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We consider the direct s-channel gravitational production of dark matter during the reheating process.
Independent of the identity of the dark matter candidate or its nongravitational interactions, the
gravitational process is always present and provides a minimal production mechanism. During reheating,
a thermal bath is quickly generated with a maximum temperature Tmax, and the temperature decreases as
the inflaton continues to decay until the energy densities of radiation and inflaton oscillations are equal, at
TRH. During these oscillations, s-channel gravitational production of dark matter occurs. We show that the
abundance of dark matter (fermionic or scalar) depends primarily on the combination T4

max=TRHM3
P.

We find that a sufficient density of dark matter can be produced over a wide range of dark matter masses:
from 1 GeV to 1 ZeV.
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I. INTRODUCTION

While we have considerable certainty in the existence of
dark matter (DM), its identity and interactions with the
Standard Model are entirely unknown. The lack of a signal
in direct detection experiments [1–3] sets strong limits on
the DM-proton cross section. Furthermore, the lack of
detection at the LHC [4] also seems also to point towards
more massive candidates and perhaps a more massive
beyond-the-Standard-Model sector than was originally
envisioned [5–7].
The mechanism by which dark matter particles populate

the Universe is also unknown. Commonly, GeV–TeV DM
candidates are assumed to exist in equilibrium as part of the
thermal bath. As the temperature falls below the DM mass,
they drop out of equilibrium, and their relic density freezes
out [5,8–11]. However, it is quite possible that DM particles
never attain thermal equilibrium. They may either be too
massive, or their interactions with the Standard Model may
be too weak. For example, particles which interact with
the Standard Model primarily through gravity, such as the
gravitino, never achieve equilibrium, though they are
produced by the thermal bath at reheating after inflation
[7,12–14]. Very roughly, their abundance Y ∼ n3=2=nγ can

be estimated from their production rate, Y ∼ Γp=H∼
TRH=MP, where H is the Hubble parameter, TRH is the
reheating temperature after inflation, andMP ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
is the (reduced) Planck mass. This mechanism, now
generally referred to as freeze-in, applies to a wider class
of dark matter candidates known as feebly interacting
massive particles or FIMPs [15–19]. Other examples
include dark matter particles produced by the exchange
of a massive Z0 [20] or massive spin-2 [21].
It is also possible that DM is produced in the decay of the

inflaton, either directly [22–25] or radiatively [26]. It has
also been observed that annihilation-like processes such as
ϕϕ → SS, where ϕ is the inflaton and S is a dark matter
scalar, mediated by gravity, can produce a sufficient
abundance of dark matter [27]. Indeed, the production of
dark matter solely mediated by gravity is a minimal
contribution which is nearly model independent, as we
discuss in more detail below. The production of dark matter
mediated by gravity from the thermal bath is subdominant
[21,28–31].
Often, reheating is characterized by a single temperature,

TRH, which may be defined when the energy density in the
newly produced thermal bath becomes equal to the energy
density still stored in inflaton oscillations. However, when
one drops the approximation of instantaneous reheating,
one finds that initially, the Universe reheats to a potentially
much higher temperature, Tmax, though very little of the
total energy density of the Universe is in the form of
radiation [23–25,32–34]. For all models in which dark
matter is produced during the reheating process after
inflation, the dark matter abundance may be sensitive to
the evolution of the temperature between Tmax and TRH.
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The purpose of this paper is to compute the minimal dark
matter abundance produced solely through gravity during
reheating, taking into account the sensitivity of the result to
details of the reheating process. We will show that the bulk
of the production of dark matter occurs at temperatures
higher than the reheating temperature (when radiation
begins to dominate the energy density) while the radiation
bath begins to form. We stress that this process is always
present, though other forms of production, including
preheating, may also play a role and affect the final dark
matter abundance. Here, we will only consider the universal
gravitational production channel.
The paper is organized as follows: In the next section, we

lay out the framework of our calculation. Starting with the
universal coupling of gravity to the stress-energy tensor for
either scalars or fermions, we compute the annihilation-like
rate for ϕϕ → SS (for scalar dark matter) and ϕϕ → χχ in
the case of fermionic dark matter. In Sec. III, we compute
the dark matter abundance based on the detailed process of
reheating between Tmax and TRH. Then, in Sec. IV, we
relate these results to possible inflaton couplings to the
Standard Model (which are responsible for reheating), and
we draw our conclusions in Sec. V.

