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Effective field theory techniques provide us important tools to probe for physics beyond the Standard
Model in a relatively model-independent way. In this work, we revisit the CP-even dimension-6 purely
gluonic operator to investigate the possible constraints on it by studying its effect on top-pair production at
the LHC, in particular the high pT and mtt̄ tails of the distribution. Cut-based analysis reveals that the scale
of new physics when this operator alone contributes to the production process is greater than 3.6 TeV at
95% C.L., which is a much stronger bound compared to the bound of 850 GeVobtained from Run-I data
using the same channel. This is reinforced by an analysis using machine learning techniques. Our study
complements similar studies that have focused on other collider channels to study this operator.
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I. INTRODUCTION

The Standard Model (SM) has been put through great
scrutiny by several collider experiments, like LEP, the
Tevatron, Belle, BABAR and the LHC. Intriguingly, except
for a few possible anomalies, for instance in the flavor
sector (for experimental results, see Refs. [1–5] and for
some theoretical works, see, for instance, Refs. [6–14]), it
has held up remarkably well even at energies far above the
electroweak scale.
This is in spite of tantalizing hints to theoretical structures

that we are currently unaware of. Despite overwhelming
evidence for the existence of Dark Matter, or neutrino
mass differences—through experiments like DAMA,
LUX, PAMELA, PandaX, XENON and SIMPLE among
others (see Ref. [15] and the references therein), along with
neutrino studies like BOREXINO, Double Chooz, DUNE,
Super-K, MiniBoone, NEXT, OPERA and others (see
Ref. [16] and the references therein)—no definitive proof
of physics beyond the StandardModel (BSM) has emerged.
This has further motivated direct searches for popular BSM
models, complemented by model independent search strat-
egies. These endeavors have been aided by the enormous
amounts of data collected by the CMS [17] and ATLAS [18]

experiments, ushering in a new age of ever more precise
measurements.
One way to quantify the deviations from the SM is to

perform a systematic study of the consequences of all
applicable effective field theory (EFT) operators, consistent
with the known symmetries. This is quite ambitious and it
is usually worthwhile to narrow the focus to a few
operators, at a time whose effects may have the greatest
chance of showing up at the LHC. One set of such operators
are presumably those involving new colored particles, see
for instance Refs. [19–24]. A prototypical operator of this
nature at dimension-6 is the triple gluon operator

OG ¼ fabcG
a;μ
ν Gb;ν

ρ Gc;ρ
μ ; ð1Þ

where Gμν ¼ − i
gs
½Dμ; Dν� and Dμ ¼ ∂μ þ igstaAa

μ.
The operator in Eq. (1) can produce several vertices;

among them, the triple gluon vertex will be the one of
special interest in this paper. This vertex can be represented
as shown in Fig. 1.
It is the only pure gluonic CP-even operator at dimen-

sion-6 [25]. The CP-odd counterpart of this operator given
by OG̃ ¼ fabcG̃

a;μ
ν G̃b;ν

ρ G̃c;ρ
μ where G̃μν ¼ 1

2
ϵμνρσGρσ, is

called the Weinberg operator [26] and is highly constrained

FIG. 1. Triple gluon vertex.
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by the results of several low-energy experiments, notably
by the measurement of the neutron EDM [27].
The operator OG, on the other hand, plays a crucial role

in any process involving gluon self-interactions, such as
dijet and multijet production [28], or Higgsþ jets produc-
tions such as Hgg [29]. Assuming the absence of any other
EFT operator, our Lagrangian is then given by

Leff ¼ LSM þ LG ¼ LSM þ cG
Λ2

OG; ð2Þ

where cG is the Wilson coefficient and Λ is the scale of new
physics (NP).
While it might seem that this operator is best probed by

looking at the gg → gg scattering process, the helicity
structure of the amplitude involving the OG operator is
orthogonal to the SM QCD amplitude and thus the two do
not interfere with each other at the lowest order, i.e., at
Oð1=Λ2Þ [28,30]. The lowest order contribution due to this
operator to the matrix element only appears at Oð1=Λ4Þ.
The other obvious channel to investigate the operator is

the gg → qq̄ process. The amplitudes from theOG operator
and from the SM do interfere at Oð1=Λ2Þ, and the
interference term is proportional to the square of the quark
mass, m2

q. Naturally, this suggests that the best choice for
the final state would be the top quark—not only because we
gain from its high mass, but also because it is easier to tag
compared to the b quark or the c quark at the LHC [31,32].
The matrix element squared for the SM contribution, the

interference term [which occurs at Oð1=Λ2Þ] and the pure
EFToperator term [which occurs atOð1=Λ4Þ] for the gg →
tt̄ process are [28]

jMj2jSM ¼ g4s

�
3

4

ðm2
t − t̂Þðm2

t − ûÞ
ŝ2

−
1

24

m2
t ðŝ − 4m2

t Þ
ðm2

t − t̂Þðm2
t − ûÞ

þ 1

6

�
t̂ û−m2

t ð3t̂þ ûÞ −m4
t

ðm2
t − t̂Þ2 þ t̂ ↔ û

�

−
3

8

�
t̂ û−2t̂m2

t þm4
t

ðm2
t − t̂Þŝ þ t̂ ↔ û

��
; ð3Þ

jMj2jint ¼
9

8

cG
Λ2

g2s
m2

t ðt̂ − ûÞ2
ðm2

t − t̂Þðm2
t − ûÞ ; ð4Þ

jMj2jOG
¼ 27

4

c2G
Λ4

ðm2
t − t̂Þðm2

t − ûÞ; ð5Þ

jMj2total ¼ jMj2jSM þ jMj2jint þ jMj2jOG
: ð6Þ

Here, ðŝ; t̂; ûÞ are Mandelstam variables created using
the momenta of the initial state gluons and final state top
quarks. These expressions can be used to calculate the
parton-level differential cross section with respect to the
invariant mass of the top pair (mtt̄)

dσ̂
dmtt̄

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð2mt=mtt̄Þ2

p
32πŝ

δð
ffiffiffî
s

p
−mtt̄Þ

Z
jMj2dðcos θÞ:

ð7Þ

The integral is over the cosine of azimuthal angle θ, defined
as the angle between the beam axis (z axis) and the
momentum direction of the top quark traveling in the
direction of the þz axis. The normalized differential cross
section is plotted in Fig. 2 and it shows the behavior of the
SM contribution compared to the contributions of the
interference and the purely NP terms.
From Eqs. (3)–(7), as well as from Fig. 2, it is clear that

the contribution of the NP term arising purely from the OG
operator increases with energy and, at high enough ener-
gies, can compensate for the suppression from the extra
powers ofΛ. Of course it is not possible to access arbitrarily
high energies in this framework, since the validity of our
EFT approach would eventually break down.
The tt̄ production process has been widely studied at the

LHC. To be concrete, we obtain the data relevant to our
analysis from Ref. [33], by the CMS Collaboration. The
study looked at the production of top quark pairs along with
additional jets, in events with leptonþ jets. The reference
provides unfolded distributions of various kinematic var-
iables, like those of pT and mtt̄ among others, in terms of
parton level top quarks. This involves reconstruction of the
final state and unfolding of the obtained data. While
unfolding removes the effects of the detector on the data
to a large extent, reconstruction provides us the information
of the undecayed top quark state at the parton and particle
level. This enables us to perform our analysis using parton-
level top quark states. We will therefore follow this as our
prototypical source.
Our analysis requires us to generate samples of tt̄þ 0j

and tt̄þ 1j, where j represents an additional hard jet in the
final state arising out of a hard parton at the matrix element

FIG. 2. Plots of normalized parton-level differential cross
section with respect to mtt̄ calculated for the process
gg → tt̄—using SM, interference and purely NP matrix element
terms. The intercept of the curves on the x axis is at 2mt.
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level. The samples are generated in MadGraph5_aMC@NLO

v2.6.7 (MG5) [34] using UFO files made using FeynRules v 2.3.32

[35]. Since a partonic level analysis was carried out, there
was no need for showering.
One of the channels that we utilize will be the pp →

tt̄þ 0j process. Some examples of the SM Feynman
diagrams which contribute to this process are given in
the (a)–(c) subfigures of Fig. 3, whereas the insertion of the
OG operator generates the diagram in the last subfigure. If
we include a hard jet in the final state, we have two classes
of NP Feynman diagrams—one with only one insertion of
OG and the other with two such insertions—both of which
contribute to the final state amplitude for pp → tt̄þ 1j.
Some examples of the former class can be found in Fig. 4,
while the rest have been listed in the Appendix. All
diagrams from the latter class can be found in Fig. 5.
Also note that, unlike in the case of exclusive tt̄ production,
in addition to digluon initial states, the qg and qq̄ initial
states also contribute to the production cross section of
tt̄þ 1j, where q is a quark from the proton, most often the
u or d. These additional subprocesses contribute to the
increase of sensitivity when one includes additional hard
jets in the process.
The addition of a hard jet (viz. jets arising from hard

partons at the matrix level) in the final state is expected to
change the differential cross-section distributions. SM
events of this type can be generated at the NLO using

MG5 aMC@NLO which are then merged in PYTHIAv8.243 [36]
using FXFX matching algorithm [37] before showering.1

The normalized differential cross section of the SM NLO
events, one with respect to the transverse momentum of the
hardest top (pTðthighÞ) and the other with respect to the
invariant mass of the top pair (mtt̄), are plotted in Fig. 6.
Our choice of tt̄ production is motivated primarily by the

fact that the final state is quite clean. As we shall see in the
next section, this channel yields a bound on the scale of NP
of Λ= ffiffiffiffiffiffi

cG
p

> 3.6 TeV, which is a significant improvement
over the bound of Λ= ffiffiffiffiffiffi

cG
p

> 850 GeV obtained using
Run-I data [38,39] for the same channel. An independent
method to constrain the scale of NP for this operator would
be to use multijet final states. This was done in Ref. [23]
and more recently scrutinized in Ref. [40], leading to
somewhat stronger bounds than the ones we obtain. Our
goal in this paper is to investigate the bounds that the clean
and complementary channel of tt̄ production yields.
Our paper is arranged as follows—in Sec. II, we use the

MC events from the pp → tt̄ process to estimate the value

FIG. 3. Some of the tree-level Feynman diagrams for the pp →
tt̄ process (with no additional hard jets), in the SM, are shown in
the subfigures (a)–(c). Please refer to Appendix for the full list of
relevant diagrams. The last diagram (d) shows the same process,
but now with one insertion of theOG operator; where the operator
insertion is indicated by the filled square at a vertex. Note that this
is the only such possible NP diagram.

