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We study an extended 2 Higgs doublet model (2HDM) in which the Standard Model (SM) Yukawa
interactions are forbidden due to a global U(1)" symmetry, but may arise via mixing with vectorlike
families. In this model, the hierarchical structure of Yukawa couplings of quarks and leptons in the SM
arises from the heavy masses of the fourth and fifth vectorlike families. Within this model, we consider
various nonstandard contributions to the electron and muon anomalous magnetic moments. We first
consider the W exchange at one-loop level, consistent with the 4 — ey constraint, and show that it yields a
negligible contribution to both electron and muon anomalous magnetic moments. We then consider Higgs
scalar exchange, together with vectorlike leptons, at one-loop level and show that it is possible to have
nonstandard contributions to the electron and muon anomalous magnetic moments within the 1o constraint
of certain experiments. We present some benchmark points for both the muon and the electron anomalies,
together with some numerical scans around these points, which indicate the mass regions of the Higgs

scalars of the 2HDM in this scenario.
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I. INTRODUCTION

The Standard Model (SM) has made many successful
predictions for the phenomenology of both quark and
lepton sectors with very high accuracy. However there
are long-established anomalies which are not addressed
by the SM such as muon and electron anomalous mag-
netic moments a, = (9-2),/2,a, = (9—2),/2. The
muon anomalous magnetic moment reported by the
Brookhaven E821 experiment at BNL [1] and the elec-
tron anomaly have confirmed +3.5¢ and —2.5¢ deviations
from the SM, respectively. Detailed data analysis of
the Standard Model predictions for the muon anoma-
lous magnetic moment are provided in [2—6]. The exper-
imentally observed values for the muon and electron
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anomalies at 1o of experimental error bars, respectively,
1
read :

Aa, = a,® — atM = (26.1 £ 8.0) x 1071°

Aa, = a;® —asM = (-0.88 +0.36) x 10712, (1)

When trying to explain both anomalies to within 1o, a
main difficulty arises from the sign of each anomaly: the
muon anomaly requires positive definite nonstandard con-
tributions, whereas the electron anomaly requires such
contributions to contribute with a negative sign [8].
Without loss of generality, the Feynman diagrams corre-
sponding to the contributions for the muon and electron
anomalies take the same internal structure at one-loop

"It is worth mentioning that the experimental value of the
anomalous magnetic moment of the electron is sensitive to the
measurement of the fine-structure constant a. The experimental
value of Aa, = @, .. = @.(@perkerey) Used in this work and given
in Eq. (1) is obtained using ageterey from caesium recoil
measurements by the Berkeley 2018 experiment [7]. As this
paper was being completed a different experiment [8] reported a
result that implies Aa, = av™® — a™ = (0.48 4 0.30) x 1012
which differs from the SM by +1.60. The two experiments
appear to be inconsistent with each other, and our results here are
based on the earlier result in Eq. (1).
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Diagrams in this model which lead to the effective Yukawa interactions, where y,w’ = Q, u, d, L, e (neutrinos will be treated

separately) i, j =1, 2, 3, k, [ = 4, 5, My is vectorlike mass and H = ioc,H*, H = H, 4

except from the fact that the external particles are different.
The similar structure of the one-loop level contributions to
the muon and electron anomalous magnetic moments might
be able to be explained by the same new physics, but
accounting for the relative negative sign is challenging. For
example, considering the one-loop exchange of W or Z’
gauge bosons results in theoretical predictions for the muon
and electron anomalies having the same sign.

In this paper we take the view that both anomalies should
be explained to 1o using the same internal structure at the
one-loop level by some new physics which is capable of
accounting for the correct signs of the anomalies. To
explain the muon and electron anomalies, we focus on a
well motivated model which is also capable of accounting
for origin of Yukawa couplings and hierarchies in the SM.
The model we consider will account for the Yukawa
coupling constant for the top quark being nearly 1 while
that for the electron is around 107, as well as all the other
fermion hierarchies in between, as well as the neutrino
masses and mixing. In order to achieve this we shall
introduce vectorlike particles, which are charged under a
global U(1)’ symmetry. In a related previous work [9], with
a gauged U(1)" symmetry, the first family of quarks and
leptons remained massless when only one vectorlike family
is included. Here we shall modify the model to include two
vectorlike families charged under a global U(1) to allow
also the first family to be massive and avoid Z’ constraints.
Then we shall apply the resulting model to the problem of
muon and electron anomalous magnetic moments. The
considered model is based on a 2 Higgs doublet model
(2HDM) extension of the SM, supplemented by a global
U(1)" symmetry, where the particle spectrum is enlarged by
the inclusion of two vectorlike fermion families, as well as
one singlet Higgs to break the U(1)’ symmetry.” The SM
Yukawa interactions are forbidden, but the Yukawa inter-
actions with vectorlike families charged under the U(1)’
symmetry are allowed. Once the flavon develops a vev and
the heavy vectorlike fermions are integrated out, the

An example of a multi-Higgs doublet model that uses a flavor
dependent global U(1)" symmetry to explain the SM charged
fermion mass hierarchy by hierarchies of the vacuum expectation
values of the Higgs doublets is provided in [10].

effective SM Yukawa interactions are generated, as indi-
cated in Fig. 1. Furthermore, this model also highlights the
shape of the 2HDM model type I, since in our proposed
model, one Higgs doublet (which in the alignment limit
corresponds to the SM Higgs doublet) couples with the up
type quarks whereas the other one features Yukawa
interactions with down type quarks and SM charged
leptons. Regarding the neutrino sector, since we consider
the SM neutrinos as Majorana particles, we have that this
sector requires another approach relying on the inclusion of
a new five dimensional Weinberg-like operator, which is
allowed in this model and which requires both SM Higgs
doublets to be present, namely the so called type Ib seesaw
model [11].

We shall show that the heavy vectorlike leptons are
useful and necessary to explain the anomalous electron and
muon magnetic moment deviations from the SM, of
magnitude and opposite signs given in Eq. (1). A study
of such g —2 anomalies in terms of new physics and a
possible UV complete explanation via vectorlike leptons
was performed in [12], although the model presented here
is quite different, since our model is motivated by the
requirement of accounting also for the fermion mass
hierarchies. Other theories with extended symmetries and
particle spectrum have also been proposed to find an
explanation for the muon and electron anomalous magnetic
moments [12-58]. In the following we provide a brief
comparison of our model to other works, starting with the
model proposed in [49] where vectorlike leptons are also
present. The model of [49] corresponds to an extended type
X lepton specific 2HDM model of [49] having a Z, discrete
symmetry under which one of the scalar doublets and the
leptonic fields are charged. In such model the vectorlike
leptons induces a one-loop level contribution to the electron
anomalous magnetic moment whereas the muon anoma-
lous magnetic moment is generated at two-loop via the
exchange of a light pseudoscalar. On the other hand, in our
proposed model a spontaneously broken global U(1)’
symmetry is considered instead of the Z, symmetry and
the vectorlike leptons generate one-loop level contributions
to the muon and electron anomalous magnetic moments
and at the same type produce the SM charged lepton
masses, thus providing a connection of the charged lepton
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mass generation mechanism and the g—2 anomalies,
which is not given in the model of [49]. It is also worth
emphasizing that our model is very different from other
models proposed in the literature based on the Universal
Seesaw mechanism [59-76]. Universal Seesaw models are
typically based on the left-right symmetric model with
electroweak singlet fermions only, while our vectorlike
fermions involves complete families, including electroweak
doublets which are typically the lightest ones. Some
examples of theories relying on the Universal Seesaw
mechanism to explain the SM charged fermion mass
hierarchy are provided in [59-76].

In the approach followed in this paper the large third
family quark and lepton Yukawa couplings are effectively
generated via mixing with a vectorlike fourth family of
electroweak doublet fermions, which are assumed to be
relatively light, with masses around the TeV scale. The
smallness of the second family quark and lepton Yukawa
couplings is due to their coupling to heavier vectorlike
fourth family electroweak singlet fermions. Similar con-
siderations apply to the lightest first family quarks and
leptons which couple to heavy fifth family vectorlike
fermions. It may seem that the problem of the hierarchies
of SM fermions is not solved but simply reparametrized in
terms of unknown vectorlike fermion masses. However,
there are four advantages to this approach. First, the
approach is dynamical, since the vectorlike masses are
new physical quantities which could in principle be
determined by a future theory. Second, it has experimental
consequences, since the new vectorlike fermions can be
discovered either directly, or (as in this paper) indirectly via
their loop contributions. Third, this approach can also
account for small quark mixing angles [9], as well as large
lepton mixing angles via the type Ib seesaw mechanism
[11]. Fourth, the effective Yukawa couplings are propor-
tional to a product of two other dimensionless couplings, so
a small hierarchy in those couplings can give a quadrati-
cally larger hierarchy in the effective couplings. For all
these reasons, the approach we follow in this paper is both
well motivated and interesting.

Returning to our proposed model framework, we first
consider the contribution of W boson exchange with
neutrinos to the electron and muon anomalous magnetic
moments at the one-loop level. Since this model involves
the vectorlike neutrinos, the sensitivity of the branching
ratio of y — ey decay can be enhanced with respect to the
observable level and the muon and electron anomalous
magnetic moments are studied while keeping the y — ey
constraint. As a result, we find that the impact of our
predictions with W exchange at one-loop level is negligible
when compared to their experimental bound. We then
consider the contributions from the 2HDM scalar
exchange. To study the implications of the one-loop level
scalar exchange in the muon and electron anomalous
magnetic moments, we first construct a scalar potential

and derive the mass squared matrix for CP-even, CP-odd,
and charged Higgses assuming there is no mixing between
the SM Higgs h and two non-SM physical scalars H;,. A
diagonal Yukawa matrix for charged leptons implies the
absence of mixing between charged leptons, resulting in
vanishing branching ratio for the u — ey decay, which in
turn leads to a fulfillment of the charged lepton flavor
violating constraints in this scenario. In such a framework
we show that both anomalies can successfully explain both
anomalies, including their opposite signs, at the 1o level.
We present some benchmark points for both the muon and
the electron anomalies, together with some numerical scans
around these points, which indicate the mass regions of the
Higgs scalars of the 2HDM in this scenario. We also
provide some analytic arguments to augment the numerical
results.

The layout of the remainder of the paper is as follows. In
Sec. IT we discuss the origin of Yukawa couplings from a
fourth and fifth vectorlike family, within a mass insertion
formalism. In Sec. III we construct the effective Yukawa
matrices using a more detailed mixing formalism which
goes beyond the mass insertion formalism. In Sec. IV we
consider W exchange contributions to (g—2),,(g9—2),
and BR(u — ey) based on the type Ib seesaw mechanism
within our model and show that the contributions are too
small. In Sec. V we turn to Higgs scalar exchange
contributions to (g —2),,, (9 — 2), and BR(u — ey), focus-
sing on analytical formulas. Then in Sec. VI we give a full
numerical analysis of such contributions, showing that they
can successfully explain the anomalies, presenting some
benchmark points for both the muon and the electron
anomalies, together with some numerical scans around
these points, which indicate the mass regions of the Higgs
scalars of the 2HDM in this scenario. Section VII concludes
the main body of the paper. Appendix A provides a
discussion of the quark mass matrices in two bases.
Appendix B includes a brief discussion of heavy scalar
production at a proton-proton collider.

II. THE ORIGIN OF YUKAWA COUPLINGS
FROM A FOURTH AND FIFTH
VECTORLIKE FAMILY

We start by asking a question: what is the origin of the
SM Yukawa couplings? In addressing such question, we
assume that the SM Yukawa Lagrangian is the low energy
limit of an extended theory with enlarged symmetry and
particle spectrum, and arises after the spontaneous breaking
of an U(1)’ global symmetry at an energy scale as low as
TeV. Therefore, understanding the origin of the Yukawa
interaction naturally leads to the presence of another
Higgses whose masses are higher than the mass of the
SM Higgs. Furthermore, the SM Yukawa interactions are
forbidden by the global U(1)" symmetry, however the
Yukawa interaction with the vectorlike particles are
allowed. With these considerations in place, the possible
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diagrams generating the Yukawa interactions can be drawn
as indicated in Fig. 1.

There are two key features in Fig. 1, one of which is the
presence of the assumed flavon ¢ and the other one is
the vectorlike mass M. Once the flavon ¢ develops its vev,
the effective Yukawa interactions lpiLﬁij are generated
with a coupling constant proportional to (¢)/M, assumed
to be less than unity, which appears in front of the usual
Yukawa constant. The proportional factor (¢)/M plays a
crucial role in explaining why one Yukawa constant can be
relatively smaller or bigger than the other ones since the
magnitude of each Yukawa constant is accompanied by the
mass of the vectorlike particles. The effective Lagrangian in
this diagram reads in the mass insertion formalism:

LA = yi (M y_,/l )Xy (D)WL Hy g

+ X[ ) (M )y i Hy jg +Hee. o (2)
where yw,y' = Q, u, d, L, e (neutrinos will be treated
separately) and x is a Yukawa constant in the interaction
with ¢ and y is in the interaction with A as per Fig. 1.
Throughout this work, we take a view that the Yukawa
constant y can be ideally of order unity while the x is small
compared to the y. We shall also use a mixing formalism
rather than the mass insertion formalism.

