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We show that a metastable dark matter candidate arises naturally from the conformal transformation
between the Einstein metric, where gravitons are normalized states, and the Jordan metric dictating the
coupling between gravity and matter. Despite being secluded from the Standard Model by a large scale
above which the Jordan metric shows modifications to the Einstein frame metric, dark matter couples to the
energy momentum tensor of the Higgs field in the primordial plasma primarily. This allows for the
production of dark matter in a sufficient amount, which complies with observations. The seclusion of dark
matter makes it long-lived for masses≲1 MeV, with a lifetime much above the age of the Universe and the
present experimental limits. Such a dark matter scenario has clear monochromatic signatures generated by
the decay of the dark matter candidate into neutrino and/or γ rays.
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I. INTRODUCTION

Dark matter (DM) has now been a mystery for more than
80 years. Ever since Zwicky’s observation of the Coma
cluster [1], the measurements of Andromeda’s rotation
curve by Babcock [2] and the issue of stabilizing structures
addressed by Peebles and Ostriker [3], dark matter was
systematically referred to as the “subliminal matter prob-
lem” until Gunn et al. proposed in 1978 that the intro-
duction of a new particle could fill the matter content of the
Universe [4]. Even if the “reality” of DM is now confirmed
by the latest measurements of the CMB anisotropies [5], it
has taken a long time to convince theorists and observers
that the existence of a new field, beyond the Standard
Model of particle physics, should exist in order to explain
the cosmological observations. This hypothesis, i.e., the
presence of a particle in thermal equilibrium with the
primordial plasma after the reheating phase, has now
become the most natural option for a large part of the

physics community. Paradoxically, the contrary assumption
that a highly feebly interacting candidate, the gravitino,
could play the role of DM was one of the very first well-
motivated candidate, proposed in [6], for the dark matter
particle. The possibility that the gravitino could have been
in thermal equilibrium was contradicted in [7] by taking
into account its Planck reduced coupling to the thermal
bath. Despite this early failure, a plethora of models based
on the thermal equilibrium assumption, called WIMP for
weakly interacting massive particle, were subsequently
proposed (see [8] for a recent review on the subject).
From the Higgs portal [9] to the Z portal [10] and Z0 portal
[11], all the models based on this WIMP paradigm, which
has the advantage of not questioning the earliest thermal
stages of the Universe, are now becoming more and more in
tension with the exclusion limits of the more recent direct
detection experiments like XENON1T [12], LUX/LZ [13],
and PANDAX [14].
An alternative called FIMP for feebly interacting mas-

sive particle (or freeze-in massive particle) was proposed in
[15], where the dark matter component never becomes in
equilibrium with the primordial plasma, and whose pro-
duction rate is frozen “in” the process of reaching equi-
librium. The original article deals with effective couplings
and can be seen as a generalization of the gravitino dark
matter, which is of the same nature. This DM production
mode has been since extended to high scale SUSY models
[16], SO(10) constructions [17], Z0 mediators [18], heavy
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spin-2 and Kaluza Klein modes [19,20], highly decoupled
sectors [21,22], or even in emergent gravity/string scenarios
[23,24] (for a recent review, see [25]). All these proposals
have in common the presence of higher dimensional
operators at energies below a UV scale Λ determined by
the mass of the mediator or its couplings (or both). As a
rule, the presence of a cutoff scale at higher values than the
maximal temperature reached by the primordial plasma
Tmax (or the reheating TRH if one considers instantaneous
reheating) is conducive to the FIMP mechanism in a dark
matter sector.
It is remarkable that such higher dimensional operators

arise naturally in extensions of gravity, as it is the case in
supergravity, for instance. Originally, supersymmetry
appeared as an extension of the Poincaré group to spinorial
transformations whose breaking generated the neutrino as a
goldstone fermion of the supersymmetry breaking [26].
When supersymmetry becomes a local symmetry, i.e.,
supergravity, and after spontaneous supersymmetry break-
ing of the longitudinal mode of the gravitino, also called the
goldstino (Ψ3=2), can be considered as a dark matter
candidate. Its coupling to the Standard Model is obtained
via its contribution to the metric by first defining an
invariant vierbein under the generalized Poincaré trans-
formations [26],

eαμ ¼ δαμ −
i

2F2
ð∂μΨ̄3=2γ

αΨ3=2 þ Ψ̄3=2γ
α∂μΨ3=2Þ; ð1Þ

ffiffiffiffi
F

p
being related to the SUSY breaking scale.1 In the

absence of an R parity, Ψ3=2 is a metastable neutral
candidate whose spin-3=2 determines the final state
(γ þ ν) of its decay products. This kind of construction
belongs clearly to the category of models where the
Standard Model fields interact with a dark sector through
the presence of the physical or Jordan metric
gμν ¼ eμaeνbη

ab. Moreover, the suppression by MP of the
extension of the metric makes Ψ3=2 a perfectly long-lived
FIMP candidate as argued above.
The idea of modifying the metric, or more precisely of

considering that the geometrical metric gμν, governing the
gravitational structure and the propagation of gravitons
differs from the metric governing the dynamics of matter
g̃μν, is not new. This was already proposed in Nordstrom
gravitational theories [27], Brans-Dicke [28] or Dirac’s
[29]. Later a generalization to conformal and disformal
transformations of the metric was introduced [30,31], and
such bimetric models became ubiquitous. Coupling a scalar
dark matter field via a conformal transformation of the
metric,