FIG. 4. Some examples of tree-level Feynman diagrams for the
process pp → tt̄ (with one additional hard jets) having exactly
one insertion of the OG operator, shown by the filled square at a
vertex. The initiating partons could be gluons or quarks (domi-
nated by u, d quarks). An exhaustive list of the diagrams can
again be found in Appendix.

FIG. 5. All of the tree-level Feynman diagrams for the process
pp → tt̄ (with an additional hard jet) having exactly two
insertions of the OG operator.

1Note that it is, in principle, inconsistent to use a matched SM
sample and an unmatched NP sample together. However, using an
unmatched SM sample does not change the results much since the
binned cross sections do not change much, especially in the
higher pTðthighÞ and mtt̄ bins, where our bounds come from. We
thank the referee for this comment.
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of each contribution to the cross section. This is then used
in a chi-square analysis to put constraints on the value of the
NP scale. We also explore how the addition of a single hard
jet to this process changes our constraint. In Sec. III, we
then employ two different machine learning techniques to
try and improve the bounds that we obtained in the previous
sections. We summarize and conclude in Sec. IV.

II. BOUND FROM pT AND mtt̄ DISTRIBUTION

Considering pp → tt̄ with no additional partons in the
hard process (pp → tt̄þ 0j) (which entails the insertion of
up to one NP vertex as indicated in the representative
diagrams in Fig. 3), the total cross section can be written as
the following sum of the different contributions:

σtt̄ ¼ σtt̄;SM þ cG
ðΛ=TeVÞ2 σtt̄;Λ2 þ c2G

ðΛ=TeVÞ4 σtt̄;Λ4 ð8Þ

One can use MG5 to compute each of the terms in the
cross section exclusively for one or two insertions of the
OG operator at the cross-section level, thus obtaining a
measure of the cross-section contribution of each term to
the total cross section for a particular value of cG and Λ.
The only Feynman diagram with the OG operator that

contributes to this process is shown in the bottom row of
Fig. 3. The interference of this diagram with the SM ones
gives rise to the Oð1=Λ2Þ term and the square of the
amplitude of this diagram gives rise to the Oð1=Λ4Þ term.
The Monte Carlo event generation in MG5 uses the

following selection criteria and parameters: pjet
T > 20 GeV,

ηjet < 2.5, mt ¼ 173 GeV, PDF set ¼ nn23lo1, and
dynamical_scale_choice = 1 which means that
the dynamical scale used for factorization and renormal-
ization is set equal to the total transverse energy of the
event. The cross-section term with n insertions of the OG
operator is generated using the MG5 addendum NP^2==n
QCD<=99 QED==0. We also use this syntax while con-
sidering additional jets later in this section with appropriate
values of n. We keep the values of cG and Λ unchanged for
the event generation.
We will obtain the bounds on the scale of NP using the

binned transverse momentum distribution of the hardest
top, (pTðthighÞ), and the binned distribution of the invariant
mass of the tt̄ pair, (mtt̄). First, we will compute these for
the pp → tt̄þ 0j process.
To this end, in Table I, the values for the binned parton-

level cross section are shown for each of the terms in the
pp → tt̄ cross section using cG ¼ 1,Λ ¼ 1 TeV. All cross-
section values are at LO, except for the SM cross section,
which is calculated at NLO as described in the previous
section. It is worth noting that the values of cG and Λ used
for event generation are chosen for reference only. Starting
from these values, one can easily scale to other desired
value of these parameters. Also shown in the table are the

FIG. 6. Binned plots of the normalized SM NLO differential
cross section, with respect to pTðthighÞ (top) and mtt̄ (bottom), for
tt̄þ jets. The solid line is for tt̄þ up to 1j and the dashed line is
for tt̄þ up to 2j. The figures illustrate the change in the shape of
the distribution, when an additional hard jet is added to the
final state.

TABLE I. Parton-level cross section binned in bins of pTðthighÞ,
where thigh refers to highest pT top quark. The cross section σtt̄;SM
is calculated from events generated using MG5, showered in
PYTHIA8 using the FXFX merging algorithm. The total SM cross
section has been normalized to the latest theoretical prediction of
832.0 pb [33,42–44]. The cross sections σtt̄;Λ2 and σtt̄;Λ4 have
been calculated using the process pp → tt̄ (no additional hard
jets) in MG5. The σExp values are taken from Table 7 of Ref. [33]
after multiplying the numbers by the bin width and dividing by
the branching ratio BRl ≈ 0.29.

pTðthighÞ
[GeV]

σtt̄;SM
[pb]

σtt̄;Λ2

[pb]
σtt̄;Λ4

[pb] σExp [pb]

0–40 24.84 5.50 3.62 45.93� 4.42
40–80 129.78 8.77 8.29 171.59� 13.33
80–120 188.71 7.41 10.55 201.38� 15.23
120–160 172.37 4.84 10.90 167.31� 13.02
160–200 122.25 2.71 10.18 107.17� 7.37
200–240 76.62 1.46 8.87 64.55� 4.33
240–280 47.97 0.78 7.63 35.59� 2.25
280–330 32.43 0.49 7.87 23.28� 1.62
330–380 16.59 0.24 6.17 11.60� 0.92
380–430 8.84 0.12 4.90 5.93� 0.69
430–500 6.40 0.07 5.19 3.79� 0.39
500–800 5.21 0.05 10.47 3.27� 0.37
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values of the experimental cross section obtained from
Table 7 of Ref. [33]. The values of the cross section in
the SM column have been scaled so that the total cross
section comes out to be 832.0 pb, which is the theoretically
predicted inclusive tt̄ cross section [41]. Similarly, in
Table II, the values for the parton-level cross section for
pp → tt̄ binned in certain ranges of the mtt̄ variable are
shown. Here, again the SM column has been scaled to a total
of 832.0 pb and the values of the last column showing the
expected cross section are taken from Table 13 of Ref. [33].
We can calculate the value of the χ2 as a function of

cG=Λ2. The relevant formulas we utilize for the calculations
are given by

χ2ðcG=Λ2Þ ¼
X
i∈bins

ðσitt̄ − σiExpÞ2
ðΔσiÞ2 ;

