

þ ðRThy
γγ − RCen

γγ Þ2
ðδRDev

γγ Þ2

þ ðΔaThyμ − ΔaCenμ Þ2
ðδΔaDevμ Þ2 þ ðΔaThye − ΔaCene Þ2

ðδΔaDeve Þ2 ; ð75Þ

where the superscripts Thy, Cen and Dev mean theoretical
prediction,centralvalueofexperimentalboundanddeviation
from the central value at one of 1; 2; 3σ, respectively. The
parameters used in this fitting function are defined as below
(the integer number multiplied in delta terms means σ):

mCen
h ¼ 125.38 GeV; δmDev

h ¼ 3× 0.14 GeV;

aCenhWW ¼ 0.59; δaDevhWW ¼ 1× 0.35;

RCen
γγ ¼ 1

2
ðRCMS

γγ þRATLAS
γγ Þ ¼ 1.07; δRDev

γγ ¼ 1× 0.14;

ΔaCenμ ¼ 26.1× 10−10; δΔaDevμ ¼ 1× ð8.0× 10−10Þ
ΔaCene ¼ −0.88× 10−12; δΔaDeve ¼ 2× ð0.36× 10−12Þ

ð76Þ
For an initial scan, we set up the starting parameter

region as below:
(1) For the Higgs vevs, we are interested in the range of

tan β from 5 to 50 as in the W boson exchange
in Fig. 9.

(2) For λ1, we fixed mass of the SM physical Higgs h to
be 125 GeV to save time and to make the calculation
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faster. For λ5;7, the assumption that no mixing
between the SM Higgs h and non-SM Higgses
H1;2 arise is reflected on these parameters. All
quartic coupling constants λ1;…;8 are set up not to
go over 4π for perturbativity.

(3) For the vectorlike masses Me
44 and ML

55, there is a
constraint that the lightest should be greater than
200 GeV [94].

(4) In our numerical analysis we consider solutions
where the non-SM scalar masses are larger than
about 200 GeV as done in [95].

(5) The soft-breaking mass term μsb is a free parameter,
which does not generate any problem and appro-
priate values of this parameters yields masses for
scalars and vectorlike fermions consistent with the
experimental constraints.

(6) The diagonal Yukawa constants appearing in
Eq. (52) should be the Yukawa constant for electron,
muon, and tau, respectively. The Yukawa constants
y24;51 and x42;15 interacting with vectorlike families
are defined under this consideration. For perturba-
tivity, the Yukawa constants y24;51 are considered not
to go over

ffiffiffiffiffiffi
4π

p
.

After saturating value of the χ2 function less than or
nearly 2 which we believe it is converged enough, we find a

best peaked value for each free parameter. For the given
parameters, we rename them by adding an index “p" to the
end of subscript of each parameter like tan βp and then the
expansion factor κ is multiplied to find a correlation
between the observables and the mass parameters. Then,
the parameter region is refreshed by both the specific value
of each parameter and the expansion factor κ as per Table II.

B. A scanned result on the free parameters
as well as observables across over

the first and second scan

The best peaked value for each parameter is listed in
Table III and energy scale is in unit of GeV. Note that all

TABLE II. Next parameter setup after the initial scan result.

Parameter Value/Scanned Region (GeV)

vu ¼ v1 tan βpffiffiffiffiffiffiffiffiffiffiffiffiffi
1þtan β2p

p × 246

vd ¼ v2 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þtan β2p

p × 246

vϕ ¼ v3 ½ð1 − κÞ; ð1þ κÞ� × v3p

tan β ¼ vu=vd ½ð1 − κÞ; ð1þ κÞ� × tan βp

λ1 ðm2
h −

v2v23λ5
2v1

Þ=ð4v21Þ
λ2 ½ð1 − κÞ; ð1þ κÞ� × λ2p
λ3 ½ð1 − κÞ; ð1þ κÞ� × λ3p
λ4 ½ð1 − κÞ; ð1þ κÞ� × λ4p
λ5 4v1v2λ3=ðv3Þ2
λ6 ½ð1 − κÞ; ð1þ κÞ� × λ6p
λ7 v2λ5=v1
λ8 ½ð1 − κÞ; ð1þ κÞ� × λ8p

Me
44 ½ð1 − κÞ; ð1þ κÞ� ×Me

44p

ML
55 ½ð1 − κÞ; ð1þ κÞ� ×ML

55p

μsb ½ð1 − κÞ; ð1þ κÞ� × μsbp

ye
ffiffiffi
2

p
me=v2

yμ
ffiffiffi
2

p
mμ=v2

ye24 ¼ y2 ½ð1 − κÞ; ð1þ κÞ� × ye24p
ye51 ¼ y1 ½ð1 − κÞ; ð1þ κÞ� × ye51p
xe42 ¼ x2 yμMe

44=ðye24v3Þ
xL15 ¼ x1 yeML

55=ðye51v3Þ
κ 0.1

TABLE III. A best peaked value for each parameter at each
case. All energy scale is in GeV units. Notice that in all cases v3 is
smaller than the vector like mass parametersMe

44 andM
L
55, which

is consistent with the assumption made in Sec. I, regarding the
fact that the corresponding expansion parameter v3=Mψ is less
than unity.

Parameter case A case B case C case D case E

vu ¼ v1 245.925 245.936 245.951 245.917 245.948
vd ¼ v2 6.086 5.595 4.921 6.387 5.077
vϕ ¼ v3 −57.761 −36.470 −57.919 −30.746 −17.146

tan β ¼ vu=vd 40.410 43.957 49.977 38.503 48.441

λ1 0.063 0.064 0.066 0.064 0.065
λ2 −7.978 8.414 −2.000 2.948 10.382
λ3 −6.344 −2.675 6.242 −1.724 −0.706
λ4 1.859 2.158 −3.633 10.837 −2.796
λ5 −11.384 −11.070 9.009 −11.460 −12.000
λ6 2.888 1.228 0.866 1.351 1.324
λ7 −0.282 −0.252 0.180 −0.298 −0.248
λ8 −1.363 −1.346 −10.845 −11.510 7.033

Me
44 1475.010 1355.470 1495.770 1134.340 1681.760

ML
55

279.386 211.263 204.706 323.292 331.462
μsb 424.618i 443.435i 480.993 480.062i 491.533

ye½10−4� 1.135 1.234 1.403 1.081 1.360
yμ½10−2� 2.391 2.600 2.956 2.278 2.865
ye24 ¼ y2 −3.161 −3.101 −2.942 −1.548 1.662
ye51 ¼ y1 2.315 2.164 2.050 1.352 3.377
xe42 ¼ x2 0.193 0.312 0.260 0.543 1.691
xL15 ¼ x1½10−4� 2.371 3.304 2.419 8.408 7.787

mH1
213.390 222.924 212.147 238.523 205.477

mH2
911.585 614.516 891.413 518.147 354.709

mA1
741.343 537.111 807.268 435.887 282.964

mA2
1003.790 939.553 1035.800 1006.240 1015.760

mH� 938.259 674.054 987.625 929.786 504.684

Δaμ½10−9� 2.734 2.688 2.935 2.891 2.393
Δae½10−13� −5.073 −8.310 −5.543 −6.365 −9.232
ahWW 1.000 1.000 1.000 1.000 1.000
Rγγ 0.999 0.999 0.999 0.999 0.999

χ2 1.794 1.516 1.870 1.740 1.579
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cases are carried out independently and all points of plots
in each case are collected within 1σ constraint of each
anomaly.
Here, we put two constraints on the lightest vectorlike

mass and the lightest non-SM scalar mass; the vectorlike
mass should be greater than 200 GeVas well as the non-SM
scalar mass [94,95]. After we carry out second parameter
scan based on the first scan result of Table III, range of the
parameters are given in Table IV.

