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There has been a longstanding discrepancy between the experimental measurements of the electron and
muon anomalous magnetic moments and their predicted values in the Standard Model. This is particularly
relevant in the case of the muon g − 2, which has attracted a remarkable interest in the community after the
long-awaited announcement of the first results by the Muon g − 2 collaboration at Fermilab, which
confirms a previous measurement by the E821 experiment at Brookhaven and enlarges the statistical
significance of the discrepancy, now at 4.2σ. In this paper we consider an extension of the inverse type-III
seesaw with a pair of vectorlike leptons that induces masses for neutrinos at the electroweak scale and show
that one can accommodate the electron and muon anomalous magnetic moments, while being compatible
with all relevant experimental constraints.
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I. INTRODUCTION

The charged leptons anomalous magnetic moments,

al ¼ gl − 2

2
; ð1Þ

with l ¼ e, μ, τ, are known to be powerful probes of new
physics (NP) effects, potentially hidden in virtual loop
contributions. Interestingly, there has been a longstanding
discrepancy between the Standard Model (SM) prediction
for the electron and muon anomalous magnetic moments
and their experimentally determined values [1–7]. In the
case of the electron g − 2, the significance is slightly below
∼3σ, and hence not very significant at the moment. In
contrast, the deviation has become particularly relevant in
the case of the muon g − 2, in particular after the Muon
g − 2 experiment at Fermilab has published its long-
awaited first results [8]. Their measurement of aμ perfectly
agrees with the result obtained by the E821 experiment at
Brookhaven [5] and, consequently, disagrees with the SM.
Their combination leads to a 4.2σ discrepancy with the
SM prediction compiled by the theory community in [9].

In summary, the current status of the electron and muon
g − 2 can be quantified as1

Δae ¼ aexpe − aSMe ¼ ð−87� 36Þ × 10−14;

Δaμ ¼ aexpμ − aSMμ ¼ ð25.1� 5.9Þ × 10−10: ð2Þ

New measurements and more refined theoretical calcu-
lations are definitely required to assess the relevance of
these anomalies, and confirm whether these intriguing
deviations are hints of NP [12], SM contributions not
correctly taken into account or just statistical fluctuations.2

However, it is tempting to interpret them as a signal of the
presence of new states beyond the SM (BSM). In this case,
the g − 2 anomalies may hide valuable information about
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1The status of the electron g − 2 has recently changed by a new
measurement of the fine-structure constant [10]. The new value
differs by more than 5σ to the previous one and affects the
electron g − 2 anomaly, which gets reduced to just 1.6σ and flips
sign, see [11]. We will not include these results in our analysis,
but note that it would be straightforward to accommodate a
positive Δae in our model, as shown in Sec. IV. We also point
out that this change in the fine-structure constant value has
little impact on the muon g − 2.

2The theoretical calculation of the electron and muon anoma-
lous magnetic moments is a challenging task and has led to some
controversies along the years. For instance, a recent calculation of
the hadronic vacuum polarization contribution by the Budapest-
Marseilles-Wuppertal collaboration [13] brings the SM predic-
tion for the muon g − 2 into agreement with the experimental
value, hence ruling out any discrepancy. However, it has been
pointed out that this result in turn leads to some tension with
electroweak data [14–17].
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the shape of the underlying model. In particular, the sign
difference between Δae and Δaμ and the sizable value of
jΔaej would indicate that the NP contributions do not scale
with the square of the charged lepton masses [18]. This
calls for a nontrivial extension of the SM.
The inverse type-III seesaw model (ISS3) is obtained by

replacing the fermionic SUð2ÞL singlets in the original
inverse type-I seesaw [19] by SUð2ÞL triplets. This variant
has already been studied [20–26], although not extensively,
and many of its phenomenological features are still to be
investigated.3 In fact, there are several phenomenological
directions of interest in the ISS3. The fact that triplets
couple to the SM gauge bosons allow for new production
mechanisms at the LHC, where one can also look for lepton
number violating signatures. Lepton flavor violation might
also be an interesting subject to explore in this model,
which may offer some differences with respect to the more
common inverse type-I seesaw [34]. Finally, the potentially
sizable mixing between the charged components of the
type-III triplet and the SM charged leptons may also lead to
observable Z → lþ

i l
−
j decays with i ≠ j. We refer to [35]

for a recent analysis of these and other relevant observables
in the presence of light fermion triplets.
While many models have been put forward to address the

discrepancy between theory and experiment in the electron
and muon g − 2, the main motivation for the ISS3 is not to
accommodate the existing deviations, but to induce non-
zero masses for neutrinos. It is therefore natural to inves-
tigate whether the model can account for the experimental
values for the electron and muon anomalous magnetic
moments in the region of parameter space that can
reproduce the observed neutrino masses and leptonic
mixing angles, measured in oscillation experiments, while
being compatible with the bounds obtained at colliders and
low-energy experiments. In this paper we show that these
constraints preclude the ISS3 from inducing large contri-
butions to ðg − 2Þe;μ. More importantly, the ISS3 contri-
butions are negative, making it impossible to address the
existing discrepancy in the muon g − 2. This motivates a
minimal extension of the model that keeps its most relevant
features but provides additional ingredients to generate the
required contributions to the electron and muon g − 2. We
find that the introduction of a pair of vectorlike (VL) lepton
doublets with sizable couplings to electrons and muons can
explain both anomalies and simultaneously satisfy all the
experimental constraints. It is the aim of this paper to study
the electron and muon g − 2 in this model, which we denote
as the ISS3VL.

The muon g − 2 has been considered in a wide variety of
contexts, in many cases in connection to neutrino mass
generation. This includes models based on the inverse seesaw
mechanism [36–44] and/or with VL leptons [45–65]. See
also [66] for a recent work in the context of a radiative
neutrino mass model including triplet fermions. Finally, we
note that the muon g − 2 has also been considered as a
motivation for a muon collider [67–69].
The rest of the manuscript is organized as follows. In

Sec. II the basic features of the ISS3VL model are
introduced, including the generation of charged and neutral
lepton masses. In Sec. III we compute the charged lepton
g − 2 values and provide simplified approximate expres-
sions. A numerical analysis is performed in Sec. IV. After
arguing that the pure ISS3 model cannot address the
anomalies, we explore the parameter space of the
ISS3VL model and obtain results for the electron and
muon g − 2 compatible with the relevant experimental
constraints. Finally, we discuss our results and conclude
in Sec. V. Appendixes A and B contain additional details,
such as analytical expressions for the couplings of interest
to our calculation and full expressions for the charged
lepton anomalous magnetic moments.

