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We study the quark-gluon vertex in the limit of vanishing gluon momentum using lattice QCD with two
flavors of OðaÞ improved Wilson fermions, for several lattice spacings and quark masses. We find that all
three form factors in this kinematics have a significant infrared strength and that both the leading form
factor λ1, multiplying the tree-level vertex structure, and the scalar, chiral symmetry breaking form factor λ3
are significantly enhanced in the infrared compared to the quenched (Nf ¼ 0) case. These enhancements
are orders of magnitude larger than predicted by one-loop perturbation theory. We find only a weak
dependence on the lattice spacing and quark mass.
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I. INTRODUCTION

The quark-gluon vertex is one of the basic building
blocks of the strong interaction. It encodes the fundamental
interactions of the quarks and gluons and can be used to
define a nonperturbative running coupling. In addition, it is
an essential ingredient in functional approaches to non-
perturbative QCD, such as Dyson-Schwinger equations
(DSEs) and the functional renormalization group (FRG). In
particular, the DSE for the quark propagator contains the
quark-gluon vertex, and the amount of dynamical chiral
symmetry breaking is highly sensitive to the details of this
vertex; see Ref. [1] for the case of QED.
Traditionally, many studies of hadron phenomenology in

theDSE framework have been carried out using the rainbow-
ladder truncation, where the quark-gluon vertex is approxi-
mated by its tree-level structure, multiplied by an effective
coupling which is taken to depend only on the gluon
momentum. While this approach has been successful in
describing a range of properties of pseudoscalar and vector
mesons [2–5], it has failed to provide a satisfactory descrip-
tion of other quantities including scalar and axial-vector
mesons and the chiral transition temperature [6–8]. It should

also be noted that this approach fails to satisfy the Slavnov-
Taylor identitieswhich encode thegauge invarianceofQCD.
Through a combination of lattice, DSE, and FRG

studies, the elementary (gluon, quark, and ghost) propa-
gators in Landau-gauge QCD are now very well known
[9–21], although a continuum extrapolation of lattice
results is still outstanding. It is thus natural that attention
has in recent years turned to the structure of the three- and
four-point vertices of QCD, including the quark-gluon
vertex. There have been a number of recent studies within
the DSE framework exploring the full structure of this
vertex [20,22–35] and the potential impact of the various
nonleading form factors on chiral symmetry breaking and
hadron phenomenology [24,36–38]. Two critical ingre-
dients in determining the full structure of the vertex have
been the Slavnov-Taylor identity, which relates the longi-
tudinal part of the vertex to the quark propagator, and the
transverse Ward-Takahashi identities [39–42], which con-
strain the purely transverse part of the vertex.
The quark-gluon vertex has previously been studied on

the lattice in the quenched approximation in a series of
papers [43–46]. Apart from the uncontrolled systematic
uncertainty of the quenched approximation, these studies
have only been carried out at a single lattice spacing and
volume and hence do not allow for a controlled approach to
the physical (continuum and infinite-volume) limit. In this
paper, we take the first steps toward rectifying this by
computing the quark-gluon vertex on state-of-the-art latti-
ces with Nf ¼ 2 light dynamical quarks with different
masses and for several lattice spacings and compare with
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equivalent results in the quenched approximation (Nf ¼ 0).
Some preliminary findings were presented in Refs. [47,48].
We will conduct this study in the soft gluon kinematics
where the gluon momentum is vanishing, and hence both
quark momenta are equal.
The structure of this paper is as follows. In Sec. II, we

present our methods for computing the vertex, including
the notation and vertex decomposition (Sec. II A), lattice
simulation details (Sec. II B), procedure for extracting form
factors (Sec. II C), and tree-level correction of lattice data
(Sec. II D). Our results are presented in Sec. III, while in
Sec. IV, we summarize our findings and outline prospects
for future work.

II. CONTINUUM AND LATTICE VERTEX

A. Quark-gluon vertex

Our description of the quark-gluon vertex follows the
notation used in Refs. [43–45,49,50], which we briefly
summarize here.
The proper quark-gluon vertex, ðΛa

μÞijβρ ¼ taijðΛμÞβρ ¼
taijð−ig0ΓμÞβρ, is depicted in Fig. 1 with p the outgoing
quark momentum, q the outgoing gluon momentum, and
k ¼ pþ q the incoming quark momentum where taij is the
group generator. The quark-gluonvertex can be described in
terms of 12 spin amplitudes which would be formed using
the three vectorspμ,qμ, and γμ and fourDirac scalars, I,p,q,
andpq. Reorganizing these spin amplitudes to form a tensor
basis, the full one-particle irreducible function Λμ

Fðp; q; kÞ
can be decomposed into nontransverse and transverse parts,

Λμ
Fðp; q; kÞ ¼ Λμ

NTðp; q; kÞ þ Λμ
Tðp; q; kÞ;

¼
X4
i¼1

λiðp2; q2; k2ÞLμ
i ðp; q; kÞ

þ
X8
i¼1

τiðp2; q2; k2ÞTμ
i ðp; q; kÞ; ð1Þ

where λi and Lμ
i ðp; k; qÞ are nontransverse form factors and

basis vectors [51] and τi and Tμ
i ðp; k; qÞ are transverse form

factors andbasis vectors [52], respectively.Bydefinition, the
transverse part is such thatq · Tiðp; k; qÞ ¼ 0. In termsof the
incoming and outgoing quark momenta, the longitudinal
basis can be written as

L1μ ¼ γμ;

L2μ ¼ −ðpþ =kÞðpμ þ kμÞ;
L3μ ¼ −iðpμ þ kμÞ;
L4μ ¼ −iσμνðpν þ kνÞ: ð2Þ

The nontransverse part of the vertex satisfies the Slavnov-
Taylor identity,

qμΛμðp; q; kÞ ¼ qμΛ
μ
NTðp; q; kÞ

¼ Ghðq2Þ½H̄ðk;−p;−qÞS−1ðkÞ
− S−1ðpÞHð−p; k;−qÞ�; ð3Þ

which encodes the gauge invariance of the system. Through
these Slavnov-Taylor identities, the nontransverse part of the
vertex is related to the inverse quark propagator,
S−1; the ghost-quark scattering kernel, H; and the ghost
dressing function, Gh. However, the transverse part
remains unconstrained by the Slavnov-Taylor identity, i.e.,
qμΛ