Δχ2ðcG=Λ2Þ ¼ χ2ðcG=Λ2Þ − χ2min

Δσi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔσistatÞ2 þ ðΔσisysÞ2 þ ðΔσithÞ2

q
: ð9Þ

Here, Δσi is the total uncertainty on the cross section in
the ith bin obtained by adding the statistical uncertainty
(Δσistat), the systematic uncertainty (Δσisys) and the theo-
retical uncertainty (Δσith) in the bin in quadrature.
The calculation of the χ2 using the formula in Eq. (9)

entails the use of the total tt̄ production cross section. We
can either use the MG5_aMC@NLO cross section or the
central value of the experimental cross section as the value
of the SM cross section. This provides us with “observed”
and “expected” bounds respectively.
The theory uncertainty is assumed to be Δσth ¼ 5%, of

the central value of σExp in each bin, since the relative
theory uncertainty on the theoretically calculated total cross
section (832.0 pb) is also of the same order.
Subtracting the value of the curve at its minima, we

obtain the plot for Δχ2 as a function of cG=Λ2. The curves
obtained for Δχ2 using the binned pTðthighÞ data are shown

in Fig. 7 and the ones obtained using the binnedmtt̄ data are
shown in Fig. 8.
Given N bins for the cross section and M parameters to

fit, without any constraint on the total cross section, the
number of degrees of freedom (d.o.f.) for the chi-square fit
is N −M. In order to extract the exclusion bound on
Λ= ffiffiffiffiffiffi

cG
p

at 95% C.L., one needs to use the value of Δχ2 for
95% C.L. for this value of d.o.f. For our plots in Fig. 7,
where the number of pT bins used is 12, d:o:f ¼ 12 − 1 ¼
11 and for that in Fig. 8, where the number of bins used
is 10, d:o:f ¼ 10 − 1 ¼ 9. Using the values given in
Ref. [45], we can obtain the cutoff for the Δχ2 at
95% C.L. value (χ2cut) for a certain value of d:o:f. For
d:o:f ¼ 11, χ2cut ¼ 19.68 and for d:o:f ¼ 9, χ2cut ¼ 16.92.
The bounds can then be readily read off from the χ2 plots
and is tabulated in Table III.
As expected, the bounds we get on Λ= ffiffiffiffiffiffi

cG
p

using all
the terms up to Oð1=Λ4Þ in the cross section are stronger
than those obtained using only terms up toOð1=Λ2Þ. Note
that we get similar bounds using the pTðthighÞ and mtt̄

distributions. Also note that the observed bound is
stronger than the expected bound. This is due to the fact
that in most bins in Tables I and II, the value of the SM
cross section obtained from MG5 is larger than the central
value of the experimental cross section. This leads to a
greater pull away from the experimental value (which is

TABLE II. Cross section for the process pp → tt̄ (with no
additional hard jets) binned in the variable mtt̄. Events are
simulated using MG5. The values for σExp are taken from Table 13
in Ref. [33] suitably adjusted for bin width and branching ratio.

mtt̄ [GeV] σtt̄;SM [pb] σtt̄;Λ2 [pb] σtt̄;Λ4 [pb] σExp [pb]

300–360 27.64 0.18 1.13 51.10� 11.91
360–430 245.15 5.30 13.35 260.93� 22.31
430–500 197.91 7.53 13.50 190.93� 17.01
500–580 142.32 6.71 12.68 133.79� 8.98
580–680 98.44 5.31 12.43 90.00� 7.03
680–800 59.43 3.46 11.19 51.72� 4.22
800–1000 38.88 2.46 12.37 32.90� 2.49
1000–1200 13.32 0.88 7.60 11.24� 0.99
1200–1500 6.30 0.45 6.59 5.02� 0.64
1500–2500 2.58 0.19 6.81 2.14� 0.45

FIG. 7. Plot of Δχ2 as a function of cG=Λ2 with and without the
theoretical uncertainty (Δσth). Data used are the cross section
binned in pTðthighÞ given in Table I.

FIG. 8. Plot of Δχ2 as a function of cG=Λ2 with and without the
theoretical uncertainty (Δσth). Data used are the cross section
binned in mtt̄ given in Table II.
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used in the calculation of the χ2) and thus results in a
stronger bound.