II. THE MODEL

The ISS3VL is an extension of the leptonic sector of the
SM with the addition of six right-handed Weyl fermion
SUð2ÞL triplets with vanishing hypercharge, ΣA and Σ0

A
(A ¼ 1, 2, 3), and a VL copy of the SM lepton doublet, LL
and LR. The ΣA and Σ0

A triplets are introduced in order to
generate neutrino masses via the inverse type-III seesaw
mechanism.4 They can be distinguished by their different
lepton numbers, with LðΣÞ ¼ þ1 and LðΣ0Þ ¼ −1.
Nevertheless, lepton number will be explicitly broken in
the ISS3VL. Therefore, this lepton number assignment is
arbitrary. The new fermionic fields LL and LR have the
same representations under the SUð3Þc × SUð2ÞL × Uð1ÞY
gauge group, and both are doublets under SUð2ÞL. The full
particle content of the ISS3VL model and the representa-
tions of all fields under the SUð3Þc × SUð2ÞL × Uð1ÞY
gauge group are shown in Table I.
As usual, the SM SUð2ÞL doublets can be decomposed as

qL ¼
�
u

d

�
L

; lL ¼
�
ν

e

�
L

; H ¼
�
Hþ

H0

�
: ð3Þ

The Σ and Σ0 triplets can also be decomposed into SUð2ÞL
components. With ΣA ¼ ðΣ1;Σ2;Σ3ÞA, they can be con-
veniently written in the usual 2 × 2 matrix notation
according to (the same holds for the primed states)

3See also [27,28] for discussions of generalized inverse seesaw
models, including versions with Dirac neutrinos, [29–32] for four
references studying the phenomenology of light fermion triplets
and [33] for a recent work on the inverse seesaw with sponta-
neous violation of lepton number.

4In order to simplify the notation, we will not denote the
chirality of the ΣA ≡ ΣRA

and Σ0
A ≡ Σ0

RA
fermions explicitly.
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ΣA ¼ 1ffiffiffi
2

p τ⃗ · Σ⃗A ¼
�Σ0

A=
ffiffiffi
2

p
Σþ
A

Σ−
A −Σ0

A=
ffiffiffi
2

p
�
; ð4Þ

where τA are the usual Pauli matrices and the states with
well-defined electric charge are given by

Σ0
A ¼ Σ3

A; Σ�
A ¼ Σ1

A ∓ iΣ2
Affiffiffi

2
p : ð5Þ

Finally, the VL leptons LL;R can decomposed as

LL;R ¼
�
N

E

�
L;R

: ð6Þ

Under the above working assumptions, the most general
Yukawa Lagrangian allowed by all symmetries can be
written as

LY ¼ LSM
Y þ LISS3

Y þ LVL
Y ; ð7Þ

where

−LSM
Y ¼ q̄LYuuRH̃ þ q̄LYddRH þ l̄LYeeRH þ H:c: ð8Þ

is the usual SM Lagrangian, with H̃ ¼ iτ2H�, and Yu;d;e are
3 × 3 Yukawa matrices in flavor space. Here and in the
following we omit SUð2ÞL contractions and flavor indices
to simplify the notation. The terms

−LISS3
Y ¼

ffiffiffi
2

p
Σ̄YΣlLH̃† þ Σ̄MΣΣ0c þ 1

2
Σ̄0μΣ0c þ H:c:;

ð9Þ

correspond to the usual ISS3 extension. Here YΣ,MΣ and μ
are 3 × 3 matrices, the latter two with dimensions of mass.
Finally, the VL leptons allows for additional Lagrangian
terms, given by

−LVL
Y ¼

ffiffiffi
2

p
Σ̄λLLLH̃† þ ēRλRLLH̃† þ L̄LMLLR

þ l̄LϵLR þ H:c: ð10Þ

Here λL and λR are dimensionless 3 × 1 vectors and ML a
parameter with dimensions of mass. The 1 × 3 vector ϵ has

dimensions of mass, and will be assumed to vanish
for simplicity.5 The guiding principle when writing the
Yukawa Lagragian in Eq. (7), in particular the piece in
Eq. (9), is the conservation of lepton number, only allowed
to be broken by the Σ̄0μΣ0c term. In fact, in the absence of
the Majorana mass μ, the Lagrangian would have an
additional Uð1ÞL global symmetry. In the following we
will consider μ ≪ MΣ, corresponding to a slightly broken
lepton number, in the spirit of the original inverse seesaw
mechanism.6

The scalar potential of the model is the same as in the
SM,

V ¼ m2jHj2 þ λjHj4; ð11Þ

withm2 a parameter with dimensions of ½mass�2. Therefore,
electroweak symmetry breaking takes place in the usual
way, with

hHi ¼ 1ffiffiffi
2

p
�
0

v

�
; ð12Þ

with v ≃ 246 GeV the SM Higgs vacuum expectation
value. After electroweak symmetry breaking, several
terms in the Yukawa Lagrangian in Eq. (7) induce mixings
in the neutral and charged lepton sectors. In the bases
n≡ nL ¼ ðνL; ðΣ0Þc; ðΣ00Þc; NL; Nc

RÞ, fL ¼ ðeL; ðΣþÞc;
ðΣ0þÞc; ELÞ and fR ¼ ðeR;Σ−;Σ0−; ERÞ, the neutral and
charged fermion mass terms read

−Lm ¼ 1

2
n̄cMNnþ fLMCfR þ H:c:; ð13Þ

with the mass matrices given by

MN ¼

0
BBBBBB@

0 mT
D 0 0 0

mD 0 MΣ mL 0

0 MT
Σ μ 0 0

0 mT
L 0 0 ML

0 0 0 ML 0

1
CCCCCCA
; ð14Þ

and

TABLE I. Particle content of the ISS3VL. qL, lL, uR, dR, eR,
and H are the usual SM fields.

qL uR dR lL eR Σ Σ0 LL LR H

SUð3ÞC 3 3̄ 3̄ 1 1 1 1 1 1 1
SUð2ÞL 2 1 1 2 1 3 3 2 2 2
Uð1ÞY 1

6
2
3

− 1
3

− 1
2

−1 0 0 − 1
2

− 1
2

1
2

GENERATIONS 3 3 3 3 3 3 3 1 1 1

5The ϵ term contributes to the electron, muon and tau masses
and is therefore constrained to be small.