g̃μν ¼ eϕ=MPgμν ≃ gμν

�
1þ ϕ

MP

�
; ð2Þ

generating a coupling of the kind,

LSM
ϕ ∼

ϕ

2MP
gμνT

μν
SM; ð3Þ

where Tμν
SM represents the stress-energy tensor of the

Standard Model, may seem a priori dangerous as this
induces the dark matter’s instability [32]. However,
it is clear that the decay process are highly suppressed
for mϕ ≲ 1 MeV as the only kinematically allowed
final states are ϕ → νν and loop suppressed ϕ → γγ,

giving τϕ→νν ∼
M2

P
m2

νmϕ
≳ 1036 seconds for mϕ ≲ 1 MeV and

mν ≲ 0.05 eV [33]. This property is tightly related to the
fact that the fermionic stress-energy tensor for an on shell
fermion ν is proportional to mν. As result, one may ask
oneself how to produce such a light dark matter candidate,
with such a suppressed coupling to the Standard Model, in
a sufficiently large amount to fulfill the cosmological
abundance constraint. We will show that this is possible
from scatterings involving the Higgs degrees of freedom,
whose trace of the corresponding stress-energy tensor is
proportional to the ðenergyÞ2 stored in the plasma, which in
turn can be very high at the end of the inflationary phase,2

compensating for the weakness of the Planck suppressed
coupling. We will also study the dark matter produced via
the decay of the inflaton since it was shown in [36,37] that
this could dominate the production processes. We will also
explore the possibility to produce ϕ directly via infla-
ton decay.
Finally, notice that the effective coupling in Eq. (3) of a

scalar particle to the trace of the energy momentum
and suppressed by a large scale is analogous to construc-
tions where scale invariance is broken spontaneously in a
conformal sector coupled to a sector featuring explicit
breaking terms [38]. In this case at low energy, the
suppression scale can be identified as the typical vacuum-
expectation-value (vev) breaking this symmetry, and
the scalar particle is the associated pseudo Nambu-
Goldstone boson.
The paper is organized as follows. After a brief presen-

tation of the model in Sec. II, we will compute the relic
abundance density of ϕ, and its decay modes in Sec. III.
Section IV will be devoted to the analysis of the parameter
space and smoking-gun signatures of our model before
concluding in Sec. V.
Throughout this work, we use a natural system of units in

which kB ¼ c ¼ ℏ ¼ 1. All quantities with a dimension of
energy are expressed in GeV when units are not specified.

1In this case, we can identify the cutoff scale of the model Λ asffiffiffiffi
F

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3=2MP

p
, m3=2 being the gravitino mass.

2More precisely, of the order of
ffiffiffiffiffi
ρe

p
, ρe being the density of

the inflaton at the end of inflation [34,35].
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II. THE MODEL

In [30], the conformal and disformal contributions to the
physical metric were introduced and generated by a scalar
field ϕ. Defining a generic function Fðϕ; X; YÞ by

ds2 ¼ g̃μνdxμdxν ¼ gμνdxμ dxνFðϕ; X; YÞ; ð4Þ
with

X ¼ gαβ∂αϕ∂βϕ; Y ¼ ∂αϕdxα∂βϕdxβ

gαβ dxα dxβ
; ð5Þ

and

F ¼ Cðϕ; XÞ þDðϕ; XÞY: ð6Þ

The physical metric g̃μν then becomes

g̃μν ¼ Cðϕ; XÞgμν þDðϕ; XÞ∂μϕ∂νϕ: ð7Þ

The expression (7) contains a conformal and a disformal
transformation between the two metrics gμν and g̃μν induced
by C and D, respectively. The disformal coupling has been
studied extensively in [39,40] at the cosmological level and
[41,42] for WIMP and FIMP scenarii of dark matter, respec-
tively. In both cases, aZ2 symmetry was implicitly introduced
to ensure the stability of the DM candidate. A common
parametrization of the C and D functions is given by [43]

Cðϕ; XÞ ¼ eα
ϕ

MP ¼ 1þ α

MP
ϕþO

�
ϕ2

M2
P

�

Dðϕ; XÞ ¼ d
M4

P
eβ

ϕ
MP ¼ d

M4
P
þ βd
M5

P

ϕþO
�
ϕ2

M6
P

�
; ð8Þ

generating at the first order, the physical metric,

g̃μν ¼ gμν þ α
ϕ

MP
gμν þ

d
M4

P
∂μϕ∂νϕ ¼ gμν þ δgμν; ð9Þ

with

δgμν ¼ α
ϕ

MP
gμν þ

d
M4

P
∂μϕ∂νϕ: ð10Þ

From now on, we will consider the phenomenology induced
at the first order of perturbation theory in δgμν. The highest
temperature in the plasma Tmax being much lower than
MP (even below the inflaton mass mΦ ≃ 3 × 1013 GeV
[34,44,45]), the disformal part of the metric generates terms

≲ T2
max
M2

P

ϕ2

M2
P
, which are expected to have little influence on the

dark matter phenomenology3 for reasonable values of α.
The perturbative part of the metric δgμν induces couplings
to the Standard Model of the form,

δSSM ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
TSM
μν δgμν;

¼ −
α

2

ϕ

MP

Z
d4x

ffiffiffiffiffiffi
−g

p
TSM
μν gμν; ð11Þ

where TSM
μν is the total SM energy-momentum tensor4 that can

be expressed as

TSM
μν ¼

X
i¼0;1=2;1

Ti
μν − gμνLint; ð12Þ

where Ti
μν represents individual contributions from SM

particles of spin (i ¼ 0; 1=2; 1) fields to the total energy
momentum tensor, as given by