A. Additional jets

Let us now turn our attention to scenarios with additional
jets in the final state. We expect to obtain stronger bounds
by including additional QCD hard jets arising from extra
partons in the hard event in the tt̄ final state, due to
additional operator insertions possible.
Consider the process in which the final state has up to

one additional jet, pp → tt̄þ up to 1j. In this process, we
can have a maximum of two insertions of the OG operator,
as may be seen explicitly from Figs. 4 and 5. As is clear
from these figures, additional production channels with
new initial states open up, viz. the qg and the qq initial
states. The cross section for the exclusive process with one
additional jet in the final state can be written as

σtt̄ ¼ σtt̄;SM þ cG
ðΛ=TeVÞ2 σtt̄;Λ2 þ c2G

ðΛ=TeVÞ4 σtt̄;Λ4

þ c3G
ðΛ=TeVÞ6 σtt̄;Λ6 þ c4G

ðΛ=TeVÞ8 σtt̄;Λ8 : ð10Þ

For the process of interest (pp → tt̄þ up to 1j), certain
terms in Eq. (10) receive contributions from the exclusive tt̄
production (i.e., no additional hard jets in final state) as well
as the process with one additional hard jet. From Eq. (8),
one can see that the exclusive process contributes only up to
Oð1=Λ4Þ, whereas the latter contributes to all terms up to
Oð1=Λ8Þ. Thus, the Oð1=Λ6Þ and Oð1=Λ8Þ contributions
come purely from the process with an additional jet.
The effect of adding a QCD jet to the final state of tt̄

process for various values of Λ can be visualized by the
plots in Fig. 9 which show the normalized differential cross
sections as a function of pTðthighÞ and mtt̄. Note that the
higher valued bins show more deviation from the exclusive
tt̄ shape than the lower valued bins for both the variables.
This is expected since higher powers of energy (or
momentum) occur in the numerator of the higher order
terms in Eq. (10). Thus, at higher energies these terms
contribute more, leading to the gain in the total cross
section of this process, compared to the exclusive tt̄
process. Also note that the deviation decreases as the value
ofΛ used for the generation of the events gets larger. This is
also expected for the simple reason that the scale suppres-
sion in each of the terms in the cross section (barring the
SM term) increases with increasing values of Λ.

TABLE III. Exclusion bounds on Λ= ffiffiffiffiffiffi
cG

p
at 95% C.L. found

from the plots of Figs. 7 and 8, after including Δσth. The cutoff
for Δχ2 is χ2cut ¼ 19.68 for the pTðthighÞ case and χ2cut ¼ 16.92 for
the mtt̄ case.

Λ= ffiffiffiffiffiffi
cG

p
(TeV)

Observed bound Expected bound

Variable (up to Λ−2) (up to Λ−4) (up to Λ−2) (up to Λ−4)

pTðthighÞ > 0.59 > 2.35 > 0.58 > 1.63
mtt̄ > 2.27 > 1.89 > 0.67 > 1.53

0 200 400 600 800
5. 10 5

1. 10 4

5. 10 4

0.001
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0 200 400 600 800
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0 200 400 600 800
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500 1000 1500 2000
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5. 10 5
1. 10 4

5. 10 4
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500 1000 1500 2000
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500 1000 1500 2000
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tt excl.

tt upto 1j

FIG. 9. Binned normalized differential cross-section distributions with respect to the pTðthighÞ (top) and mtt̄ (bottom) for the different
values of Λ (as indicated in the plots) with cG ¼ 1. The solid line is for the tt̄þ 0j sample and the dashed line is for the tt̄þ up to 1j
sample.
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In Table IV, the contribution of the different terms in the
total cross section binned in the variable pTðthighÞ is shown.
Note that this is the cross section of the inclusive process
pp → tt̄þ up to 1j. Similarly, in Table V, the binned
cross-section contributions of the different terms have been
tabulated for the variable mtt̄ for the same sample.
The data from these two tables are again used to calculate

Δχ2ð¼ χ2 − χ2minÞ as in the previous analysis. This is done
in twoways—first, by using all the bins and, then, using the
data from only the last four bins from each table.
Furthermore, we calculate the Δχ2 using cross section
up to a certain order in the cross section, e.g., up to
Oð1=Λ2Þ, up to Oð1=Λ4Þ, etc.
From the plots in Figs. 10 and 11, the bounds on Λ= ffiffiffiffiffiffi

cG
p

can be calculated. They are tabulated in Tables VI and VII.
Similar to the earlier scenario without any additional hard
jets in the final state, the observed bound of Λ= ffiffiffiffiffiffi

cG
p

>
3.6 TeV obtained by using pTðthighÞ is stronger than the
expected bound of about Λ= ffiffiffiffiffiffi

cG
p

> 2.3 TeV. Furthermore,
these bounds are considerably stronger than the bounds
obtained from the tt̄þ 0j process shown in Table III for

both the expected and observed cases. This is because
the pp → tt̄þ up to1j process involves a higher order of
the NP contributions [up to OðΛ−8Þ] as compared to the

TABLE IV. Cross section for pp → tt̄ (with up to one addi-
tional hard jet in final state at the matrix level), binned in the
variable pTðthighÞ.
pTðthighÞ [GeV] σΛ2 [pb] σΛ4 [pb] σΛ6 [pb] σΛ8 [pb]

0–40 6.60 3.93 0.08 0.01
40–80 14.72 11.74 0.52 0.14
80–120 14.18 16.55 0.72 0.35
120–160 10.86 18.53 0.83 0.50
160–200 5.43 15.17 0.81 0.61
200–240 2.41 14.90 0.88 0.73
240–280 1.30 12.92 0.86 0.82
280–330 0.91 14.34 1.41 1.21
330–380 0.29 11.26 1.35 1.38
380–430 0.28 9.24 1.10 1.30
430–500 0.18 11.10 2.12 1.93
500–800 0.53 18.59 25.72 24.49