II. THE FRAMEWORK

The universal interaction that surely exists between the
inflaton and any dark sector is gravity. In particular, the s-
channel exchange of a graviton, shown in Fig. 1, can be
obtained from the Lagrangian (see, e.g., Ref. [35])

L ¼ 1

2MP
hμνT

μν
ϕ þ 1

2MP
hμνT

μν
S=χ ; ð1Þ

where hμν is the metric perturbation corresponding to the
graviton and we consider either a scalar1 S or a fermion χ as
dark matter, whose stress-energy tensors are given by

Tμν
X¼ϕ;S ¼ ∂μX∂νX − gμν

�
1

2
∂αX∂αX − VðXÞ

�
; ð2Þ

Tμν
χ ¼ i

4
½χ̄γμ∂ν

↔
χ þ χ̄γν∂μ

↔
χ� − gμν

�
i
2
χ̄γα∂α

↔
χ −mχ χ̄χ

�
;

ð3Þ

where VðXÞ is the scalar potential for either the inflaton or
scalar dark matter.
The amplitudes relevant for the computation of the

processes ϕðp1Þ þ ϕðp2Þ → DMjðp3Þ þ DMjðp4Þ can be
parametrized by

Mϕj ∝ Mϕ
μνΠμνρσMj

ρσ; ð4Þ

where j denotes the spin of the DM involved in the process,
and j ¼ 0; 1=2. Πμνρσ denotes the propagator of the
graviton with momentum k ¼ p1 þ p2:

ΠμνρσðkÞ ¼
1
2
ηρνησμ þ 1

2
ηρμησν − 1

2
ηρσημν

k2
: ð5Þ

The partial amplitudes, Ma
μν, can be expressed as

M0
μν ¼

1

2
ðp1μp2ν þ p1νp2μ − gμνp1 · p2 − gμνm2

ϕÞ;

M1=2
μν ¼ 1

4
v̄ðp4Þ½γμðp3 − p4Þν þ γνðp3 − p4Þμ�uðp3Þ; ð6Þ

with a similar expression for scalar dark matter in terms of
the dark matter momenta, p3, p4, and mass m2

S.
It is then straightforward to compute the production rate

of the dark matter. Given the inflaton number density,
nϕ ¼ ρϕ=mϕ, the rate for the process depicted in Fig. 1 is

Γϕϕ→SS ¼
ρϕmϕ

1024πM4
P

�
1þ m2

s

2m2
ϕ

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
s

m2
ϕ

s
; ð7Þ

Γϕϕ→χχ ¼
ρϕm2

χ

4096πM4
Pmϕ

�
1 −

m2
χ

m2
ϕ

�
3=2

: ð8Þ

Note the difference in behavior in the expressions for
fermionic and scalar dark matter, especially in the mass
dependence. On dimensional grounds, both are propor-
tional to nϕm2

ϕ=M
4
P ¼ ρϕmϕ=M4

P. However, our rates in
Eqs. (7) and (8) correspond to s-wave scattering within the
condensate. As a result, in the case of a Dirac fermion-
antifermion pair in the final state, we require a spin flip
leading to a suppression by a factor ðmχ=mϕÞ2, making the
rate proportional to ρϕm2

χ=mϕM4
P. A similar expression for

the rate producing scalars was found in Ref. [27].

III. DARK MATTER PRODUCTION

In many models of inflation, after the period of expo-
nential expansion, the inflaton begins a series of oscilla-
tions about a minimum. During the initial stages of

FIG. 1. Illustration of the production of dark matter through the
gravitational scattering of the inflaton.

1We will consider a real scalar or Dirac fermionic as dark
matter. Generalization to a complex scalar or vectorial dark
matter is straightforward.
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oscillations, the Universe expands as if it were dominated
by nonrelativistic matter. Inflaton decays begin the process
of reheating [12,36]. While we assume that decay products
thermalize rapidly [37], we do not assume that the decay is
instantaneous. Instead, we include the effects due to the
evolution of the temperature of the radiation bath from its
initial creation to a temperature Tmax until it begins to
dominate the expansion at TRH.
Let us start by considering the evolution of the radiation

bath using the conservation equation for radiation (pro-
duced by the decay of the inflaton),

dρR
dt

þ 4HρR ¼ Γϕρϕ; ð9Þ

where Γϕ is the inflaton decay rate, and ρR and ρϕ are the
energy densities of radiation and the inflaton, respectively.
This equation can be rewritten as

dX
da

¼ Γϕρϕ
H

a3; ð10Þ

where X ¼ ρRa4, a is the cosmological scale factor, and
H ≡ _a=a ≈ ffiffiffiffiffi