A. The model with U(1)" global symmetry

For an analysis of the phenomenology described above,
we extend the SM fermion sector by adding two vectorlike
fermions, the SM gauge symmetry by including the global
U(1) symmetry and the scalar sector of the 2HDM model
is enlarged by considering a gauge scalar singlet, whose
VEV triggers the spontaneous breaking of the U(1)
symmetry. The scalar sector of the model is composed
of by two SU(2) doublet scalars H,, ; and one flavon ¢. Our
extended 2HDM with enlarged particle spectrum and
symmetries has the interesting feature that the SM
Yukawa interactions are forbidden due to the global
U(1)" symmetry whereas the Yukawa interactions of SM
fermions with vectorlike families are allowed. Furthermore,
such vectorlike families have mass terms which are allowed

TABLE L.

by the symmetry. Thus, the SM charged fermions masses
are generated from a universal seesaw mechanism mediated
by heavy vectorlike fermions. Unlike the U(1)" model
proposed in [77], we assume that the U(1)" symmetry is
global instead of local. This allows us more flexibility in the
allowed range for the scale where the U(1)" symmetry is
broken. On top of that, the up-type quarks feature Yukawa
interaction with the up-type Higgs whereas the down-type
ones interact with down-type Higgs. In this BSM model,
the SM particles are neutral under the U(1)" symmetry,
while the vectorlike particles and all other scalars are
charged under the symmetry. The particle content and
symmetries of the model are shown in Table I.

The right-handed neutrinos v, are absent in this model
since we treat the left-handed neutrinos in the lepton
doublet as Majorana particles and they are only extended
by vectorlike neutrinos. The vectorlike particles and their
partners have exact opposite charge to each other under the
extended gauge symmetry to cancel out chiral anomaly.
Lastly, the SM Higgses H,, ; are negatively charged under
the U(1) symmetry to forbid the renormalizable SM
Yukawa interactions.

B. Mass insertion formalism

The renormalizable Yukawa interactions and mass terms
for both up and down quark sectors read:

LykavatMass — yi O H g + Xl i + X301 Orr
+ V0w Hyuig + y5 i H gdir
+ XfiﬁlledeiR + Vi Ox Hadig
+ My ug + Mz[‘:llLdkR

+MZ0,, 0 + He. (3)
where i, j=1,2,3, k, I=4, 5 and H = io,H*. The
possible diagrams contributing to the low energy quark
Yukawa interaction are given in Fig. 2:

The above two diagrams correspond to the up-type quark
sector whereas the below two diagrams correspond to the
down-type quark sector. The model under consideration is
an extended 2HDM where the up-type Higgs H,, is relevant

This model is an extended 2HDM by the global U(1)" symmetry with two vectorlike families plus one flavon and reflects

the property that the SM Yukawa interactions are forbidden. All SM particles y; (i = 1, 2, 3) are neutral under the U(1)’ symmetry and
the right neutrinos v,z are not considered. Notice that this model involves two right-handed vectorlike neutrinos vz, 7y z. The SM
particles are extended by two vectorlike families where k = 4, 5 and two SM Higgses H,, , are charged negatively under U(1)’ to forbid
the renormalizable SM Yukawa interactions. The flavon field ¢ plays a role of breaking the U(1)" symmetry at TeV scale.

Field Qu wg dg Ly ex Ou wr dix Lu ew viw Ow g du Lix &u o ¢ H, Hy
SU®3)c 3 3 3 1 1 3 3 3 1 1 1 3 3 3 1 1 1 1 1 1
su2, 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 2
T R R R
u(y 0 0 0 0 0 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 -1

115024-4



FERMION MASS HIERARCHIES FROM VECTORLIKE FAMILIES ...

PHYS. REV. D 103, 115024 (2021)

H,

N

|
1
1
1
|
|
|
1
1
1
1
|
|
1

\4

A
£
B

Qir

UkR urr

=
 E N U g e\

\
\

QlL

~ de
dkr dir

F e e e e e e e e e - - -~ &
AEz

°
&~

4
4
S
-

 E N U g e\
-

\

QiL »> dir

ék}?, QZL

FIG. 2. Diagrams in this model which lead to the effective Yukawa interactions for the up quark sector(two above diagrams) and the
down quark sector(two below diagrams) in mass insertion formalism, where i, j = 1, 2, 3 and k, [ = 4, 5 and M, is vectorlike mass.

for the up-type quark sector whereas the down-type Higgs
H  is suitable for the down-type quark and charged lepton
sectors. Like in the quark sector, the Yukawa interactions
and mass terms for charged leptons can be written in a
similar way:

LYskavaiMass — ye ) Hyeg + x5 eir +x5hLi Lig
+ 8Ly Hyeip + M2 g + ML Lig
+H.c. (4)

Then, the possible diagrams giving rise to the charged
lepton Yukawa interactions are shown in Fig. 3:

As for the neutrinos, its behavior is different as compared
to the quarks or charged leptons since there exists only
Majorana neutrinos in this model so initial and final
neutrinos in mass insertion formalism diagrams must be
same. The Yukawa interactions and mass terms for the
neutrino sector are given by:

Ha
1
1
l
l
1
l
1
1
:
! My,

Y

Lir

\
\

€jiR
€kR el

FIG. 3.

Yukawa+Mass __ T I Ly =~ M=
L) = yaLitH g + X3 Lig HDxg + M 0igVig

+H.c. (5)

Here, one important feature in Eq. (5) is the presence of
the vectorlike mass M. From the two Yukawa interactions
in Eq. (5), it follows that both vz and 7 have a lepton
number +1 and they are different particles. And then taking
a look at the vectorlike mass term in Eq. (5), it can be
confirmed that the vectorlike mass is not a strict Majorana
mass because vy and Dp are different particles but plays a
role of Majorana mass since the mass term violates the
lepton number conservation. The corresponding diagram
for the neutrino sector in the mass insertion formalism is
given in Figure 4. However for our calculations we use a
mixing formalism (see next section).

The operator L;L ;H ,H , resulting from Fig. 4 gives rise
to the so called type Ib seesaw mechanism [11] which
differs from the usual type la seesaw mechanism corre-
sponding to the Weinberg operator L, ;H,H, and will be
discussed later in detail.

N““““““ef
-

\

Lir,

\
o
-

Lkr Lir

Diagrams in this model which lead to the effective Yukawa interactions for the charged lepton sector in mass insertion

formalism, where i, j =1, 2, 3 and k, [ = 4, 5 and M is vectorlike mass.
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FIG. 4. Type Ib seesaw diagram [11] which leads to the
effective Yukawa interactions for the Majorana neutrinos in mass
insertion formalism, where i, j = 1,2,3 and k, [ =4, 5 and M,
is vectorlike mass.

III. EFFECTIVE YUKAWA MATRICES USING
A MIXING FORMALISM

As seen from Eq. (2), we need to mix Higgses with the
flavon to generate the effective Yukawa Lagrangian
required to produce the SM fermion mass hierarchy.
Since there is no an extra symmetry or constraint to keep
the mixing between Higgses and flavon from taking place,
it is natural to assume their mixing.

A. The 7 x 7 matrix

Consider the 7 x 7 mass matrix for Dirac fermions:

ViR Yor V3R V4R Ysr V4R Vsr
ViL 0 0 0 Y4 (HO) Yis (H°)  x7y(#) X5 ()
VoL 0 0 0 Y (H?)  y3s(HO)  x5,(p)  x%5(e)
MY — l/:/3L ) 0~ O~ 0~ yf%'4< H 0> y§’5< H O> x1§’4<¢> xgls<¢> (6)
7295 i 0> y%2< 0> y3(3< 0> 0 0 MZ/4 les ,
Vst y?]<~0> y5W2<~0> Yg/3<~0> 0 0 Mg/4 M?S
G | () b)) ahle) ML ML 00
P | (e W) %) MY oML 00

with the coefficients y and x being Yukawa constants where
the former is expected to be of order unity whereas the latter
is smaller than y. Furthermore, the 125 GeV SM like Higgs
boson H will corresponds to the lightest of the CP even
neutral scalar states arising from H,,, H;, and ¢, whereas M
is the vectorlike mass. The column vector located at the
lower left block in Eq. (6) consists of left-handed particles
while the row vector at the upper right block are made up of
right-handed particles. The zeros in the 3 x 3 upper block
in Eq. (6) mean that no SM Yukawa interactions take
place due to charge conservation as well as zeros in two
2 x 2 blocks. Since we are interested in explaining the

muon and electron anomalous magnetic moments in this
model, we first focus on the lepton sector in the next
subsection and the method used for obtaining the low
energy SM Yukawa matrices in the lepton sector can be
applied to the quark sector in the same way with a slight
change so that the quark sector will be discussed in
Appendix A.

B. A convenient basis for charged leptons

From Eq. (6), we can take a specified basis by rotating
some fields as below:

€IR €rR €3R €4R esg Z4R isR
L 0 0 0 0 Ysvg 0 x5,
L2L O O O y54yd y§5yd 0 X§5U¢
e — Lsp 0 0 0 Yuva Yista X505 X550, -
Ly 0 0 Vi3V 0 0 My ML
L. | %04 ¥ova ¥ava 0 0 0 M
eur 0 x5v, xpvy My 0 0 0
es. X5 Vp X5V X309 M5y MSs 0 0

115024-6
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where v, = (HY) and v, = (¢). We start by pointing out
the reason why we take this specific basis for the charged
leptons. The reason is that the strong hierarchical structure
of the SM fermion Yukawa couplings can be implemented
by the rotations with a simple assumption in this model to
be specified below. In order to arrive from Eq. (6) to Eq. (7),
we rotate the leptonic fields Ly, and Ls; to turn off M%, and
rotate eqg and esg to turn off M{s. Then, we can rotate L,
and L5, to set x1L4v¢ to zero and then rotate L,; and Ls; to
set x%,v, to zero. The same rotation can be applied to
€1r2r 3R O set y§, 404 to zero. Finally, we can further
rotate L, and L, to switch off y{,v, and this rotation also
goes for ey o to switch off xj,v,. The above given mass
matrix includes three distinct mass scales which are the vev
v, of the neutral component of the Higgs doublet H ;, the

|

vev v, of the flavon ¢ and the vectorlike masses M, whose
orders of magnitude can be in principle be different.
Therefore, the mass matrix will be diagonalized by the
seesaw mechanism step-by-step instead of diagonalizing it
at once. This mechanism is also known as universal seesaw,
and was proposed for the first time, in the context of a left-
right symmetric model in [59].

C. A basis for decoupling heavy fourth
and fifth vectorlike family

As mentioned in the previous Sec. IIIB, the mass
matrix in Eq. (7) involves three distinct mass scales v,
vy, and M so it is possible to split this whole mass matrix
by partial blocks to group mass terms with vev of H, as
in Eq. (8)

€lR  exR €3r  €sr €5 Lisr  Lsg
L 0 0 0 0 yisuy 0 xisv,
Ly, 0 0 0 Y504 Y5504 0 xhuy

Me — Z‘3L 0 0 0 y§4yd y;SUd X§4U¢ x:l;‘quj (8)
| Ly 0 0  Yyvg O 0 My ML

Lsp | Y§va Yova Ygva 0 0 0 Mk
ear 0  xfHv, xv, MG 0 0 0
B | xve xous vy Mi Mi |00

and then elements of the blocks involving ¢ can be rotated away to make those zeros by unitary mixing matrices of Eq. (10)

as per Eq. (9):

€IR  €R  €3R €4r  €5R I:4R I:SR
L, 0 0
Ly, 0 0

Me — l:J3L y:;ﬂvd ~0L 0 ’ 9)

Ly Mgy MQLS
Ls; 0 Mk
L 0 0 0 Mg, 0 0 0
&1 0 0 0 MY M& 0 00

where the indices @,  run from 1 to 5, and tilde, primes
repeated in the mass matrix mean that the parameters are
rotated. The unitary 5 x 5 matrices are defined to be

Vi = Vﬁs V%s V%s st VE VLV,
Ve =VisVisVisVisViaVaVia, (10)

where each of the unitary matrices V4 5 are parameterized
by a single angle 0,4 5 describing the mixing between the ith
chiral family and the 4,5th vectorlike family. The 5 x 5

Yukawa constant matrix in a mass basis (primed) can be
diagonalized by the unitary rotation matrices as below:

(11)

From Eq. (7), we can read off the 5 x 5 upper block and
confirm that the (3.4),(1,5),(2,5),(3,5) mixings in the L
sector and (2,4),(3,4),(1,5),(2,5),(3,5) mixings in the e
sector are required to go to the decoupling basis. The
unitary matrices of Eq. (10) and mixing angles appearing in
the unitary matrices are parameterized by

~le

o = Vi3 Vi
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Given the above unitary rotations, the 5 x 5 Yukawa matrices are computed in terms of the mixing angles and the upper
3 x 3 block would be the effective SM Yukawa matrix. Assuming all cos 6 to be 1 and neglecting order of € square or more
than that, we have a simple 3 x 3 Yukawa matrix of Eq. (14).