6In principle, a term of the form Σ̄μ0Σc is also allowed by all
symmetries. However, it is well known that such a term would
contribute to neutrino masses in a subdominant way if μ and μ0
are of the same order, see for instance [28]. Therefore, we neglect
this term in the following.
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MC ¼

0
BBBBB@

me

ffiffiffi
2

p
mT

D 0 0

0 0 MΣ 0

0 MT
Σ μ 0

mT
R

ffiffiffi
2

p
mT

L 0 −ML

1
CCCCCA
: ð15Þ

Here we have defined

mD ¼ vffiffiffi
2

p YΣ; me ¼
vffiffiffi
2

p Ye; mL ¼ vffiffiffi
2

p λL

and mR ¼ vffiffiffi
2

p λR: ð16Þ

We note that the neutral lepton mass matrixMN is 11 × 11,
whereas the charged lepton mass matrix MC is 10 × 10.
They can be brought to diagonal form by means of the
unitary transformations U, VL and VR, defined by

U�MNU† ¼ diagðmNi
Þ; ð17Þ

VL�MCVR† ¼ diagðmχiÞ; ð18Þ

resulting in the 11 neutral (Majorana) fermion masses mNi

and the 10 charged (Dirac) fermion masses mχj , with i ¼
1;…; 11 and j ¼ 1;…; 10. In the following we will assume
the hierarchy of energy scales

μ ≪ mD;mL;mR ≪ MΣ;ML; ð19Þ

which allows one to obtain approximate expressions for the
physical lepton masses. We note that a small μ parameter is
justified through ’t Hooft naturalness criterion [70]. In the
case of the neutral leptons, one finds 3 light states, to be
identified with the standard light neutrinos. Their mass
matrix is approximately given by

mν ≈mT
DðMT

ΣÞ−1μM−1
Σ mD; ð20Þ

with corrections of the order of the small ratios ðmD=MΣÞ2
and ðmL=MLÞ2. This result is proportional to the μ
parameter. It is then clear that sizable YΣ Yukawa couplings
and triplets at the TeV scale are consistent with light
neutrino masses due to the suppression by the μ term. This
is the inverse seesaw mechanism.

III. CHARGED LEPTON ANOMALOUS
MAGNETIC MOMENTS

The charged lepton magnetic moments can be described
by the effective Hamiltonian [71]

H ¼ cijl̄jσμνPRliFμν þ H:c:; ð21Þ

where PR ¼ ð1þ γ5Þ=2 is the usual right-handed chiral
projector, Fμν the electromagnetic field strength tensor
and li denote the light charged lepton mass eigenstates,
equivalent in our scenario to χ1;2;3. The anomalous mag-
netic moment is given in terms of the real components of
the diagonal c coefficients as

ai ¼ −
2mi

e
ðcii þ c�iiÞ ¼ −

4mi

e
Re cii; ð22Þ

whereas the imaginary components would in turn induce
electric dipole moments.
The ISS3VL has the ingredients to induce large charged

lepton anomalous magnetic moments, namely, light new
particles with sizable couplings to the charged leptons. In
the ISS3VL, new contributions to the charged lepton
anomalous magnetic moments are induced at the 1-loop
level, as shown in Fig. 1. While these diagrams also exist in
the SM, in the ISS3VL the mass eigenstates Ni and χi
include new heavy states beyond the SM leptons.
Moreover, the couplings of the SM states get modified
due to mixings with the new BSM states. The amplitudes of
these Feynman diagrams are given by7

iMW
l ¼

Z
d4q
ð2πÞ4 ūlðp

0Þiγβ½ðgLχNWÞljPL þ ðgRχNWÞljPR�i
=qþmNj

q2 −m2
Nj

× iγα½ðgLχNWÞjlPL þ ðgRχNWÞjlPR�
−iðgαα̃ − ðp−qÞαðp−qÞα̃

m2
W

Þ
ðp − qÞ2 −m2

W
iΓμα̃ β̃

×
−iðgββ̃ −

ðp0−qÞβðp0−qÞβ̃
m2

W
Þ

ðp0 − qÞ2 −m2
W

ulðpÞεμ; ð23Þ

7In order to obtain the correct sign for the ISS3VL contributions to the electron and muon g − 2 one must use a consistent set of sign
conventions for the Feynman rules of the model. We used the useful Ref. [72] to guarantee the consistency of the amplitudes in
Eqs. (23)–(25).
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iMZ
l ¼

Z
d4q
ð2πÞ4 ūlðp

0Þiγβ½ðgLχZÞilPL þ ðgRχZÞilPR�i
ð=p0 − =qÞ þmχi

ðp0 − qÞ2 −m2
χi

× iγμ½ðgLχγÞiiPL þ ðgRχγÞiiPR�i
ð=p − =qÞ þmχi

ðp − qÞ2 −m2
χi

iγα½ðgLχZÞliPL þ ðgRχZÞ2iPR�

×
−iðgαβ − qαqβ

m2
Z
Þ

q2 −m2
Z

ulðpÞεμ; ð24Þ

iMh
l ¼

Z
d4q
ð2πÞ4 ūlðp

0Þi½ðgLχhÞilPL þ ðgRχhÞilPR�i
ð=p0 − =qÞ þmχi

ðp0 − qÞ2 −m2
χi

× iγμ½ðgLχγÞiiPL þ ðgRχγÞiiPR�i
ð=p − =qÞ þmχi

ðp − qÞ2 −m2
χi

i½ðgLχhÞliPL þ ðgRχhÞliPR�

×
i

q2 −m2
h

ulðpÞεμ: ð25Þ

Here PL ¼ ð1 − γ5Þ=2 is the left-handed chiral projector, εμ
is the photon polarization 4-vector and the couplings gL;RχNW ,

gL;RχZ , gL;Rχγ , gL;Rχh and Γ are defined in Appendix A. A sum
over the indices i, j is implicit in these expressions, while l
is the index of the external charged lepton. We have
computed the amplitudes in Eqs. (23)–(25) with the help
of Package-X [73]. After projecting onto the operator
in Eq. (21), one obtains analytical expressions for the

contributions to the c coefficient, which can then be
translated into contributions to the charged leptons g − 2
thanks to the relation in Eq. (22). The total ISS3VL
contribution to Δal can be written as8

(a) (b)

(c)

FIG. 1. Feynman diagrams that contribute to the charged lepton anomalous magnetic moment at the 1-loop level in the ISS3VL. Here
χi and Nj denote any of the charged and neutral lepton mass eigenstates, respectively. Momenta are shown in blue. (a) W. (b) Z. (c) h.

8Higher-order contributions, such as those induced by 2-loop
Barr-Zee diagrams [74], will be neglected in the following.
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Δal ¼ ΔalðWÞ þ ΔalðZÞ þ ΔalðhÞ: ð26Þ

Assuming that the ISS3VL states Ni and χi are much
heavier than the SM states (this is, assuming the mass
hierarchy mNi

; mχi ≫ mh;mW;mZ ≫ ml), one can find
approximate expressions for the three contributions:

ΔalðWÞ

≃
ml

32π2m2
W

�
4

3
ml

�
1 −

3m2
W

4m2
Ni

�
11þ 6 log

m2
W

m2
Ni

��
ðC2

χNWÞil

−mNi

�
1 −

3m2
W

m2
Ni

�
3þ 2 log

m2
W

m2
Ni

��
ðD2

χNWÞil
�
; ð27Þ

ΔalðZÞ ≃
ml

32π2m2
Z

�
−
5

3
mlðC2

χZÞil þmχiðD2
χZÞil

�
; ð28Þ

ΔalðhÞ ≃
ml

32π2m2
χi

�
1

3
mlðC2

χhÞil þmχiðD2
χhÞil

�
: ð29Þ

Here we have defined the coupling combinations

ðC2
YÞil ≡ jðgLYÞilj2 þ jðgRYÞilj2 and

ðD2
YÞil ≡ ðgLYÞilðgRYÞ�il þ ðgLYÞ�ilðgRYÞil; ð30Þ

with Y ¼ χNW, χZ, χh. Again, the indices i and l
denote the BSM particle running in the loop and the
charged lepton, respectively. We have checked that
Eqs. (27), (28), and (29) reproduce the ISS3VL contri-
butions to the charged leptons anomalous magnetic
moments in very good approximation. Nevertheless, full
expressions are given in Appendix B and used in the
numerical analysis presented in the next section. We note
that ΔalðWÞ, ΔalðZÞ, and ΔalðhÞ contain contributions
proportional to mNgLχNWg

R
χNW , mχgLχZg

R
χZ, and mχgLχhg

R
χh,

respectively, proportional to the mass of the fermion in
the loop. These terms are usually called chirally en-
hanced contributions and they typically dominate due to
the large masses of the heavy fermions running in the
loop.