μ
Tðp; qÞ ¼ 0 and Λμ

Tðp; pÞ ¼ 0. The transverse basis
tensors [52] are given by

T1μ ¼ i½ðk · qÞpμ − ðp · qÞkμ�;
T2μ ¼ ðpþ =kÞ½ðk · qÞpμ − ðp · qÞkμ�;
T3μ ¼ qqμ − q2γμ;

T4μ ¼ −i½q2σμνðpν þ kνÞ þ 2qμσνλpνkλ�;
T5μ ¼ −iσμνqν;

T6μ ¼ q · ðpþ kÞγμ − qðpμ þ kμÞ;

T7μ ¼
i
2
q · ðpþ kÞσμνðpν þ kνÞ − iðpμ þ kμÞσνλpνkλ;

T8μ ¼ −γμσνλpνkλ − pkμ þ =kpμ; ð4Þ

where σμν ¼ 1
2
½γμ; γν�. Since in this paper we will only

consider the soft gluon kinematics where the gluon momen-
tum q ¼ 0 and k ¼ p, these transverse tensors do not
contribute here. The full vertex structure in general kine-
matics will be considered in a future paper.

B. Lattice simulation details

In this study, we use the same action and formulation for
the quark propagator as in Ref. [16], and refer to that paper
and references therein for further details. We employ the
Wilson action for the gauge sector and the Sheikholeslami-
Wohlert (clover) fermion action [53],FIG. 1. The proper quark-gluon vertex.
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SSW ¼ SW − i
a
4
g0cSW

X
x

X
μν

ψ̄ðxÞσμνFμνðxÞψðxÞ; ð5Þ

where SW is the ordinary (unimproved) Wilson fermion
action. The improvement coefficient cSW has been deter-
mined nonperturbatively. In order for the quark propagator
and quark-gluon vertex to be fullyOðaÞ improved, it is also
necessary to improve the quark propagator [54], and for this
purpose, we use the OðaÞ improved “rotated” quark
propagator,

SRðx; yÞ≡ hψ 0ðxÞψ̄ 0ðyÞi
¼ ⟪ð1þ bqamÞ2ð1 − cqa=D

!ðxÞÞ
× S0ðx; y;UÞð1þ cqa=D

 ðyÞÞ⟫; ð6Þ

where the double brackets ⟪·⟫ denote averaging over
gauge fields only, while Sðx; y;UÞ is the quark propagator
evaluated on a single gauge configuration U. We use
the tree-level values for the coefficients bq and cq:
bq ¼ cq ¼ 1=4. We note that this propagator differs from
the improved propagator used in Refs. [43–45,49,50].
The quark-gluon vertex is then determined by

Λa;lat
μ ðp; qÞ ¼ SRðpÞ−1Va

νðp; qÞSRðpþ qÞ−1DðqÞ−1νμ ; ð7Þ

where the unamputated vertex V is given by

Va
μðp; qÞ ¼ ⟪SRðp;UÞAa

μðqÞ⟫: ð8Þ

In Landau gauge, it is not possible to implement Eq. (7)
fully since the inverse gluon propagator,D−1

μν , does not exist
for q ≠ 0. Instead, we compute the transverse projected
vertex

Λ̃μðp; qÞ ¼ −ig0Γ̃μ ¼ PT
μνðqÞΛνðp; qÞ

¼
�
δμν −

qμqν
q2

�
Λνðp; qÞ: ð9Þ

In the present work, we use the same gauge ensembles as
in Ref. [16], which are a subset of the gauge ensembles

generated by the Regensburg QCD Collaboration (see, e.g.,
Refs. [55–57]). These ensembles have Nf ¼ 2 dynamical
quarks with pion masses in the range 280–420 MeV. Three
values of the lattice spacing, a ≈ 0.081 fm, a ≈ 0.071 fm,
and a ≈ 0.060 fm, are used. Most of the calculations have
been carried out on a lattice volume of 323 × 64, but we
have also used a 644 lattice to check finite-volume effects
for one of the parameter choices (mπ ≈ 290 MeV).
In addition, we have produced a quenched ensemble with

lattice spacing matching that of ensembles L07 and H07,
i.e., with a ¼ 0.07 fm, but with a larger valence quark
mass mπ ≈ 1000 MeV.
The parameters used are listed in Table I. In order to

more easily refer to the different ensembles when present-
ing the results, we have labeled them such that the first
letter refers to the pion mass [heavy (H), 420 MeV, or light
(L), 290 MeV], and the following two digits refer to the
lattice spacing. The quenched ensemble is labeled Q07.
For the gauge fixing, we used an over-relaxation

algorithm which iteratively maximizes the Landau-gauge
functional

FU½g� ¼
1

4V

X
xμ

ReTrUg
xμ; ð10Þ

with Ug
xμ ¼ gxUxμg

†
xþμ̂ and gx ∈ SUð3Þ. As stopping cri-

terion, we used

max
x

ReTr½ð∇μAxμÞð∇μAxμÞ†� < 10−9; ð11Þ

where Axμ ≡ 1
2iag0
ðUg

xμ −Ug†
xμÞjtraceless and ∇μAxμ≡P

μðAxμ − Ax−μ̂;μÞ, as usual.

C. Form factor extraction

In the soft gluon kinematics (qμ ¼ 0, kμ ¼ pμ), the
continuum vertex is given by the three nontransverse form
factors λ1, λ2, and λ3 [58],

ðΛ̃a
μÞijαβ¼ taijðΛ̄μÞαβ
¼−ig0taijðλ1½γμ�þλ2½−4ppμ�þλ3½−2ipμ�Þαβ: ð12Þ

TABLE I. Lattice parameters used in this study. The lattice spacings a and pion masses mπ and critical hopping parameters used to
obtain the subtracted bare quark mass mq ¼ 1=ð2κÞ − 1=ð2κcÞ are all taken from Ref. [56]. The quenched ensemble Q07 was produced
specifically for this study. Nsrc denotes the number of different point sources per configuration used to produce the quark propagators.