Slf5y§3 + ¥95055
S§5y§3 + V54054 + 35055
s§4y§3 + S§5y§3 + ¥54054 + ¥55055

L e e pe L e e pe
s15Y51 T Vis07s S15Y52 + V15035
L e e pe L e e pe e pe
8§35¥51 + ¥3507s  $35V5 1 54054 + V55035

S%Sygl + 55015 S§5y§2 + ¥54034 + 35035

)’fj = (14)

D. A convenient basis for neutrinos

The relevant Yukawa and mass terms of the neutrino sector give rise to the following neutrino mass matrix:

Ly Ly Ly Usg  Usg  Dagp  Dsp

Ly 0 0 0 Vi, Wisv, Xy xbug

Ly 0 0 0 Yaalu  YisUu X504 X3svg

yr Ly, 0 0 0 VoaUu  YisUu X5uvq  Xisvg (1)

| e Vialu  Y3alu Y5404 0 0 My, M,
l_/SR ylfsvu y;svu ylgsvu 0 0 MZS M;S

Dag g oy Xy, My, M 0 0

Usg XsUg  Xh5vq  XisUg Mg, M5 0 0

Here, the zeros in the upper 3 x 3 block of Eq. (15) mean
that neutrinos remain massless in the SM. Therefore, the
SM neutrinos can be massive via the inclusion of two
vectorlike families. In order to make this mass matrix as
simple as possible, the only choice left is to rotate v4z and
Usg to turn off MY since rotations between Ly, 5, 3, are
already used in the charged lepton sector.

such W boson exchange contribution also involves virtual
neutrinos in the internal lines of the loop, we revisit the
mass matrix for neutrinos. In this mass matrix, we remove
fifth vectorlike neutrinos vsp and Dsp since they are too
heavy to contribute to the phenomenology under study. As
mentioned in the previous section, we stick to a condition
where the coefficient y is expected to be of order unity,
whereas the coupling x is expected to be smaller than y.
Such condition can be easily seen by substituting the
coefficients y%, by y¥ and the coefficients x%, by ey? where
€ is a suppression factor. Putting all these considerations
together, the mass matrix for neutrinos in Eq. (15) after
electroweak symmetry breaking takes the form:

IV. W BOSON EXCHANGE CONTRIBUTIONS
TO (g-2),.(¢-2)., AND BR(u — ey)

Within the framework of our proposed model, we start
by investigating the muon and electron anomalous mag-
netic moments with W boson exchange first. Given thaﬁ

Vi 1253 V3 Usp  Ugg
vy 0 0 0 Vv, ey
2 vl
M~ vy 0 0 0 Ny €2V | (0 mp 16
~ O 0 O v vl = mT M ) ( )
Vs, Y3U, €Yy304 D N
-y 4 v U 14
V4R Y1Uu Yo Uy y3Uy, 0 My,
~ ! !/ !
V4R €Y vg €Y3V4 €Y5Uy My 0

where v,(v,) is the vev of H,(H), v, runs from 246/1/2GeV ~ 174 GeV to 246 GeV and v2 + v3 = (246 GeV)?.
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A. Type 1b seesaw mechanism

Now that we constructed the neutrino mass matrix for this
task, the next step is to read off the operator which gives rise
to the neutrino mass from the mass matrix. Generally, the
well-known operator for neutrino mass is the Weinberg
operator (type la seesaw mechanism) %L,L 7HH. A main
feature of the Weinberg operator is the same SM Higgs
should be repeated in the operator, however that property is
not present in our model since the Higgs doublets H,, ; are
negatively charged under the U(1)’" symmetry, which
implies the corresponding Weinberg operator having such
fields will not be invariant under the U(1)' unless an
insertion of a quadratic power of the gauge singlet scalar
¢ is considered. However we do not consider the operators
A (L) (HLS)(#*)? and 35 (LiH g)(HLS)¢? in the
neutrino sector, since they are very subleading and thus
will give a tiny contribution to the light active neutrino
masses. Instead of relying on a seven dimensional Weinberg
to generate the tiny masses for the light active neutrinos, we
take another approach named type 1b seesaw mechanism
(we call the Weinberg operator “type 1a seesaw mechanism”
to differentiate with) where the mixing of different
SU(2) Higgs doublets can appear satisfying charge con-
servation. Diagrams for the operators are given in Fig. 5 for
comparison:

The diagrams in Fig. 5 clearly tell the difference between
Majorana mass and vectorlike mass. They share a common
property that they violate the lepton number conservation,
whereas the particles appearing in a Majorana mass term
are same but those ones involved in vectorlike mass terms
|

U:UA‘UB

are different. As the type 1b seesaw mechanism only works
in this model, we make use of this seesaw mechanism for
the analysis of neutrinos. With the operator, the renorma-
lizable Lagrangian for neutrinos can be written as:

LyvkavatMass — W H g + €y¥ Lip H g + M Dvig
+ H.c., (17)
where i=1, 2, 3 and k=4. The renormalizable

Lagrangian of Eq. (17) above the electroweak scale gen-
erates an effective Lagrangian after decoupling the heavy
vectorlike neutrinos, which is suitable for study of low
energy neutrino phenomenology. The effective Lagrangian
for neutrino at electroweak scale is given by [11].

L4=5 = d=S((LTH,)(HEL) + (LTHG)(HLL))).  (18)

=5 ;
{j 1s suppressed by a factor of the

vectorlike mass M. The neutrino mass matrix of Eq. (16)
can be diagonalized by the unitary matrix U as below:

0 m? ding
UT< D)U:<m diag) (19)
mp MN 0 MN

where me™ is a diagonal matrix for the light left-handed

where the coefficient ¢

neutrinos v;; and M5 is that for the heavy vectorlike
neutrinos v4g, U4r. Here, the unitary mixing matrix U is
defined by multiplication of two unitary matrices which we
call U, and Up, respectively [78]:

0 © Jcl
U,=exp ~ 2 . | atleading order in®
-0" 0 —_@" -9
2

U 0
Uy = ( PMNS )
0 I

(20)

The unitary matrix Upyys in Up is the well-known Pontecorvo-Maki-Nakagawa-Sakata matrix and is parametrized

by [11,79].
H H ﬁu Hd
i i ; ;
| | | |
| ! 1 |
| | 1 1
| | 1 1
| | | |
| ! 1 |
1 ! 1 !
l l | |
| v [ ! y !
| MY, | ! MY ;

L; »- L L ¢ Lj L; - L L < Lj
VkR UkR VkR Ukr
FIG. 5. Diagrams which lead to effective Weinberg operators for the Majorana and vectorlike mass in the mass insertion formalism,

where i, j = 1, 2, 3 and k = 4, respectively. The left is the Weinberg operator(or type la seesaw mechanism) in which mass M is
Majorana mass and the right is Weinberg-like operator(or type 1b seesaw mechanism) in which mass M is vectorlike mass.
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1 0 0 cosf;; 0 sin@zecr cos, sinf;, 0\ [e @2 0 0
Upvns = | 0 cos@y;  sinfy 0 1 —sin#;, cosf, 0 0 e 2 0|,
0 —sinfy; cosby —sinf;;e%r 0 cosf; 0 0 1 0 0 1
(21)
|
where the Majorana phase o' is set to zero in this model. 00" 1mim
.. . . _ J D"*D
The mixing matrices U, p are unitary, however the 3 x 3 Nij = > T2 M2
upper block of the unitary matrix U is not unitary due to the : N 5
factor (I — ®@®T/2) for the light neutrinos. An interesting — D2V b @2 ) o U e
: e = YEVY + etugye Y vty (26
feature of the unitary matrix U is it is unitary globally, but 2M'ﬁ< e ) = My (26)

nonunitary locally and this nonunitarity contributes to
explain muon and electron anomalous magnetic moments.
Replacing the unitary matrices in Eq. (20) back to Eq. (19),
the result is simplified with the assumption My > mp, to
the conventional seesaw mechanism:

o =]
O~mp My
diag y ¥ ~ T ag—1 —
Upnins Mo UPMNS ~—mpMy mp =—m
MSE ~ My, (22)

where m is the effective mass matrix resulted from Eq. (16).

€V, Vg
ij = v
My,

3

OV 4+ ve'y). (23)

Therefore, smallness of the light neutrino masses can be
understood not only from mass of vectorlike mass M, but
also from the suppression factor € and the presence of ¢
allows more flexibility in the allowed mass values of the
vectorlike neutrinos. Revisiting nonunitarity part for the
light neutrinos from the unitary matrix U [78,80], it reads:

0,0]
3 Upmns = (I - ’1ij)U PMNS (24)

The nonunitarity # is associated with the presence of the
heavy vectorlike neutrinos and can be derived from a
coefficient of the effective Lagrangian at dimension 6 [81]:

L4760 = c4=S((LTH,)ip(HIL)) + (LTH)ip(H}L;)) (25)

Once the SM Higgs doublets in Eq. (25) develop its vev,
the Lagrangian at dimension 6 causes nondiagonal kinetic
terms for the light neutrinos and it gives rise to deviations of
unitarity when it is diagonalized. The deviations of unitarity
can be expressed in terms of the coefficient at dimension 6
nij = v? c /2.

From the fourth term in Eq. (26), the term with €® can be
safely ignored due to both relative smallness of v, and the
suppression factor e. Thus, the deviation of unitarity 5
consists of the vectorlike mass M}, and the Yukawa
couplings y7;. As an interesting example, it is possible
that the Yukawa couplings y;; can be obtained from the
observables such as the PMNS mixing matrix and two mass
squared splitting, Am?2,, and Am2,, in the neutrino osci-
llation experiments. Since the hierarchy between the light
neutrinos is not yet determined, there are two possible
scenarios, normal hierarchy(NH) and inverted hierarchy
(IH), and the lightest neutrino remains massless, whereas
two other neutrinos get massive. The Yukawa couplings

y¢*" for the NH(m; = 0) are determined by

yi = %(v L+ p(Upyins)iz + V' 1 = p(Upuns) i)
i = j—%(v 1+ p(Upmns)iz = V1 = p(Upuns) i) (27)

where y and y’ are real numbers and p=(1—+/r)/(14++/r)
with r=|Am2,|/|Am2,,| = Am3,/Am3},, whereas the
Yukawa couplings y?* for the IN(m3; = 0) are

Vi = %(V L+ p(Upmns)ia + V1 = P(Upuns) i)
—V1=p(Upyns)in):  (28)
where =(1=V1+4+r/(1+V1+7r)

|Am301|/|Am§tm| = Am%I/Amgz

y{ = jﬁ(v 1+ p(Upnns ) i2

with r=

B. The charged lepton flavor violation(CLFV)
u — ey decay

Consider the three light neutrinos in the SM for the
CLFV u — ey decay first. In this case, the unitary mixing
matrix becomes just the PMNS mixing matrix and the GIM
mechanism which suppresses flavor-changing process
works, therefore it leads quite suppressed sensitivity for
BR(i — ey) about 107> [82], which is impossible to
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Y

Hr €L

v

FIG. 6. Diagrams for CLFV u — ey decay with all neutrinos. Here n =1, 2, 3, 4, 5.

observe with the current sensitivity of 4 — ey decay. This
impractical sensitivity can be enhanced to the observable
level by introducing the heavy vectorlike neutrinos which
give rise to deviation of unitarity. With the presence of
heavy vectorlike neutrinos, the GIM mechanism is gone
and the factor suppressed by GIM mechanism can survive
with a factor of deviation of unitarity, which plays a crucial
role to increase significantly order of theoretical prediction
for y — ey decay [83]. Therefore, the strongest constraint
for deviation of unitarity in the modified PMNS mixing
matrix comes from CLFV u — ey decay. The possible one-
loop diagrams for the CLFV pu — ey with all neutrinos in
this model are given in Figure 6.

The amplitude from above diagrams in Figure 6
reads [82]:

M(u - ey) = it io,q"(F + Far®)u,e*

= i,16,,q" (AgPg + AP )u,e™,  (29)
where u is Dirac spinor for the muon and electron, g is four
momentum of an outgoing photon, F'|, are form factors,
A; p are left- and right-handed amplitude defined to be
A r=F £ F, and lastly P, p are projection operators.
From the amplitude, the helicity flip between initial
particle and final particle should arise and this makes
the helicity flip process takes place on one of external legs
since the W gauge boson couples only to left-handed fields.
Comparing the left diagram with the right, the left is
proportional to the muon mass, while the right is propor-
tional to the electron mass, which means that impact of the
right is ignorable. The unpolarized squared amplitude | M |?
takes the form:

IM|* = mﬁ(AR +AL)* mi(AR)z (30)
Then, the decay rate is given by
MPP m 2
r = =—1A 31
= ) = g = e (D

Hr > €R
er
where Ay is expressed by (82,841
2
ge my, 1 Iné
AR: — UanTnF(xn) |:1——
1287:2M%Vn:;,4.5 36-1
1 Elné
— -1 32
i) e

Taking the unitary gauge into account, £ — oo, the
additional &-dependent terms in Ay all are cancelled by
contribution of Goldstone bosons so Ay is gauge invariant.
Substituting the gauge invariant A back into the decay rate
of Eq. (31) and dividing the expanded decay rate by the
total muon decay rate I'(u — ev) = Grm; /19273, we
have the prediction for 4 — ey decay [11,82]:

L(u — ey)
T(u = ev,2,)
_ 3a |30 U UL F(x,) P2
- 32x (UUT)U(UUT)zz ’

BR( — e7) =

(33)

where x,, = M?%/M3, and the loop function F(x,) is

10 — 43x,, + 78x% — (49 — 18log x,,) x5 + 4x;
F(xn) = 3(xn — 1)4 .

(34)

Numerator in Eq. (33) can be simplified by separating
the light neutrinos and heavy vectorlike neutrinos as below
(Contribution of the fifth neutrino 7,5 is safely ignored both
by the suppression factor ¢ and by relative smallness of v,
compared to v,,):

3Since the PMNS mixing matrix is multiplied by a factor of
deviation of unitarity, it is not unitary anymore. Therefore, the
first term of sum over neutrino eigenstates in Eq. (28) of [82] does
not vanish and come in our prediction with a loop function F(x,,).

115024-12



FERMION MASS HIERARCHIES FROM VECTORLIKE FAMILIES ...

PHYS. REV. D 103, 115024 (2021)

v

Hr

A\

Ky

Hr,

v

K,

Y
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FIG. 7. Diagrams for muon anomalous magnetic moment with all neutrinos. Here n = 1, 2, 3, 4, 5.

x~ |U2in-1F(O) + U24ULF(X4)|2

5 . 2
> U, U} Fx,)
n=1

Uin,Tl = =Ny — M1 = =21y
U24U4Tu = 0407, = 2y

Sl P~ Foo)? (39)

5
Z Uan UrTll F(xn)
n=1

The final form for the CLFV y — ey decay in this model
reads:

3a,
o 1M1 (Flxs) = F(0))%, (36)
7
where a,,, is the fine structure constant. We find that our
theoretical prediction for the u — ey decay can be
expressed in terms of the deviation of unitarity 7.

BR(x — e7)

C. The anomalous muon magnetic moment g —2

We derive our prediction for the muon anomalous
magnetic moment in this section and confirm the derived
expression can be consistent with an expression of the
theoretical prediction for 4 — ey in Refs. [82,85]. Consider
two possible diagrams for muon anomalous magnetic
moment at one-loop level in Fig. 7.