IV. PHENOMENOLOGICAL DISCUSSION

We proceed now to present our phenomenological
exploration of the parameter space of the ISS3VL.

A. Experimental constraints

Let us first discuss how we fix the parameters of the
model in order to reproduce the measured lepton masses
and mixings. The Ye Yukawa matrix will be fixed to the
same values as in the SM, hence neglecting corrections
from the mixing between the SM charged lepton states
and the charged components of the Σ and Σ0 triplets.
These corrections are multiplicative and enter at order

∼ðmD=MΣÞ2 and can thus be safely neglected. The same
argument applies to the mixing with the charged com-
ponents of the VL leptons, which enter at order
∼ðmR=MLÞ2. Without loss of generality, we will work
in the basis in which MΣ is diagonal and μ is a general
complex symmetric matrix. In this case, YΣ and μ must
be properly fixed in order to reproduce neutrino oscil-
lation data [75]. In principle, one can fix the entries of μ
to some input values and express the YΣ Yukawa matrix
by means of the master parametrization [76,77], which in
this case reduces to a modified Casas-Ibarra parametri-
zation [78]. While this is perfectly valid, one generically
obtains YΣ matrices with sizable off-diagonal entries
unless some input parameters are tuned very finely.
Due to the strong constraints from the nonobservation
of lepton flavor violating processes, this excludes most of
the parameter points. Therefore, we take the alternative
choice of fixing YΣ to specific input values, diagonal for
simplicity, and computing μ by inverting Eq. (20) as

μ ¼ MT
ΣðmT

DÞ−1mνm−1
D MΣ; ð31Þ

where mν ¼ U�
νm̂νU

†
ν. Here Uν is the leptonic mixing

matrix measured in oscillation experiments, given in
terms of 3 mixing angles and 3 CP-violating phases,
while m̂ν is a diagonal matrix containing the physical
neutrino mass eigenvalues. Equation (31) guarantees that
all the parameter points considered in our numerical
analysis are compatible with neutrino oscillation data. In
our analysis we use the results of the global fit in [75]
and we consider both normal and inverted neutrino mass
orderings.
In order to ensure compatibility with constraints from

flavor and electroweak precision data we use the bounds
derived in [35], where a global analysis is performed in
the context of general type-III seesaw models. The limits
provided in this reference are given for the 3 × 3 matrix
η, defined in our case in terms of the matrices

MD ¼
�
mD

0

�
and M ¼

�
0 MΣ

MT
Σ μ

�
; ð32Þ

as

η ¼ 1

2
M†

DðM†Þ−1M−1MD

¼ 1

2
m†

DðM†
ΣÞ−1½I3 þ μ�ðM�

ΣÞ−1ðMT
ΣÞ−1μ�M−1

Σ mD

≈
1

2
m†

DðM†
ΣÞ−1M−1

Σ mD: ð33Þ

In our analysis, we make sure that the bounds are
respected by computing the η matrix in all the parameter
points considered. As we will explain below, these limits
imply very small BSM contributions in the ISS3, thus
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motivating our ISS3VL extension. Furthermore, we also
consider the decay widths for the processes Z → lþl−

and h → lþl−, with l ¼ e, μ, which are also affected
due to the mixing of the light charged leptons with the
heavy states in our model. They are computed as

ΓðZ → lþl−Þ ¼ m3
Z

12πv2
½jðgVχZÞllj2 þ jðgAχZÞllj2�; ð34Þ

Γðh → lþl−Þ ¼ mh

8π
½jðgLχhÞllj2 þ jðgRχhÞllj2�; ð35Þ

with gVχZ ¼ gLχZ þ gRχZ and gAχZ ¼ gRχZ − gLχZ. The Z →
lþl− decay turns out to provide an important constraint
in our setup. In fact, it has been recently pointed out that
this process potentially correlates with the charged
leptons g − 2 [79]. We define the ratios

RZll ¼ ΓðZ → lþl−Þ
ΓSMðZ → lþl−Þ ; ð36Þ

with ΓSMðZ → lþl−Þ the SM predicted decay width, and
impose that RZll lies within the 95% CL range, which
we estimate to be 0.995 < RZee < 1.003 and 0.993 <
RZμμ < 1.006 [80]. Regarding the Higgs boson decays,
no constraints are actually obtained from them, since at
present there is no hint for h → eþe− and evidence for
h → μþμ− was only obtained recently [81]. Therefore,
they will be considered as predicted observables, poten-
tially correlated with Δal [79,82].
Finally, we also impose bounds from collider searches.

The type-III seesaw triplets have been searched for at the
LHC in multilepton final states, both by ATLAS [83] and
CMS [84,85]. No excess above the expected SM back-
grounds has been found, hence allowing the experimental
collaborations to set limits on the triplet mass and
couplings. Using a data sample obtained with proton
collisions at

ffiffiffi
s

p ¼ 13 TeV and an integrated luminosity
of 35.9 fb−1, CMS reports a lower bound on the triplet
mass of 840 GeV at 95% confidence level, if the triplet
couplings are assumed to be lepton flavor universal [85].
While the flavor structure of the triplet couplings to
leptons does not affect the heavy triplet pair production
cross sections, driven by gauge interactions, it has an
impact on the flavor composition of the multilepton
signature. The limit changes if the assumption of lepton
flavor universal couplings is dropped, resulting in a more
stringent bound when the triplet couples mainly to
electrons and a more relaxed bound when the triplet
couples mainly to taus, with values ranging between 390
and 930 GeV. The bounds from the CMS collaboration in
[85] are applied in our analysis. However, since the CMS
analysis focuses on the standard type-III seesaw scenario,
and does not consider the particular features of the

ISS3VL model, several simplifying assumptions must
be made. We define

BAα ¼
ΓðΣ0

A → lαþ bosonÞþΓðΣþ
A → lαþ bosonÞP

α½ΓðΣ0
A → lαþ bosonÞþΓðΣþ

A → lαþ bosonÞ� ;