C. The muon and electron anomalous
magnetic moments

In order to confirm that our theoretical prediction for
both anomalies can accommodate their constraints at 1σ
and to analyze correlations between both anomalies and
mass parameters, we consider cases B and E in Table III
since their benchmark point have relative lower values of
the χ2 function when compared to other cases. The reason
that the cases B and E have the lower values of the χ2

function arises from the obtained value of the electron
anomaly, which is very close to the central experimental
value. All cases reveal nearly central value of muon
anomaly constraint at 1σ, whereas the other cases except
B and E reveal nearly edge value of electron anomaly
constraint at 1σ. Therefore, the reason why the cases B and
E are more converged is related to whether our theoretical
prediction for both anomalies can gain access to their
central value of each anomaly constraint at 1σ. More
importantly, the case E is only one satisfying vacuum
stability conditions and a detailed investigation for the

vacuum stability of each case will be studied in a sub-
section. For these reasons, we take the case E in Table IV to
study the correlations. The relevant parameter spaces are
listed in Figs. 11 and 12.
To begin with, we consider the parameter spaces for the

muon anomaly versus electron anomaly with a mass
parameter which attends both anomalies ðH1;2; A1;2Þ and
does not ðH�Þ in Fig. 11. Even thought the non-SM
charged scalar does not attend both anomalies, the similar
pattern which the other scalars implement in Fig. 11 is also
appeared. We confirmed that mass of H2 is nearly pro-
portional to that ofH�, which causes the correlation identi-
fied in plots of the other non-SM scalars in Fig. 11 is still
maintained for the non-SM charged scalar. Interestingly,
the cases A, B and C in Table IV reported mH2

is nearly
proportional to mH� one-to-one ratio, whereas the cases D
and E revealed a fat proportion between them and still
maintained the correlation.
As mentioned at the beginning of this section, we take

the case E for the plots in Figs. 11 and 12 and a main
distinction between the case E and others arises from the
value of electron anomaly. If we take other cases instead of
the case E to investigate the parameter spaces, the para-
meter region appeared in top-left plot of Fig. 11 will be
shifted upward by locating at the value of −5 or −6 × 10−13

for the electron anomaly. In other words, the whole colored
region in Fig. 11 is shifted upwards to meet the scanned
value of electron anomaly constraint at 1σ, holding the
correlations. Therefore, the white region appeared in
Fig. 11 is not strictly excluded region and affected by

TABLE IV. A scanned range of each parameter at case A, B, C, D and E.H1;2 mean non SMCP-even scalars and A1;2 are non SM CP-
odd scalars and H� stand for non SM charged scalars in this model. All data of Δaμ;e are collected within the 1σ constraint of each
anomaly.

Parameter case A case B case C case D case E

vu ¼ v1 ½245.907 → 245.938� ½245.921 → 245.947� ½245.939 → 245.959� ½245.898 → 245.931� ½245.935 → 245.957�
vd ¼ v2 ½5.533 → 6.761� ½5.087 → 6.216� ½4.474 → 5.468� ½5.807 → 7.096� ½4.616 → 5.641�
vϕ ¼ v3 ½−63.525 → −51.985� ½−40.117 → −32.823� ½−63.706 → −52.128� ½−33.820 → −27.671� ½−18.860 → −15.438�
tan β ¼ vu=vd ½36.371 → 44.451� ½39.561 → 48.353� ½44.980 → 54.975� ½34.653 → 42.354� ½43.597 → 53.284�
mH1

½200.000 → 242.653� ½201.520 → 246.046� ½200.000 → 230.754� ½215.523 → 261.920� ½200.000 → 220.017�
mH2

½752.061 → 1088.130� ½516.289 → 724.997� ½735.831 → 1059.900� ½441.371 → 604.981� ½338.724 → 374.424�
mA1

½638.813 → 853.637� ½442.527 → 640.705� ½670.550 → 945.705� ½357.697 → 516.760� ½266.086 → 297.589�
mA2

½892.847 → 1141.780� ½847.825 → 1032.140� ½927.768 → 1154.640� ½907.576 → 1105.770� ½918.667 → 1114.960�
mH� ½783.823 → 1111.600� ½580.316 → 779.945� ½842.585 → 1143.880� ½856.237 → 1007.360� ½478.900 → 529.178�
Me

44 ½1327.510→1622.510� ½1219.930→1491.020� ½1346.190→1645.330� ½1029.900→1247.770� ½1513.590→1849.930�
ML

55
½251.447 → 307.323� ½200.000 → 232.389� ½200.000 → 225.176� ½290.963 → 355.621� ½298.317 → 364.604�

jμsbj ½382.158 → 467.079� ½399.091 → 487.777� ½432.895 → 529.091� ½432.059 → 528.067� ½442.381 → 540.679�
Δaμ½10−9� ½1.811 → 3.410� ½1.810 → 3.410� ½1.810 → 3.410� ½1.810 → 3.410� ½1.810 → 3.410�
Δae½10−13� ½−6.730 → −5.200� ½−11.142 → −5.985� ½−7.207 → −5.200� ½−8.721 → −5.200� ½−12.393 → −5.442�
ahWW ½1.000 → 1.000� ½1.000 → 1.000� ½0.999 → 1.000� ½1.000 → 1.000� ½1.000 → 1.000�
Rγγ ½0.999 → 0.999� ½0.999 → 0.999� ½0.999 → 1.000� ½1.000 → 1.000� ½0.999 → 1.000�
χ2 ½1.604 → 2.750� ½1.501 → 2.635� ½1.580 → 2.761� ½1.509 → 2.749� ½1.501 → 2.720�
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FIG. 11. Available parameter spaces for the muon anomaly versus electron anomaly with a mass parameter which attends the both
anomalies ðH1;2; A1;2Þ and does not ðH�Þ. H1;2 are non-SM CP even scalars, A1;2 are non-SM CP odd scalars and H� are non-SM
charged scalars. All points in each plot are collected within 1σ constraint of each anomaly.
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how well a benchmark point is converged and by a factor of
κ. However, these plots still tells a correlation between both
anomalies and a tendency that the lighter mass of H1 is
located at edge region of the parameter space. Mass of the
lightest non-SM scalarH1 implied in top-left plot of Fig. 11
is ranged from 200 to 220 GeV [95] and the cross section
for this light non-SM scalar will be compared to that for SM
Higgs in appendix. As for mass range of the other non-SM
scalars confirmed in rest of other plots in Fig. 11, they all
implied heavier mass than that of H1 which can be flexible
depending on how the parameters are converged as seen in
each case of Table IV.