ρϕ
p =

ffiffiffi
3

p
MP up to the epoch of radiation

domination. Assuming inflaton oscillations about a quad-
ratic potential,2 ρϕ ¼ ρeðae=aÞ3, where ρe is the energy
density stored by the inflaton at the end of the inflationary
phase, and Eq. (10) is easily integrated to give

ρR ¼ 2
ffiffiffi
3

p

5
ΓϕMP

ffiffiffiffiffi
ρe

p �
ae
a

�
3=2

�
1 −

�
ae
a

�
5=2

�
¼ αT4;

ð11Þ

where α ¼ gTπ2=30 and gT is the number of relativistic
degrees of freedom, at temperature T. Thus, in the case of
noninstantaneous reheating, when a ≫ ae, and as long as
the inflaton dominates the energy density, the temperature
of the radiation bath falls as T ∝ a−3=8 as energy is injected
into the bath from inflaton decay [24,26,32]. For a ≫ ae,
with the help of Eq. (11), we can then write

HðTÞ ≃
ffiffiffiffiffi
ρϕ

pffiffiffi
3

p
MP

¼ 5

6

α

ΓϕM2
P
T4: ð12Þ

Within the same limit, we can parametrize the reheating
temperature by

TRH ¼
�

4

3αc2

�
1=4

ðΓϕMPÞ1=2; ð13Þ

where c ¼ 1 if we define the reheat temperature by
t−1RH ¼ 3

2
H ¼ Γϕ, and c ¼ 5=3 if we define TRH by

ρϕðTRHÞ ¼ ρRðTRHÞ. Here, we have chosen the latter,
which can easily be derived by rewriting Eq. (11) in the
limit a ≫ ae:

ρR ≃
2

ffiffiffi
3

p

5
ΓϕMP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρϕðTRHÞ

q �
aRH
a

�
3=2

; ð14Þ

so that ρϕðTRHÞ ¼ ρRðTRHÞ implies that

ρRðTRHÞ ¼ αT4
RH ≃

12

25
Γ2
ϕM

2
P: ð15Þ

Then, the expression for HðTÞ in a Universe dominated by
the inflaton is given by [26,38]

HðTÞ ¼
ffiffiffi
α

3

r
T4

T2
RHMP

ð16Þ

and

ρϕ ¼ ρRðTRHÞ
�
aRH
a

�
3

¼ α
T8

T4
RH

: ð17Þ

When the limit a ≫ ae cannot be applied, the reheating
temperature is the solution of the equation

ffiffiffiffiffiffiffiffi
ρRH

p ¼ α1=2T2
RH ¼ 2

ffiffiffi
3

p

5
ΓϕMP

�
1 −

�
ρRH
ρe

�
5=6

�
; ð18Þ

where ρRH ¼ ρϕðTRHÞ ¼ ρRðTRHÞ.
Note that the maximum temperature attained, Tmax, can

be found from the extremum of Eq. (11) with respect to a.
We obtain

amax

ae
¼

�
8

3

�
2=5

; ð19Þ

implying

ρRðamaxÞ ¼
ffiffiffi
3

p

4
ΓϕMP

ffiffiffiffiffi
ρe

p �
3

8

�
3=5

¼ αT4
max: ð20Þ

Combining Eqs. (18) and (20) gives

�
Tmax

TRH

�
4

¼ 25
ffiffiffiffiffi
ρe

p
16

ffiffiffi
3

p
ΓϕMP

�
3

8

�
3=5

�
1 −

�
ae
aRH

�
5=2

�
−2
:

ð21Þ

The relic abundance of dark matter is obtained by
solving the Boltzmann equation for the number density
of dark matter particles:

2For similar results about a more general potential, see
Ref. [38].
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dnj
dt