Name β κ a (fm) V mπ (MeV) mq (MeV) Ncfg Nsrc

L08 5.20 0.13596 0.081 323 × 64 280 6.2 900 4
H07 5.29 0.13620 0.071 323 × 64 422 17.0 900 4
L07 5.29 0.13632 0.071 323 × 64 295 8.0 908 4
L07-64 5.29 0.13632 0.071 643 × 64 290 8.0 750 2
H06 5.40 0.13647 0.060 323 × 64 426 18.4 900 4

Q07 6.16 0.1340 0.071 323 × 64 1000 130 998 4
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We can extract these individual form factors by taking
appropriate contractions and traces,

Tr4½IðΛ̄a
μÞ� ¼ −ig0ðλ3½−2ipμ�Þ; ð13Þ

Tr4½γνðΛ̄a
μÞ� ¼ −ig0ðλ1δνμ þ λ2½−4pνpμ�Þ; ð14Þ

where Tr4 ≡ Tr
4
denotes the trace over spin indices. We note

that Eq. (14) implies that λ1 and λ2 are coupled, but we can
disentangle them by contracting it with the tensors δμν and
pμpν and solving the coupled equations. This yields the
following expressions:

λ1 ¼
1

ð−ig0Þ
�
1

3

�
Tr4ðγμΛ̄μÞ −

pμpν

p2
Tr4ðγνΛ̄μÞ

��
; ð15Þ

λ2¼
1

ð−ig0Þ
�

1

12p2

�
Tr4ðγμΛ̄μÞ−4

pμpν

p2
Tr4ðγνΛ̄μÞ

��
; ð16Þ

λ3 ¼
1

ð−ig0Þ
�
i
2

pμ

p2
Tr4ðIΛ̄μÞ

�
: ð17Þ

In practice, expressions such as Eqs (15) and (16) contain
multiple terms that can lead to numerically poorly deter-
mined form factors. It may therefore be desirable to
sacrifice covariance and restrict ourselves to specific
momentum configurations in order to obtain simple expres-
sions involving only a single term. For instance, with the
choices of (a) ν ¼ μ and pμ ¼ 0 and (b) ν ≠ μ in Eq. (14),
we obtain the following noncovariant, single term expres-
sions for the continuum λ1 and λ2 form factors, respectively,
which we will make use of in this analysis:

λ1 ¼
1

ð−ig0Þ
n
½Tr4ðγαΛ̄μÞ�jα¼μ

pμ¼0

o
; ð18Þ

λ2 ¼
1

ð−ig0Þ
�
−

1

4p2

pαpμ

p2
½Tr4ðγαΛ̄μÞjα≠μ�

�
; ð19Þ

The quark-gluon vertex computed on the lattice using
Eq. (7) is not renormalized. To renormalize the vertex, we
impose a momentum subtraction scheme whereby the
leading form factor λ1 takes on its tree-level value at a
given renormalization scale μ,

λR1 ðμ2; 0; μ2Þ ¼ 1: ð20Þ

This fixes the renormalization constant Z1 such that
Γlat
μ ðp; q; kÞ ¼ Z1ΓR

μ ðp; q; kÞ, which in turn determines
the renormalization of all the form factors.

D. Tree-level correction

In order to determine the lattice equivalents of the
continuum expressions (18), (19), and (17) for the form

factors λ1, λ2, and λ3 and to estimate and reduce their lattice
artifacts, we need to compute the structure of the lattice
tree-level vertex. Here, we will outline the main results,
while the details are given in the Appendix.
The tree-level quark-gluon vertex associated with the

Sheikholeslami-Wohlert action without color and group
indices is given by [59,60]

Λ̄ð0Þ0;νðp; q; kÞ ¼ ð−ig0Þ
�
γν cos

�
aðpν þ kνÞ

2

�

− i sin
�
aðpν þ kνÞ

2

�
I

− i
cSW
2

cos

�
aqν
2

�X
λ

σνλ sinðaqλÞ
�
; ð21Þ

for the case of the “unimproved” propagator S0ðx; yÞ ¼
hψðxÞψ̄ðyÞi. The improved vertex obtained using the
rotated propagator of Eq. (6) is given at tree level by

Λ̄ð0ÞR;μðp;q;kÞ¼ ð1þbqamÞ½Sð0ÞR ðpÞ�−1Sð0Þ0 ðpÞ½Λað0Þ
0;μ ðp;q;kÞ�

×Sð0Þ0 ðkÞ½Sð0ÞR ðkÞ�−1; ð22Þ

where Sð0Þ0 ðpÞ is the tree-level unimproved dimensionless

Wilson quark propagator, while Sð0ÞR ðpÞ is the level
expression for the improved propagator of Eq. (6). In
the soft gluon kinematics with q ¼ 0, p ¼ k, this reduces to

Λ̄ð0ÞR;μðp;0;pÞ¼ð−ig0Þ
ð1þbqamÞ
ð1þam=2Þ2

1

ð1þc2qa2K2ðpÞÞ4

×

�
γμ½ð1þc2qa2K2ðpÞÞ2CμðpÞ�

−4a2Kμ=KðpÞ½2c2qCμðpÞ−cqð1−c2qa2K2ðpÞÞ�

−2iaKμ

�
−2c2qa2K2ðpÞþ1

2
ð1−c2qa2K2ðpÞÞ

−2cqð1−c2qa2K2ðpÞÞCμðpÞ
��

; ð23Þ

where we have defined the lattice momentum variables

KμðpÞ ¼
1

a
sinðpμaÞ; CμðpÞ ¼ cosðpμaÞ: ð24Þ

We note in particular that there are two separate tensor
structures appearing in the tree-level vertex (23), which in
the continuum become equal to L2;μ, and likewise for L3;μ.
In Eqs (29) and (30) below, these are associated with

separate form factors λð0Þi and λ̄ð0Þi , respectively. It should be
noted that all of these are proportional to the lattice spacing
a and hence vanish in the naive continuum limit, and
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likewise the deviation between λð0Þ1 and the continuum,
tree-level value of 1 vanishes in the same limit. However,
their magnitude can be large at finite lattice spacing.
Due to asymptotic freedom, we expect the nonperturba-

tive vertex to approach its tree-level form at large momen-
tum and hence be dominated by lattice artifacts. We attempt
to reduce these by dividing the lattice λ1 by its tree-level
form, while subtracting off the tree-level expression from
the raw data for λ2 and λ3.
Making a comparison between Eq. (23) and the con-

tinuum vertex Eq. (12), we end up with the tree-level
corrected, lattice equivalents of the expressions (18), (19),
and (17),