The amplitude for the muon anomalous magnetic
moment at one-loop level is

M(Aa,) = i,ic,,q" (Fi + Fay®)u,e*
= i,i6,,q"(AgPg + AL P )u,e™.  (37)

Unlike the CLFV p — ey decay, muon anomaly dia-
grams have the same structure for helicity flip process.
So we conclude A is equal to A; and can make use of other
expression of this amplitude to derive our own expression
for Aa, [85].

V= ﬁ#iaaﬁqﬂemﬂ (Aﬁ’,’, + ysAEﬂ)uue*“
= it ica5q em, (AN, + AL, Pr + (AM, — AE )Py )u,e*
(38)

Comparing Eq. (37) with Eq. (38), we confirm that

Agp = emﬂ(Aﬁ’l’l +A5ﬂ)
Ap = em, (Al — AL ). (39)

Here, we can use the condition that A, = A; identified
in Fig. 7 and can rearrange A; p in terms of A,}Z;E , which are
essential to derive our theoretical muon anomaly predic-

tion. Then, we find our desirable form A%, for the muon
anomalous magnetic moment.

1 7 1
Al =— A= N U,,U3,F
W e, R T 12822 M3, 20U F ()

W n=1234.5
E _

AE =0. (40)
Using the definition for both the muon anomalous

magnetic moment and branching ratio of y — ey decay

in [85], we can check our analytic argument for the

observable and constraint are correct.

_AM 2
Aay, = Aymy

3(4x)’aem

BR(x — e7)
4G2F

(A% +1ALP). (41)

One difference between Aj“ and Ap g is that AILE s
only determined by the internal structure of the loop in
Figure 7, whereas A,  is the extended factor by multiply-
ing A%,’E by the helicity flip mass in one of the external
legs. Therefore, it is natural to think A}L% is the same as
A,’Z‘E since their internal structure of loop are exactly same.”
The muon anomalous magnetic moment and the branching
ratio of u — ey take the form:

*One can concern the coefficient at the vertex with electron.
However, this change is already reflected on the loop integration
Ap of Eq. (32) by U,,. For the muon anomaly, the coefficient is
simply replaced by U,,, therefore, modification of the coefficient
at the vertex does not harm our argument.
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2

ay m;
Aa, = ——— U, U; F
aﬂ 327TM%V,1:1,2’3'4’5 2n%Y 2n (xn)
3, . 2
BR4~ o) = | Y U U Fw)| @)
Tl =i23.45

where the ayy is the weak coupling constant. As for the
branching ratio of 4 — ey in Eq. (42), we showed that
substituting A,,, back into the branching ratio in Eq. (41) is
exactly consistent with the one in Eq. (33). Expanding the
unitary mixing matrices in the muon anomaly prediction in
Eq. (42), yields the following relation:

Ady = b (1= 21)F(0) 4+ 2F (1)), (43)

Looking at Eq. (43), it is clear that the SM part which is
without # and the BSM having # are entangled together.
We arrive at the right prediction for the muon anomaly at
one-loop by removing the SM part from Eq. (43)

2
ay m
Aa, — w H

u = EM—%V’Yzz(F(M) - F(O))‘ (44)

Similarly to the branching ratio of 4 — ey decay, it can
be confirmed that the prediction for the muon anomaly also
consists of the factor of deviation of unitarity #.

D. The anomalous electron magnetic moment g —2

As in the muon anomalous magnetic moment, the same
diagrams with external particles replaced by electrons can
be generated in Fig. 8.

Using the complete form of the muon anomaly predic-
tion in Eq. (44), we can derive the right prediction for the
electron anomalous magnetic moment with slight modifi-
cations m, — m,, My = Ni1-

Ay m%

a, = (F(xy) - F(0)).

=——1
¢ 16z M3,

(45)

€L

A 4

€R

FIG. 8.

E. Numerical analysis of W exchange contributions

The presence of heavy vectorlike neutrinos leads to the
deviation of unitarity and the observables Aa,, and
constraint BR(y — ey) can be written in terms of the
factor of nonunitarity 7.

3a,,,
BR(x — er) =~ a1 P (F(xs) = F(0))
2
ay m
Aa, = EM—%ﬂzz(F(M) - F(0))
2
awy N,
Aa, = EM—%V'“ 1 (F(x4) = F(0)). (46)

1. The branching ratio of u — ey decay

We consider the branching ratio of ¢ — ey decay first.
Since we assume that mass of heavy vectorlike neutrinos
are heavier than 1 TeV, the value of F(0) for the light
neutrinos converges to approximately 3.3, while that of
F(x4) for the heavy vectorlike neutrino converges to 1.3.
Therefore, the branching ratio of y — ey decay can be
reduced to[11].

3a,,,

8
< 3aem ‘
- 2z 2

The nonunitarity n of Eq. (26) consists of four free
parameters: mass of heavy vectorlike neutrinos M7, a real
number y, a CP violation phase §, and a Majorana phase a.
The experimental branching ratio of y — ey decay con-
strains the minimal parameter space in terms of MY, and y,
while setting up two phases J, a which maximize or
minimize the branching ratio of y — ey [11], and the
minimal parameter space is shown in Fig. 9.

The left plot in Fig. 9 is an available parameter space for
mass of the vectorlike neutrino versus the free parameter y
times SM up-type Higgs vev v,. The blue bold line
corresponds to bound of the branching ratio of u — ey
decay at the normal hierarchy with CP violation phase
0 =0 and Majorana phase @ = 0 and this line can be

BR(u — ey) = 1 [*(F (x4) = F(0))?

i (47)

v

o
&~
\ 4

€R
Vn er

Diagrams for electron anomalous magnetic moment with all neutrinos. Here n =1, 2, 3, 4, 5.
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FIG.9. The left plot is an available parameter space for two free parameters: mass of vectorlike neutrino M%, and SM up-type Higgs

vev v,. Here, the free parameter y is set to 1. The right plot is the case where vev of the up-type Higgs is constrained from 246/+/2 ~ 174

to 246 GeV or from tanf = 1 to 50 in a same way.

relaxed up to the blue dotted line where 6 =0, a = 2.
The green bold(dotted) line corresponds to the inverted
hierarchy with 6 = z/2(0) and a = 9%(0). Since we are
especially interested in the range of SM up-type Higgs vev
v, from 174 to 246 GeV, the right plot consistent with the
interested range is extracted from the left after replacing v,,
by tanf = v, /v, using the relation v2+ 12 =(246GeV)?.
As for the constraint of deviation of unitarity # with the
CLFV u — ey decay at 1o, it is given by [86,87].
|1’]21| S 84 X 10_6. (48)

2. The muon and electron anomalous

magnetic moments Aa, ,

As in the constraint for 7,; in Eq. (48), the other
nonunitarities 7,1 5, for the electron and muon anomalous
magnetic moment are given by [11,86].

n <4.2x107* (for NH),
N2 <2.9%x 1077 (for NH),

<4.8 x 107* (for IH)
<24x 1077 (for IH).  (49)

With the constraints 7, 5, in Eq. (49), we can calculate
impact of the muon and electron anomalous magnetic
moments at NH (IH) using Eq. (46).

2

aW m —
Aaﬂ = EM—%ﬂzz(F(X4) - F(O)) ~ —66(—55) x 10 16
2
Aa, =W Ze p (F(xy) = F(0)) = —2.2(=2.6) x 1077

- 16z M3,
(50)

There are two interesting features in the above prediction
for the muon and electron anomalous magnetic moments.
One feature is sign of each prediction. As mentioned in the
introduction, this prediction with the W exchange can not
flip the sign of each anomaly. In order to explain both
anomalies at 1o, the prediction for both anomalies with
W exchange requires additional contributions such as Z’ or

scalar exchange. Another feature is magnitude of each
prediction. For the muon anomaly, the experimental order
of magnitude at 16 is about 10~°, however our prediction is
much smaller than that of the experimental bound as well as
the electron anomaly, which means the nonunitarity derived
from the presence of heavy vectorlike neutrino can not
bring the anomalies to the observable level. This inadequate
prediction with W exchange has been a good motivation to
search for another possibility such as scalar exchange.

V. HIGGS EXCHANGE CONTRIBUTIONS
TO (g-2),.(g-2),, AND BR(u — ey)

The relevant sector for the muon and electron anomalous
magnetic moments with scalar exchange is the charged
lepton Yukawa matrix which can be expressed in the mass
insertion formalism as,

ol ’ (9)
Vi =0 YuXi VX Me.
44
0 yiuxir YiuXis
YisXs1 YisXsy  YisXss (@)
+ | YisX§51 ¥isXS,  V3sXSs Me
55
VisXS1 VisXSy  V3sXSs
yglx%S ygzxfs y?sxfs (@)
+ | Y635 YixEs  ¥5xSs ML
e L e L e L 55
Ys51X35  YsoX3s  Vs3X3s
0 0 0 )
+10 0 0 RLEE (51)
M,

0 0 x5yis

The effective Yukawa matrix of Eq. (51) in the mass
basis is diagonalized by the universal seesaw mechanism
due to involving a few of different mass scales. Therefore,
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FIG. 10. Diagrams contributing to the muon anomaly (left) and the

and A, are CP-odd scalars in the physical basis.

the only diagonal components should alive in the mass
matrix. In order to make the mass matrix diagonal, we

e __ e __ e e _ L _
assume that y5, =xi; =y 152535 = 51,5053 = X535 =
Y5, 53 = 0. Then, the mass matrix is reduced to

0 0 0 0 0 O
V=10 yuxy 0 <¢e> +{0 00 <¢e>
M, Mss
0 0 0 0 0 O
y;lx%s 00 (¢)
+ 0 0 0 L
My,
0 0 0 0 0 x§yis
y§1slfs 0
Vij = 0 Y345%4 0 ) (52)
0 0 Vi3855
where  sis ~ i () /ML, s, = x5 (P)/MS,,  shy~

xk (¢)/ME, and the diagonal elements from top-left to
bottom-right should be responsible for electron, muon and
tau Yukawa constants, respectively. After removing all
irrelevant terms to both anomalies and applying the
assumption, the 7 x 7 mass matrix in the interaction basis
is also reduced to as below:

€IR €2R €4R ZSR
Ly 0 0 0 xisuy
Me=| Ly 0 0 Yuva O (53)
Ls; yevg 0 0 M,
ey 0 xihv, My 0

The reduced charged lepton mass matrix of Eq. (53)
clearly tells that no mixing between charged leptons arise
so the branching ratio of 4 — ey is naturally satisfied under
this scenario. The scalar exchange for both anomalies can
be realized by closing the Higgs sectors in Fig. 3 as
per Fig. 10.

Y

electron anomaly (right) where H, , are CP-even non-SM scalars

In Figure 10, the CP-even non-SM scalars H;, and
CP-odd scalars A , appear as a result of mixing between
Higgses H,, H;, and ¢ in the interaction basis. The Higgs
sector in the interaction basis is defined by

H+
.= <11u +J5 (ReHY + iImHO))’
H,— (vd—i— \/-(ReHO + zImH0)>’
Hy

1 (vy + Regp + ilmgp). (54)

=5

For consistency, we equate v,, v, and vy 10 vy, vy, and
v3, respectively.

A. The 2HDM scalar potential

The scalar potential of the model under consideration
takes the form:

V =y} (H, H)) + g3 (HHY) + g3 ()
127 + (92 + A (HHL) + do(HH)
+ A3 (H HY) (H HY) + Ay (H H ) (HyHY)
+ As (e HLH)g? + H.c) + dg(dgp*)?
+ 7 (") (H HY) + 45(hp™) (HHY), (55)

where the 4; (i = 1,2, ..., 8) are dimensionless parameters
whereas the p; (j = 1, 2, 3) are dimensionful parameters
and pg, is a dimensionful soft-breaking parameter. We
consider the U(1)" symmetry as global in this model so our
model does not feature Z' boson and the scalar potential
requires the inclusion of the soft-breaking mass term
—u2,[#* + (¢*)?] in order to prevent the appearance of a
massless scalar state arising from the imaginary part of ¢.
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The minimization conditions of the scalar potential yield the following relations:

1 2,51)21)%
u = =21,07 — 1303 —5/171% + 0

1 /151]21]1
ﬂ% — —2/12’[)% - 131)% - 5/181/% + 252 s

U3 = —Agv3 — A3 + v, (2450, — Ayvy) — 242, (56)
B. Mass matrix for CP-even, CP-odd, neutral, and charged scalars
The squared mass matrix for the CP-even scalars in the basis (ReH?, ReHg, Reg) takes the form:
2
4)411)% +1521/517/3 —%157J% + 2/13U1U2 \/51)3(—/15U2 +A7U])
M%‘P—even = - %jﬁ U% + 2/13 (%) 4/1203 + % \/§U3<—/15 (1 + ﬂgl)z) (57)
V203(=Asvz + A701)  V203(=Asv; + Asv2) 20603
|

From the mass matrix given above, we find that the CP-even Je = 4010, 2
scalar spectrum is composed of the 125 GeV SM-like Higgs > 3 3
h and two non-SM CP-even Higgses H | ,. Furthermore, we ’ ) 422
assume that no mixing between the SM physical Higgs / and A= -2 As = —22 A3, (58)
the two non-SM CP-even Higgses H,, arise and this U Y3

assumption constrains the (1,2), (1,3), (2,1), and (3,1)
elements of CP-even mass matrix of Eq. (57). The con-
straints are given by the following decoupling limit scenario

and then the CP-even mass matrix of Eq. (57) with the
constraints is simplified to

40,07 + 203y 0 0
2 2 _ 41}21/‘2
M2, = 0 47503 + 2025 \/§v3< s+ Am) (59)
0 \/51)3 (— 41)521)2 /13 + /18 Uz) 2/161)%
3

In the above given decoupling limit scenario, chosen in
order to simplify our analysis, the CP-even neutral scalar
states contained in the SU(2) doublet H,, will not mix with
the CP-even neutral ones contained in H ;. In such limit, the
neutral CP-even states of H,, will not feature mixing with
the gauge singlet scalar ¢. Thus, the lightest 125 GeV CP-
even scalar of our model will have couplings to the SM
particles close to the SM expectation, which is consistent
with the current experimental data.