þ 3Hnj ¼ RjðTÞ: ð22Þ

Writing Yj ¼ nja3, Eq. (22) can be simplified to

dYj

da
¼ RjðTÞa2

H
; ð23Þ

where RjðTÞ ¼ ρϕ
mϕ

Γϕϕ→jj is the production rate (per unit

volume and unit time), and the yield Yj is proportional to
the number of dark matter quanta produced in the comov-
ing frame. It is important to note that because
Rj ∝ ρ2ϕ ∝ T16, there is a very strong temperature depend-
ence in Eq. (23), making the result sensitive to the
maximum temperature attained.
Using Eq. (17), it is straightforward to integrate Eq. (23)

between ae and aRH. We find

YjðTRHÞ ¼
2γjMPffiffiffi
3

p
mϕ

ρ3=2e a3e

�
1 −

�
ae
aRH

�
3=2

�
; ð24Þ

where γj ¼ Γϕϕ→jj=ρϕ. The yield can also be written in
terms of ρR, and the number density becomes

njðTRHÞ ¼
2γjMPffiffiffi
3

p
mϕ

α3=2T6
RH

��
aRH
ae

�
3=2

− 1

�
: ð25Þ

Noting that we can write ðae=aRHÞ ¼
ðae=amaxÞðamax=aRHÞ ¼ ð3=8Þ2=5ðTmax=TRHÞ8=3, the den-
sity can be expressed as

njðTRHÞ ¼
2γjMPffiffiffi
3

p
mϕ

α3=2T2
RH

��
8

3

�
3=5

T4
max − T4

RH

�
: ð26Þ

Equation (26) is valid so long as aRH > amax. For
sufficiently large Γϕ, the radiation energy density will
equal the inflaton oscillation energy density when
T ¼ Tmax, and thus TRH ¼ Tmax. At larger Γϕ, we can write

njðTRHÞ ¼
2γjMPffiffiffi
3

p
mϕ

α3=2T6
RH

�� ffiffiffiffiffi
ρe

p
α1=2T2

RH

�
− 1

�
; ð27Þ

as the temperature Tmax is never attained.
The fraction of critical density in dark matter can be

written as

Ωjh2 ¼ 1.6 × 108
�

g0
gRH

��
njðTRHÞ
T3
RH

��
mj

1 GeV

�
; ð28Þ

where the numerical factor is π2nγðT0Þ=2ζð3Þρc,
g0 ¼ 43=11, gRH ¼ 427=4, and njðTRHÞ is obtained from
either Eq. (26) or Eq. (27) for aRH > amax or aRH < amax,
respectively. We finally obtain

Ωsh2

0.1
≃
�
TRH

1010

�
3
�
Tmax=TRH

100

�
4
�

mS

1.75 × 1010

�

×

�
1þ m2

s

2m2
ϕ

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
s

m2
ϕ

s
; aRH > amax; ð29Þ

Ωsh2

0.1
≃
�
TRH

1010

� ffiffiffiffiffiffiffiffiffi
ρe
1060

r �
mS

1.9 × 109

�

×

�
1þ m2

s

2m2
ϕ

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
s

m2
ϕ

s
; aRH < amax ð30Þ

for scalar dark matter and

Ωχh2

0.1
≃
�
TRH

1010

�
3
�
Tmax=TRH

100

�
4
�

mχ

4.0 × 1012

�
3

×

�
3 × 1013

mϕ

�
2
�
1 −

m2
χ

m2
ϕ

�
3=2

; aRH > amax; ð31Þ

Ωχh2

0.1
≃
�
TRH

1010

� ffiffiffiffiffiffiffiffiffi
ρe
1060

r �
mχ

1.9 × 1012

�
3

×

�
3 × 1013

mϕ

�
2
�
1 −

m2
χ

m2
ϕ

�
3=2

; aRH < amax ð32Þ

for fermionic dark matter. Units of energy are given in GeV
(and GeV4 for ρe). Note that these expressions are
approximations which are valid so long as aRH is not very
close to either amax or ae. More generally, the relic density
is obtained from Eq. (28) with either Eq. (26) or Eq. (27).
As expected, there is a stronger dependence of the relic
abundance on the mass of the dark matter in the fermionic
case due to its production rate.
We show in Fig. 2 the allowed parameter space in the

(mS;χ , TRH) plane for scalar (blue, dashed) and fermionic
(red, solid) dark matter for several values of Tmax=TRH. The
lines correspond to values of Ωh2 ¼ 0.12 [39] for each
choice of Tmax=TRH. In each case, aRH > amax. All points
above the lines are excluded because they lead to an
overabundance. We see, for example, that GeV–ZeV dark
matter can be obtained with reasonable values of TRH and
Tmax by pure gravitational production through inflaton
scattering. We also see that due to the additional mass
suppression ðmχ=mϕÞ2, for fermionic DM, it is necessary to
consider higher fermionic masses (≳100 PeV for
Tmax=TRH < 1000) to achieve Ωχh2 ¼ 0.12. Note that
we have assumed mϕ ¼ 3 × 1013 GeV in Fig. 2 and the
kinematic suppression when ms ≥ mϕ would appear to the
right of the region plotted.