ð37Þ

where Σ0
A and Σþ

A are the quasi-Dirac pairs approximately
formed by the mass eigenstates Ni þ Nj and χi þ χj,
respectively. An implicit sum over the bosons in the final
states is also assumed, including decays to W�, Z and h.
For instance, in a parameter point in which the lightest
BSM states are mainly composed by the components of
the Σ1 triplet, we have i¼4, j¼5 and ΓðΣ0

1→lα þ
bosonÞ≡ΓðN4→W�l∓ÞþΓðN4→ZναÞþΓðN4→hναÞþ
ΓðN5→W�l∓ÞþΓðN5→ZναÞþΓðN5→hναÞ. We note
that BAe þ BAμ þ BAτ ¼ 1. This is the quantity that we
use to confront each quasi-Dirac pair with the limits
given on Figure 3 of [85]. Our approach approximates
the total heavy triplet pair production to pp → Σ0

AΣ
þ
A ,

which is known to give the dominant contribution at the
LHC [86]. Furthermore, we apply two additional sim-
plifications. First, since CMS assumes the neutral and
charged components of the triplet to be mass degenerate,
we adopt a conservative approach and take the lowest of
them as the triplet mass to be used in the analysis. And
second, we do not apply the CMS bounds to quasi-Dirac
triplet pairs that are largely mixed with the VL leptons,
since their production cross section is clearly reduced
with respect to the pure triplet case.9 We believe that our
assumptions conservatively adapt the CMS limits in [85]
to our scenario. We note that ATLAS finds a similar
bound on the triplet mass in the flavor universal scenario,
ruling out (at 95% confidence level) values below
790 GeV [83]. Finally, LHC limits on VL leptons
strongly depend on their decay modes, namely the flavor
of the charged leptons produced in the final states [87].
In our analysis we will consider ML ≥ 500 GeV, a
conservative value that guarantees compatibility with
current LHC searches. These limits are expected to be
improved by the end of the LHC Run-III [88].

B. ðg− 2Þe;μ in the ISS3

Before studying the electron and muon g − 2 in the
ISS3VL, let us discuss these observables in the context
of the pure ISS3 and show that this model is unable
to address the existing discrepancies. One can easily
reach this conclusion by estimating the size of the

9In practice, we do not apply the CMS bounds in cases with
large mixings. For instance, they are not applied to χi Dirac states
that combine a left-handed fermion that is mostly a type-III triplet
with a right-handed fermion that is mostly a VL lepton, or vice
versa.
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dominant contributions to the charged lepton g − 2.
Figure 2 shows the dominant W contribution. Assuming
that the chirally enhanced term in Eq. (27) dominates, one
finds the estimate

ΔalðWÞ∼−
1

32π2
mNml

m2
W

g2
�
mD

MΣ

�
2

ll

ml

v
∼−10−3

mNm2
l

m3
W

ηll:

ð38Þ

First of all, we notice that this contribution is always
negative since ηll > 0. Therefore, it cannot accommodate
the muon g − 2 anomaly, which requires Δaμ > 0. This
result was already found in early studies of the charged
leptons anomalous magnetic moments in seesaw scenarios
[89–91], as well as in [92]. Furthermore, the absolute value
of ΔalðWÞ is also too small to account for the anomalies.
This implies that the electron g − 2 cannot be explained
either in the ISS3. In this regard, we highlight the relevance
of the ml=v factor in Eq. (38). This factor is not apparent
when inspecting the analytical expressions for the cou-
plings in Appendix A. In fact, the individual contributions
to ΔalðWÞ by the neutral fermions in the loop are larger
than their sum, ΔalðWÞ, by a factor ∼v=ml. Therefore, a
strong cancellation among them takes place. This cancel-
lation can be easily understood due to the chirality-flipping
nature of the dipole moment operator in Eq. (21). The factor
ml=v is required to flip the chirality of the fermion line and
induce a contribution to a dipole moment. One can now
consider mN ¼ 1 TeV to obtain

ΔaeðWÞ ∼ −5 × 10−13ηee; ð39Þ

ΔaμðWÞ ∼ −2 × 10−8ημμ: ð40Þ

Since ηee and ημμ are constrained to be smaller than ∼10−4
[35], these contributions fail to address the electron and
muon g − 2 anomalies by several orders of magnitude. The
same argument can be applied to the Z and h contributions
to find that they are actually even more suppressed. In
summary, the suppression by the ml=mW chirality flip and
the stringent bounds on ηll imply that the ISS3 cannot
induce sizable contributions. This, added to the fact that the

contributions to the muon g − 2 have the wrong sign,
implies that the ISS3 cannot explain the deviations in the
electron and muon anomalous magnetic moments. We now
proceed to show that the additional ingredients in our
extended model can alter this conclusion.

C. ðg− 2Þe;μ in the ISS3VL

As already discussed, the ISS3 cannot explain the
experimental anomalies in the electron and muon anoma-
lous magnetic moments. Therefore, we now consider its
ISS3VL extension. In this case one has W contributions
such as the one shown in Fig. 3. We can now derive an
analogous estimate, along the same lines as in the case of
the ISS3. One finds

jΔalðWÞj ∼ 1

32π2
mNml

m2
W

g2
�
mD

MΣ

�
ll

mL

ML

mR

ML

∼ 10−3
mNmlmLmR

m2
WM

2
L

ffiffiffiffiffiffiffi
ηll

p
: ð41Þ

One can now choose mN ¼ 1 TeV, ML ¼ 500 GeV,
mL ¼ 200 GeV, and mR ¼ 10 GeV to obtain

jΔaeðWÞj ∼ 6 × 10−10
ffiffiffiffiffiffi
ηee

p
; ð42Þ

jΔaμðWÞj ∼ 10−7
ffiffiffiffiffiffi
ημμ

p
: ð43Þ

Therefore, even after the suppression given by
ffiffiffiffiffiffiffi
ηll

p ≲
10−2 these W contributions can address the current dis-
crepancies with the electron and muon g − 2 measure-
ments. Furthermore, the signs of these contributions are not
fixed and can be properly adjusted by fixing the signs of the
relevant Yukawa couplings. We note that the loop in Fig. 3
is proportional to the product YΣλLλR which, as shown
below, will be crucial for the resulting values for Δal in the
ISS3VL model. Similar h contributions are also found,
again proportional to the YΣλLλR product. Therefore, the
model is in principle capable of producing sizable con-
tributions to the electron and muon g − 2. We now proceed
to confirm this by performing a detailed numerical analysis
of the parameter space of the model. Since we are interested

FIG. 3. Dominant W contribution in the ISS3VL. Mass
insertions are represented by white blobs.