T0
μν ¼ 2ðDμH†ÞðDνHÞ − gμν½DαH†DαH�;

T1=2
μν ¼

X
ψ

i
4
½ψ̄γμD

↔

νψ þ ψ̄γνD
↔

μψ � − gμν

�
i
2
ψ̄γαD

↔

αψ

�
;

T1
μν ¼

X
Aμ

1

4
gμνFαβFαβ − Fμ

αFνα; ð13Þ

whereH is the SM Higgs doublet, ψ represents SM fermion,
and Aμ a SM gauge field Aμ with corresponding field strength
tensor Fμν. The sums are performed over all SM fields.
Dμ ≡ ∂μ − iqagaAμ is the covariant derivative with respect
to an appropriate Aμ with a gauge coupling ga and

charge qa. D
↔

μ ≡ D⃗μ − D⃖μ with D⃗μψ ¼ ∂μψ − igaqaAμψ

and ψ̄D⃖μ ¼ ∂μψ̄ þ igaqaψ̄Aμ. Non-Abelian representation
indices are omitted for clarity but the generalization is
straightforward. Lint is the contribution to the Lagrangian
defined as

Lint ¼ −VðHÞ þ LY; ð14Þ

with the Yukawa Lagrangian being

LY ¼ −½ytQ̄LH̃tR þ ybQ̄LHbR þ ylL̄LHlR þ H:c:�;
ð15Þ

where l ¼ e, μ, τ denotes SM leptons with a corresponding
SUð2ÞL doubletLL ¼ ðνLlLÞT , and νL is the SM left-handed
neutrino state of flavor l. Only the third generation of SM
quarks is represented, i.e., top (t) and bottom (b) quarks, with
corresponding SUð2ÞL doublet QL ¼ ðtLbLÞT , and flavor
indices are omitted for clarity. VðHÞ is the usual SM Higgs
scalar potential parametrized as

VðHÞ ¼ −μ2jHj2 þ λjHj4: ð16Þ
3For a specific analysis of the disformal term in the dark matter

production in the earliest stage of the Universe, see [42]. 4Details can be found in the Appendix A.
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The total Lagrangian can be expressed as

L ¼ LSM −
α

2

ϕ

MP
½4VðHÞ − 2DμH†DμH − 4LY

−
X
ψ

3i
2
ðψ̄γμDμψ −Dμψ̄γμψÞ�; ð17Þ

withLSM being the total SM Lagrangian. Notice that on mass
shell, only the spin 0 fields should be taken into account at
temperatures above the electroweak breaking phases, where
all the standardmodel particles aremassless.5Noticing that the
fermions and gauge bosons of the Standard Model are
massless at the scales of interest, nullifying the trace of their
stress-energy tensor, only the coupling of ϕ to the Higgs field
will survive. Moreover, at temperatures much above the

electroweak scale, μ2

T2 ;
jHj2
T2 ≪ 1, meaning that we can also

neglect theVðHÞ term inEq. (17). Finally, even if the fieldϕ is
clearly unstable, we will see that it can still be a viable dark
matter candidate, with a lifetime much larger than the age of
the Universe if the beyond Standard Model (BSM) scale
Λ≡ MP

α ≳ 1014 GeV. But what is even more remarkable is
that its coupling to the Higgs field through the Higgs-kinetic
term ensures a sufficient amount of dark matter to fulfill the
cosmological constraints thanks to processes involving the top
quark whose large Yukawa coupling to the Higgs field
compensates for the Planck scale suppression.

III. DARK MATTER PHENOMENOLOGY

A. Relic abundance constraint

In our setup, the dark matter is produced at high
temperatures, before the electroweak symmetry breaking
(EWSB). Based on the Lagrangian of Eq. (17), many
production modes contribute to this process; however, one
can understand that the dominant processes will be the ones
involving the top and bottom quarks, whose couplings to
the Higgs field are the largest ones. Such processes are
represented in Fig. 1. It is therefore clear that the equivalent
processes with gauge bosons, and a fortiori, other types of
quarks or leptons in the initial state will be suppressed
compared to the top-quark Yukawa coupling yt by a factor
∝ c2i =y

2
t , where ci represents any dimensionless coupling

(i.e., Yukawa, gauge or scalar-potential couplings) involv-
ing the scattering species i.6 At high temperatures, where

electroweak symmetry is restored, the Higgs doublet can be
parametrized as

H ¼
�
Hþ

H0

�
¼ 1ffiffiffi

2
p

�
h1 þ ih2
h3 þ ih4

�
; ð18Þ

in terms of complex scalars Hþ, H0 or in terms of real
scalars hi with i ¼ 1, 2, 3, 4. The most relevant terms of the
Yukawa Lagrangian above EWSB are

LY ⊃ −ytðt̄LtRH0† − b̄LtRH− þ H:c:Þ; ð19Þ

where H− ¼ ðHþÞ�. The dark matter abundance produced
in processes such as the one depicted in Fig. 1 can be
estimated by solving the Boltzmann equation,

dnϕ
dt

þ 3HnϕðtÞ ¼ RðtÞ; ð20Þ

with RðtÞ being the time-dependent DM production rate per
unit of volume and time. The Boltzmann equation can be
expressed in term of the SM plasma temperature T as

dYϕ

dT
¼ −

RðTÞ
HðTÞT4

; ð21Þ

where the quantityYϕðTÞ≡ nϕðTÞ=T3 is proportional to the
DM number per comoving volume. H ≡ _a=a ¼
ðgTπ2=90Þ1=2T2=MP is the Hubble expansion parameter.7