λ1ðp2; 0; p2Þ ¼ Im
g0

n
½Tr4ðγαΛ̄μÞ�jα¼μ

pμ¼0

o.
λð0Þ1 ð25Þ

λ2ðp2;0;p2Þ¼Im
g0

�
−

1

4KðpÞ2
KαðpÞKμðpÞ

KðpÞ2 ½Tr4ðγαΛ̄μÞjα≠μ�
�

−ðλð0Þ2 þ λ̄ð0Þ2ðμÞÞ; ð26Þ

λ3ðp2; 0; p2Þ ¼ Re
ð−g0Þ

�
1

2

KμðpÞ
K2ðpÞTr4ðIΛ̄μÞ

�

− ðλð0Þ3 þ λ̄ð0Þ
3ðμÞÞ; ð27Þ

where the lattice tree-level form factors are given by

λð0Þ1 ¼ FðpÞð1þ c2qa2K2ðpÞÞ2; ð28Þ

λð0Þ2 þ λ̄ð0Þ
2ðμÞ ¼ a2FðpÞ½−cqð1 − c2qa2K2ðpÞÞ þ 2c2qCμðpÞ�;

ð29Þ

λð0Þ3 þ λ̄ð0Þ
3;ðμÞ ¼

a
2
FðpÞ½ð1− c2qa2K2ðpÞÞ2 − 4c2qa2K2ðpÞ

− 4cqð1− c2qa2K2ðpÞÞCμðpÞ� ð30Þ

and the common prefactor FðpÞ is given by

FðpÞ ¼ ð1þ bqamÞ
ð1þ am=2Þ2

1

ð1þ c2qa2K2ðpÞÞ4 : ð31Þ

These (λ1, λ2, λ3) are the complete form factors required to
determine the quark-gluon vertex in the soft gluon limit,
and Eqs (25), (26), and (27) define the exact procedures to
calculate them on the lattice.

E. One-loop continuum form factors

In interpreting the lattice data for the various quark-gluon
vertex form factors, knowledge of the corresponding
perturbative expressions will be useful. Therefore, for
completeness, we report on the results for the Landau
gauge one-loop Euclidean-space form factors λ1;2;3 in the
soft gluon kinematics in the momentum subtraction
(MOM) scheme, where μ is the renormalization scale,
see Fig. 2.

λpert1 ðp2;0;p2;μ2Þ¼ 1−
αμ
4π

CA

4

�
−
m2

p2
þm2

μ2
−3 ln

�
p2þm2

μ2þm2

�

þm4

p4
ln

�
1þ p2

m2

�
−
m4

μ4
ln

�
1þ μ2

m2

��

þOðα2Þ; ð32Þ

(a) (b)

FIG. 2. Complete one-loop diagrams of the quark-gluon vertex. (a) Abelian contribution. (b) Non-abelian contribution
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FIG. 3. One-loop perturbative form factors of the quark-gluon vertex.
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FIG. 4. The leading, unrenormalized form factor λ1ðp2; 0; p2Þwith and without tree-level (TL) corrections as a function of momentum
p, for different lattice ensembles with a ¼ 0.07 fm: (a) L07, (b) H07, (c) L07-64, and (d) Q07.
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λpert2 ðp2; 0; p2Þ ¼ αμ
4π

CA

8p2

�
1 − 2

m2

p2
þ 2

m4

p4
ln

�
1þ p2

m2

��

þOðα2Þ; ð33Þ

λpert3 ðp2; 0; p2Þ ¼ αμ
4π

3CF
m
p2

�
1 −

m2

p2
ln

�
1þ p2

m2

��

þOðα2Þ: ð34Þ

CA and CF are the eigenvalues of the quadratic Casimir
operator in the fundamental representation and adjoint
representation, respectively: CA ¼ N, CF ¼ N2 − 1=2N,
with N ¼ 3 for SU(3). Note that λ3 is proportional to
the quark mass and a nonvanishing λ3, as is observed in
lattice simulations, is an indication of chiral symmetry
breaking.
The one-loop expressions are plotted in Fig. 3, for three

different values of the quark mass. The value of the form

factors in the limit p → 0 is also shown in the graph. We
note that all three form factors are enhanced in the infrared
and that this enhancement increases with decreasing quark
mass for all three. This has also been observed in other
kinematics [29]. In the case of λ3, however, we note that this
mass ordering only occurs in the very far infrared,
p≲ 15 MeV, and that the mass ordering is the opposite
for p≳ 50 MeV, which includes all momenta available for
the lattice volumes considered in this study.

III. RESULTS

In the following, we will present our results for the
quark-gluon vertex in such a way as to carefully trace
the effects of tree-level correction (Sec. III A), unquenching
(Sec. III B), mass (Sec. III C), volume (Sec. III D), and
lattice spacing (Sec. III E) on each of the three form
factors.
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FIG. 5. As in Fig. 4, for the unrenormalized form factor λ2.
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A. Tree-level corrected versus uncorrected

We first consider the effect of the tree-level corrections
on the vertex, starting with the leading vertex component
λ1. Representative results for λ1 as a function of momentum
p with and without tree-level correction are shown in
Fig. 4. Figure 4(d) shows quenched results, Nf ¼ 0, while
Figs. 4(a) and 4(c) show results for a ¼ 0.07 fm and
mπ ≃ 295 MeV on the 323 × 64 and 643 × 64 lattices,
respectively. For comparison, Fig. 4(b) shows the results
for the heavier pion mass, mπ ¼ 422 MeV.
Due to asymptotic freedom, we expect that λ1ðpÞ → 1