Diagonalizing the simplified CP-even mass matrix, it
reveals masses of the physical SM Higgs 4 and non-SM
CP-even scalars H;, in the physical basis (h, H,, H,)

T 2 — s 2 2 2
RCP—evenMCP—evenRCP—even - dlag(mh, mHl s mHz)'

(60)

The SM Higgs £ is appeared as ReH" itself and the non-
SM CP-even scalars H,, are the states which ReHY is

|
mixed with Reg. Regarding the CP-odd scalar sector, we
find that the squared mass matrix for the CP-odd scalars in
the basis (ImHY, ImHY, Im¢) is given by:

151)21)2 1 2
0, : 34503 V225005
2 _ A 2
MCP—Odd - %AS 1)% 521221]3 \/5/15 VU3
V2Asva03  V2Asv1v3  dAsv v, — 4,u§b

(61)

The squared CP-odd mass matrix is diagonalized in the
same way as in the CP-even mass matrix and the CP-odd
physical basis is given by (G2, A, A,) where G is the
massless Goldstone bosons associated with the longitudinal
components of the Z gauge boson, whereas A; and A, are
massive non-SM CP-odd scalars
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REp_oaaMp_oaaRcp-oaa = diag(0, my, my,).  (62)

Furthermore, the squared mass matrix for the electrically
charged scalars is given by:

/15121)

/141)2 + 20,

/15@11)1

/141} + 20,

141}11)2 +l/157)§) (63)

2 —
Mcharged - <
/141)1’112 + 51503

The charged scalar mass matrix can be diagonalized in
the basis (Hy, H5) as in CP-even or -odd mass matrix:

RZhargedMghargedRCharged = diag (0, m%.li)- (64)

Then, the electrically charged scalar sector contains the
massive scalars H* and the massless electrically charged
scalars G, which correspond to the Goldstone bosons
associated with the longitudinal components of the W+
gauge bosons. In the following sections we will analyze the
phenomenological implications of our model in the Higgs
diphoton decay as well as in the muon and electron
anomalous magnetic moments.

C. The Higgs diphoton signal strength
The rate for the h — yy decay is given by:

2
Ao h

2567312

C(h—yy)= ZfahfchQchFl/z (pr)

Coytpy+0
+ahWWF1(PW)+WTmF0(PH§) . (65)

where p; are the mass ratios p; = 4M2 with M; = mg, My;

a,,, 1s the fine structure constant; N is the color factor
(N¢ = 1 for leptons and N = 3 for quarks) and Qy is the
electric charge of the fermion in the loop. From the
fermion-loop contributions we only consider the dominant
top quark term. Furthermore, C,p=py+ is the trilinear
coupling between the SM-like Higgs and a pair of charged
Higges, whereas a;,, and a,yw are the deviation factors
from the SM Higgs-top quark coupling and the SM Higgs-
W gauge boson coupling, respectively (in the SM these
factors are unity). Such deviation factors are close to unity
in our model and they are defined as below:

apy = 1, apww
1 0 ( )
=73 an v;(RL,_ (h,H,,H,),
mah A l( CcpP even)u( 1 2)j

U1

- (66)

\/v% + v%

Furthermore, F;/,(z) and F;(z) are the dimensionless
loop factors for spin-1/2 and spin-1 particles running in the

internal lines of the loops. These loop factors take the
form:

Fip(z) =2(z+ (2= 1)f(2)z 7,
Fi(z) = =2(22% + 32+ 3(2z = 1)f(2))z >
Fo(z) = —(z = f(2))z72 (67)
with
arcsin?v/2 for z<1
H&=1_ (m (71_”\/521_ ”> 2) for z>1 O

In order to study the implications of our model in the decay
of the 125 GeV Higgs into a photon pair, one introduces the

Higgs diphoton signal strength R,,, which is defined as:

o(pp = h)I'(h = yy)
U(PP - h)SMF(h - 77)SM
o I'(h - yy) .
"IT(h = 1) sum

(69)

That Higgs diphoton signal strength, normalizes the yy
signal predicted by our model in relation to the one given
by the SM. Here we have used the fact that in our model,
single Higgs production is also dominated by gluon fusion
as in the Standard Model.
The ratio R,, has been measured by CMS and ATLAS
collaborations with the best fit signals [88,89]:
RMS = 1,180 and RATMAS =096 +0.14.  (70)
As it will be shown in the next subsection, the constraints
arising from the Higgs diphoton decay rate will be
considered in our numerical analysis.

D. The muon and electron anomalous
magnetic moments

The Yukawa interactions relevant for the computation of
the muon anomalous magnetic moment are

Lq, = Y5uu(ReH) — iy’ ImH})e,
+x5,24(Reg— iy’ Imep)e, + M5 e,e,+He.  (71)

where the Yukawa coupling constants y$,, x§, are assumed
to be real, the scalar fields have been expanded by their real
and imaginary parts and the properties of the projection
operators P, p acting on the charged leptonic fields have
been used.

By expressing the scalar fields in the interaction basis in
terms of the scalar fields in the physical basis, the charged
lepton Yukawa interactions relevant for the computation of
the g — 2 anomalies take the form:
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Lg, = Y5 ((RE)pnHy + (RE) o3 H,
— iy’ (R0) A1 — iy’ (R})3Az)2,
+ x5,24(RE) 3o Hy + (RE)33Hy — iy° (R
— iy>(R)33A2)e, + M5 242, + Hee.

o)A
(72)
where we are using the unitary gauge where the contribu-

tions arising from unphysical Goldstone bosons to the
|

2
m
Aa, y24x428—”2 [(ReT)zz(ReT):«szI(sﬂ)(mew my, ) +
= (RD)n(RD) o) (meyomy, ) —
2
m
Aa, y51xf58 2

where the loop integrals are given by [85,90-93]:

muon anomaly are excluded and we shorten the notations
Rcp by R,(,). Here R, and R, are the rotation matrices
that diagonalize the squared mass matrices for the CP even
and CP odd scalars, respectively. Then, it follows that the
muon and electron anomalous magnetic moments in the
scenario of diagonal SM charged lepton mass matrix take
the form:

(RD)53(RT) 3318 (e, my)

(Rg)ze, (RZ)BIS;‘) (me4,mA2)]
[(RT) s (RT)o 1 (s myg, ) + (RT) s (RT )33 (e myg,)

- (R())ZZ(R£)321§’2>(me5vmA]) -

(e) _ !
IS(g)(mE4.5’mS)_A m2, X 24

and S(P) means scalar (pseudoscalar) and Ej4 s stands for
the vectorlike family. It is worth mentioning that £, and E
only contribute to the muon and electron anomalous
magnetic moments, respectively.

VI. NUMERICAL ANALYSIS OF THE HIGGS
EXCHANGE CONTRIBUTIONS

For the sake of simplicity, we consider the scenario of
absence of mixing between SM charged leptons, which
automatically prevents charged lepton flavor violating
decays. In our numerical analysis we have found that
the non-SM CP-even scalar mass can reach values around
200 GeV. Despite the fact that the non-SM CP-even scalar
is quite light and can have a sizeable decay mode into a
bottom-antibottom quark pair, its single LHC production
via gluon fusion mechanism is strongly suppressed since it
is dominated by the triangular bottom quark loop. Such
non-SM CP-even scalar H can also be produced by vector
boson fusion but such production is expected to have a low
total cross section due to small HWW and HZZ couplings,
which are proportional to v,. In this section we will discuss
the implications of our model in the muon and electron
anomalous magnetic moments.

A. The fitting function y?> and free parameter setup

For the first approach to both anomalies, we construct the
fitting function y?

E
(RD) o3 (RD) 33117 (g ma,), (73)
mg
(1l —x+ m;j)
dx (74)
m,, = me,)x +mgp(1—x)
[
= (MZhy gen)Z + (aZ}‘}vyw - a%S&IW)Z (R;;ly - Rcen>2
Gy ey GRE?
(Aazhy - Aaff“)z (Aazhy - Aage“)2
(5AaDev)2 (5AaDev)2 ’ (75)
" e

where the superscripts Thy, Cen and Dev mean theoretical
prediction, central value of experimental bound and deviation
from the central value at one of 1, 2, 30, respectively. The
parameters used in this fitting function are defined as below
(the integer number multiplied in delta terms means o):

me = 12538 GeV,

agg;yw —0.59,

SmP® =3 x0.14 GeV,

sabey =1x0.35,

1 RCMS +RATLAS

RS =3 —1.07,  SRD™ = 1x0.14,
Aal(;en =26.1 % 10—10’ 6AaDeV =1x (80 X ]0_10)
Aafen = —0.88x 10712, 5AaP =2x (036 x 107'?)

(76)

For an initial scan, we set up the starting parameter
region as below:
(1) For the Higgs vevs, we are interested in the range of
tanf from 5 to 50 as in the W boson exchange
in Fig. 9.
(2) For 4, we fixed mass of the SM physical Higgs 4 to
be 125 GeV to save time and to make the calculation
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faster. For /s5;, the assumption that no mixing
between the SM Higgs & and non-SM Higgses
H,, arise is reflected on these parameters. All
quartic coupling constants 1; g are set up not to
go over 4z for perturbativity.

(3) For the vectorlike masses M¢, and MZ, there is a
constraint that the lightest should be greater than
200 GeV [94].

(4) In our numerical analysis we consider solutions
where the non-SM scalar masses are larger than
about 200 GeV as done in [95].

(5) The soft-breaking mass term i, is a free parameter,
which does not generate any problem and appro-
priate values of this parameters yields masses for
scalars and vectorlike fermions consistent with the
experimental constraints.

(6) The diagonal Yukawa constants appearing in
Eq. (52) should be the Yukawa constant for electron,
muon, and tau, respectively. The Yukawa constants
Y2451 and x4y 15 interacting with vectorlike families
are defined under this consideration. For perturba-
tivity, the Yukawa constants y,, 5| are considered not
to go over \/4x.

After saturating value of the y* function less than or

nearly 2 which we believe it is converged enough, we find a

TABLE II. Next parameter setup after the initial scan result.
Parameter Value/Scanned Region (GeV)
Vv, =0 tanf3,

1 s x 246

= 1
Vg = U2 ey x 246
vy = V3 [(1=x), (1 +x)] xv3,
tanf = v,/v, [(1=x),(1 +«)] xtanp,
Vv /1

& (mi, = =557/ (401)
A [(1=x). (L4 K)] x A,
A3 [(1 =), (1 +6)] x 43,
/14 [(1 _K) ( )} X /14[)
s 41/1112/1%/(1/3)
A6 (1 =), (1+K)] x ¢,
A7 Uzls/vl
Ag [(1=x). (1 +x)] x 45,
M, [(1=x). (1+x)]x 44p
M (1 =x), (1 +x)] XMé‘Sp
Hsb [(I_K)’(1+K)} Xﬂsbp
Ye V2m, /v,
Yu \/Em”/i}z
y§4:y2 [(] _K)’(1+K)]Xy§4p
Y51 =n [(1=x). (1 +x)] x5,
X§ =xp YuMiy/ (¥3473)
X5 =X M5/ (¥5,03)
K 0.1

best peaked value for each free parameter. For the given
parameters, we rename them by adding an index “p" to the
end of subscript of each parameter like tan 3, and then the
expansion factor x is multiplied to find a correlation
between the observables and the mass parameters. Then,
the parameter region is refreshed by both the specific value
of each parameter and the expansion factor k as per Table II.

B. A scanned result on the free parameters
as well as observables across over
the first and second scan

The best peaked value for each parameter is listed in
Table IIT and energy scale is in unit of GeV. Note that all

TABLE III. A best peaked value for each parameter at each
case. All energy scale is in GeV units. Notice that in all cases v is
smaller than the vector like mass parameters M¢, and ML, which
is consistent with the assumption made in Sec. I, regarding the
fact that the corresponding expansion parameter v3/M,, is less
than unity.

Parameter case A case B case C case D case E
v, = vy 245.925 245.936 245.951 245917 245.948
Vg = Uy 6.086 5.595 4.921 6.387 5.077
Vy = V3 —-57.761 -36.470 —-57.919 -30.746 —17.146
tanf =v,/v, 40410 43.957 49.977 38.503 48.441
A 0.063 0.064 0.066 0.064 0.065
A -7.978 8414 —-2.000 2948 10.382
A3 —-6.344 -=2.675 6.242 —-1.724 -0.706
N 1.859 2.158 =3.633 10.837 -=2.796
As —-11.384 —11.070 9.009 -—-11.460 —12.000
Ag 2.888 1.228 0.866 1.351 1.324
A —-0.282 -0.252 0.180 —0.298 —0.248
Ag —1.363 —1.346 —-10.845 —11.510 7.033
M3, 1475.010 1355.470 1495.770 1134.340 1681.760
M§5 279.386 211.263 204.706 323.292 331.462
Hsb 424.618i 443.435i 480.993 480.062i 491.533
ye[10‘4] 1.135 1.234 1.403 1.081 1.360
yﬂ[IO‘z] 2.391 2.600 2.956 2.278 2.865
V54 =2 -3.161 -=-3.101 -2942 —1.548 1.662
¢ =0 2.315 2.164 2.050 1.352 3.377
X4 = X3 0.193 0.312 0.260 0.543 1.691
xfs = x1[10‘4] 2.371 3.304 2.419 8.408 7.787
my, 213.390 222.924 212.147 238.523 205.477
my, 911.585 614.516 891.413 518.147 354.709
my, 741.343 537.111 807.268 435.887 282.964
my, 1003.790 939.553 1035.800 1006.240 1015.760
Mygs 938.259 674.054 987.625 929.786 504.684
Aaﬂ[10‘9] 2.734 2.688 2.935 2.891 2.393
Aae[IO‘”] -5.073 -8.310 -5.543 -6.365 -9.232
apww 1.000 1.000 1.000 1.000 1.000
R,, 0.999 0.999 0.999 0.999 0.999
7’ 1.794 1.516 1.870 1.740 1.579
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TABLEIV. A scanned range of each parameter at case A, B, C, D and E. H| ; mean non SM CP-even scalars and A , are non SM CP-
odd scalars and H* stand for non SM charged scalars in this model. All data of Aa,, are collected within the 1o constraint of each

anomaly.