The quantity YϕðTÞ becomes constant once the dark matter
production is frozen by the expansion [RðTÞ ≪ T3H].8 The
Boltzmann equation, in the earliest phase of the Universe,
taking into account noninstantaneous reheating and/or non-
instantaneous thermalization has been studied extensively in
the literature recently (see [34,44,45] and [46,47], for
instance). In order to solve Eq. (21), one needs to compute
the average production rate RðTÞ that can be expressed for
processes labeled by 1þ 2 → 3þ 4, where 1,2 and 3,4
denote, respectively, the initial and final states, by

RðTÞ¼ 1

1024π6

Z
f1f2E1dE1E2dE2dcosθ12

Z
jMj2dΩ13;

where Ei denote the energy of particle i ¼ 1, 2, 3, 4 and

fi ¼
1

eEi=T � 1
; ð22Þ

represent the (thermal) distributions of the incoming par-
ticles. Using the Lagrangian of Eq. (19), we obtain

5Thermal masses are generated at a higher order but will be
subdominant to the scattering involving Higgs fields.

6There also exist anomaly induced couplings of the form
ϕFμνFμν leading to, for instance, gluon-gluon to gluon-ϕ
channels. Such diagrams diverge in the infrared region, such
as collinear regions in phase space. To regulate them, we may
utilize the thermal masses of the involved gauge bosons, which is
however largely beyond the scope of our paper. Nevertheless, the
reaction rate should be proportional to 1=M2

P as in the case of the
Yukawa interaction contributions that we compute.

7We will consider the reduced Planck mass MP ¼
2.4 × 1018 GeV throughout our study and gT the effective
relativistic degrees of freedom at a temperature T.

8By neglecting the temperature evolution of the effective
relativistic degrees of freedom.
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RscatðTÞ ¼ 567α2y2t ζð3Þ2
256π5

T6

M2
P
≡ β

T6

M2
P
; ð23Þ

with β ≃ 0.01α2, which gives, after integrating Eq. (21) and
at a low temperature,

Yscat
ϕ ¼ β

ffiffiffiffiffiffiffiffiffiffi
90

gTπ2

s
TRH

MP
; ð24Þ

with TRH being the reheating temperature. The correspond-
ing relic abundance at the present time,

Ωscat
ϕ h2 ¼ nscatϕ ðT0Þmϕ

ρ0c=h2
≃ 1.6 × 108Yscat

ϕ

�
g0
gRH

��
mϕ

1 GeV

�
;

ð25Þ

where ρ0c=h2 ¼ 1.05 × 10−5 GeVcm−3 is the present criti-
cal density, and gi denotes the effective number of degrees of
freedom at temperature Ti.

9 The present relic abundance can
be expressed as

Ωscat
ϕ h2

0.1
≃
�
α

37

�
2
�

TRH

1010 GeV

��
mϕ

1 GeV

�
: ð26Þ

Note that the DMmassmϕ is a free parameter and defined in
the canonical form in the Einstein frame. More details are
provided in the Appendixes.

B. Production from inflaton decay

In general, interactions between the inflaton and dark
matter may also arise from the trace of the inflaton stress-
energy tensor. Suppose that the inflatonΦ has a coupling to
the SM Higgs field to achieve reheating, given by
L ⊃ −μΦΦjHj2. Including such a term in Eq. (14), we
obtain

Lϕ ⊃ 2α
μΦ
MP

ϕΦjHj2; ð27Þ

through the trace of the corresponding energy–momentum
tensor,10 generating a possible inflaton decay into ϕHH
given by

ΓΦ
ϕHH ¼ α2μ2ΦmΦ

128π3M2
P
: ð28Þ

The dominant decay channel of the inflaton is into a pair of
SM Higgs bosons, whose decay width is given by

ΓΦ
HH ¼ μ2Φ

8πmΦ
: ð29Þ

The branching fraction of the single dark matter production
is obtained by

BR ¼ ΓΦ
ϕHH

ΓΦ
HH

¼
�
α

4π

�
2
�
mΦ

MP

�
2

: ð30Þ

The dark matter number density from the inflaton decay is
then estimated as11

ndecϕ ðTRHÞ
T3
RH

¼ BR ×
gRHπ2

18

TRH

mΦ
; ð31Þ

from which we obtain

Ωdec
ϕ h2

0.1
≃
�
α

37

�
2
�

mΦ

3 × 1013 GeV

��
TRH

1010 GeV

�
mϕ

660 GeV
:

ð32Þ

Comparing Eqs. (26) and (32), we clearly see that the
contribution from the inflaton decay is always subdominant

FIG. 1. Dominant scattering processes contributing to the population of the dark matter candidate ϕ. In addition to tRQ̄L → ϕH shown
here, tRHðQ̄LHÞ → QLϕðt̄RϕÞ also exist, which corresponds to taking the time direction from bottom to top in these diagrams.

9With g0 ¼ 3.91, gRH ¼ 106.75 for reheating temperatures
larger than the top-quark mass TRH > mt in the Standard Model.

10The form of the inflaton couplings to ϕ depends on in which
frame, i.e., Jordan or Einstein, the inflaton sector is introduced.
Here, we assume that Eq. (27) is the only coupling between ϕ and
Φ in the Einstein frame. The rest of the inflaton potential in the
same frame is assumed to be independent on ϕ. Additional
couplings may be present and may be required to avoid the
generation of isocurvature perturbations during inflation. Such a
possible coupling is also considered in Appendix B to avoid
creating large isocurvature perturbations.