TABLE V. Cross section for pp → tt̄ (with up to one additional
hard jet in final state at the matrix level), binned in the
variable mtt̄.

mtt̄ [GeV] σΛ2 [pb] σΛ4 [pb] σΛ6 [pb] σΛ8 [pb]

300–360 0.13 3.63 0.76 3.4
360–430 6.33 30.15 4.14 34.9
430–500 10.83 32.50 4.53 35.1
500–580 10.32 30.16 4.37 37.6
580–680 8.60 30.12 4.21 39.1
680–800 5.86 27.64 3.58 36.1
800–1000 4.33 31.37 3.70 43.34
1000–1200 1.63 19.79 2.02 30.24
1200–1500 0.84 17.90 1.57 27.52
1500–2500 0.39 19.58 1.08 30.79

FIG. 10. Plot of Δχ2 as a function of cG=Λ2 with the theoretical
uncertainty (Δσth) from which the expected bound is obtained.
Data used are the cross section binned in pTðthighÞ and mtt̄ given
in Tables IV and V. The central value of the experimental cross
section given in Tables I and II is used as the SM contribution to
the total NP cross section.

FIG. 11. Plot of Δχ2 as a function of cG=Λ2 with the theoretical
uncertainty (Δσth) from which the observed bound is obtained.
Data used are the cross section binned in pTðthighÞ and mtt̄ given
in Tables IVand V. The SM NLO cross sections in Tables I and II
is used as the SM contribution to the total NP cross section.
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pp → tt̄þ 0j process [up to OðΛ−4Þ]. Moreover, as
evidenced by the list of Feynman diagrams, more subpro-
cesses contribute to the pp → tt̄j process compared to the
pp → tt̄ process in both the SM and the NP contexts.
Note also that the bounds calculated using the last four

bins are somewhat stronger than (or almost equal to) the
bounds obtained by using the data from all the bins. This is
consistent with our earlier observation that the contribution
of terms from theOG operator to the tt̄ production growswith
energy. Thus, by focusing on the higherpTðthighÞ ormtt̄ bins,
we gain a bit on the bounds on Λ= ffiffiffiffiffiffi

cG
p

. It should be noted
here that the bounds depend on the theoretical uncertainty
which has been taken to be Δσth ¼ 5%. The bounds lowers
by 15%–20% as the uncertainty is increased to 15%.

III. USING MACHINE LEARNING TECHNIQUES

We would now like to explore if any gains may be
obtained by augmenting the analyses of the previous
sections using machine learning techniques. To this end,
we explore two methods to improve the reach. The first
method is a dense classifier and it uses data passed to it
event by event. This will be referred to as “event-based

analysis.” The second method is to distill the information of
the events in certain bins and form “images” which are then
fed into a convolutional neural Nnetwork (CNN) classifier.
We will refer to this hereafter as the “bin-based analysis.”
The details for each of these procedures are given in the
subsections devoted to each of the analyses.
The neural networks (NNs) used are constructed and

trained in Keras [46] with a Tensorflow [47] back end.

A. Event-based analysis using a dense classifier

The events of the process pp → tt̄ (up to 1 hard jet) to be
used in this analysis are generated in MG5. We obtain
samples for the SM as well as NP models with Λ ¼ 2, 3, 4,
5 TeV. A cut of 50 GeV is applied on the pT of the
additional jet at the generational level. Apart from this, a
lower cut of 400 GeV is applied on the pT of the top as well
as a cut of 1000 GeVon the invariant mass of the top pair.
These cuts are motivated by the fact that there is significant
difference between the SM samples and the NP samples at
high pT and mtt̄ bins. While the samples generated using
purely SM physics is called the “SM sample,” the NP
sample containing events with both SM and NP contribu-
tions is called the “full sample.”
Each event in the samples is characterized by four

variables—pTðthighÞ, pTðtlowÞ, Δyð¼ jyðthighÞ − yðtlowÞjÞ,
mtt̄. The samples used for this analysis involve scaling the
generated data using the RobustScaler from the SciKit-
learn package [48]. This ensures that outliers in the data do
not affect the scaled data. After scaling, each of the
variables is centered around zero and has an interquartile
range of one. The classifier is trained on the SM and each of
the Full samples where the SM data is labeled by “0” (zero)
and the full sample data is labeled by “1” (one).
The classifier comprises of four dense layers with 512,

256, 128 and 1 neurons respectively. The activation
function of all the layers except for the last one is the
rectified linear unit (ReLU) while for the last layer, softmax
activation is used. The network is trained with an Adam
optimizer using a learning rate of 0.001. Binary cross
entropy is the loss function used for the network.
The classifier is trained on 240 000 events, validated on

80 000 events and tested on 80 000 events, where these
events are drawn from both the SM and full samples. The
results of the testing are shown as receiver operating
characteristic (ROC) curves. The training is done separately
for each value of Λ.
As the ROC curves in Fig. 12 demonstrate, the network

can distinguish between an SM sample and an NP sample
with Λ¼ 2 TeV, as well as an NP sample with Λ ¼ 3 TeV,
but the efficiency falls drastically. This is also demonstrated
by the area under the curve (AUC). However, the NP
samples with Λ¼ 4 TeV and Λ ¼ 5 TeV are barely dis-
tinguishable from the SM sample. The dense classifier can
thus only be used to differentiate NP samples up to Λ ¼
3 TeV from the SM. This is consistent with the expected
bound which we obtained in the previous section.