Parameter case A case B case C case D case E

v, = Uy [245.907 — 245.938] [245.921 — 245.947] [245.939 — 245.959] [245.898 — 245.931] [245.935 — 245.957]
Vg = Uy [5.533 - 6.761] [5.087 — 6.216] [4.474 — 5.4638| [5.807 — 7.096] [4.616 — 5.641]
Vg = 13 [-63.525 — —51.985] [-40.117 - —32.823] [-63.706 — —52.128] [-33.820 — —27.671] [-18.860 — —15.438]
tanff =wv,/v, [36.371 - 44.451] [39.561 — 48.353] [44.980 — 54.975] [34.653 — 42.354] [43.597 — 53.284]
my, [200.000 — 242.653] [201.520 — 246.046] [200.000 — 230.754] [215.523 — 261.920] [200.000 — 220.017]
my, [752.061 — 1088.130] [516.289 — 724.997] [735.831 — 1059.900] [441.371 — 604.981] [338.724 — 374.424]
my, [638.813 — 853.637] [442.527 — 640.705] [670.550 — 945.705] [357.697 — 516.760] [266.086 — 297.589]
my, [892.847 — 1141.780] [847.825 — 1032.140] [927.768 — 1154.640] [907.576 — 1105.770] [918.667 — 1114.960]
M+ [783.823 — 1111.600] [580.316 — 779.945] [842.585 — 1143.880] [856.237 — 1007.360] [478.900 — 529.178]
M3, [1327.510—1622.510] [1219.930 — 1491.020] [1346.190 — 1645.330] [1029.900 — 1247.770] [1513.590 — 1849.930]
Més [251.447 — 307.323] [200.000 — 232.389] [200.000 — 225.176] [290.963 — 355.621] [298.317 — 364.604]
|sn| [382.158 — 467.079] [399.091 — 487.777] [432.895 — 529.091] [432.059 — 528.067] [442.381 — 540.679]
Aa#[IO‘g] [1.811 — 3.410] [1.810 — 3.410] [1.810 — 3.410] [1.810 — 3.410] [1.810 — 3.410]
Aae[10‘13] [-6.730 - =5.200]  [-11.142 - =5.985] [-7.207 — —5.200] [-8.721 —» —=5.200]  [-12.393 — —5.442]
apww [1.000 — 1.000] [1.000 — 1.000] [0.999 — 1.000] [1.000 — 1.000] [1.000 — 1.000]
R, [0.999 — 0.999] [0.999 — 0.999] [0.999 — 1.000] [1.000 — 1.000] [0.999 — 1.000]
x> [1.604 — 2.750] [1.501 — 2.635] [1.580 — 2.761] [1.509 — 2.749] [1.501 — 2.720)

cases are carried out independently and all points of plots
in each case are collected within lo constraint of each
anomaly.

Here, we put two constraints on the lightest vectorlike
mass and the lightest non-SM scalar mass; the vectorlike
mass should be greater than 200 GeV as well as the non-SM
scalar mass [94,95]. After we carry out second parameter
scan based on the first scan result of Table III, range of the
parameters are given in Table IV.

C. The muon and electron anomalous
magnetic moments

In order to confirm that our theoretical prediction for
both anomalies can accommodate their constraints at lo
and to analyze correlations between both anomalies and
mass parameters, we consider cases B and E in Table III
since their benchmark point have relative lower values of
the »? function when compared to other cases. The reason
that the cases B and E have the lower values of the y?
function arises from the obtained value of the electron
anomaly, which is very close to the central experimental
value. All cases reveal nearly central value of muon
anomaly constraint at 1o, whereas the other cases except
B and E reveal nearly edge value of electron anomaly
constraint at 1. Therefore, the reason why the cases B and
E are more converged is related to whether our theoretical
prediction for both anomalies can gain access to their
central value of each anomaly constraint at lo. More
importantly, the case E is only one satisfying vacuum
stability conditions and a detailed investigation for the

vacuum stability of each case will be studied in a sub-
section. For these reasons, we take the case E in Table IV to
study the correlations. The relevant parameter spaces are
listed in Figs. 11 and 12.

To begin with, we consider the parameter spaces for the
muon anomaly versus electron anomaly with a mass
parameter which attends both anomalies (H;,,A;,) and
does not (H*) in Fig. 11. Even thought the non-SM
charged scalar does not attend both anomalies, the similar
pattern which the other scalars implement in Fig. 11 is also
appeared. We confirmed that mass of H, is nearly pro-
portional to that of H*, which causes the correlation identi-
fied in plots of the other non-SM scalars in Fig. 11 is still
maintained for the non-SM charged scalar. Interestingly,
the cases A, B and C in Table IV reported my, is nearly
proportional to my= one-to-one ratio, whereas the cases D
and E revealed a fat proportion between them and still
maintained the correlation.

As mentioned at the beginning of this section, we take
the case E for the plots in Figs. 11 and 12 and a main
distinction between the case E and others arises from the
value of electron anomaly. If we take other cases instead of
the case E to investigate the parameter spaces, the para-
meter region appeared in top-left plot of Fig. 11 will be
shifted upward by locating at the value of —5 or —6 x 10713
for the electron anomaly. In other words, the whole colored
region in Fig. 11 is shifted upwards to meet the scanned
value of electron anomaly constraint at 1o, holding the
correlations. Therefore, the white region appeared in
Fig. 11 is not strictly excluded region and affected by
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FIG. 11. Available parameter spaces for the muon anomaly versus electron anomaly with a mass parameter which attends the both
anomalies (H,,,A;,) and does not (H*). H, , are non-SM CP even scalars, A, , are non-SM CP odd scalars and H* are non-SM
charged scalars. All points in each plot are collected within 1o constraint of each anomaly.
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FIG. 12. Available parameter spaces for the muon anomaly(electron anomaly) versus a relevant vectorlike mass m,, (m,) with another
anomaly(two left plots) in bar where m,, (m,,) is simplified notation for M¢,(MZ%;), while the two right plots for the muon anomaly

versus electron anomaly with a vectorlike mass m,, (m,,)

how well a benchmark point is converged and by a factor of
k. However, these plots still tells a correlation between both
anomalies and a tendency that the lighter mass of H; is
located at edge region of the parameter space. Mass of the
lightest non-SM scalar H implied in top-left plot of Fig. 11
is ranged from 200 to 220 GeV [95] and the cross section
for this light non-SM scalar will be compared to that for SM
Higgs in appendix. As for mass range of the other non-SM
scalars confirmed in rest of other plots in Fig. 11, they all
implied heavier mass than that of H; which can be flexible
depending on how the parameters are converged as seen in
each case of Table IV.

We investigate a correlation for an anomaly versus a
relevant mass parameter with another anomaly in bar in
Fig. 12. Note that the fourth vectorlike mass is relevant
only for the muon anomaly, whereas the fifth is only for
the electron anomaly. Even though the fourth (fifth) is
irrelevant to the electron (muon) anomaly, it is good to
express them together since we rearrange the mass
parameters and the anomalies in bar for comparison.
The top-left plot in Fig. 12 just fills in whole parameter
region, thus no any correlation between the fourth vector-
like mass and the muon anomaly is identified. After we
rearranged the order of m,, and Aa,, from the top-left
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plot, we can confirm the similar correlation identified in
Fig. 11 from the top-right plot in Fig. 12. The bottom-left
plot identifies some correlation between the fifth vector-
like mass and the electron anomaly contrary to the top-left
plot. For the fifth vectorlike mass, we put the constraint
that the lightest vectorlike mass should be greater than
200 GeV [94] and the mass region below 200 GeV is all
excluded. After rearranging the order of m,  and Aa, as in
the above plot, we confirmed the similar correlation
appears in the bottom-right plot. Interestingly, the top-
right and the bottom-right plots check the similar
correlation.

We confirmed that the muon and electron anomalous
magnetic moments with vectorlike particles can be
explained to within 1o constraint of each anomaly in a
unified way, which is based on two attributes; the first one
is the extended scalar sector and the second one is related
with the contributions of the vectorlike leptons. The first
one which is reflected in our prediction for both anomalies,
consists of four non-SM scalars and these contributions
play a crucial role for determining the magnitude of each
anomaly. The second one is seen by two vertices of both
anomaly diagrams. The other Yukawa interactions can take
place at each vertex since the vectorlike leptons come in the
loop, which is differentiated by the case where the normal
SM particles enter in the loop. To be more specific, the
helicity flip mass caused by the vectorlike fermions in the
CP-even and CP-odd basis couples the initial particle
inside the loop to another particle of different chirality, thus
allowing different interactions at each vertex. This means
that the different sign problem can be solved by only
considering multiplication of the Yukawa constants of each
vertex and this property will be covered in detail in next
subsection.

1. Vacuum stability

An important feature of our extended 2HDM theory is
that it predicts large values for the Yukawa coupling
constants y, 1, x,; which can be ideally order of unity in
our model. If the Yukawa coupling constants are much
lower than unity, which means y,,x;; < 1, it will not
cause any problem for stabilization of the scalar potential.
However, large values of the leptonic Yukawa couplings are
required in our model to successfully explain both g —2
anomalies within the 1o experimentally allowed range and
since they are somehow related with the electroweak sector
parameters, it might be able to destabilize the Higgs
potential. As previously mentioned, in our analysis of
the scalar sector and g — 2 anomalies we are restricting
to the scenario of decoupling limit, which implies that the
large values of the leptonic Yukawa couplings will have a
very small impact in the stability of up-type Higgs H,
potential, whereas the conditons for the stability of the
down type Higgs H, potential need to be determined. To
discuss the stability of the scalar potential, one has to

analyze its quartic terms because they will dominate the
behavior of the scalar potential in the region of very large
values of the field components. To this end, the quartic
terms of the scalar potential are written in terms of the
Hermitian bilinear combination of the scalar fields. To
simplify our analysis, we discuss the stability conditions of
the resulting 2HDM scalar potential arising after the gauge
singlet scalar field ¢ acquires a vacuum expectation value.
Such stability conditions have been analyzed in detail in the
framework of 2HDM in [96,97]. In order to analyze
the stability of the H, potential, what we need to check
if the quartic scalar couplings in each case of Table III fulfill
the stability conditions to be determined below. Given that
our Higgs potential corresponds to the one of an extended
2HDM with the flavon field ¢, in order to apply the
stability conditions used in the Ref. [96] to our Higgs
potential, we need to reduce the number of scalar degrees of
freedom by considering the resulting 2HDM scalar poten-
tial arising after the gauge singlet scalar field ¢ is integrated
out. From the scalar potential it follows that the relevant
quartic coupling constant 1 must be positive, otherwise the
vev v3 would fall into negative infinity when the field ¢
value increases. For the same reason, the quartic coupling
constants 4, , must also be positive. From the aforemen-
tioned stability conditions we conclude that the cases A and
C must be excluded since their corresponding quartic
coupling constants A, are negative. Assuming the flavon
field ¢ develops its vev wv;, we can rewrite the Higgs
potential in terms of H, and H, fields as follows:

1)2 1)2
+ /11 (HuHZ)z + lQ(HdHIi)z

+ A3 (H HY) (H HY) + Ay (H H ) (HHY)
a2
+ s (e,- ij,Hd% + H.c>
4 2
3

2
oy i (HH) + as D (HGHY). (7))

Dropping all numbers and combining same order terms, the
Higgs potential becomes much simpler as follows:

2 2
V= (ﬂ% + 4 %) (HH}) + <M% + %) (H H})
+ Ay (HH})? + 2 (HgHY))?

2
v P
+ A3 (H HL) (HgHy) + s 5 (e HiHY + H.c) - (78)

where it is worth mentioning that the 4, term can be safely
removed in the Higgs potential since it does not play a role
in the CP-even, odd but charged mass matrix (Now our
focus is the neutral scalar sectors). Here, we can impose one
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extra condition for the stabilization check, which is that the
redefined mass terms must be negative, otherwise we get
zero vev as a global minimum.