11Here, we have taken into account the noninstantaneous
reheating effect [36].
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with respect to to the scattering processes. In fact, this is not
an usual feature of FIMP produced after the inflationary
stage. In the case of conformal dark matter, the coupling of
ϕ to the inflaton Φ is extremely reduced by a scale
BR ∝ ðmΦ

MP
Þ2 ≃ 10−10, whereas it was shown in [36] that a

branching ratio of ∼10−6 is necessary to produce a
cosmologically viable 1 GeV dark matter candidate
at TRH ¼ 1010 GeV.

C. Lifetime constraint

The first condition for ϕ to be a good dark matter
candidate is that it should have a sufficiently long lifetime,
at least on the order of the age of the Universe. There are
also constraints coming from neutrino or gamma-ray
observations [48]. Assuming that mϕ lies below the
electroweak symmetry breaking scale, the Higgs doublet
can be parametrized in unitary gauge by

H ¼ 1ffiffiffi
2

p
�

0

vh þ h

�
; ð33Þ

where h denotes the real SM physical scalar degree of
freedom below the EWSB scale and vh ≃ 246 GeV being
the Higgs vev.12 Below the EWSB scale, the DM candidate
ϕ still couples to the entire SM spectrum via the Lagrangian
already given in Eq. (17). However for on shell fermionic
SM states, by applying the equations-of-motion to Eq. (17),
interactions between the DM and a pair of SM particles can
be described by the following terms:

L ⊃ α
ϕ

MP

�
m2

Z

2
ZμZμ þm2

WW
−μWþ

μ

−
mψ

2
ψ̄ψ þ 1

2
∂μh∂μh −m2

hh
2

�
; ð34Þ

where Z, W are the massive weak gauge bosons. Since the
coupling of the DM candidate to on shell SM fermions
occurs via the Yukawa couplings, at first sight we could
expect the neutrinos to decouple from the DM candidate as
no such Yukawa terms exist for neutrinos in the SM.13

However, notice that interaction terms with fermions
originate from the DM coupling to the total stress-energy
tensor via Eq. (11), which itself contains kinetic terms;
therefore regardless of the neutrino-mass generation
mechanism, such couplings with neutrinos should always
be present.

There are also coupling terms coming from the trace
anomaly and originating from triangle diagrams where
states of masses less than mϕ run in the loop. The
appearance of such terms can be understood by recalling
that in Eq. (11) the terms such as Fa

μνFaμν are proportional
to d − 4, and thus, they vanish when d ¼ 4 at tree level,
whereas at loop level, the wave function renormalization
factor contains the terms proportional to 1=ðd − 4Þ, and
thus, finite terms remain. There also exist the contributions
from the Yukawa and Higgs quartic coupling beta func-
tions, which are however irrelevant for our discussion.
One can calculate the dark matter coupling to the gauge
bosons V,

LϕVV ¼ αϕ

16πMP
baαaFa

μνFaμν; ð35Þ

where ba ¼ bY; b2; b3, and αa ≡ g2a=4π ¼ αY; α2; αs are the
beta-function coefficients and gauge couplings of Uð1ÞY ,
SUð2ÞL, and SUð3ÞC, respectively. The gauge field strength
is, respectively, represented by Fa

μν ¼ Ga
μν;Wa

μν; Bμν for
SUð3ÞC SUð2ÞL, and Uð1ÞY gauge fields. Notice that for the
SUð2ÞL ×Uð1ÞY piece, once the electroweak symmetry is
broken, the gauge fields are transformed into mass eigen-
states which are however not necessarily the basis where
the photon (Aμ) and the weak gauge bosons (W�

μ and Zμ)
are orthogonal in Eq. (35). Indeed, we obtain

LϕVV ⊃
αϕ

MP
ðcWWWþ

μνW−μν þ cZZZμνZμν

þcZγZμνAμν þ cγγAμνAμνÞ; ð36Þ

with

cZZ ¼ ðb2=t2W þ bYt2WÞαem
16π

; cWW ¼ b2αem
8πs2W

;

cZγ ¼
ðb2=tW − bYtWÞαem

8π
; cγγ ¼

ðb2 þ bYÞαem
16π

;

where the field strengths are assumed not to include self-
interacting terms, and αem ≡ α2=s2W ¼ e2

4π ¼ 1
137

is the fine
structure constant, sW ≡ sin θW; tW ≡ tan θW with θW being
the weak mixing angle. The corresponding decay rate is
given by

Γϕ
hh ¼

α2m3
ϕ

128πM2
P
≃ 6 × 10−28

�
α

37

�
2
�

mϕ

1 TeV

�
3

GeV;

ð37Þ

and

12This parametrization corresponds to Hþ ¼ 0 and H0 ¼
ðvh þ hÞ= ffiffiffi

2
p

or h1;2;4 ¼ 0 from the parametrization used to
describe physics above the EWSB scale.