FIG. 2. Dominant W contribution in the ISS3. Mass insertions
are represented by white blobs.
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in Δae and Δaμ, we fix ðλLÞ3 ¼ ðλRÞ3 ¼ 0 and randomly
scan within the following parameter ranges:

Parameter Min Max

ðMΣÞii 850 GeV 1.5 TeV
ML 500 GeV 1.5 TeV
ðYΣÞii 0.05 0.2
ðλLÞ1 −

ffiffiffiffiffi
4π

p
−0.1

ðλLÞ2 0.1
ffiffiffiffiffi
4π

p
ðλRÞ1 0.05 0.5
ðλRÞ2 0.05 0.5

Some comments about the chosen ranges are in order.
First, the ranges for the mass parameters ðMΣÞii and ML
have been selected following the discussion on LHC
bounds of Sec. IVA. Many of the parameter points in
our scan were ruled out due to LHC searches for triplets,
but we also find that a substantial fraction pass the test. The
ranges for the Yukawa couplings have been chosen in order
to maximize the resulting Δal. The usual ISS3 Yukawas
ðYΣÞii have been scanned around their maximal values
compatible with the ηii bounds. A relative sign between
ðλLÞ1 and ðλLÞ2 has been introduced in order to obtain
Δae < 0 and Δaμ > 0, as required by the experimental
hints. Finally, the corrections to ΓðZ → lþl−Þ tend to be
too large unless ðλRÞ1;2 ≲ 0.5.
Our results are based on a random scan with 50.000

parameter points, out of which about 12%–13% pass all the
experimental tests. We have selected normal neutrino mass
ordering. However, we have also run a second scan with
inverted ordering and found the same qualitative results. As
already explained, we consider a scenario with diagonal YΣ
and MΣ matrices. In this case, the lepton mixing angles
encoded in the matrix Uν are generated by the off-diagonal
entries of the μ matrix and all lepton flavor violating
processes are strongly suppressed. For this reason, the
bounds on the ηij entries, with i ≠ j, are easily satisfied. In
contrast, the bounds on the diagonal elements of the η

matrix turn out to be very important, removing a significant
amount of the parameter points considered and implying
the approximate bounds ðYΣÞ11 ≲ 0.2 and ðYΣÞ22 ≲ 0.15
for triplet masses of the order of the TeV. Another very
important constraint in our setup is provided by the decay
Z → lþl−. The mixing between the SM charged leptons
and the new charged BSM states from the Σ and Σ0 triplets
and LL;R VL doublets reduces ΓðZ → lþl−Þ with respect
to its SM value. This has a strong impact on the mD=MΣ
and mR=ML ratios. Since these ratios must be sizable in
order to induce large contributions to Δal, see Fig. 3, this
limit is crucial for the correct evaluation of our scenario.
Finally, the CMS limits discussed in Sec. IVA also have an
impact, discarding some of the parameter points in
our scan.
Our choice of a diagonal YΣ (in the basis in whichMΣ is

diagonal too) implies that the mixing among different
triplets is typically very small. In this case, and unless
there is a large mixing with the VL neutral leptons, two of
the heavy neutral mass eigenstates are given in good
approximation by the Σ1 − Σ0

1 quasi-Dirac pair and couple

FIG. 4. Δae (left) and Δaμ (right) as a function of the product ðYΣÞiiðλLÞiðλRÞi. Blue dots correspond to parameter points that pass all
the experimental constraints, whereas gray points are experimentally excluded. The horizontal dashed lines represent the central values
for Δae and Δaμ, whereas 1σ (3σ) regions are displayed as yellow (green) bands.

FIG. 5. Δaμ as a function of the combination
ðYΣÞ22ðλLÞ2ðλRÞ2=½ðMΣÞ2M2

L�. Dashed line, horizontal bands
and color code as in Fig. 4.
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mainly to electrons. Similarly, two of the heavy neutral
mass eigenstates are approximately given by the Σ2 − Σ0

2

quasi-Dirac pair and couple mainly to muons. Therefore,
the discussion in the previous section implies that one
expects a strong correlation between Δae and the product
ðYΣÞ11ðλLÞ1ðλRÞ1, as well as between Δaμ and the product
ðYΣÞ22ðλLÞ2ðλRÞ2. This is clearly shown in Fig. 4. The left
side of this figure shows Δae, whereas the right side
displays results for Δaμ, in both cases as a function of the
said parameter combinations. Here, and in the following
figures, parameter points that pass all the experimental
constraints are displayed in blue color, whereas gray points
are excluded for one or several of the reasons explained
above, but included in the figure for illustration purposes.
The horizontal dashed line represents the central value for
Δal, while 1σ (3σ) regions are displayed as yellow (green)
bands. The first and most important result shown in this
figure is that the ISS3VL can indeed explain the electron
and muon g − 2 anomalies. In the case of the electron, one
can easily find fully valid parameter points within the 1σ
region, corresponding to values of −ðYΣÞ11ðλLÞ1ðλRÞ1 in
the ballpark of ∼0.01–0.05. In fact, one can even exceed the
experimental hint. In contrast, the muon g − 2 can only be
explained within 1σ in a narrow region of the parameter
space, with ðYΣÞ22ðλLÞ2ðλRÞ2 ∼ 0.1. This is due to the
combination of constraints that apply to our setup.
Figure 4 also confirms the correlations with the product
ðYΣÞiiðλLÞiðλRÞi, as we expected from the arguments given
in the previous section. The correlation is even more
pronounced in terms of the combination ðYΣÞiiðλLÞiðλRÞi=
½ðMΣÞiM2

L�, as shown in Fig. 5 for the case of the muon
g − 2. This implies that the Feynman diagram in Fig. 3
indeed provides one of the dominant contributions to Δal.
An example parameter point that achieves Δae and Δaμ

values in the 1σ regions indicated in Eq. (2) is given by

ðMΣÞii ¼ 1 TeV; ML ¼ 630 GeV; ð44Þ

and

ðYΣÞii ¼ 0.117; ðλLÞ1 ¼ −0.6; ðλLÞ2 ¼
ffiffiffiffiffiffi
4π

p
;

ðλRÞ1 ¼ 0.1; ðλRÞ2 ¼ 0.25: ð45Þ

We note that a large ðλLÞ2, close to the nonperturbativity
regime, is required to obtain a muon g − 2 close to the
measured central value. While in principle this is perfectly
fine, one can relax this restriction with additional contri-
butions to the muon g − 2. For instance, we expect this to
happen in a nonminimal version of our model with more
than just one generation of VL leptons or including singlet
VL leptons.
Figure 6 shows the dependence ofΔal on ðMΣÞii. On the

left side,Δae is shown as a function of ðMΣÞ11, whereas the
right side panel shows Δaμ as a function of ðMΣÞ22. As
explained above, these are the parameters that determine
the masses of the triplets that couple mainly to electrons
and muons, respectively. Therefore, as expected, the NP
contributions decrease for larger values of ðMΣÞii.
However, given the limited range over which these param-
eters were scanned, the reduction is not very strong. A
lower bound ðMΣÞ11 ≳ 930 GeV is clearly visible on the
left side panel. This is due to the fact that lower ðMΣÞ11

FIG. 6. Δae (left) and Δaμ (right) as a function of ðMΣÞ11 and ðMΣÞ22, respectively. Dashed line, horizontal bands and color code as in
Fig. 4.