2
w2 +47% = 207 = J303 + 20503 = —2,0% + 4303 < 0

2 V3 2 » 1y 3
M3 +/18? = —24v; + 4305 _5/18”3 ‘ngf

= —2)#21]% + /13’[)% < 0 (79)

We have used the decoupling limit of Eq. (58) at the first
equality of Eq. (79). From this equation, it is possible to
determine the appropriate sign for the quartic coupling
constant A;. In our numerical analysis, the vev v; is much
dominant than the vev v, so it leads to a negative sign for
the quartic coupling constant A3, otherwise the below
equation of Eq. (79) would become positive. The sign of
the quartic coupling constant 13 also determines the one of
A5 in the decoupling scenario, which means that A5 ; must
also be negative. On top of that, the large Yukawa coupling
constants y, x can be understood in connection with the vev
v3. To this end, we consider the definition for the Yukawa
coupling constants x; and x,, which are given by:

_ VM 44

Y203

yeM55

, 80
Y103 ( )

’

where in order to successfully explain both g — 2 anomalies
within the 1o experimentally allowed range, one has to rely
on small values of v3, which are O(10 GeV), and the small
values of v do not significantly spoil the down-type Higgs
H, potential as seen in Eq. (79). In other words, the mass
parameters ,u%z are much larger than the parameters

Mg v% /2, thus allowing more freedom in the sign of Ag.
Then, we are now ready to match our simplified Higgs
potential with the one given in the Ref. [96]. Taking into
consideration that our Higgs alignment is different than the
one of [96], our mass parameters can be redefined as
follows:

2 2 v3 2 2 v3 2 v3
m“:yl—i—/b?‘, mzzz,uz—i—/lgj, mIZ:ASE (81)
Pr=24, Pr=24, P3=X, Ps=0, ps=0. (82)

Then, following [96,97], it is found that the scalar
potential is stable, when the following relations are
fulfilled:

p1 >0, Ps+/Pifr =0 (83)

B3+ Ba+ BB > |Bs| = B3+ /PS> 0. (84)

P >0,

The last stability condition can be rewritten as shown on
the right side since the f, 5 are zero in our Higgs potential
and the cases B and D must be excluded by this last
condition shown in Eq. (84). The conditions given in
Egs. (83) and (84) are crucial to guarantee the stability of
the electroweak vacuum. Furthermore, one has to require
that the squared masses for the physical scalars are
positive. Besides that, according to [96], the minimum
of the scalar potential is a global minimum when the
following condition is fulfilled:

m, | m3, —m3, 2 <tanﬂ - ﬂg) >0
2 2 2 A
— mi [ myp —mypy o= [ >0 (85)

where the latter condition on the left-hand side is always
successfully fulfilled for all cases, so we can simply drop
off the condition as shown on the right side. Then, it is
enough to confirm whether each case satisfies the reduced
global minimum condition and the case E successfully
fulfills that requirement as shown below:

m}, = —1763.9 GeV?,  m?, = —7896.5 GeV?,

Zi— 0.0791994 (86)

2

m3, = —43258.8 GeV?,

miy | miy, —m3,, /% ~7.886 x 10° GeV* > 0.  (87)

Thus, we have numerically checked that the best fit point
corresponding to the case E obtained in the numerical analysis
of the scalar potential and g — 2 muon and electron anomalies
is consistent with the above given stability conditions of the
scalar potential and at the same time ensure positive values for
the squared masses of the physical scalars, consistent with the
current experimental data. Finally, to close this section, it is
worth mentioning that the large Yukawa coupling constants y,
x involve the small vev v3 in our model and this ensures that
not only the H,, potential is stable in the decoupling scenario
but also the H ; potential successfully fulfill the requirements
of vacuum stability for both the small vev v5 and appropriate
values of the quartic scalar couplings.

2. How is the scalar exchange possible to accommodate
both anomalies at 16 constraint analytically?

In order to analyze how the scalar exchange is able to
explain both anomalies within the 1o range, we revisit the
analytic expressions for both muon and electron anomalous
magnetic moments:
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2
m /)
Aa, = y5,x4, 8—”2 [(Rg)zz(RZ)321g)(me4, my,) + (RY )3 (ReT)331(sﬂ) (mg,,mpy,)
— (RD) s (R oI ¥ (e my, ) = (RD) 3 (RE )5 ) (e, )],
2
m e
Aa, y51xf5 82 [(Rr)zz(RT)321( )(meymH]) + (RZ)B (ReT)33IEs )(me5va2)
e E
— (RD) o (RD) o0}y (mygma,) = (D)5 (RD) a1 (e )], (88)
where
(en) ! XZ(I_Xir:lnEAAS)
IS (me ,me) = o dx 89
S(P)( Eys s) A mg’”xz n (m%“ — mg’”)x—l—m%’P(l —x) ( )

with S(P) corresponding to scalar (pseudoscalar) and E s
standing for the vectorlike family. Furthermore, E4 and E5
only contribute to the muon and electron anomalous
magnetic moments, respectively.

First of all, we focus on the sign of each anomaly. The
different signs of each anomaly indicated by the lo
experimentally allowed range can be understood at the
level of Yukawa constants apart from the loop structures.
As seen in Table V, the Yukawa coefficient y can be either
positive or negative, while x only remains positive since we
take the absolute value to the x. We also considered the case

TABLE V. Initial parameter setup.
Parameter Value/Scanned Region (GeV)
I tan /3

u 1 T X 246

= 1
Vg = U TR x 246
Vg = 13 +[0.01, 1.00] x 1000
tanf = v, /v, [5 50]
22

g (m3 = 55)/ (427)
A +]0. 50 12.00]
A +]0.50, 12.00]
A4 +[0.50, 12.00]
s 4vy0y43/ (v3)*
As +[0.50, 12.00]
A vyds/ vy
Ag +[0.50, 12.00]
Mg, [2 x 10%,2 x 10%]
ML [2 x 102,2 x 107]

55 )
Hsb i1 % [300, 500]
Ye \/Eme/UZ
yu \/Zmu/UZ
Vo4 =2 +[1.0,3.5]
Y4 =n +[1.0,3.5]
X = X [y, MG/ (v5403)]
X5 = X yeMEs/ (5 03)]

|

where the coefficients x, y are purely positive, assuming v
is positive, without taking absolute value and the multi-
plication of the Yukawa coefficients x X y cannot change
the sign of each anomaly since the denominator of x
includes y and they are cancel out. Then, the sign problem
depends on summing over loop functions and we found that
the order of the muon anomaly prediction is suitable,
whereas the corresponding to the electron anomaly is about
10~'® which is too small to be accommodated within the 1o
experimentally allowed range. Therefore, we found that
taking an absolute value to one of the Yukawa coefficients
is an appropriate strategy for the sign and allows to
reproduce the correct order of magnitude of each anomaly
allowed by the lo experimentally allowed range, for an
appropriate choice of the model parameters. This feature is
a crucial difference compared with the W or Z' gauge boson
exchange [33]. The W gauge boson exchange covered in
the main body of this work keeps the same coupling
constant at each vertex, therefore it is completely different
from the scalar exchange with vectorlike leptons. For the Z’
exchange covered in [33], it has the common property that
the coupling constant of each vertex is different to each
other, whereas the coupling constants of the Z’ are more
constrained by the mixing angle between ith chiral family
and fourth vectorlike family, so it is impossible to explain
both anomalies at the same time. As a result, allowing
different Yukawa constants with appropriate signs enables
both anomalies to be explained in a unified way.

Next we turn our attention to the order of magnitude of
our predictions for both anomalies. Considering that the
sign problem is solved by having each Yukawa constant y
either positive or negative, it can be easily understood that
inside the structure in parentheses of Eq. (88) should imply
the same direction, which is is determined by the con-
tribution of all loop functions in parentheses. Since the
mass difference among non-SM scalars and vectorlike
particles is not so big, we have to consider their masses
in the computation of muon and electron anomalous
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magnetic moments, as follows from Eq. (88). For an easy
analysis, we take the case E reported in Table III and
suppose that

(R&)an(RE)sy = ¢y, (R¢)23(RE)33 = —cu,
(R$)2(RE)3n = ¢, (R5)23(RS)33 = —c2,
Ig(mepmHl) =d,, I’ (me4’mH2) dy,
Ip(mg,.my,) = —ds, Ip(m,, my,)) = —dy,
Ig(meSval) = e, I§(m65,mﬂz) = €,
Ip(meg, my ) = —es, Ip(meg,my,) = —ey,

dy > dy > d, > dy, ep>e3>e) > ¢y (90)

where ¢y, are arbitrary constant between 0 and 1
either positive or negative and mass ordering among
d(e);, (i=1, 2, 3, 4) can be easily understood by
considering mass difference between non-SM scalars
and vectorlike particles. The muon and electron
anomaly prediction can be rewritten in terms of these
redefined constants:

2
Aa, = )’2ng [c1d) = c1d;y + crd5 — crd,]

2

m
= Y%, é [c1(d) — dy) + cy(d3 — dy)]
m,
= X 32 [c1dp + cadsy]
2
Aa, = yx; 32 [cre) — ey + cre3 — crey]
2
m?2
= Ni¥igs —slci(er —ey) + caez — e4)]
m2
=NNig s [crers + cre34] (91)

where y,, x5, y;, x; are simplified notation for
Y54 X4, Y51, x]5,  respectively, and  d(e);; =d(e); —
d(e); and d(e);; are positive. Since the inside structure
in parentheses depends on relative magnitude of both
cip and d(e);; at this stage where no more analytic
simplification is possible, it is good to implement a
specific value for them. Referring the values used to
derive the result of case E, they are

2

VoXo —>= 87 5 Cldl = —4.629 x 10_7,
2
Vidig s Sciep = —8.532 x 10712
m2
—VoXo =~ 8 C1d2 4.520 x 10_7,
m2
VX1 87 5 cie) = 6.808 x 10_12

m2
C2d3 =7.984 x 10~ 8

)’2x28 5
2
Vidig s Scpey = 1.323 x 10712
m2
—VoXo —>5 87 5 C2d4 = —6.659 x 10_8
2
—ViX1 > 87z 2 Crey = —-5.217 x 10_]3 (92)

and summing over all values in left or right column of
Eq. (92) yields the prediction for muon and electron
anomaly at lo

2

Aa —yzxzén [eydy —cyda+Cydy —cydy] =2.393 % 107

2
Aa, :ylxlsm—;[clel —cley+re3—crey] ==9.232x 10713,

(93)

VII. CONCLUSION

We have proposed a model to account for the hierar-
chical structure of the SM Yukawa couplings. In our
approach the SM is an effective theory arising from a
theory with extended particle spectrum and symmetries.
The considered model includes an extension of the 2HDM
where the particle spectrum is enlarged by the inclusion of
two vectorlike fermion families, right-handed Majorana
neutrinos and a gauge singlet scalar field, together with the
inclusion of a global U(1)" symmetry spontaneously
broken at the TeV scale. Since the U(1) symmetry is
global, this model does not feature a Z’' boson and it is
softly broken in the 2HDM potential to avoid a Goldstone
boson. Its main effect is to forbid SM Yukawa interactions
due to the U(1) charge conservation. Besides that, this
model has the property of the 2HDM type II where one
Higgs doublet couples with the up-type fermions whereas
the remaining one has Yukawa interactions with down-
type fermions, where such couplings are allowed between
chiral fermions and vectorlike fermions due to the choice
of U(1)" charges (chiral fermions having zero charges
while vectorlike fermions, Higgs and flavons have charges
+1). Below the mass scale of the vectorlike fermions, such
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couplings result in effective Yukawa couplings suppressed
by a factor (¢)/M where the numerator is the vev of the
flavon and the denominator is the vectorlike mass. This
factor naturally determines the magnitude of SM inter-
actions and the mass scale for the vectorlike fermions
under a suitable choice of the flavon vev. We have
developed a mixing formalism based on 7 x 7 mass
matrices to describe the mixing of the three chiral families
with the two vectorlike families.

Within the above proposed model, we have focused on
accommodating the long-established muon and less
established electron anomalous magnetic moments at
one-loop level. A main difficulty arises from the sign
of each anomalous deviation of the experimental value
from its SM prediction. Generally, the Feynman dia-
grams for the muon and electron anomalous magnetic
moments have the same structure except from the fact
that the external particles are different, which makes it
difficult to flip the sign of each contribution. Specifically
we have required that both deviations in Eq. (1) at one-
loop should be accommodated within the lo experi-
mentally allowed range, which is a challenging
requirement.

We first considered in detail the W boson exchange
contributions to the muon and electron anomalous mag-
netic moments at one-loop. The relevant sector for the W
boson exchange is that of the neutrino and we analyzed a
novel operator that generates the masses of the light
active neutrinos in this model. The well-known five
dimensional Weinberg operator which we refer as type
Ia seesaw mechanism does not work in this model since it
is forbidden by the U(1) symmetry due to the fact that
both SU(2) scalar doublets are negatively charged under
this symmetry. For this reason, we made use of the
Weinberg-like operator known as type Ib seesaw mecha-
nism allowed in this model. With the type Ib seesaw
mechanism, we built the neutrino mass matrix with two
vectorlike neutrinos and ignored fifth vectorlike neutrinos
since they are too heavy to contribute to the phenom-
enology. The deviation of unitarity # derived from the
heavy vectorlike neutrinos plays a crucial role for enhanc-
ing the sensitivity of the CLFV p — ey decay to the
observable level. Furthermore, the Yukawa constants of
Dirac neutrino mass matrix can be connected to the
observables measured in neutrino oscillation experiments.
One of the neutrino Yukawa constants is defined with a
suppression factor e. Therefore, the effective 3 x 3 neu-
trino mass matrix tells that the tiny masses of the light
active neutrinos depend on the mass scale of vectorlike
neutrinos as well as on the suppression factor e. This

implies that mass scale of vectorlike neutrinos is not
required to be of the order of 10'* GeV, as in the
conventional type la seesaw mechanism. In our proposed
model, the vectorlike neutrinos can have masses at the
TeV scale, thus allowing to test our model at colliders.
Those vectorlike neutrinos can be pair produced at the
LHC via Drell-Yan annihilation mediated by a virtual Z
gauge boson. They can also be produced in association
with a SM charged lepton via Drell-Yan annihilation
mediated by a W gauge boson. These heavy vector like
sterile neutrinos can decay into a SM charged lepton and
light active neutrinos. Thus, the heavy neutrino pair
production at a proton-proton collider will give rise to
an opposite sign dilepton final state, which implies that the
observation of an excess of events in this final state over
the SM background can be a smoking gun signature of
this model, whose observation will be crucial to assess its
viability. It is confirmed that the branching ratio of y — ey
decay can be expressed in terms of the deviation of
unitarity # as shown in [11,82] and our prediction for the
muon and electron anomalous magnetic moments can also
be written in terms of nonunitarity. We derived the analytic
expression for the anomalies and found that the order of
magnitude of these predictions is too small to accommo-
date the experimental bound within the 1o range and the
sign of each prediction also points out in the same
direction. Therefore, we concluded that the W boson
exchange at one-loop is not enough to explain both
anomalies at 1o and this conclusion has been a good
motivation to search for another possibility such as scalar
exchange, which is one of the main purposes of this work.