13We remind the reader that to this day, neutrinos possess
nonvanishing masses; however, their generation mechanism have
not been identified yet.
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Γϕ
ψ̄ψ ¼ cψ

α2mϕm2
ψ

32πM2
P

¼ 2 × 10−36 GeVcψ

�
α

37

�
2
�

mψ

1 GeV

�
2
�

mϕ

1 GeV

�
;

ð38Þ

which are effective only when mϕ is large enough to allow
for the Higgs and fermion productions. The coupling to
photons implies the following decay rate:

Γϕ
γγ ¼ c2γγα2

4π

m3
ϕ

M2
P
;

≃
c2γγ
c2ZZ

Γϕ
ZZ ≃

2c2γγ
c2Zγ

Γϕ
Zγ ≃

c2γγ
2c2WW

Γϕ
WW ≃

c2γγ
cgc2gg

Γϕ
gg;

¼ 2.3 × 10−31 GeV

�
α

130

�
2
�

cγγ
10−3

�
2
�

mϕ

1 TeV

�
3

;

ð39Þ

where cgg ≡ b3αs=16π. Similarly, cψ and cg ¼ 8 are the
dimensions of the SUð3Þ representations for the fermion ψ
and the gluons. Notice that when mϕ is smaller than the
electron mass, dark matter does not decay through the
anomaly since ba ¼ 0 and other processes contribute to the
decay into photons. We then obtain numerically

Γϕ
hh ¼ 6× 10−31

�
Ωϕh2

0.1

��
1010 GeV

TRH

��
mϕ

1 TeV

�
2

GeV

Γϕ
ψ̄ψ ¼ 2× 10−36cψ

�
Ωϕh2

0.1

��
mψ

1 GeV

�
2
�
1010 GeV

TRH

�
GeV:

ð40Þ
At low energy, in the unitary gauge, the Higgs degree of
freedom is a single real scalar and not a complex doublet.
Remembering that the age of the Universe corresponds to a
rate such that Γ−1

Universe ≃ 1042 GeV−1, one concludes that
the only tree-level decay that may break the stability of DM
over the age of the Universe is the neutrino channel14

ϕ → νν, with mν ≲ 0.05 eV. We then obtain the relation,

Γϕ
νν ¼ 5 × 10−57

�
Ωϕh2

0.1

��
mν

0.05 eV

�
2
�
1010

TRH

�
GeV:

ð41Þ

A quick look at the expression above is sufficient to
understand that the cosmological constraints Ωϕh2 ≃ 0.1
can be satisfied while still preserving a sufficiently long
lifetime for ϕ as long as mϕ ≲ 2me.
Loop-induced processes leading ϕ → γγ are also rel-

evant, whose diagrams are shown in Fig. 2. Indeed, when
mϕ < me, the decay through the trace anomaly does not
happen, as the beta functions cancel as we have already
seen. Instead, ϕ → γγ takes place through charged fermion
and W boson loops, whose decay width is given by

Γϕ
γγ ¼ α2α2em

1024π3

����Xψ
Nψ

c Q2
ψA1=2ðτψ Þ þ A1ðτWÞ

����2 m
3
ϕ

M2
P
;

ð42Þ
with τi ≡m2

ϕ=4m
2
i .Qψ is the electric charge of a fermion ψ

with corresponding color factor Nψ
c . We defined

A1=2ðτÞ ¼
2

τ2
½τ þ ðτ − 1Þarcsin2ð ffiffiffi

τ
p Þ�;

A1ðτÞ ¼ −
1

τ2
½2τ2 þ 3τ þ 3ð2τ − 1Þarcsin2ð ffiffiffi

τ
p Þ�:

This expression has been derived using the full Lagrangian
of Eq. (17), which includes notably fermionic derivative
terms, not appearing in Eq. (34). With the hypothesis
mν ≪ mϕ ≪ me, we obtain

Γϕ
γγ ¼ 121α2α2em

9216π3
m3

ϕ

M2
P
≃ 3.9 × 10−45α2

�
mϕ

1 GeV

�
3

GeV;

ð43Þ
which gives, combining with Eq. (26),

Γϕ
γγ ¼ 5.3 × 10−52

�
Ωϕh2

0.1

��
1010

TRH

��
mϕ

10 keV

�
2

; ð44Þ

and finally putting together Eqs. (41) and (44), we obtain

τϕ ≃
�

0.1
Ωϕh2

�
TRH

1010

�
10 keV
mϕ

�
2 1.3 × 1027 s

1þ 10−5ð mν
0.05 eV

10 keV
mϕ

Þ2

≃
�

0.1
Ωϕh2

�
TRH

1010

�
10 keV
mϕ

�
2

1.3 × 1027 s: ð45Þ

FIG. 2. Loop diagrams that contributes ϕ → γγ, where we assume the unitary gauge for the W boson loops.

14In fact, even if decays into electrons generate a lifetime larger
than the age of the Universe, the electromagnetic nature of the
final state imposes constraints of the order Γϕ ≲ 10−51 GeV, due
to CMB constraints [48]. We see from Eq. (40) that this is far
from being respected by Γϕ

ee if we want Ωh2 ≃ 0.1.
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The last equality shows us that, taking into account the
cosmological limit mν ≲ 0.05 eV, the γγ final state is
always the dominant channel process for mϕ ≳ 10 eV.
This lower bound on mϕ is already excluded by the
Lyman-α constraint as we will see in the next section
where in fact we will require that mϕ ≳ 3.9 keV. We
illustrate this feature in Fig. 3, where we can clearly see
that the γγ channel dominates when mϕ < 2me, while the
eþe− channel dominates until the qq̄ channel opens
for mϕ > 2mu.