(plus logarithmic corrections) at large p, and we can see
that the tree-level corrections have the effect of bringing the
lattice data closer to this continuumlike form for all cases
and reducing the violations of rotational symmetry com-
pared to the uncorrected data. In some cases (notably for
the largest quark massmπ ¼ 422 MeV), we see indications
that significant lattice artifacts remain even after tree-level

correction and, therefore, careful study of the lattice
spacing dependence will be necessary to determine the
large-momentum behavior of the vertex. For the larger
volume (643 × 64), the fluctuations of λ1 are quite large,
Fig. 4(c). In all cases, the tree-level correction is small
below 1 GeV but becomes pronounced for p≳ 1 GeV
(pa≳ 0.4).
Using the same lattice ensembles as in Fig. 4, the effect

of the tree-level corrections on the λ2 are shown in Fig. 5.
We see that λ2 tends to zero as p increases, in contrast to λ1,
which approaches a value close to 1—in line with expect-
ations from asymptotic freedom in both cases. On the
larger volume 643 × 64 lattice, the tree-level correction
does not appear to have any effect on the λ2 lattice artifacts
within the uncertainties of the data. However, the differ-
ent vertical scales complicate the comparison with the
other figures. The response of the λ2 to tree-level correc-
tions is noticeable for all momenta. The data in Fig. 5 also
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FIG. 6. As in Fig. 4, for the unrenormalized form factor λ3.
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show that λ2 is strongly enhanced at low momenta,
although the volume and mass dependence of λ2 are
difficult to disentangle. The data also suggest that λ2 is
enhanced for dynamical simulations relative to the
quenched case.
In Fig. 6, the effect of the tree-level corrections on λ3 are

shown. They are pronounced at large momentum of around
2 GeVonward and have almost no effect for momenta less
than 2 GeV. The corrections pushes λ3 upward in the
ultraviolet, and λ3 does not vanish at higher momenta as
one would expect. This appears to be the case for all
ensembles. We conclude that in the case of λ3 the tree-level
correction does not work satisfactorily for pa≳ 1.5,
corresponding to momenta greater than approximately
4 GeV, and we will discard our results for pa≳ 1.5
(p≳ 4 GeV) as unreliable in the absence of a careful,
controlled continuum extrapolation.

The results for all our ensembles are collated in Figs. 7.
This figure shows only minor variations with the quark
mass and lattice spacing, with indications that decreasing
the quark mass leads to a slightly stronger enhancement in
the infrared, while decreasing the lattice spacing may have
a small effect in the same direction. Indeed, for all form
factors, we see that their magnitude is largest for the H06
ensemble (mπ ¼ 426 MeV, a ¼ 0.06 fm). We will discuss
the quark mass and lattice spacing dependence in more
detail in Secs. III C and III E.
The most striking feature of λ2 in Fig. 7(b) is that this

form factor appears to diverge more strongly in the infrared
as we approach the continuum limit. Our results for λ3 are
summarized in Fig. 7(c). We find that the magnitude of λ3
in the infrared increases with increasing quark mass, which
is expected since, according to perturbation theory, this
form factor breaks chiral symmetry and is proportional to
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FIG. 7. The form factors λ1, λ2, and λ3 with tree-level corrections versus momentum p2. All form factors have been renormalized at
2 GeV.
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the quark mass, Eq. (34). Our result also suggest that its
infrared magnitude increases as we approach the con-
tinuum limit.
From now on, we will only show tree-level corrected

data. All data shown from here on have been renormalized
at 2 GeV, and to make the presentation clearer, we have
averaged data with nearby values of momentum, with a
momentum bin size aΔp ¼ 0.05.

B. Quenched versus dynamical

We now turn to a comparison of results from our
quenched ðNf ¼ 0Þ and dynamical (Nf ¼ 2) ensembles
at a ¼ 0.07 fm. Since the valence quark mass in the
quenched case is quite large, we use the H07
(mπ ¼ 422 MeV) ensemble in this comparison. The results
are shown in Fig. 8. The one-loop perturbative expression
(32), evaluated at α ¼ 0.3 ≈ αMSð2 GeVÞ [61,62] and
mq ¼ 17 MeV and with μ ¼ 2 GeV, is also plotted. We
have used the subtracted bare quark mass rather than the

renormalized mass in this calculation, but this makes little
difference as varying mq even by a factor 2 has a negligible
effect for the range of momenta we are considering here.
We will now discuss each form factor in turn.
(i) λ1: Although we find that the qualitative behavior is

the same in both quenched and unquenched
cases, we see that with dynamical fermions the
vertex is more strongly infrared enhanced than in
the quenched case, as seen in Fig. 8(a). However,
a more detailed comparison, with different va-
lence quark masses, will be required to disen-
tangle the effects of dynamical fermions and
valence quark masses. Even at one-loop order,
the perturbative contribution to λ1 shows IR
enhancement, and at one-loop level in Landau
gauge, this is purely due to the non-Abelian
contribution.

(ii) λ2: This form factor has a large uncertainty in the
IR, and as the momentum increases, its value
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FIG. 8. Quenched and dynamical form factors vs momentum p.
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approaches zero, and the uncertainties become
small [see Fig. 8(b)]. Here, we clearly see that
the dynamical quarks only have a small effect on
this form factor, leading at most to a slight
enhancement. We also note that our lattice
results λ2 are orders of magnitude larger than
the one-loop perturbative expression, which
only exhibits a very small increase in the deep
infrared. Like in λ1, the entire contribution in
Landau gauge to λ2 at one-loop level is purely
non-Abelian.