We investigate a correlation for an anomaly versus a
relevant mass parameter with another anomaly in bar in
Fig. 12. Note that the fourth vectorlike mass is relevant
only for the muon anomaly, whereas the fifth is only for
the electron anomaly. Even though the fourth (fifth) is
irrelevant to the electron (muon) anomaly, it is good to
express them together since we rearrange the mass
parameters and the anomalies in bar for comparison.
The top-left plot in Fig. 12 just fills in whole parameter
region, thus no any correlation between the fourth vector-
like mass and the muon anomaly is identified. After we
rearranged the order of me4 and Δaμ;e from the top-left

FIG. 12. Available parameter spaces for the muon anomaly(electron anomaly) versus a relevant vectorlike massme4ðme5Þwith another
anomaly(two left plots) in bar where me4ðme5Þ is simplified notation for Me

44ðML
55Þ, while the two right plots for the muon anomaly

versus electron anomaly with a vectorlike mass me4ðme5Þ
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plot, we can confirm the similar correlation identified in
Fig. 11 from the top-right plot in Fig. 12. The bottom-left
plot identifies some correlation between the fifth vector-
like mass and the electron anomaly contrary to the top-left
plot. For the fifth vectorlike mass, we put the constraint
that the lightest vectorlike mass should be greater than
200 GeV [94] and the mass region below 200 GeV is all
excluded. After rearranging the order of me5 and Δaμ as in
the above plot, we confirmed the similar correlation
appears in the bottom-right plot. Interestingly, the top-
right and the bottom-right plots check the similar
correlation.
We confirmed that the muon and electron anomalous

magnetic moments with vectorlike particles can be
explained to within 1σ constraint of each anomaly in a
unified way, which is based on two attributes; the first one
is the extended scalar sector and the second one is related
with the contributions of the vectorlike leptons. The first
one which is reflected in our prediction for both anomalies,
consists of four non-SM scalars and these contributions
play a crucial role for determining the magnitude of each
anomaly. The second one is seen by two vertices of both
anomaly diagrams. The other Yukawa interactions can take
place at each vertex since the vectorlike leptons come in the
loop, which is differentiated by the case where the normal
SM particles enter in the loop. To be more specific, the
helicity flip mass caused by the vectorlike fermions in the
CP-even and CP-odd basis couples the initial particle
inside the loop to another particle of different chirality, thus
allowing different interactions at each vertex. This means
that the different sign problem can be solved by only
considering multiplication of the Yukawa constants of each
vertex and this property will be covered in detail in next
subsection.

1. Vacuum stability

An important feature of our extended 2HDM theory is
that it predicts large values for the Yukawa coupling
constants y2;1; x2;1 which can be ideally order of unity in
our model. If the Yukawa coupling constants are much
lower than unity, which means y2;1; x2;1 ≪ 1, it will not
cause any problem for stabilization of the scalar potential.
However, large values of the leptonic Yukawa couplings are
required in our model to successfully explain both g − 2
anomalies within the 1σ experimentally allowed range and
since they are somehow related with the electroweak sector
parameters, it might be able to destabilize the Higgs
potential. As previously mentioned, in our analysis of
the scalar sector and g − 2 anomalies we are restricting
to the scenario of decoupling limit, which implies that the
large values of the leptonic Yukawa couplings will have a
very small impact in the stability of up-type Higgs Hu
potential, whereas the conditons for the stability of the
down type Higgs Hd potential need to be determined. To
discuss the stability of the scalar potential, one has to

analyze its quartic terms because they will dominate the
behavior of the scalar potential in the region of very large
values of the field components. To this end, the quartic
terms of the scalar potential are written in terms of the
Hermitian bilinear combination of the scalar fields. To
simplify our analysis, we discuss the stability conditions of
the resulting 2HDM scalar potential arising after the gauge
singlet scalar field ϕ acquires a vacuum expectation value.
Such stability conditions have been analyzed in detail in the
framework of 2HDM in [96,97]. In order to analyze
the stability of the Hd potential, what we need to check
if the quartic scalar couplings in each case of Table III fulfill
the stability conditions to be determined below. Given that
our Higgs potential corresponds to the one of an extended
2HDM with the flavon field ϕ, in order to apply the
stability conditions used in the Ref. [96] to our Higgs
potential, we need to reduce the number of scalar degrees of
freedom by considering the resulting 2HDM scalar poten-
tial arising after the gauge singlet scalar field ϕ is integrated
out. From the scalar potential it follows that the relevant
quartic coupling constant λ6 must be positive, otherwise the
vev v3 would fall into negative infinity when the field ϕ
value increases. For the same reason, the quartic coupling
constants λ1;2 must also be positive. From the aforemen-
tioned stability conditions we conclude that the cases A and
C must be excluded since their corresponding quartic
coupling constants λ2 are negative. Assuming the flavon
field ϕ develops its vev v3, we can rewrite the Higgs
potential in terms of Hu and Hd fields as follows:

V ¼ μ21ðHuH
†
uÞ þ μ22ðHdH

†
dÞ þ μ23

v23
2
þ 2μ2sb

v23
2

þ λ1ðHuH
†
uÞ2 þ λ2ðHdH

†
dÞ2

þ λ3ðHuH
†
uÞðHdH

†
dÞ þ λ4ðHuH

†
dÞðHdH

†
uÞ

þ λ5

�
εijHi

uH
j
d
v23
2
þH:c

�

þ λ6
v43
4
þ λ7

v23
2
ðHuH

†
uÞ þ λ8

v23
2
ðHdH

†
dÞ: ð77Þ

Dropping all numbers and combining same order terms, the
Higgs potential becomes much simpler as follows:

V ¼
�
μ21 þ λ7

v23
2

�
ðHuH

†
uÞ þ

�
μ22 þ λ8

v23
2

�
ðHdH

†
dÞ

þ λ1ðHuH
†
uÞ2 þ λ2ðHdH

†
dÞ2

þ λ3ðHuH
†
uÞðHdH

†
dÞ þ λ5

v23
2
ðεijHi

uH
j
d þH:cÞ ð78Þ

where it is worth mentioning that the λ4 term can be safely
removed in the Higgs potential since it does not play a role
in the CP-even, odd but charged mass matrix (Now our
focus is the neutral scalar sectors). Here, we can impose one
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extra condition for the stabilization check, which is that the
redefined mass terms must be negative, otherwise we get
zero vev as a global minimum.