D. Lyman-α constraints

Dark matter candidates with a non-negligible contribu-
tion to the cosmological background pressure can alter the
matter power spectrum of density fluctuations by erasing
overdensities on small physical scales. As a result, this
introduces a cutoff at large Fourier wave numbers com-
pared to the power spectrum expected within the ΛCDM
cosmology. Absorption lines around ∼100 nm of light
emitted by distant quasars at redshifts z ∼ 2–6 by the
neutral Hydrogen of the intergalactic medium, known as
the Lyman-α forest, allow us to probe the matter power
spectrum on scales k ∼ ð0.1–10Þh Mpc−1. For a given dark
matter phase space distribution, the Lyman-α forest can be
used to set a bound on the DM mass or alternatively, the
equation-of-state parameter of such species. The Lyman-α
bound is typically given in terms of a mass for warm dark
matter (WDM) [49–55],15

mWDM ≳mLy-α
WDM ¼ ð1.9–5.3Þ keV at 95% C:L:; ð46Þ

whose precise value depends on the specific analysis. As
shown in Ref. [56], DM particles produced in the early
Universe via scattering off SM particles inherit a phase
space distribution different from the thermal distributions
of their progenitors, which in our case can be well fitted
by [56]

fðqÞ ∝ q−0.29e−1.1q; ð47Þ

where q is the DM comoving momentum defined as

q≡ paðtÞ
T0

�
gRH�s
g0�s

�
1=3

; ð48Þ

where p is the DM momentum, T0 the photon temperature
at the present time, g0�s and gRH�s are, respectively, the
effective entropic degrees of freedom at present time and
reheating. As the DM distribution is different from the
WDM thermal distribution, the Lyman-α bound on the
WDM mass cannot be used directly. However, it can be
mapped into our scenario by using an equation-of-state
matching procedure [56], i.e., finding the value of mϕ

such that

wðmϕÞ ¼ wWDMðmLy-α
WDMÞ; ð49Þ

where w≡ P̄=ρ̄ is the equation-of-state parameter defined
as the ratio of the background DM pressure over back-
ground energy density which should be computed using
our DM distribution of Eq. (47). From the condition of
Eq. (49), the lower bound from the Lyman-α analysis can
be translated into our scenario as

mϕ ≳ 7.2 keV

�
mLy-α

WDM

3 keV

�4=3�106.75
gRH�s

�
1=3

: ð50Þ

Notice that taking the most or least conservative value of
mLy-α

WDM in Eq. (46) represent, respectively, a stronger or
weaker bound by a factor ∼2.

IV. ANALYSIS

We show in Fig. 4 the combined constraints from the
dark matter lifetime and the relic abundance in the plane
(mϕ, TRH). The gamma-ray constraints on the lifetime of ϕ
is extracted from different observations: XMM-Newton
observations of M31 [57] for mϕ ≲ 10 keV, NuSTAR
observation of the bullet cluster [58] for mϕ ≳ 10 keV,
and INTEGRAL [59] formϕ ≳ 100 keV.16 We also show in
Fig. 4 the Lyman-α limit obtained from Eq. (50) taking the

FIG. 3. Branching ratios of the decay of the conformal dark
matter.

15Here, WDM is defined as DM species with a thermal-like
distribution such as Fermi-Dirac distribution characterized by a
parameter TWDM playing the role of temperature, which is fixed
by the requirement of reproducing the total observed dark matter
density, for a given mass.

16See also [60,61] and [62] for equivalent analysis the case of a
sterile neutrino, higher-spin or Majoron DM, respectively. More
general cases are treated in [63].
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more conservative bound mLy-α
WDM ¼ 1.9 keV from Eq. (46),

giving mϕ ≳ 3.9 keV.
We illustrate as a potential smoking gun signature the

point (star) corresponding to a dark matter mass mϕ ¼
7.1 keV and a lifetime τϕ ≃ 5 × 1027 seconds. These values
correspond to the monochromatic x-ray observation made
by the satellite XMM-Newton interpreted as a signal of
dark matter decay [64]. Notice that this benchmark point is
actually in tension with the least conservative bound
of Eq. (46).
The procedure to obtain this plot is straightforward. For

each dark matter mass, we extracted the upper bound on α
from Eq. (43) respecting the lifetime constraints. In turn,
this upper bound on α gives a lower bound on TRH, needed
to fulfill the relic abundance from Eq. (26). The points
situated on the dashed/purple line satisfy thus the lifetime
limits and Ωϕh2 ≃ 0.12, whereas the ones below the line
are excluded by x-ray constraints, and the one above the
line are allowed given a much longer lifetime. In other
words, if a monochromatic signal is observed in the range
1 keV–1 MeV, the mass being determined by the position
of the peak, and the lifetime by the height of the peak, it
would be possible to deduce the reheating temperature
needed to respect the cosmological limit on dark
matter abundance. Hence, our model is extremely
predictive. Notice also that we stopped our analysis at

mϕ ≃ 0.1 MeV, because the reheating temperature needed
to fulfill the Planck constraints is above the inflaton mass,
mΦ ¼ 3 × 1013 GeV, we considered in addition to the fact
that if mϕ > 2me ∼MeV, achieving the correct relic
density is incompatible with the constraints on the dark
matter lifetime.
Notice that our treatment hides the dependence on α of

the parameter space, replacing it by τϕ. However, it can be
interesting to evaluate the BSM scale Λ ¼ MP

α for some
benchmark points. A point at the edge of the limit above the
star in the Fig. 4 corresponds to the parameters,

ðmϕ; TRH; αÞ ¼ ð7.1 keV; 3.5 × 1010 GeV; 7400Þ
↔ ðΩh2; τϕÞ ¼ ð0.12; 8.7 × 1027s:Þ:

We see that the corresponding BSM scale Λ ≃ 3.2×
1014 GeV≳mΦ, fully justifying our approach. Notice also
that the more stringent the limit from x-ray observations,
the smaller the upper bound on α, and the more consistent
our procedure, pushing the BSM scale toward the
Planck scale.