(iii) λ3: As was the case for λ1, we find that inclusion of
dynamical fermions leads to a significant en-
hancement of this form factor in the infrared;
however, above 1 GeV, the difference between
dynamical and quenched fermions dimini-
shes. At lower momentum, this form factor is
negative, and as the momentum increases, it

approaches zero. We find a zero crossing be-
tween 1 and 2 GeV. We note that at this point,
the uncertainties associated with the tree-level
correction are not yet significant, so it appears
unlikely that this zero crossing is entirely due to
lattice artifacts. The one-loop expression has
contributions from both Abelian and non-
Abelian diagrams, and the combined effect is
positive in the IR region, in contrast to what is
found from the lattice data. Since we expect the
perturbative behavior to be reproduced at large
momentum, this suggests that λ3 should ap-
proach zero from above in the ultraviolet and
hence have a zero crossing in the intermediate-
momentum region.

Figure 9 shows results for all three form factors for the
H07 (dynamical) and Q07 (quenched) ensembles, along
with the Abelian Ball-Chiu vertex [51] and the one-loop
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FIG. 9. The form factors λ1, λ2, and λ3 for quenched and dynamical fermions, renormalized at 2 GeV, the Abelian Ball-Chiu vertex,
and the one-loop order form factors as functions of momentum squared.
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perturbative contributions to the quark-gluon vertex.
The Ball-Chiu vertex is calculated from the quark
propagator

SðpÞ ¼ 1

ipAðp2Þ þ Bðp2Þ ¼
Zðp2Þ

ipþMðp2Þ ; ð35Þ

using the expressions

λBC1 ¼ Aðp2Þ; ð36Þ

λBC2 ¼ −
1

2
dAðp2Þ=dp2; ð37Þ

λBC3 ¼ dBðp2Þ=dp2: ð38Þ

The quark wave function Aðp2Þ ¼ 1=Zðp2Þ and the mass
function Mðp2Þ ¼ Bðp2Þ=Aðp2Þ are calculated using the
Nf ¼ 2 lattice results from Ref. [16].
We observe a hierarchy in the infrared enhancement of λ1

where the largest enhancement is for the dynamical lattice
ensembles, followed by the quenched lattice data, the Ball-
Chiu vertex, and the one-loop perturbative expression in
that order. The same hierarchy is found for λ2, while for λ3,
the quenched and dynamical lattice results and the Ball-
Chiu are roughly equal. More work will be required to
disentangle the effects of explicit and spontaneous chiral
symmetry breaking and quark dynamics in this form factor.
We will study the quark mass dependence of λ3 further in
Sec. III C.
The IR hierarchy casts light on the reliability of the

various approximations when they are used to calculate
nonperturbative quantities. These results combined with the
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FIG. 10. The form factors λ1, λ2, and λ3 for the L07 (mπ ¼ 295 MeV) and H07 (mπ ¼ 422 MeV) ensembles, together with the
Abelian Ball-Chiu vertex and the one-loop order form factors, as functions of momentum squared.
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Slavnov-Taylor identity (3) show that the Abelian Ball-
Chiu vertex is not able to saturate the identity and, there-
fore, the quark-ghost kernel H in Eq. (3) has sizeable
contributions in the infrared region.

C. Mass dependence

In Fig. 10, we show results from the L07 (mπ¼295MeV)
and H07 (mπ ¼ 422 MeV) ensembles, which differ only by
the quark mass. We also show the corresponding Ball-Chiu
vertices and one-loop order perturbative results.
For all form factors we see that the lighter quark mass

give rise to a larger infrared enhancement. This is particu-
larly interesting in the case of λ3, where the one-loop
expression (34) increases with increasing quark mass in this
momentum region. However, it should be noted that the
one-loop expression also shows a stronger enhancement
with decreasing quark mass (albeit with the opposite sign)

in the deep infrared as shown in Fig. 3(c). We also note that
the Abelian Ball-Chiu vertex exhibits the same effect and
that the same quark mass dependence was observed for λ3
in the quenched case [44]. We therefore consider this mass
dependence to be robust.
In the case of λ1 and λ2, although the one-loop pertur-

bative contribution for the lighter and heavier masses look
the same, on closer inspection, one notes that in the deep
IR, they differ from each other following the same trend,
namely that they are more enhanced the smaller the quark
mass is (see Fig. 3).

D. Volume dependence

In Fig. 11, we compare the results for two different
volumes with the same quark mass and lattice spacing, a ¼
0.07 fm and mπ ¼ 295 MeV on the 644 and 323 × 64
lattices, respectively.
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FIG. 11. Volume dependence of the form factors λ1, λ2, and λ3, from the L07 and L07-64 ensembles, with a ¼ 0.07 fm and
mπ ≈ 290 MeV.
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FIG. 12. Lattice spacing dependence of the form factors, for the H06 and H07 (heavier quark) ensembles (left) and the L07 and L08
(lighter quark) ensembles (right).
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FIG. 13. Dimensionless form factors λ1, 4K2ðpÞλ2, and 2KðpÞλ3, corresponding in the continuum to λ1, 4p2λ2 and 2pλ3, for each
ensemble versus momentum: (a) ensemble L07, (b) ensemble H07, (c) ensemble L07-64, (d) ensemble L08, (e) ensemble H06, and
(f) ensemble Q07. These measure the contribution of each form factor to the strength of the vertex. Note that KðpÞ and the naive
momentum p are equal in the continuum limit.
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In all cases, the uncertainties for the larger volume are so
large that we are not able to draw any definitive con-
clusions; however, we do not see any evidence of a
significant finite-volume effect for λ1 or λ3. For λ2, our
results suggest that this form factor is more strongly
enhanced in the infrared as the volume increases; however,
the results for the two volumes remain consistent with each
other within the uncertainties.

E. Lattice spacing

In Fig. 12, we compare results for different lattice
spacings, keeping the quark mass constant. For compari-
son, in Fig. 12, the plots on the left show results for the H06
and H07 ensembles with mπ ≈ 420 MeV, while the plots
on the right are for the L07 and L08 ensembles, with
mπ ≈ 290 MeV.
For both quark masses, we observe that all form factors

have a larger infrared enhancement for the smaller lattice
spacing. The effect is slightly larger for the heavier masses
than for the lighter mass.
At large momentum, we see that all form factors move

closer to their continuum tree-level value (1 for λ1 and 0 for
λ2 and λ3 as the lattice spacing is reduced, suggesting that
the expected perturbative behavior will be reproduced in
the continuum limit.