TABLE VI. Expected exclusion bounds on Λ= ffiffiffiffiffiffi
cG

p
at

95% C.L. found from the plots of Fig. 10, after including
Δσth. The cutoff for Δχ2 is χ2cut ¼ 19.68 for the pTðthighÞ plots
and χ2cut ¼ 16.92 for the mtt̄ plots when all the bins are taken into
account and χ2cut ¼ 7.82 for both cases when only the last four
bins are taken.

Λ= ffiffiffiffiffiffi
cG

p
(TeV)

pTðthighÞ mtt̄

NP order All bins Last 4 bins All bins Last 4 bins

Up to All terms > 2.06 > 2.28 > 2.03 > 2.22
Up to Λ−6 > 2.04 > 2.27 > 1.99 > 2.19
Up to Λ−4 > 1.94 > 2.17 > 1.98 > 2.19
Up to Λ−2 > 0.77 > 0.72 > 0.88 > 0.95

TABLE VII. Observed exclusion bounds on Λ= ffiffiffiffiffiffi
cG

p
at

95% C.L. found from the plots of Fig. 11, after including
Δσth. The cutoff for Δχ2 is χ2cut ¼ 19.68 for the pTðthighÞ plots
and χ2cut ¼ 16.92 for the mtt̄ plots and χ2cut ¼ 7.82 for both cases
when only the last four bins are taken.

Λ= ffiffiffiffiffiffi
cG

p
(TeV)

pTðthighÞ mtt̄

NP order All bins Last 4 bins All bins Last 4 bins

Up to All terms > 2.90 > 3.63 > 2.47 > 2.87
Up to Λ−6 > 2.89 > 3.63 > 2.45 > 2.86
Up to Λ−4 > 2.84 > 3.58 > 2.45 > 2.85
Up to Λ−2 > 1.66 > 0.53 > 3.51 > 2.02
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B. Bin-based analysis using a CNN classifier

Instead of using individual events for our analysis, we
can use a number of events populating each bin and derive
an “image” out of these for our analysis. This is what we
attempt in this section. An image in this context is simply a
matrix of numbers suitably scaled and this represents a
normalized 2D histogram in matrix form. Our images are
all monochromatic in nature, i.e., the number of colour
channels is one. Since CNNs are well equipped to handle
images, we shall use a CNN classifier in this analysis.
Events from the pp → tt̄þ 0j process are used to

achieve this. This process is chosen to enable us to later
make comparisons with the numbers given in Table 16 in
Ref. [33]. The value of the transverse momentum quoted in
the table is that of the hadronically decaying top quark,
which is denoted in the table as pTðthÞ and we also adopt
this denotation. This top quark is not necessarily the one
with the highest pT . Since we use parton-level generated
events, this is a difficult criterion to meet. It is met only if
the two hardest top quarks in the event have the same pT ,
which is possible only in the pp → tt̄ process.
Each imageweuse ismade up of a large number of events;

we choose to have 50 000 events for each image. The CNN
classifier will be trained and validated on images formed
from Monte Carlo (MC) events generated in MG5. We shall
construct four such models, each for one value of NP scale,
Λ. These models will then be tested on some pseudodata
generated using binned double differential cross-section
(d.d.c.s.) values given by the CMS Collaboration.

1. Making the images

Events are generated using MG5 only in the higher pTðthÞ
and mtt̄ bins, since these bins are most affected by a NP
scale. Four mtt̄ bins—([600, 800], [800, 1000], [1000,

1200] and [1200, 2000]) GeV—and the two pTðthÞ bins—
([180, 270], [270, 800]) GeV—are used for generating our
data. The events are binned in the eight bins formed by the
pTðthÞ andmtt̄ variables, arranged in a 2 × 4matrix and this
helps us construct the inputs to the CNN. These binned
number of events are scaled so that all the entries in the
matrix sum up to 1 and this forms an image. Several such
images form the input to the CNN. An example each of the
format of the unscaled 2 × 4 matrix and that of a scaled
image to be fed into the CNN are given below:

Each of final images to be used for the CNN is made
from 50 000 events. The network is trained on 25 such
images, validated on 10 more images and finally tested on
15 images.

2. The CNN

The CNN comprises of two 2D convolutional layers with
16 and 32 output channels with a kernel size of 2 × 2
followed by one 2D convolutional layer with 64 output
channels and a kernel size of 1 × 1. Dropout is applied to
the output of this convolutional layer to prevent over-
training. The output is then flattened into a 1D array which
is passed through two dense layers made up of 128 and 50
neurons and then through a dense layer with one neuron to
obtain the classifier output. The activation function used in
the first two dense layers is ReLU, while for the final layer,
softmax is used. The Adam optimizer with the default
learning rate of 0.001 is used and the preferred loss function
is binary cross entropy.
Three different CNN classifiers are trained and validated.

The images used for training are derived from SM events
and NP events. The three CNN classifiers correspond to
three values of Λ ¼ 2, 3, 4 TeV. The classifier trained to
differentiate between SM events and NP events with Λ ¼
2 TeV is called CNN_2TEV and the rest are named in a
similar way.