μ21 þ λ7
v23
2
¼ −2λ1v21 − λ3v22 þ 2λ3v22 ¼ −2λ1v21 þ λ3v22 < 0

μ22 þ λ8
v23
2
¼ −2λ2v22 þ λ3v21 −

1

2
λ8v23 þ λ8

v23
2

¼ −2λ2v22 þ λ3v21 < 0 ð79Þ

We have used the decoupling limit of Eq. (58) at the first
equality of Eq. (79). From this equation, it is possible to
determine the appropriate sign for the quartic coupling
constant λ3. In our numerical analysis, the vev v1 is much
dominant than the vev v2 so it leads to a negative sign for
the quartic coupling constant λ3, otherwise the below
equation of Eq. (79) would become positive. The sign of
the quartic coupling constant λ3 also determines the one of
λ5;7 in the decoupling scenario, which means that λ5;7 must
also be negative. On top of that, the large Yukawa coupling
constants y, x can be understood in connection with the vev
v3. To this end, we consider the definition for the Yukawa
coupling constants x1 and x2, which are given by:

x2 ¼
���� yμM44

y2v3

����; x1 ¼
���� yeM55

y1v3

����; ð80Þ

where in order to successfully explain both g − 2 anomalies
within the 1σ experimentally allowed range, one has to rely
on small values of v3, which areOð10 GeVÞ, and the small
values of v3 do not significantly spoil the down-type Higgs
Hd potential as seen in Eq. (79). In other words, the mass
parameters μ21;2 are much larger than the parameters
λ7;8v23=2, thus allowing more freedom in the sign of λ8.
Then, we are now ready to match our simplified Higgs
potential with the one given in the Ref. [96]. Taking into
consideration that our Higgs alignment is different than the
one of [96], our mass parameters can be redefined as
follows:

m2
11¼μ21þλ7

v23
2
; m2

22¼μ22þλ8
v23
2
; m2

12¼ λ5
v23
2

ð81Þ

β1¼2λ1; β2¼2λ2; β3¼ λ3; β4¼0; β5¼0: ð82Þ

Then, following [96,97], it is found that the scalar
potential is stable, when the following relations are
fulfilled:

β1 ≥ 0; β2 ≥ 0; β3 þ
ffiffiffiffiffiffiffiffiffi
β1β2

p
≥ 0 ð83Þ

β3 þ β4 þ
ffiffiffiffiffiffiffiffiffi
β1β2

p
> jβ5j → β3 þ

ffiffiffiffiffiffiffiffiffi
β1β2

p
> 0: ð84Þ

The last stability condition can be rewritten as shown on
the right side since the β4;5 are zero in our Higgs potential
and the cases B and D must be excluded by this last
condition shown in Eq. (84). The conditions given in
Eqs. (83) and (84) are crucial to guarantee the stability of
the electroweak vacuum. Furthermore, one has to require
that the squared masses for the physical scalars are
positive. Besides that, according to [96], the minimum
of the scalar potential is a global minimum when the
following condition is fulfilled:

m2
12

0
@m2

11 −m2
22

ffiffiffiffiffi
β1
β2

s 1
A�

tan β −
ffiffiffi
4

p β1
β2

�
> 0

→ m2
12

0
@m2

11 −m2
22

ffiffiffiffiffi
β1
β2

s 1
A > 0 ð85Þ

where the latter condition on the left-hand side is always
successfully fulfilled for all cases, so we can simply drop
off the condition as shown on the right side. Then, it is
enough to confirm whether each case satisfies the reduced
global minimum condition and the case E successfully
fulfills that requirement as shown below:

m2
12 ¼ −1763.9 GeV2; m2

11 ¼ −7896.5 GeV2;

m2
22 ¼ −43258.8 GeV2;

ffiffiffiffiffi
β1
β2

s
¼ 0.0791994 ð86Þ

m2
12

0
@m2

11 −m2
22

ffiffiffiffiffi
β1
β2

s 1
A ≈ 7.886 × 106 GeV4 > 0: ð87Þ

Thus, we have numerically checked that the best fit point
corresponding to the caseEobtained in thenumerical analysis
of the scalar potential and g − 2muon and electron anomalies
is consistent with the above given stability conditions of the
scalar potential and at the same time ensure positivevalues for
the squaredmasses of the physical scalars, consistent with the
current experimental data. Finally, to close this section, it is
worthmentioning that the largeYukawacoupling constants y,
x involve the small vev v3 in our model and this ensures that
not only theHu potential is stable in the decoupling scenario
but also theHd potential successfully fulfill the requirements
of vacuum stability for both the small vev v3 and appropriate
values of the quartic scalar couplings.

2. How is the scalar exchange possible to accommodate
both anomalies at 1σ constraint analytically?

In order to analyze how the scalar exchange is able to
explain both anomalies within the 1σ range, we revisit the
analytic expressions for both muon and electron anomalous
magnetic moments:
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Δaμ ¼ ye24x
e
42

m2
μ

8π2
½ðRT

e Þ22ðRT
e Þ32IðμÞS ðme4 ; mH1

Þ þ ðRT
e Þ23ðRT

e Þ33IðμÞS ðme4 ; mH2
Þ

− ðRT
oÞ22ðRT

oÞ32IðμÞP ðme4 ; mA1
Þ − ðRT

oÞ23ðRT
oÞ33IðμÞP ðme4;mA2

Þ�;

Δae ¼ ye51x
L
15

m2
e

8π2
½ðRT

e Þ22ðRT
e Þ32IðeÞS ðme5 ; mH1

Þ þ ðRT
e Þ23ðRT

e Þ33IðeÞS ðme5 ; mH2
Þ

− ðRT
oÞ22ðRT

oÞ32IðeÞP ðme5 ; mA1
Þ − ðRT

oÞ23ðRT
e Þ33IðEÞP ðme5 ; mA2

Þ�; ð88Þ

where

Iðe;μÞSðPÞ ðmE4;5
; mSÞ ¼

Z
1

0

x2ð1 − x� mE4;5

me;μ
Þ

m2
e;μx2 þ ðm2

E4;5
−m2

e;μÞxþm2
S;Pð1 − xÞ dx ð89Þ

with SðPÞ corresponding to scalar (pseudoscalar) and E4;5
standing for the vectorlike family. Furthermore, E4 and E5

only contribute to the muon and electron anomalous
magnetic moments, respectively.
First of all, we focus on the sign of each anomaly. The

different signs of each anomaly indicated by the 1σ
experimentally allowed range can be understood at the
level of Yukawa constants apart from the loop structures.
As seen in Table V, the Yukawa coefficient y can be either
positive or negative, while x only remains positive since we
take the absolute value to the x. We also considered the case

where the coefficients x, y are purely positive, assuming v3
is positive, without taking absolute value and the multi-
plication of the Yukawa coefficients x × y cannot change
the sign of each anomaly since the denominator of x
includes y and they are cancel out. Then, the sign problem
depends on summing over loop functions and we found that
the order of the muon anomaly prediction is suitable,
whereas the corresponding to the electron anomaly is about
10−16 which is too small to be accommodated within the 1σ
experimentally allowed range. Therefore, we found that
taking an absolute value to one of the Yukawa coefficients
is an appropriate strategy for the sign and allows to
reproduce the correct order of magnitude of each anomaly
allowed by the 1σ experimentally allowed range, for an
appropriate choice of the model parameters. This feature is
a crucial difference compared with theW or Z0 gauge boson
exchange [33]. The W gauge boson exchange covered in
the main body of this work keeps the same coupling
constant at each vertex, therefore it is completely different
from the scalar exchange with vectorlike leptons. For the Z0
exchange covered in [33], it has the common property that
the coupling constant of each vertex is different to each
other, whereas the coupling constants of the Z0 are more
constrained by the mixing angle between ith chiral family
and fourth vectorlike family, so it is impossible to explain
both anomalies at the same time. As a result, allowing
different Yukawa constants with appropriate signs enables
both anomalies to be explained in a unified way.
Next we turn our attention to the order of magnitude of

our predictions for both anomalies. Considering that the
sign problem is solved by having each Yukawa constant y
either positive or negative, it can be easily understood that
inside the structure in parentheses of Eq. (88) should imply
the same direction, which is is determined by the con-
tribution of all loop functions in parentheses. Since the
mass difference among non-SM scalars and vectorlike
particles is not so big, we have to consider their masses
in the computation of muon and electron anomalous

TABLE V. Initial parameter setup.