IV. COUPLING TO THE STANDARD MODEL

In the previous section, we concentrated on results for a
given reheating and maximum temperature reached by the
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thermal bath during the reheating process. In any concrete
model of inflation, these temperatures can be traced to two
quantities: the coupling of the inflaton to the Standard
Model, which ultimately determines the reheating temper-
ature, and the initial energy density of the inflaton at the end
of the inflationary phase, which allows one to determine the
amount of energy available for the thermal bath, and hence
the maximum temperature. If one supposes a simple
effective coupling of the inflaton to the Standard Model
fermions of the type

Ly
ϕ−SM ¼ yϕf̄f; ð33Þ

leading to

Γϕ ¼ y2

8π
mϕ; ð34Þ

and using Eq. (21), we can write the ratio�
Tmax

TRH

�
4

¼ 25π
ffiffiffiffiffi
ρe

p
2

ffiffiffi
3

p
y2mϕMP

�
3

8

�
3=5

�
1 −

�
ae
aRH

�
5=2

�
−2
:

ð35Þ

In models which are dominated by a quadratic term after
inflation, we expect ρe ∼m2

ϕM
2
P, and for example, in

the Starobinsky model of inflation [40], ρ1=4e ∼
0.65m1=2

ϕ M1=2
P ¼ 5.5 × 1015 GeV [41]. For sufficiently

large coupling, y ≃ :67ðρ1=4e =1015 GeVÞ, Tmax=TRH ¼ 1,
and reheating is nearly instantaneous. If reheating is
primarily due to a coupling of the inflaton to bosons,

Lμ
ϕ−SM ¼ μϕbb, equivalent results are obtained by sub-

stituting y → μ=mϕ.
Similarly, we can also compute TRH by combining

Eqs. (18) and (33):

T4
RH ¼

�
3y4

400απ2

�
m2

ϕM
2
P

�
1 −

�
αT4

RH

ρe

�
5=6

�
2

: ð36Þ

For sufficiently large ρe, the second term in the bracket can
be neglected; otherwise, TRH can be solved for iteratively.
We can now express the relic density in terms of the
coupling y using Eqs. (35) and (36) in Eqs. (26) and (27).
When aRH ≫ amax, we can write relatively compact
expressions by combining Eqs. (29), (31), (35), and
(36), and one obtains for mS;χ ≪ mϕ

ΩSh2

0.1
¼ y

10−7

ffiffiffiffiffiffiffiffiffi
ρe
1064

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 × 1013

mϕ

s
mS

5.2 × 109
; ð37Þ

Ωχh2

0.1
¼ y
10−7

ffiffiffiffiffiffiffiffiffi
ρe
1064

r �
mχ

2.6×1012

�
3
�
3×1013

mϕ

�
3=2

; ð38Þ

where as before, dimensions for mass are in GeV, with
GeV4 for ρe. We see that for a given Standard Model
coupling (y ¼ 10−7 for example), the dark matter mass
needed to reach a reasonable relic abundance is much
higher in the fermionic case than in the scalar case, bearing
in mind the minimality of the model being considered.
We plot in Fig. 3 the required relation betweenmS;χ and y

to obtain ΩS;χh2 ¼ 0.12. Values of Ωh2 > 0.12 are

FIG. 2. Points yielding the Planck relic density ΩS;χh2 ¼ 0.12
for scalar (blue, dashed) and fermionic (red, solid) dark matter, in
the (mS;χ , TRH) plane for several values of Tmax=TRH as labeled.