V. CONCLUSION

In this work, we show that a dark matter candidate ϕ,
conformally coupled to the Standard Model allows for a
sufficient production even for Planck-reduced coupling.
The high temperatures generated by the inflaton decay in
the earliest stage of reheating are sufficient to overcome the
feeble coupling whereas in the meantime, for dark matter
masses below ≲1 MeV, the lifetime is sufficiently large to
respect the x-ray and γ-ray constraints of a variety of
telescope experiments. We also included the limits on mϕ

from the more recent Lyman-α analysis, mϕ ≳ 3.9 keV.
Our construction is very predictive as summarized by
Eq. (45) and Fig. 4, where we exhibit the parameter space
allowed and observable by the future experimental analysis
of the x-ray sky. In particular, triangle loops of decoupled
fermions generate decay processes of the type ϕ → γγ,
whose typical signature (a monochromatic photon) is a
smoking gun signal for dark matter searches. Such an
observation, combined with the relic abundance constraint
would determine completely the parameter space of our
model. In addition to the indirect searches, new techniques
of the direct detection searches for dark matter may allow
us to explore the parameter space down to keV mass scales
in the future [65].
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APPENDIX A: DERIVATION OF THE
LAGRANGIAN

To make our framework clearer, we summarize here the
relevant part of the Lagrangian. The dark matter sector is
constructed by introducing the conformal factor as
g̃μν ¼ CðϕÞgμν, where we work on the mostly minus
convention, ðþ;−;−;−Þ, for the metric. To reproduce
the Einstein-Hilbert action in the gμν-frame, we define
the gravity sector in the g̃μν-frame by

Sgrav ¼
M2

P

2

Z
d4x

ffiffiffiffiffiffi
−g̃

p
C−1R̃; ðA1Þ

where R̃ is the Ricci scalar in the g̃μν frame. Thus, from the
relation,

CR̃ ¼ Rþ ðd − 1Þðd − 2Þ
4

gμνð∂μ lnCÞð∂ν lnCÞ
þ ðd − 1Þ∂2 lnC; ðA2Þ

for d-dimensional space-times (and we will take d ¼ 4), we
obtain

Sgrav ¼
M2

P

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ 3

2
gμνð∂μ lnCÞð∂ν lnCÞ

�
:

ðA3Þ

By defining the dark matter sector as

SDM ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p
½M2

PKg̃μνð∂μC1=2Þð∂νC1=2Þ − Ṽ�;

ðA4Þ

with K and Ṽ being an arbitrary constant and the scalar
potential in the g̃μν frame, respectively, we end up with

Sgrav þ SDM

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
Rþ 1

2
gμνð∂μϕÞð∂νϕÞ −

1

2
m2

ϕϕ
2

�
;

ðA5Þ

where we have used CðϕÞ ¼ eαϕ=MP , and Ṽ=C2≡
ð1=2Þm2

ϕϕ
2. We also assume K ¼ 2=α2 − 3, so that the

kinetic term for ϕ takes the canonical form in the gμν frame.
The action of the Standard Model sector is

SSM ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p
L̃SM; ðA6Þ

where the metric in L̃SM is assumed to be g̃μν. To see the
interaction between ϕ and the Standard Model particles, it
is convenient to expand g̃μν as g̃μν ≃ gμν þ δgμν with
δgμν ¼ ðαϕ=MPÞgμν. Thus, we obtain

SSM ≃
Z

d4x
ffiffiffiffiffiffi
−g

p
LSM þ δSSM; ðA7Þ

with

δSSM ¼ −
α

2

ϕ

MP

Z
d4x

ffiffiffiffiffiffi
−g

p
gμνTSM

μν ; ðA8Þ

where the SM energy-momentum tensor TSM
μν is defined as

TSM
μν ≡ 2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LSMÞ
δgμν

; ðA9Þ

which is explicitly written in Eqs. (12)–(16).

APPENDIX B: A POSSIBLE COUPLING
TO THE INFLATON

Assuming that the DM scalar field ϕ interacts with the
inflaton field Φ via a renormalizable coupling (in the
Einstein frame) like

V ¼ κϕ2Φ2; ðB1Þ

which generates an effective mass for the DM during
inflation,

m2
ϕ;eff ¼

∂2V
∂ϕ2

∼ κM2
P: ðB2Þ

A contribution to the DM density is generated at the end of
inflation by four-point processes corresponding to the time
dependent dissipation rate [35],

ΓΦΦ→ϕϕ ¼ κ2ρΦðtÞ
8πm3

Φ
; ðB3Þ

which corresponds to the following contribution to the relic
density:
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Ωϕh2

0.1
≃
�

mϕ

10 keV

��
κ

2.4 × 10−4

�
2
�

y
10−5

��
ginfs

106.75

�
3=4

×

�
mΦ

3 × 1013 GeV

�
−7=2

�
ρendΦ

0.175m2
ΦM

2
P

�
1=2

; ðB4Þ

where y≡ ð8πΓΦ=mΦÞ1=2 is the typical dimensionless
coupling of the inflaton to the SM inducing reheating.
ρendΦ is the energy stored in the inflaton field at the end of
inflation.
Isocurvature perturbations can be induced if the DM

effective mass becomes lower than the Hubble expansion

rate during inflation. According to Eq. (B2), this could
occur only for very small values of κ. However, for
such small values of κ, the DM production induced by
such coupling according to Eq. (B4) would be negli-
gible, and therefore, we expect both the DM back-
ground density and fluctuations to be both predominantly
produced by the freeze-in mechanism. In this case, the
DM fluctuations would be inherited from the SM plasma
and therefore, are expected to be adiabatic. A more
quantitative analysis of the previous statement goes beyond
this work.
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