FIG. 7. Δaμ as a function ofML. Dashed line, horizontal bands
and color code as in Fig. 4.
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values would lead to lighter triplets, excluded by CMS
searches. The dependence onML, the VL mass, is shown in
Fig. 7 for the case of the muon g − 2. One can clearly see in
this plot, as well as in the previous ones, that the density of
valid parameter points gets reduced for low masses. This is
because low ðMΣÞii and/or ML often lead to exclusion due
to the ΓðZ → lþl−Þ constraint.
We turn now our attention to the predictions of our setup.

Figure 8 shows the predicted values for the ratios

Rhll ¼ Γðh → lþl−Þ
ΓSMðh → lþl−Þ ; ð46Þ

where ΓSMðh → lþl−Þ is the SM decay width, as a
function of Δal. In both cases, the reductions are small,
at most of about ∼2% in the parameter points that pass all
the experimental bounds. This is due the fact that the Rhll
ratios correlate with the corresponding RZll ratios, and are
thus strongly constrained. Therefore, our setup predicts
SM-like Higgs boson decays into charged leptons.
Finally, we have focused on a scenario with diagonal YΣ

couplings in order to enhance the diagonal contributions to
the muon g − 2. This strongly suppresses all lepton flavor
violating signals, which can only take place via the off-
diagonal entries of the small μ parameter. We believe this to
be a generic prediction of our model when the muon g − 2
anomaly is addressed. However, we cannot discard the
possibility of very fine-tuned parameter regions with large
off-diagonal YΣ couplings and accidentally suppressed
flavor violating transitions.

V. DISCUSSION

The recent announcement of the first results by the Muon
g − 2 collaboration at Fermilab has sparked a renewed
interest in a longstanding anomaly. Together with the
analogous discrepancy in the anomalous magnetic moment
of the electron, they constitute a pair of intriguing devia-
tions with respect to the SM predictions. If confirmed, new

BSM states with masses not much above the electroweak
scale will be required in order to address the discrepancies.
We have analyzed the electron and muon g − 2 in an

extended version of the ISS3model that includes a pair ofVL
doublet leptons. This model is motivated by the need to
generate neutrino masses, which in this setup are induced at
the electroweak scale. This naturally leads to a rich phe-
nomenology in multiple fronts. Our analysis has taken into
account the most relevant experimental bounds in our
scenario. This includes limits from direct searches at the
LHC, deviations in Z → lþl− decays and a compilation of
electroweak limits. These are the main conclusions of
our work:

(i) The pure ISS3 cannot address the electron and muon
g − 2 anomalies due to the combination of the
constraints on the mD=MΣ ratio derived from a
variety of electroweak data and a strong chiral
suppression of the order of ml=v. In addition, the
contributions to the muon g − 2 have the wrong sign.

(ii) The inclusion of a VL lepton doublet pair to the
ISS3 particle content suffices to enhance the con-
tributions to the muon g − 2, allows one to adjust its
sign conveniently and fully addresses the observed
discrepancy.

(iii) The electron g − 2 anomaly can also be explained, in
this case in a wider region of the parameter space.

(iv) No significant change in the h → lþl− decays is
found, and then these stay SM-like.

In this work we have focused on a minimal extension of
the ISS3, containing only one VL lepton doublet pair. In
principle, one may introduce additional copies of LL;R or
VL lepton singlets, see for instance [45]. These nonminimal
variations may reduce the impact of some of the bounds or
enlarge the parameter space compatible with the current
experimental hints in the muon g − 2. Furthermore, lepton
number is explicitly broken in our model. Alternatively,
one may consider the spontaneous breaking of a global
Uð1ÞL lepton number symmetry, leading to the appearance
of a massless Goldstone boson, the majoron. However, a

FIG. 8. Rhee (left) and Rhμμ (right) as a function of Δae and Δaμ, respectively. The vertical dashed lines represent the central values for
Δae and Δaμ, whereas 1σ (3σ) regions are displayed as yellow (green) bands.
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pure massless pseudoscalar state gives negative (lepton
flavor conserving) contributions to the electron and muon
anomalous magnetic moments [93], hence being unable to
solve the tension in the case of the muon g − 2.
Exciting times are ahead of us. The muon g − 2 anomaly,

now hinted by a second experiment, joins the list of results
that have recently attracted attention to muons. It is natural
to speculate about this anomaly together with the RK and
RK� anomalies found by the LHCb collaboration, as well as
with the set of deviations observed in recent years in
semileptonic b → s and b → c transitions. New experi-
mental results, that may finally confirm an emerging
picture beyond the SM, are eagerly awaited.
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APPENDIX A: COUPLINGS

The couplings involved in the calculation of the charged
lepton anomalous magnetic moments are shown in the
Feynman diagrams of Fig. 1 and have been computed with
the help of SARAH [94–98].10 We define them and list their
analytical expressions here:

ðA1Þ

ðgLχNWÞij ¼ −g
�

1ffiffiffi
2

p
X3
a¼1

VL�
jaU ia þ

X9
a¼4

VL�
jaU ia

þ 1ffiffiffi
2

p VL�
j10U i10

�
ðA2Þ

ðgRχNWÞij ¼ −g
�X9

a¼4

VR
jaU

�
ia −

1ffiffiffi
2

p VR
j10U

�
i11

�
ðA3Þ

ðA4Þ

ðgLχZÞij ¼
1

2
ðg cos θW − g0 sin θWÞ

�X3
a¼1

VL�
jaV

L
ia þ VL�

j10V
L
i10

�

þ g cos θW
X9
a¼4

VL�
jaV

L
ia ðA5Þ

ðgRχZÞij ¼ −g0 sin θW
X3
a¼1

VR�
ia V

R
ja þ g cos θW

X9
a¼4

VR�
ia V

R
ja

þ 1

2
ðg cos θW − g0 sin θWÞVR�

i10V
R
j10 ðA6Þ

ðA7Þ10See [99] for a pedagogical introduction to the use of SARAH.
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ðgLχhÞij ¼ −
1ffiffiffi
2

p
X3
a;b¼1

VL�
jbV

R�
ia ðYeÞab

−
X3
a¼1

X3
b¼1

VL�
jbV

R�
iaþ3ðYΣÞab

− VL�
j10

�X3
a¼1

VR�
iaþ3ðλLÞa þ

1ffiffiffi
2

p
X3
a¼1

VR�
ia ðλRÞa

�

ðA8Þ

ðgRχhÞij ¼−
1ffiffiffi
2

p
X3
a;b¼1

VL
ibV

R
jaðYeÞ�ab−

X3
a¼1

X3
b¼1

VL
ibV

R
jaþ3ðYΣÞ�ab

−
�X3
a¼1

VR
jaþ3ðλ�LÞaþ

1ffiffiffi
2

p
X3
a¼1

VR
jaðλ�RÞa

�
VL
i10 ðA9Þ

ðA10Þ

ðgLχγÞij ¼ ðgRχγÞij ¼ −eδij ðA11Þ

ðA12Þ

Γμαβ ¼ g sin θW ½gαβðpμ
W1

þ pμ
W2
Þ þ gμβð−pα

W2
− pα

γ Þ
þ gαμðpβ

γ − pβ
W1Þ� ðA13Þ

APPENDIX B: CHARGED LEPTON ANOMALOUS
MAGNETIC MOMENTS: FULL EXPRESSIONS

We define the dimensionless quantities

ϵli ¼
ml

mχi

; δli ¼
ml

mNi

; ωai ¼
ma

mχi

and

ωWi ¼
mW

mNi

; ðB1Þ

with a ¼ Z, h.