FIG. 3. Points in the (mS;χ , y) plane yielding the Planck-
determined relic density ΩS;χh2 ¼ 0.12 in the case of a scalar
dark matter (blue, dashed) and a fermionic dark matter (red, solid)
for two values of ρe as labeled.
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obtained for points to the right of the negatively sloped
lines and below the horizontal lines for ρ1=4e ¼ 1014 GeV.
Note that for ρ1=4e ¼ 1014 GeV, the curves begin to bend
when the second term in the bracket in Eq. (35) approaches
1. For small values of y, Tmax ≫ TRH, and the relic density
in Eq. (29) scales as T3

RHðTmax=TRHÞ4ms. Since
ðTRHÞ3 ∼ y3, ðTmax=TRHÞ4 ∼ y−2, we see that y ∼m−1

S
for fixed relic density. At larger values of y, when
aRH < amax, the density in Eq. (30) scales as TRHms.
However, we can see from Eq. (36), that TRH reaches its
maximal value when αT4

RH ≲ ρe. At these values of y

[which are not much larger than :67ðρ1=4e =1015 GeVÞ—the
value needed to make TRH ¼ Tmax], the number density
obtained from Eq. (27) begins to decrease. Thus, a fixed
energy density which is proportional to njmj requires a
rapidly larger value of the dark matter mass. This accounts
for the curve bending to the horizontal at large values ofmj.
Physically, at these values of y, the rate of inflaton decay
exceeds the rate of dark matter production from scattering,
and production through the gravitational process ceases.
For ρ1=4e > 1.5 × 1015 GeV, this behavior occurs only at
y > 1. Once again, the region with kinematic suppression
lies to the right of the region shown in the figure.
It is also possible that inflaton scattering into Standard-

Model scalars affects the reheating process, and the value of
Tmax in particular [38]. For example, a Lagrangian con-
tribution of

Lσ
ϕ−SM ¼ σϕ2b2; ð39Þ

where b represents a Standard-Model boson. In this case,
one still requires the Yukawa coupling [Eq. (33)] to
complete the reheating process (so that the energy density
in radiation comes to dominate over the energy density in
ϕ) [38]. The interaction generated by Eq. (39) can alter the
maximum temperature Tmax for sufficiently large values of
σ. In this case,

�
Tmax

TRH

�
4

¼ 6400πσ2ρ3=2effiffiffi
3

p
y4m5

ϕMP

�
2

3

�
18

; ð40Þ

giving

ΩSh2

0.1
¼ 10−6

y

�
σ

10−9

�
2
�

ρe
ð1016Þ4

�
3=2

�
3 × 1013

mϕ

�
7=2

×

�
mS

1.2 × 105

�
ð41Þ

and

Ωχh2

0.1
¼ 10−6

y

�
σ

10−9

�
2
�

ρe
ð1016Þ4

�
3=2

�
mχ

7.6 × 1010

�
3

×

�
3 × 1013

mϕ

�
11=2

: ð42Þ

Note that for a given value of σ, the relic density increases
with decreasing y. This is valid only so long as
Tmax > TRH. The limiting value of y is found by setting
Eq. (40) equal to 1.
We show in Fig. 4 the parameter space allowed

in the plane (y, σ) in the case of scalar dark matter for
different values of its mass mχ . Note that it is possible to
have quite low values of y (and thus TRH), while still being
able to produce dark matter in sufficient amounts due
to the value of σ generating a high maximum temperature
Tmax, and thus a large production rate. The maximum
value for y occurs when Tmax ¼ TRH in Eq. (40), where the
relic abundance depends only on TRH (and is thus inde-
pendent of σ), as we can see in the plot. The same
curves for fermionic dark matter are obtained for
mχ ¼ 1.5 × 109ðmS=GeVÞ1=3.

V. CONCLUSIONS

We have derived the conditions for producing sufficient
dark matter from inflaton scattering during reheating by
s-channel graviton exchange. This process is always present,
independent of the model of inflation. We have shown that
the final abundance of dark matter depends not only on the
reheating temperature, but also on the maximum temper-
ature, and hence on the detailed evolution of the reheating
process. During the exit from exponential expansion, many
models of inflation begin a period of oscillations leading to
reheating. At the onset of these oscillations, the inflaton

FIG. 4. Points respecting Planck constraint ΩSh2 ¼ 0.12 in the
case of scalar dark matter, in the plane (y, σ) for different values
of mS.
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density is high, and the leading contribution to dark matter
production occurs at the start of reheating at Tmax. This
represents an absolute minimal amount of dark matter
production, and it contributes independently of any inter-
actions the dark matter may have with the Standard Model
(or another dark sector if present).
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