We then turned our attention to the 2HDM contributions
(inclusion also of the singlet scalar ¢) to the muon and
electron anomalous magnetic moments, assuming by a
choice of parameters a diagonal charged lepton mass matrix
to suppress the branching ratio of g — ey. In our analysis
we considered in detail the scalar sector of our model,
which is composed of two SU(2) scalar doublets H,, and
H,; and one electrically neutral complex scalar ¢ by
studying the corresponding scalar potential, deriving the
squared mass matrices for the CP-even, CP-odd neutral
and electrically charged scalars and determining the result-
ing scalar mass spectrum. We have restricted to the scenario
corresponding to the decoupling limit where no mixing
between the physical SM Higgs % and the physical non-SM
scalars H , arise and within this scenario we have imposed
the restrictions arising from the Higgs diphoton decay rate,
the "WW coupling, the 125 GeV mass of the SM-like
Higgs and the experimental lower bounds on non-SM
scalar masses, to determine the allowed parameter space
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consistent with the muon and electron anomalous magnetic
moments. To this end, we have constructed a y? fitting
function, which measures the deviation of the values of the
physical observables obtained in the model, i.e., (g —2),
the 125 GeV SM-like Higgs mass, the Higgs diphoton
signal strength, the AWW coupling, with respect to their
experimental values. Its minimization allows to determine
the values of the model parameters consistent with the
measured experimental values of these observables. After
saturating the y> value less than or nearly 2, we obtained
five independent benchmark points and carried out second
scan with the benchmark points to find a correlation
between observables and mass parameters. For the plots,
we took an appropriate case which is more converged when
compared to other ones and satisfying the vacuum stability
conditions. We found that our prediction for both anomalies
can be explained within the 1o constraint of each anomaly
and a correlation proportional for muon versus electron
anomaly is appeared in Fig. 11 and 12. Here, we put two
constraints on mass of the lightest non-SM scalar and of the
lightest vectorlike family; my,, m,; > 200 GeV based on
references. The second scan result tells that the available
parameter space is not significantly constrained by current
experimental results on non-SM scalar mass and vectorlike
mass, while keeping perturbativity for quartic couplings
and Yukawa constants. An important feature of our BSM
model is it predicts the large Yukawa coupling constants y,
x, which might be able to destabilize the Higgs potential.
The up-type Higgs H,, potential is not significantly affected
by the large Yukawa coupling constants in the decoupling
scenario, whereas there is no safe condition for the down-
type Higgs H, potential which can be worsen by mixing
with the flavon field ¢. The large Yukawa coupling
constants x introduces small values for the vev v in the
definition of x and the energy scale is confirmed by order of
10 GeV in our numerical analysis. On top of that, we also
identified the appropriate sign of quartic coupling constants
can make the Higgs potential stable. Therefore, the down
type H,; Higgs potential is stable by both the small vev v5
and the appropriate quartic coupling constants in our BSM
model. Lastly, we discussed how we were able to explain
both (g —2), , anomalies at 1o constraint and impact of the

light non-SM scalar H. For the former, we first simplified
the prediction for both anomalies and used some numerical
values at the stage where no more analytic simplification is
possible. For the latter, we compared the cross section for
the SM process pp — h and BSM process pp — H; and
included this comparison in Appendix B.

We conclude that the proposed model of fermion mass
hierarchies is able to successfully accommodate both the
muon and electron anomalous magnetic moments within
the 1o experimentally allowed ranges, with the dominant
contributions arising from one loop diagrams involving the
2HDM scalars and vectorlike leptons. The resulting model
parameter space consistent with the (g — 2)8‘/4 anomalies
requires masses of non-SM scalars and vectorlike particles
in the sub TeV and TeV ranges, thus making these particles
accessible at the LHC and future colliders.
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APPENDIX A: QUARK MASS MATRICES
IN TWO BASES

As the lepton mass matrix is constructed in main body of
this work, the quark sector can be built in a similar way.
Like the lepton sector, we make use of two approaches to an
effective lepton mass matrix, one of which is a convenient
basis and the other is a decoupling basis.

1. A convenient basis for quarks

Consider the 7 x 7 quark mass matrix rotated as in the
lepton sector.
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Uir UrR UsR Ugr Usg Q4R QSR
Ou | 0 0 0 0 w0 by
0,1 0 0 0 yhv. Yisv, 0 x5,
Q3L 0 0 0 YiaUu Y35V x3Q47}¢ X3Q5 Vg
M" = | Qu 0 0  y4v, O o M% M5
QSL )’gﬂju Ygzvu J’g3vu 0 0 0 M5Q5
ity 0 xhvy xjzv, My, 0 0 0
fisp, X510p X5V X530 Ms, M5 0 0
dir dar dsr dig  dsg Qs Osp
O 0 0 0 Y ylsva 0 x%%
o) 0 0 0 Yva Y3504 O szs Yy
i — Qu 0 0 0 yiug yisvg x3Q4v¢ x3Q5v¢ (A1)
Our 0 0 yhv, O 0o M4 M
QSL Y§iva Yita Yisva O 0 0 M,
dyy 0 xihvy xGv, M, 0 0 0
C:JSL xX§vy xXHvy xvy MG Mg 0 0
Notice that the same rotations operated in the lepton 2. A basis for decoupling heavy fourth
sector is applied to both up- and down-type quark sector and fifth vectorlike family

except for y{, since quark doublet rotation is already used

in the up-type quark sector. These two mass matrices  y,)4ine an assumption (¢) ~ MS,. As in the charged lepton
clearly tells that this model is an extended 2HDM in that the .- oo oo on obtain the Yukawa matrix from the

up-type SM Higgs H,, corresponds to up-type quark sector, 5 x 5 upper blocks of Eq. (A1)
while the down-type SM Higgs H; corresponds for down- ’
type quark sector.

In this section, we treat the decoupling basis with quarks

0 0 0 0 y 0 0 0 », ¥
0 0 0y ¥ 0 0 0 ¥, ¥
Vap = 0 0 0 ygy 5|, 5’2/3 =0 0 O y§4 ygjs (A2)
0 0 y53 0 0 0 0 ¥; 0 0
Ysi Y2 ys3 00 y?, y§2 y§’3 0 0

where @ and f run from 1 to 5. The Yukawa matrices j/Zbd can be diagonalized by the unitary rotations V

Vo= VEVEVEVEVRVEVE.  Vu=ViVEVEVIVEVE VL Vo= VEVEVEVEVLVLVE  (A3)
where each of the unitary matrices V4 5 are parametrized by a single angle 0, 5 featuring the mixing between the ith SM
chiral quark and the 4,5th vectorlike quark. In the rotated mass matrix, we need (3,4),(1,5),(2,5),(3,5) mixing in the Q sector

and (2,4),(3,4),(1,5),(2,5),(3,5) mixing in the u, d sectors to go to the decoupling basis therefore the unitary mixing matrices
V are defined to be

115024-30



FERMION MASS HIERARCHIES FROM VECTORLIKE FAMILIES ...

PHYS. REV. D 103, 115024 (2021)

_ 2 y2 2 0
VQ - V35V25v15v34

10 0 0 0O\/1l 0 00 0 2 000 s4\/1 0 0 0 0
01 0 0 01][o & o0 o0 s% o 100 0[]0 1 0 0 0
—{oo0o & o s&|lo 0o 10 0 0 010 0[O0 ¢ % 0.
00 0 1 0 0 0 01 0 0 00 1 0 00 =% ¢ o
00 =% 0 ¢%/\0 =% 00 %/ \=% 000 2/\oo0o 0o o0 1
1 0o 0 0 5%
o 1 0 0 s%
~[ o o 1 5% s
0 0 =% 1 o0
—575 —s2Q5 —s1Q5 0 1
Q- () , x%<¢>
V&) + (M2 J(xls (Mg
© x5 () O X5 (¢)
25 7 ’ 35 — P
VS + (M2)? VL@ + (M2
X2 (p) = FxFs(d) + sTME, MG = —s$x55(p) + cHME;
WS = /LD + (M),
M2 =)+ (MDP, M2 = \JOL) + D2 S = /() + (M) (A4)
V= V?s VisVisVidVi,
0 0 0 0\/1 0 00 0 ¢l 0 0 0 s
01 0 0 0 |]l0 ¢& 0 0 s 0 100 0
—[o o0 ¢ 0o s l0 0 10 0 0 010 0
00 0 1 0flo o o1 o0 0 00 1 0
0 0 —s% 0 o5 0 —-s55 0 0 cf =sfs 0 0 0 cf
10 0 0 O0\/1 0 0 0 0 10 0 0 oy
01 0 0 0f[0 ¢ 0 s4 0 0o 1 0 6y o
00 ¢, s4 0oflo o 1 0 o]~ 0 0o 1 @y 6],
0 0 —s% ¢4 O 0 —-s5 0 ¢5 O o -0, -0 1 0
00 0o o0 1/\o 0o 0 0 1 -0 04 -0 0 1
u ~x42 ¢) u zx5443<¢> o X51(9) u zxé‘é(q&) g zx§’3<¢>
U oMy oMy BT oMy BUoMyE PUoMy
X55() = c5ux5, () + s5,M5,, M3y = —s5,x5,(p) + c5, M3,
X535 () = c5x53 (@) + 55, M5l My = —s5,x55() + 5 M5,
Mt =\ ) + (M B =\ (9)? + (M),
M = SOt ()P + (M M= ) (MR B = () (MER (AS)
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With the defined unitary mixing matrices in place, the
5 x5 Yukawa matrices in a mass basis (primed) are
transformed by

oy = VoTigVin Ty =VoiaVe.  (A6)
where tilde with prime means interaction basis whereas
tilde alone corresponds to the mass basis. The effective SM

S%)’gl + Y1505

Vi = | s5svh + Y305 S3svh + Y540 + Vists
SToVYy + VisOls  sHYL + ¥ia0h, + yis6hs
Sleyg1 + {5015 s%ygz + 31405, + yi5055
v = sTovdy + 45075 sHyd + 9,09, + y4s04s

Q0 4 d pd
535Y51 1 V35015

APPENDIX B: HEAVY SCALAR PRODUCTION
AT A PROTON-PROTON COLLIDER

We have confirmed that the mass of the non-SM CP even
scalar H; is ranged from 200 to 240 GeV in Table IV and
this light mass of H| has not been observed at CERN or
other experiments so far. In order to see how big an impact
of H, is when compared to that of SM Higgs &, we studied
a total cross section for the SM process pp — h and for
BSM process pp — H,. The SM cross section for pp — h
process is

2,2 2\ \ 2
Ay, nmy
— L=
osm 647rv2< <m,2))

1 [—Iny/m3/S
X — ! PDF(0,x,(y), my,)
S Jin\/m2/s

X PDF (0, x5(y). my)dy (B1)

where L is a loop integral

L(a)=|[2a+(=4+a)PolyLog(2,1/2(—V~4+a\/a+a))
+(—44a)PolyLog(2,1/2(v/—4+av/a+a))|/d?|.
(B2)

ag is the strong coupling constant, v is the conventional
SM Higgs vev 246.22 GeV, my, is the Higgs mass 125 GeV,
m, is the top quark mass 173 GeV, S is the squared LHC
center of mass energy (14 TeV)?, PDF corresponds to the
parton distribution function where 0 means Oth parton—
gluon, x is the momentum fraction of the proton carried out
by the gluon. Here the factorization scale has been taken to

STyt + yis05s

s.%ygz + )’31493[4 + y?ﬁé’s

Yukawa couplings for the quarks then correspond to the

3 x 3 upper block of 5/%, 5/%, namely

y4H, Qi ujp. ViHaQidig,  with  yl; =3k,
W=y G j=123). (A7)

The 3 x 3 SM Yukawa matrices for up- and down-type
quark sector read:

STV + Y50
STV + ¥5.0% + ¥is0%s
STl + 555y + Y044 + Vis0%
s%y§’3 +y1,05 + yi50%s

s%y%@ + ¥5,04, + ¥35055

i d ! nd | wd pd
SSYE + s5yG + 504 + yis0%s

I
be equal to the SM like Higgs boson mass m;, and x; ()
are defined as follows:

5 0) = VI ),
m2
x(y) = Sh/SeXp(—y)- (B3)

With these defined functions and values, the total cross
section for pp — h is

oom = 18pb. (B4)
Next, the total cross section for pp — H; process is
2.0 2 2 2
Ay Ahpp My
olpp - H)) =20 (L
o) == (1 ()
1 [=In,/m} /S
X — " PDF
S Jin A /mlqu/S

x PDF(0.x)(y). my,)dy

(0. x1(y), mp, )
(BS)

where my; is mass of non-SM CP even scalar Hy, and x| ,
are defined in a similar way:

\ i
1) -

X1 :TCXP()’),
m%,l/S
%5 (3) = S —exp(-y) (B6)

One main distinction between Egs. (B1) and (BYS) is the
non-SM scalar H, only interacts with down-type quark pair
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bb since it is a mixed state between hg and ¢ while
the SM Higgs h can interact with top-quark pair 7.
According to the mass range of H; reported in Table IV,
the total cross section for pp — H, is given in Fig. 13.

The total cross section for pp — H; runs from nearly
8pb at 200 GeV to smaller values as mass of H, increases.
The order of magnitude of this cross section for pp — H,
is compatible to that of the SM process pp — h, however
the BSM process is strongly suppressed since its single
LHC production via gluon fusion mechanism is dominated
by the triangular bottom quark loop as mentioned in
Sec. VI. Therefore, our prediction with the light non-SM
scalar H; is possible to accommodate each anomaly
constraint at lo.

12

10

a(pp—->H4)[pb]

180 200 220 240 260 280 300
M, [GeV]

FIG. 13. The total cross section for pp — H; at 14 TeV.
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