Parameter Value/Scanned Region (GeV)

vu ¼ v1 tan βffiffiffiffiffiffiffiffiffiffiffiffiffi
1þtan β2

p × 246

vd ¼ v2 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þtan β2

p × 246

vϕ ¼ v3 �½0.01; 1.00� × 1000

tan β ¼ vu=vd [5, 50]
λ1 ðm2

h −
v2v23λ5
2v1

Þ=ð4v21Þ
λ2 �½0.50; 12.00�
λ3 �½0.50; 12.00�
λ4 �½0.50; 12.00�
λ5 4v1v2λ3=ðv3Þ2
λ6 �½0.50; 12.00�
λ7 v2λ5=v1
λ8 �½0.50; 12.00�
Me

44 ½2 × 102; 2 × 103�
ML

55 ½2 × 102; 2 × 103�
μsb i½0;1� × ½300; 500�
ye

ffiffiffi
2

p
me=v2

yμ
ffiffiffi
2

p
mμ=v2

ye24 ¼ y2 �½1.0; 3.5�
ye51 ¼ y1 �½1.0; 3.5�
xe42 ¼ x2 jyμMe

44=ðye24v3Þj
xL15 ¼ x1 jyeML

55=ðye51v3Þj
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magnetic moments, as follows from Eq. (88). For an easy
analysis, we take the case E reported in Table III and
suppose that

ðRT
e Þ22ðRT

e Þ32 ¼ c1; ðRT
e Þ23ðRT

e Þ33 ¼ −c1;

ðRT
oÞ22ðRT

oÞ32 ¼ c2; ðRT
oÞ23ðRT

oÞ33 ¼ −c2;

IμSðme4 ; mH1
Þ ¼ d1; IμSðme4 ; mH2

Þ ¼ d2;

IμPðme4 ; mA1
Þ ¼ −d3; IμPðme4 ; mA2

Þ ¼ −d4;

IeSðme5 ; mH1
Þ ¼ e1; IeSðme5 ; mH2

Þ ¼ e2;

IePðme5 ; mA1
Þ ¼ −e3; IePðme5 ; mA2

Þ ¼ −e4;

d1 > d3 > d2 > d4; e1 > e3 > e2 > e4 ð90Þ

where c1;2 are arbitrary constant between 0 and 1
either positive or negative and mass ordering among
dðeÞi; (i ¼ 1, 2, 3, 4) can be easily understood by
considering mass difference between non-SM scalars
and vectorlike particles. The muon and electron
anomaly prediction can be rewritten in terms of these
redefined constants:

Δaμ ¼ y2x2
m2

μ

8π2
½c1d1 − c1d2 þ c2d3 − c2d4�

¼ y2x2
m2

μ

8π2
½c1ðd1 − d2Þ þ c2ðd3 − d4Þ�

¼ y2x2
m2

μ

8π2
½c1d12 þ c2d34�

Δae ¼ y1x1
m2

e

8π2
½c1e1 − c1e2 þ c2e3 − c2e4�

¼ y1x1
m2

e

8π2
½c1ðe1 − e2Þ þ c2ðe3 − e4Þ�

¼ y1x1
m2

e

8π2
½c1e12 þ c2e34� ð91Þ

where y2, x2, y1, x1 are simplified notation for
ye24; x

e
42; y

e
51; x

L
15, respectively, and dðeÞij ≡ dðeÞi −

dðeÞj and dðeÞij are positive. Since the inside structure
in parentheses depends on relative magnitude of both
c1;2 and dðeÞij at this stage where no more analytic
simplification is possible, it is good to implement a
specific value for them. Referring the values used to
derive the result of case E, they are

y2x2
m2

μ

8π2
c1d1 ¼ −4.629 × 10−7;

y1x1
m2

e

8π2
c1e1 ¼ −8.532 × 10−12

−y2x2
m2

μ

8π2
c1d2 ¼ 4.520 × 10−7;

−y1x1
m2

e

8π2
c1e2 ¼ 6.808 × 10−12

y2x2
m2

μ

8π2
c2d3 ¼ 7.984 × 10−8;

y1x1
m2

e

8π2
c2e3 ¼ 1.323 × 10−12

−y2x2
m2

μ

8π2
c2d4 ¼ −6.659 × 10−8;

−y1x1
m2

e

8π2
c2e4 ¼ −5.217 × 10−13 ð92Þ

and summing over all values in left or right column of
Eq. (92) yields the prediction for muon and electron
anomaly at 1σ

Δaμ¼y2x2
m2

μ

8π2
½c1d1−c1d2þc2d3−c2d4�¼2.393×10−9

Δae¼y1x1
m2

e

8π2
½c1e1−c1e2þc2e3−c2e4�¼−9.232×10−13:

ð93Þ

VII. CONCLUSION

We have proposed a model to account for the hierar-
chical structure of the SM Yukawa couplings. In our
approach the SM is an effective theory arising from a
theory with extended particle spectrum and symmetries.
The considered model includes an extension of the 2HDM
where the particle spectrum is enlarged by the inclusion of
two vectorlike fermion families, right-handed Majorana
neutrinos and a gauge singlet scalar field, together with the
inclusion of a global Uð1Þ0 symmetry spontaneously
broken at the TeV scale. Since the Uð1Þ0 symmetry is
global, this model does not feature a Z0 boson and it is
softly broken in the 2HDM potential to avoid a Goldstone
boson. Its main effect is to forbid SM Yukawa interactions
due to the Uð1Þ0 charge conservation. Besides that, this
model has the property of the 2HDM type II where one
Higgs doublet couples with the up-type fermions whereas
the remaining one has Yukawa interactions with down-
type fermions, where such couplings are allowed between
chiral fermions and vectorlike fermions due to the choice
of Uð1Þ0 charges (chiral fermions having zero charges
while vectorlike fermions, Higgs and flavons have charges
�1). Below the mass scale of the vectorlike fermions, such
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couplings result in effective Yukawa couplings suppressed
by a factor hϕi=M where the numerator is the vev of the
flavon and the denominator is the vectorlike mass. This
factor naturally determines the magnitude of SM inter-
actions and the mass scale for the vectorlike fermions
under a suitable choice of the flavon vev. We have
developed a mixing formalism based on 7 × 7 mass
matrices to describe the mixing of the three chiral families
with the two vectorlike families.
Within the above proposed model, we have focused on