3. Prediction and reach

After training, these CNN classifiers are used for
prediction using pseudodata generated from binned
d.d.c.s. given in Table 16 in Ref. [33]. The appropriate
binned d.d.c.s. is used to obtain the number of observed
events in that bin, assuming the integrated luminosity to be
35.8 fb−1. We derive the central value for the bins by
scaling an average normalized SM image obtained from
MG5 to this obtained number of events. Assuming a

FIG. 12. ROC curves produced by using the dense classifier to
differentiate between a sample of SM events and another which
has added NP contributions. The AUC refers to the area under the
ROC curve.
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normal distribution with mean at these central values and
1σ error derived from the same d.d.c.s., we populate the
bins with randomly drawn events with the values of the
parameters within this range. For each of the samples
(corresponding to different values of Λ), both 1σ and 2σ
errors are considered.
We choose to generate 1000 images from this data for

our CNN prediction, each for the three NP classes of events
(Λ ¼ 2, 3, 4 TeV) and for the two error bands (1σ and 2σ).
We can then note the probability with which the CNN
models predict that these images are purely SM, i.e., no NP
with that particular value of Λ, in each of the cases. This is
done for both 1σ error (giving us the probability P1σ

SM) and
2σ error (giving us P2σ

SM). The results of our prediction are
given in Table VIII.
The results in Table VIII tell us that the first classifier

model CNN_2TEV, trained to differentiate between SM
and NP events with Λ ¼ 2 TeV, predicts that the images
used for prediction are SM with 97.29% probability for 1σ
error. This essentially rules out the occurrence of NP with
Λ ¼ 2 TeV at that same level. This confidence drops to
80.26% when the 2σ error range. This tells us that the
scale of any new physics is greater than 2 TeV. This changes
when we use the second classifier model CNN_3TEV, trained
to differentiate betweenSMandNP eventswithΛ ¼ 3 TeV.
It provides a probability for the data being SM only about
50% of the time, which is nothing more than a random
choice between SM and NP. Thus, we cannot rule out the
occurrence of NP with Λ ¼ 3 TeV at either 1σ and 2σ. The
same can be said for the third classifier model CNN_4TEV.
This tells us that the reach of this approach is somewhere

between Λ ¼ 2 TeV and Λ ¼ 3 TeV. This is consistent
with our findings with the dense classifier and offers an
improvement over the bounds obtained using the χ2

analysis in the previous section for the case of the tt̄ final
state with no additional hard jets.

IV. CONCLUSION

The triple-gluon operator is the only CP-even purely
gluonic dim-6 effective field theory operator and is
given by OG ¼ fabcG

a;μ
ν Gb;ν

ρ Gc;ρ
μ . Among other vertices,

it contributes to the triple-gluon vertex. In a new physics

context, such operators can arise from the presence of new
heavy colored particles or, more generically, when a
gluonic form factor is present. Since any process involving
gluon self-interactions will be affected by the presence of
this operator, several processes such as dijet or multijet
production processes or Higgs-associated production proc-
esses such as Hgg can be studied to probe it.
Not all dijet processes are equally efficient at con-

straining the operator. The amplitude for the gg → qq̄
process interferes with the Standard Model at the
Oð1=Λ2Þ, compared to gg → gg production which does
not interfere with the Standard Model at the lowest order.
Moreover the amplitude of the gg → qq̄ scales proportion-
ately with the square of the quark mass. These two
properties lead us to choose the top quark pair production
process as our probe of choice. The choice is further
bolstered by the fact that the multiple b-quarks are
produced as decay products of the two top quarks and
b-jets can be tagged with high efficiency at the LHC.
In this work, we employ a cut-and-count method. For

this, we individually estimate the contributions to the cross
section due to the Standard Model alone, due to the new
physics operator alone and due to the interference between
them. This is done for the pp → tt̄ process, firstly with no
additional hard jets arising from a hard parton at the matrix
level, and then by including one such jet. After performing
a χ2 analysis, we find that the strongest constraint obtained
at 95% C.L. for the scale of new physics of this operator is
Λ= ffiffiffiffiffiffi

cG
p

> 3.6 TeV. Two different kinematic variables—
pTðthighÞ and mtt̄—were used for binning the cross-section
data used in the χ2 analysis.
Additionally, we investigate the new physics bounds

using machine learning techniques using tt̄ events with no
addtional final state jets. To this end, we employ two
classifiers—one a dense neural network and the other a
convolutional neural network—to differentiate between the
purely Standard Model events and those with contribution
from the triple-gluon operator. We choose four benchmarks
corresponding to Λ ¼ 2, 3, 4, 5 TeVand note that the limits
obtained using the classifiers are a slight improvement over
the cut-and-count analysis using the tt̄ final state with no
additional jets.
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TABLE VIII. Table showing the results of the CNN classifier
when it is used to make a prediction on the pseudodata generated
from the binned double differential cross section given by CMS
(from Table 16 in Ref. [33]). The numbers show the probability
that the images used for prediction are purely SM with no NP.
Refer to text for more details.

Classifier model P1σ
SM P2σ

SM

CNN_2TEV 97.29% 80.26%
CNN_3TEV 49.95% 49.95%
CNN_4TEV 49.99% 49.99%
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APPENDIX: FEYNMAN DIAGRAMS

The list of Feynman diagrams which contribute to the
pp → tt̄j process both in the SM and with the insertion of
exactly one dim-6OG operator is shown in Figs. 13 and 14.
The complete list of relevant Feynman diagrams with the
insertion of exactly twoOG operators is already included in
the main text. The initiating partons from the protons can be
quarks (mostly u and d-quarks) or gluons or even a qg state.
It is also to be noted here that the quartic gluon coupling
also contributes in both the SM and the NP scenarios.
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