F. All form factors

Finally, in Fig. 13, we show all form factors as a function
of momentum up to 4 GeV for all lattice ensembles
generated for this study. λ1 is dimensionless, but λ2 and
λ3 have dimensions of p−2 and p−1, respectively. In order to
measure the relative strength of λ2 and λ3 in comparison to
λ1, all form factors are multiplied by the appropriate lattice
momenta. The lattice momentum KðpÞ is used here to
reduce lattice artifacts and ensure the continuum limit is
approached more rapidly; note that all momentum variables
are equivalent in the continuum limit and that no variable is
intrinsically preferred over any other away from the
continuum limit.
For all ensembles, regardless of quark mass, volume, and

lattice spacing, we find that λ1 has the biggest contribution
to the quark-gluon vertex. The second and third in the
hierarchy are the λ2 and λ3 form factors, respectively. There
is no IR divergence in the soft gluon kinematics, and hence
we expect p2λ2 and pλ3 to vanish in the deep infrared.
Lattice calculations of λ2 and λ3 in the deep infrared region
are numerically extremely challenging; nevertheless, in all
the plots in Fig. 13, we see that their contributions approach
zero as p → 0.

IV. CONCLUSIONS AND OUTLOOK

We have performed the first ever study of the quark-
gluon vertex in Landau gauge lattice QCD with Nf ¼ 2
dynamical fermions. The study has been carried out in the

soft gluon limit (gluon momentum q ¼ 0), which gives
access to three of the nontransverse form factors (λ1, λ2,
and λ3).
The quark-gluon vertex is an essential element of QCD,

yet its complete nonperturbative form is still unknown. This
calculation may be used to calibrate any approximation
made for the quark-gluon vertex. Furthermore, it can be
used to validate proposed nonperturbative models of the
quark-gluon vertex.
We find that the leading form factor λ1 is significantly

enhanced in the infrared and that this enhancement is
stronger than in the quenched approximation and increases
as the chiral limit is approached. The indications are that
the enhancement is further strengthened as the continuum
limit is approached. No significant finite-volume effects
are found.
The subleading vector form factor λ2 also exhibits an

infrared strength commensurate with, if somewhat smaller
than, λ1. This form factor has only a mild dependence on
the number of quark flavors, but the enhancement appears
to increase as the continuum, infinite-volume, and chiral
limits are approached.
The infrared strength of the scalar form factor λ3 is

considerably larger than in the quenched approximation
and also appears to increase as the continuum limit is
approached. No significant volume effect is found, but the
strength is slightly increased for smaller quark masses. The
latter is in contrast to naive expectations as this form factor
violates chiral symmetry and is therefore sensitive to the
explicit chiral symmetry breaking from the quark mass but
suggests that it is primarily governed by the dynamical
chiral symmetry breaking.
In all three cases, the nonperturbative effects are found to

be orders of magnitude larger than the corresponding one-
loop perturbative contributions to these form factors. In all
form factors, the lightest masses cause the larger IR
enhancement, and it decreases as the mass increases.
The dimensionless λ2 and λ3 form factors approach zero
in the infrared, indicating no kinematic singularities in the
soft gluon kinematics.
In the future, we plan to extend this study to general

kinematics which will allow us to determine all form
factors of the transverse-projected vertex. It is also of
interest to compute the vertex in general covariant gauges.
Apart from addressing gauge dependence, this would also
allow us to disentangle the longitudinal and transverse
components, which is not possible in Landau gauge.
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APPENDIX: TREE-LEVEL
LATTICE EXPRESSIONS

In the following we will make use of the lattice
momentum variables defined by

K̃νðpÞ ¼
1

2a
sin 2pνa; ðA1Þ

KνðpÞ ¼
1

a
sinpνa; ðA2Þ

QνðpÞ ¼
2

a
sin

�
pνa
2

�
; ðA3Þ

CνðpÞ ¼ cosðpνaÞ; ðA4Þ

C̄νðpÞ ¼ cos

�
pνa
2

�
: ðA5Þ

In terms of these variables, the tree-level quark–gluon
vertex in Eq. (21) can be rewritten as

Λ̄ð0Þ0;νðp; q; kÞ ¼ ð−ig0Þ
�
γνaC̄νðpþ kÞ − i

2
aQνðpþ kÞI

− i
cSW
2

aC̄νðqÞ
X
λ

σνλaKλðqÞ
�
; ðA6Þ

for the case of the ‘unimproved’ propagator S0ðx; yÞ ¼
hψðxÞψ̄ðyÞi. The improved vertex obtained using the
rotated propagator (6) is given at tree level by

Λ̄ð0ÞR;νðp;q;kÞ¼ ð1þbqamÞ½Sð0ÞR ðpÞ�−1Sð0Þ0 ðpÞ½Λað0Þ
0;ν ðp;q;kÞ�

×Sð0Þ0 ðkÞ½Sð0ÞR ðkÞ�−1; ðA7Þ

where Sð0Þ0 ðpÞ is the tree-level, unimproved, dimensionless

Wilson quark propagator, while Sð0ÞR ðpÞ is the level
expression for the improved propagator (6), given by [50]

Sð0Þ0 ðpÞ ¼
1

D

�
−ia=KðpÞ þmaþ 1

2
a2Q2ðpÞ

�
; ðA8Þ

Sð0ÞR ðpÞ−1 ¼
D

ð1þma=2ÞDR
ðia=KðpÞAR þ BRÞ; ðA9Þ

where

D ¼ a2K2ðpÞ þ
�
maþ 1

2
a2Q2ðpÞ

�
2

; ðA10Þ

DR ¼ a2K2ðpÞA2
R þ B2

R; ðA11Þ

AR ¼ 1þ 1

2
amþ 1

4
a2Q2ðpÞ − 1

16
a2K2ðpÞ; ðA12Þ

BR ¼
�
amþ 1

2
a2Q2ðpÞ

��
1 −

a2K2ðpÞ
16

�

−
1

2
a2K2ðpÞ; ðA13Þ

Making use of the tree-level unimproved (A8) and the
rotated-improved (A9) propagators in Eq. (A7), the tree-
level quark-gluon vertex can be rewritten as