accommodating the long-established muon and less
established electron anomalous magnetic moments at
one-loop level. A main difficulty arises from the sign
of each anomalous deviation of the experimental value
from its SM prediction. Generally, the Feynman dia-
grams for the muon and electron anomalous magnetic
moments have the same structure except from the fact
that the external particles are different, which makes it
difficult to flip the sign of each contribution. Specifically
we have required that both deviations in Eq. (1) at one-
loop should be accommodated within the 1σ experi-
mentally allowed range, which is a challenging
requirement.
We first considered in detail the W boson exchange

contributions to the muon and electron anomalous mag-
netic moments at one-loop. The relevant sector for the W
boson exchange is that of the neutrino and we analyzed a
novel operator that generates the masses of the light
active neutrinos in this model. The well-known five
dimensional Weinberg operator which we refer as type
Ia seesaw mechanism does not work in this model since it
is forbidden by the Uð1Þ symmetry due to the fact that
both SUð2Þ scalar doublets are negatively charged under
this symmetry. For this reason, we made use of the
Weinberg-like operator known as type Ib seesaw mecha-
nism allowed in this model. With the type Ib seesaw
mechanism, we built the neutrino mass matrix with two
vectorlike neutrinos and ignored fifth vectorlike neutrinos
since they are too heavy to contribute to the phenom-
enology. The deviation of unitarity η derived from the
heavy vectorlike neutrinos plays a crucial role for enhanc-
ing the sensitivity of the CLFV μ → eγ decay to the
observable level. Furthermore, the Yukawa constants of
Dirac neutrino mass matrix can be connected to the
observables measured in neutrino oscillation experiments.
One of the neutrino Yukawa constants is defined with a
suppression factor ϵ. Therefore, the effective 3 × 3 neu-
trino mass matrix tells that the tiny masses of the light
active neutrinos depend on the mass scale of vectorlike
neutrinos as well as on the suppression factor ϵ. This

implies that mass scale of vectorlike neutrinos is not
required to be of the order of 1014 GeV, as in the
conventional type Ia seesaw mechanism. In our proposed
model, the vectorlike neutrinos can have masses at the
TeV scale, thus allowing to test our model at colliders.
Those vectorlike neutrinos can be pair produced at the
LHC via Drell-Yan annihilation mediated by a virtual Z
gauge boson. They can also be produced in association
with a SM charged lepton via Drell-Yan annihilation
mediated by a W gauge boson. These heavy vector like
sterile neutrinos can decay into a SM charged lepton and
light active neutrinos. Thus, the heavy neutrino pair
production at a proton-proton collider will give rise to
an opposite sign dilepton final state, which implies that the
observation of an excess of events in this final state over
the SM background can be a smoking gun signature of
this model, whose observation will be crucial to assess its
viability. It is confirmed that the branching ratio of μ → eγ
decay can be expressed in terms of the deviation of
unitarity η as shown in [11,82] and our prediction for the
muon and electron anomalous magnetic moments can also
be written in terms of nonunitarity. We derived the analytic
expression for the anomalies and found that the order of
magnitude of these predictions is too small to accommo-
date the experimental bound within the 1σ range and the
sign of each prediction also points out in the same
direction. Therefore, we concluded that the W boson
exchange at one-loop is not enough to explain both
anomalies at 1σ and this conclusion has been a good
motivation to search for another possibility such as scalar
exchange, which is one of the main purposes of this work.
We then turned our attention to the 2HDM contributions

(inclusion also of the singlet scalar ϕ) to the muon and
electron anomalous magnetic moments, assuming by a
choice of parameters a diagonal charged lepton mass matrix
to suppress the branching ratio of μ → eγ. In our analysis
we considered in detail the scalar sector of our model,
which is composed of two SUð2Þ scalar doublets Hu and
Hd and one electrically neutral complex scalar ϕ by
studying the corresponding scalar potential, deriving the
squared mass matrices for the CP-even, CP-odd neutral
and electrically charged scalars and determining the result-
ing scalar mass spectrum. We have restricted to the scenario
corresponding to the decoupling limit where no mixing
between the physical SM Higgs h and the physical non-SM
scalarsH1;2 arise and within this scenario we have imposed
the restrictions arising from the Higgs diphoton decay rate,
the hWW coupling, the 125 GeV mass of the SM-like
Higgs and the experimental lower bounds on non-SM
scalar masses, to determine the allowed parameter space
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consistent with the muon and electron anomalous magnetic
moments. To this end, we have constructed a χ2 fitting
function, which measures the deviation of the values of the
physical observables obtained in the model, i.e., ðg − 2Þe;μ,
the 125 GeV SM-like Higgs mass, the Higgs diphoton
signal strength, the hWW coupling, with respect to their
experimental values. Its minimization allows to determine
the values of the model parameters consistent with the
measured experimental values of these observables. After
saturating the χ2 value less than or nearly 2, we obtained
five independent benchmark points and carried out second
scan with the benchmark points to find a correlation
between observables and mass parameters. For the plots,
we took an appropriate case which is more converged when
compared to other ones and satisfying the vacuum stability
conditions. We found that our prediction for both anomalies
can be explained within the 1σ constraint of each anomaly
and a correlation proportional for muon versus electron
anomaly is appeared in Fig. 11 and 12. Here, we put two
constraints on mass of the lightest non-SM scalar and of the
lightest vectorlike family; mH1

; me5 > 200 GeV based on
references. The second scan result tells that the available
parameter space is not significantly constrained by current
experimental results on non-SM scalar mass and vectorlike
mass, while keeping perturbativity for quartic couplings
and Yukawa constants. An important feature of our BSM
model is it predicts the large Yukawa coupling constants y,
x, which might be able to destabilize the Higgs potential.
The up-type HiggsHu potential is not significantly affected
by the large Yukawa coupling constants in the decoupling
scenario, whereas there is no safe condition for the down-
type Higgs Hd potential which can be worsen by mixing
with the flavon field ϕ. The large Yukawa coupling
constants x introduces small values for the vev v3 in the
definition of x and the energy scale is confirmed by order of
10 GeV in our numerical analysis. On top of that, we also
identified the appropriate sign of quartic coupling constants
can make the Higgs potential stable. Therefore, the down
type Hd Higgs potential is stable by both the small vev v3
and the appropriate quartic coupling constants in our BSM
model. Lastly, we discussed how we were able to explain
both ðg − 2Þe;μ anomalies at 1σ constraint and impact of the

light non-SM scalar H1. For the former, we first simplified
the prediction for both anomalies and used some numerical
values at the stage where no more analytic simplification is
possible. For the latter, we compared the cross section for
the SM process pp → h and BSM process pp → H1 and
included this comparison in Appendix B.
We conclude that the proposed model of fermion mass

hierarchies is able to successfully accommodate both the
muon and electron anomalous magnetic moments within
the 1σ experimentally allowed ranges, with the dominant
contributions arising from one loop diagrams involving the
2HDM scalars and vectorlike leptons. The resulting model
parameter space consistent with the ðg − 2Þe;μ anomalies
requires masses of non-SM scalars and vectorlike particles
in the sub TeVand TeV ranges, thus making these particles
accessible at the LHC and future colliders.
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APPENDIX A: QUARK MASS MATRICES
IN TWO BASES

As the lepton mass matrix is constructed in main body of
this work, the quark sector can be built in a similar way.
Like the lepton sector, we make use of two approaches to an
effective lepton mass matrix, one of which is a convenient
basis and the other is a decoupling basis.