1. W contribution

The W contribution to the charged lepton anomalous
magnetic moments can be written as

ΔalðWÞ ¼ 1

32π2ω2
Wiδ

4
li
½ðC2

χNWÞilfWðδ2li;ω2
WiÞ

− δliðD2
χNWÞilgWðδ2li;ω2

WiÞ�; ðB2Þ

where a sum over the repeated index i is implicit and fW
and gW are two loop functions given by

fWðx; yÞ
¼ x3 þ x2ð8y − 1Þ þ 2xð1þ y − 2y2Þ
þ ½3x2y − xð1 − 3yþ 5y2Þ − 3y2 þ 2y3 þ 1� log y

þ 2

Δðx; yÞ ½3x
3yþ x2ð1 − 8y2Þ þ xð7y3 − 7y2 þ 2y − 2Þ

þ ð1 − yÞ3ð1þ 2yÞ� log 1þ y − xþ Δðx; yÞ
2

ffiffiffi
y

p ; ðB3Þ

gWðx; yÞ ¼ 2xð1þ 2yÞ þ ½xð3y − 1Þ − 2y2 þ yþ 1� log y

þ 2

Δðx; yÞ ½x
2ð3yþ 1Þ − xð2 − yþ 5y2Þ þ 2y3

− 3y2 þ 1� log 1þ y − xþ Δðx; yÞ
2

ffiffiffi
y

p : ðB4Þ

Here we have defined the auxiliary function

Δðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 2xð1þ yÞ þ ð1 − yÞ2

q
: ðB5Þ

2. Z contribution

The Z contribution can be written as

ΔalðZÞ ¼
1

32π2ω2
Ziϵ

4
li
½ðC2

χZÞilfZðϵ2li;ω2
ZiÞ

þ ϵliðD2
χZÞilgZðϵ2li;ω2

ZiÞ�: ðB6Þ

Again, there is a sum over the repeated index i, whereas fZ
and gZ are the loop functions
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fZðx; yÞ ¼ −x½x2 þ xð3 − 4yÞ þ 4y2 − 2y − 2�
þ ½x2 − xð2 − 2yþ 3y2Þ þ 2y3 − 3y2 þ 1� log y

−
2

Δðx; yÞ ½x
3 þ x2ð3y2 þ y − 3Þ

− xð5y3 − 4y2 þ 2y − 3Þ

− ð1 − yÞ3ð1þ 2yÞ� log 1þ y − xþ Δðx; yÞ
2

ffiffiffi
y

p ;

ðB7Þ

gZðx; yÞ ¼ 2xð2x − 2y − 1Þ
− ½x2 þ xðy − 2Þ − 2y2 þ yþ 1� log y

þ 2

Δðx; yÞ ½x
3 − 3x2 þ 3xð1þ y2Þ − 2y3

þ 3y2 − 1� log 1þ y − xþ Δðx; yÞ
2

ffiffiffi
y

p : ðB8Þ

3. h contribution

Finally, the h contribution to the charged leptons g − 2
can be written as

ΔalðhÞ ¼
1

32π2ϵ4li
½ðC2

χhÞilfhðϵ2li;ω2
hiÞ

þ ϵliðD2
χhÞilghðϵ2li;ω2

hiÞ�; ðB9Þ

with an implicit sum over the repeated i index and the loop
functions

fhðx; yÞ ¼ −xðxþ 2y − 2Þ þ ½ð1 − yÞ2 − x� log y

þ 2

Δðx; yÞ ½x
2 þ xðy2 þ y − 2Þ þ ð1 − yÞ3�

× log
1þ y − xþ Δðx; yÞ

2
ffiffiffi
y

p ; ðB10Þ

ghðx; yÞ ¼ 2x − ðxþ y − 1Þ log y

þ 2

Δðx; yÞ ½ð1 − xÞ2 þ y2 − 2y�

× log
1þ y − xþ Δðx; yÞ

2
ffiffiffi
y

p : ðB11Þ

We have compared our results to the general expressions
provided in [71], finding full agreement. Our results also
match those recently presented in [62], where a model with
similar contributions to the muon g − 2 was considered.
Finally, analytical expressions for the contributions to the
muon g − 2 in the limit of heavy mediators are provided in
[12]. While we do not consider this limit in our paper (since
it would correspond to mW , mZ, mh ≫ mNi

, mχi), it can be
used to cross check our results. We find full agreement.

[1] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio,
Tenth-Order QED Contribution to the Electron g-2 and
an Improved Value of the Fine Structure Constant, Phys.
Rev. Lett. 109, 111807 (2012).

[2] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio,
Complete Tenth-Order QED Contribution to the Muon
g-2, Phys. Rev. Lett. 109, 111808 (2012).

[3] S. Laporta, High-precision calculation of the 4-loop con-
tribution to the electron g-2 in QED, Phys. Lett. B 772, 232
(2017).

[4] T. Aoyama, T. Kinoshita, and M. Nio, Revised
and improved value of the QED tenth-order electron
anomalous magnetic moment, Phys. Rev. D 97, 036001
(2018).

[5] G. Bennett et al. (Muon g-2 Collaboration), Final Report of
the muon E821 anomalous magnetic moment measurement
at BNL, Phys. Rev. D 73, 072003 (2006).

[6] F. Jegerlehner and A. Nyffeler, The muon g-2, Phys. Rep.
477, 1 (2009).

[7] T. Blum, P. Boyle, V. Gülpers, T. Izubuchi, L. Jin, C.
Jung, A. Jüttner, C. Lehner, A. Portelli, and J. Tsang
(RBC and UKQCD Collaborations), Calculation of the

Hadronic Vacuum Polarization Contribution to the Muon
Anomalous Magnetic Moment, Phys. Rev. Lett. 121,
022003 (2018).

[8] B. Abi et al. (Muon g − 2 Collaboration), Measurement of
the Positive Muon Anomalous Magnetic Moment to
0.46 ppm, Phys. Rev. Lett. 126, 141801 (2021).

[9] T. Aoyama et al., The anomalous magnetic moment
of the muon in the Standard Model, Phys. Rep. 887, 1
(2020).

[10] L. Morel, Z. Yao, P. Cladé, and S. Guellati-Khélifa,
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