1. A convenient basis for quarks

Consider the 7 × 7 quark mass matrix rotated as in the
lepton sector.
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Mu ¼

0
BBBBBBBBBBBBBBB@

u1R u2R u3R u4R u5R Q̃4R Q̃5R

Q̄1L 0 0 0 0 yu15vu 0 xQ15vϕ
Q̄2L 0 0 0 yu24vu yu25vu 0 xQ25vϕ
Q̄3L 0 0 0 yu34vu yu35vu xQ34vϕ xQ35vϕ
Q̄4L 0 0 yu43vu 0 0 MQ

44 MQ
45

Q̄5L yu51vu yu52vu yu53vu 0 0 0 MQ
55

¯̃u4L 0 xu42vϕ xu43vϕ Mu
44 0 0 0

¯̃u5L xu51vϕ xu52vϕ xu53vϕ Mu
54 Mu

55 0 0

1
CCCCCCCCCCCCCCCA

Md ¼

0
BBBBBBBBBBBBBBB@

d1R d2R d3R d4R d5R Q̃4R Q̃5R

Q̄1L 0 0 0 yd14vd yd15vd 0 xQ15vϕ
Q̄2L 0 0 0 yd24vd yd25vd 0 xQ25vϕ
Q̄3L 0 0 0 yd34vd yd35vd xQ34vϕ xQ35vϕ
Q̄4L 0 0 yd43vd 0 0 MQ

44 MQ
45

Q̄5L yd51vd yd52vd yd53vd 0 0 0 MQ
55

¯̃d4L 0 xd42vϕ xd43vϕ Md
44 0 0 0

¯̃d5L xd51vϕ xd52vϕ xd53vϕ Md
54 Md

55 0 0

1
CCCCCCCCCCCCCCCA

ðA1Þ

Notice that the same rotations operated in the lepton
sector is applied to both up- and down-type quark sector
except for yd14 since quark doublet rotation is already used
in the up-type quark sector. These two mass matrices
clearly tells that this model is an extended 2HDM in that the
up-type SM HiggsHu corresponds to up-type quark sector,
while the down-type SM Higgs Hd corresponds for down-
type quark sector.

2. A basis for decoupling heavy fourth
and fifth vectorlike family

In this section, we treat the decoupling basis with quarks
holding an assumption hϕi ≈MQ

44. As in the charged lepton
mass matrix, we can obtain the Yukawa matrix from the
5 × 5 upper blocks of Eq. (A1),

ỹuαβ ¼

0
BBBBBB@

0 0 0 0 yu15
0 0 0 yu24 yu25
0 0 0 yu34 yu35
0 0 yu43 0 0

yu51 yu52 yu53 0 0

1
CCCCCCA
; ỹdαβ ¼

0
BBBBBB@

0 0 0 yd14 yd15
0 0 0 yd24 yd25
0 0 0 yd34 yd35
0 0 yd43 0 0

yd51 yd52 yd53 0 0

1
CCCCCCA

ðA2Þ

where α and β run from 1 to 5. The Yukawa matrices ỹu;dαβ can be diagonalized by the unitary rotations V

VQ ¼ VQ
45V

Q
35V

Q
25V

Q
15V

Q
34V

Q
24V

Q
14; Vu ¼ Vu

45V
u
35V

u
25V

u
15V

u
34V

u
24V

u
14; Vd ¼ Vd

45V
d
35V

d
25V

d
15V

d
34V

d
24V

d
14 ðA3Þ

where each of the unitary matrices Vi4;5 are parametrized by a single angle θi4;5 featuring the mixing between the ith SM
chiral quark and the 4,5th vectorlike quark. In the rotated mass matrix, we need (3,4),(1,5),(2,5),(3,5) mixing in theQ sector
and (2,4),(3,4),(1,5),(2,5),(3,5) mixing in the u, d sectors to go to the decoupling basis therefore the unitary mixing matrices
V are defined to be
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VQ ¼ VQ
35V

Q
25V

Q
15V

Q
34

¼

0
BBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 cQ35 0 sQ35
0 0 0 1 0

0 0 −sQ35 0 cQ35

1
CCCCCCA

0
BBBBBB@

1 0 0 0 0

0 cQ25 0 0 sQ25
0 0 1 0 0

0 0 0 1 0

0 −sQ25 0 0 cQ25

1
CCCCCCA

0
BBBBBB@

cQ15 0 0 0 sQ15
0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

−sQ15 0 0 0 cQ15

1
CCCCCCA

0
BBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 cQ34 sQ34 0

0 0 −sQ34 cQ34 0

0 0 0 0 1

1
CCCCCCA
;

≈

0
BBBBBBBB@

1 0 0 0 sQ15

0 1 0 0 sQ25

0 0 1 sQ34 sQ35

0 0 −sQ34 1 0

−sQ15 −sQ25 −sQ15 0 1

1
CCCCCCCCA
;

sQ34 ¼
xQ34hϕiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxQ34hϕiÞ2 þ ðMQ
44Þ2

q ; sQ15 ¼
xQ15hϕiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxQ15hϕiÞ2 þ ðMQ
55Þ2

q ;

sQ25 ¼
xQ25hϕiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxQ25hϕiÞ2 þ ðM0Q
55Þ2

q ; sQ35 ¼
x0Q35hϕiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx0Q35hϕiÞ2 þ ðM00Q
55 Þ2

q ;

x0Q35hϕi ¼ cQ34x
Q
35hϕi þ sQ34M

Q
45; M0Q

45 ¼ −sQ34x
Q
35hϕi þ cQ34M

Q
45

M̃Q
44 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxQ34hϕiÞ2 þ ðMQ

44Þ2
q

;

M0Q
55 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxQ15hϕiÞ2 þ ðMQ

55Þ2
q

; M00Q
55 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxQ25hϕiÞ2 þ ðM0Q

55Þ2
q

; M̃Q
55 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0Q35hϕiÞ2 þ ðM00Q

55 Þ2
q

ðA4Þ

Vu ¼ Vu
35V

u
25V

u
15V

u
34V

u
24

¼

0
BBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 cu35 0 su35
0 0 0 1 0

0 0 −su35 0 cu35

1
CCCCCCA

0
BBBBBB@

1 0 0 0 0

0 cu25 0 0 su25
0 0 1 0 0

0 0 0 1 0

0 −su25 0 0 cu25

1
CCCCCCA

0
BBBBBB@

cu15 0 0 0 su15
0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

−su15 0 0 0 cu15

1
CCCCCCA

×

0
BBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 cu34 su34 0

0 0 −su34 cu34 0

0 0 0 0 1

1
CCCCCCA

0
BBBBBB@

1 0 0 0 0

0 cu24 0 su24 0

0 0 1 0 0

0 −su24 0 cu24 0

0 0 0 0 1

1
CCCCCCA

≈

0
BBBBBB@

1 0 0 0 θu15
0 1 0 θu24 θu25
0 0 1 θu34 θu35
0 −θu24 −θu34 1 0

−θu15 −θu25 −θu35 0 1

1
CCCCCCA
;

su24 ≈
xu42hϕi
Mu

44

; su34 ≈
xu43hϕi
M0u

44

; su15 ≈
xu51hϕi
Mu

55

; su25 ≈
x0u52hϕi
M0u

55

; su35 ≈
xu53hϕi
M00u

55

;

x0u52hϕi ¼ cu24x
u
52hϕi þ su24M

u
54; M0u

54 ¼ −su24xu52hϕi þ cu24M
u
54;

x0u53hϕi ¼ cu34x
u
53hϕi þ su34M

0u
54; M00u

54 ¼ −su34xu53hϕi þ cu34M
0u
54;

M0u
44 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxu42hϕiÞ2 þ ðMu

44Þ2
q

; M̃u
44 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxu43hϕiÞ2 þ ðMu

44Þ2
q

;

M0u
55 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxu51hϕiÞ2 þ ðMu

55Þ2
q

; M00u
55 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0u52hϕiÞ2 þ ðM0u

55Þ2
q

; M̃u
55 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0u53hϕiÞ2 þ ðM00u

55Þ2
q

: ðA5Þ
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With the defined unitary mixing matrices in place, the
5 × 5 Yukawa matrices in a mass basis (primed) are
transformed by

ỹ0uαβ ¼ VQỹuαβV
†
u; ỹ0dαβ ¼ VQỹdαβV

†
d; ðA6Þ

where tilde with prime means interaction basis whereas
tilde alone corresponds to the mass basis. The effective SM

Yukawa couplings for the quarks then correspond to the
3 × 3 upper block of ỹ0uαβ; ỹ

0d
αβ, namely

yuijH̃uQ̄iLujR; ydijH̃dQ̄iLdjR; with yuij ≡ ỹ0uij ;

ydij ≡ ỹ0dij ; ði; j ¼ 1; 2; 3Þ: ðA7Þ

The 3 × 3 SM Yukawa matrices for up- and down-type
quark sector read:

yuij ¼

0
BB@

sQ15y
u
51 þ yu15θ

u
15 sQ15y

u
52 þ yu15θ

u
25 sQ15y

u
53 þ yu15θ

u
35

sQ25y
u
51 þ yu25θ

u
15 sQ25y

u
52 þ yu24θ

u
24 þ yu25θ

u
25 sQ25y

u
53 þ yu24θ

u
34 þ yu25θ

u
35

sQ35y
u
51 þ yu35θ

u
15 sQ35y

u
52 þ yu34θ

u
24 þ yu35θ

u
25 sQ34y

u
43 þ sQ35y

u
53 þ yu34θ

u
34 þ yu35θ

u
35

1
CCA

ydij ¼

0
BB@

sQ15y
d
51 þ yd15θ

d
15 sQ15y

d
52 þ yd14θ

d
24 þ yd15θ

d
25 sQ15y

d
53 þ yd14θ

d
34 þ yd15θ

d
35

sQ25y
d
51 þ yd25θ

d
15 sQ25y

d
52 þ yd24θ

d
24 þ yd25θ

d
25 sQ25y

d
53 þ yd24θ

d
34 þ yd25θ

d
35

sQ35y
d
51 þ yd35θ

d
15 sQ35y

d
52 þ yd34θ

d
24 þ yd35θ

d
25 sQ34y

d
43 þ sQ35y

d
53 þ yd34θ

d
34 þ yd35θ

d
35

1
CCA ðA8Þ

APPENDIX B: HEAVY SCALAR PRODUCTION
AT A PROTON-PROTON COLLIDER

We have confirmed that the mass of the non-SMCP even
scalar H1 is ranged from 200 to 240 GeV in Table IV and
this light mass of H1 has not been observed at CERN or
other experiments so far. In order to see how big an impact
of H1 is when compared to that of SM Higgs h, we studied
a total cross section for the SM process pp → h and for
BSM process pp → H1. The SM cross section for pp → h
process is

σSM ¼ α2Sm
2
h

64πv2

�
L

�
m2

h

m2
t

��
2

×
1

S

Z
− ln

ffiffiffiffiffiffiffiffi
m2

h=S
p

ln
ffiffiffiffiffiffiffiffi
m2

h=S
p PDFð0; x1ðyÞ; mhÞ

× PDFð0; x2ðyÞ; mhÞdy ðB1Þ

where L is a loop integral

LðaÞ¼j½2aþð−4þaÞPolyLogð2;1=2ð− ffiffiffiffiffiffiffiffiffiffiffiffiffi
−4þa

p ffiffiffi
a

p þaÞÞ
þð−4þaÞPolyLogð2;1=2ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

−4þa
p ffiffiffi

a
p þaÞÞ�=a2j;

ðB2Þ

αS is the strong coupling constant, v is the conventional
SM Higgs vev 246.22 GeV,mh is the Higgs mass 125 GeV,
mt is the top quark mass 173 GeV, S is the squared LHC
center of mass energy ð14 TeVÞ2, PDF corresponds to the
parton distribution function where 0 means 0th parton—
gluon, x is the momentum fraction of the proton carried out
by the gluon. Here the factorization scale has been taken to

be equal to the SM like Higgs boson mass mh and x1;2ðyÞ
are defined as follows:

x1ðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
m2

h=S
p

S
expðyÞ;

x2ðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
m2

h=S
p

S
expð−yÞ: ðB3Þ

With these defined functions and values, the total cross
section for pp → h is

σSM ≃ 18pb: ðB4Þ
Next, the total cross section for pp → H1 process is

σðpp → H1Þ ¼
α2Sm

2
H1
a2hbb

64πv22

�
L

�
m2

H1

m2
b

��2

×
1

S

Z
− ln

ffiffiffiffiffiffiffiffiffiffi
m2

H1
=S

p
ln

ffiffiffiffiffiffiffiffiffiffi
m2

H1
=S

p PDFð0; x01ðyÞ; mH1
Þ

× PDFð0; x02ðyÞ; mH1
Þdy ðB5Þ

where mH1
is mass of non-SM CP even scalar H1, and x01;2

are defined in a similar way:

x01ðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H1
=S

q
S

expðyÞ;

x02ðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H1
=S

q
S

expð−yÞ ðB6Þ

One main distinction between Eqs. (B1) and (B5) is the
non-SM scalarH1 only interacts with down-type quark pair
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bb̄ since it is a mixed state between h0d and ϕ while
the SM Higgs h can interact with top-quark pair tt̄.
According to the mass range of H1 reported in Table IV,
the total cross section for pp → H1 is given in Fig. 13.
The total cross section for pp → H1 runs from nearly

8pb at 200 GeV to smaller values as mass of H1 increases.
The order of magnitude of this cross section for pp → H1

is compatible to that of the SM process pp → h, however
the BSM process is strongly suppressed since its single
LHC production via gluon fusion mechanism is dominated
by the triangular bottom quark loop as mentioned in
Sec. VI. Therefore, our prediction with the light non-SM
scalar H1 is possible to accommodate each anomaly
constraint at 1σ.
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