Λ̄ð0ÞR;νðp; qÞ ¼
ð1þ bqamÞ

ð1þ am=2Þ2DRðpÞDRðkÞ
× ½−ia=KðpÞAR

VðpÞ þ BR
VðpÞ�½Λað0Þ

0;ν ðp; q; kÞ�
× ½−ia=KðkÞAR

VðkÞ þ BR
VðkÞ�; ðA14Þ

where

AR
VðpÞ ¼ 2cqDðpÞ; ðA15Þ

BR
VðpÞ ¼ ð1 − c2qa2K2ðpÞÞD2ðpÞ; ðA16Þ

D2
RðpÞ ¼

�
1þ a2K2ðpÞ

16

�
2

DðpÞ: ðA17Þ

and after further manipulation we arrive at the
expression

Λ̄ð0ÞR;νðp; q; kÞ ¼
ð1þ bqamÞ
ð1þ am=2Þ2

DðpÞDðkÞ
DRðpÞDRðkÞ

× ½2icqa=KðpÞ þ 1 − c2qa2K2ðpÞ�
× ½Λað0Þ

0;ν ðp; q; kÞ�
× ½2icqa=KðkÞ þ 1 − c2qa2K2ðkÞ�: ðA18Þ

As discussed above [see Eq. (9)], for q ≠ 0 we can only
access the transverse vertex on the lattice in the Landau
gauge. Hence, using the lattice equivalent of the transverse

projector, PT
μν ¼

P
ν ðδμν − KμðqÞKνðqÞ

K2ðqÞ Þ, the tree-level quark-
gluon vertex in general kinematics is given by
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Λ̄ð0ÞR;μðp; q; kÞ ¼ PT
μνðqÞΛð0ÞR;νðp; q; kÞ

¼ ð1þ bqamÞ
ð1þ am=2Þ2

1

ð1þ c2qa2K2ðpÞÞ2ð1þ c2qa2K2ðkÞÞ2

×
X
ν

�
δμν −

KμðqÞKνðqÞ
K2ðqÞ

�
½2icqa=KðpÞ þ 1 − c2qa2K2ðpÞ�½Λað0Þ

0;ν ðp; q; kÞ�

× ½2icqa=KðkÞ þ 1 − c2qa2K2ðkÞ�: ðA19Þ

The general form of the tree-level clover-rotated
vertex (A19) is highly complicated. However, it simplifies
in the soft-gluon kinematics which is the case we are
studying in this paper. In this kinematics the gluon
momentum q ¼ 0 and both the quark momenta are equal,
k ¼ p. In this case the ‘unimproved’ tree-level vertex (A6)
becomes

Λ̄ð0Þ0;νðp; 0; pÞ ¼ −ig0
�
γνC̄νð2pÞ −

i
2
aQνð2pÞI

�

¼ −ig0ðγνCνðpÞ − iaKνðpÞIÞ; ðA20Þ

and the tree-level clover-rotated vertex (A19) reduces to

Λ̄ð0ÞR;μðp; 0; pÞ ¼ ð−ig0ÞFðpÞ½2icqa=KðpÞ þ 1 − c2qa2K2ðpÞ�
× ½Λað0Þ

0;μ ðp; 0Þ�
× ½2icqa=KðpÞ þ 1 − c2qa2K2ðpÞ�; ðA21Þ

where the common prefactor FðpÞ is given by

FðpÞ ¼ ð1þ bqamÞ
ð1þ am=2Þ2

1

ð1þ c2qa2K2ðpÞÞ4 : ðA22Þ

After rearranging Eq. (A21) to match the form of Eq. (12),
the final shape of the tree-level clover-rotated quark-gluon
vertex in the soft gluon kinematics is

Λ̄ð0ÞR;μðp; 0; pÞ ¼ ð−ig0Þ
ð1þ bqamÞ
ð1þ am=2Þ2

1

ð1þ c2qa2K2ðpÞÞ4

×
�
γμ½ð1þ c2qa2K2ðpÞÞ2CμðpÞ� − 4a2Kμ=KðpÞ½−cqð1 − c2qa2K2ðpÞÞ þ 2c2qCμðpÞ�

− 2iaKμ

�
−2c2qa2K2ðpÞ þ 1

2
ð1 − c2qa2K2ðpÞÞ − 2cqð1 − c2qa2K2ðpÞÞCμðpÞ

��
: ðA23Þ

Making a comparison between this expression and the continuum vertex Eq. (12), we can identify the tree-level expressions
for the form factors in the soft-gluon kinematics:

λð0Þ1 þ λ̄ð0Þ
1ðμÞ ¼ FðpÞ½ð1þ c2qa2K2ðpÞÞ2CμðpÞ�jpμ¼0 ¼

ð1þ bqamÞ
ð1þ am=2Þ2

1

ð1þ c2qa2K2ðpÞÞ2 ; ðA24Þ

λð0Þ2 þ λ̄ð0Þ
2ðμÞ ¼ a2FðpÞ½−cqð1 − c2qa2K2ðpÞÞ þ 2c2qCμðpÞ�; ðA25Þ

λð0Þ3 þ λ̄ð0Þ
3ðμÞ ¼ aFðpÞ

�
−2c2qa2K2ðpÞ þ 1

2
ð1 − c2qa2K2ðpÞÞ2 − 2cqð1 − c2qa2K2ðpÞÞCμðpÞ

�
: ðA26Þ

We note in particular that there are two separate tensor structures appearing in the tree-level vertex (A23) which in the
continuum become equal to L2;μ, and likewise for L3;μ. In Eqs (A25) and (A26) these are associated with separate form

factors λð0Þi and λ̄ð0Þi respectively.
Inspecting Eq. (A23) and comparing this with the continuum expressions (18), (19), (17), we can write down the lattice

equivalents of these expressions, namely
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λ1ðp2; 0; p2Þ ¼ 1

ð−ig0Þ
n
½Tr4ðγαΛ̄μÞ�jα¼μ

pμ¼0

o
¼ Im

g0

n
½Tr4ðγαΛ̄μÞ�jα¼μ

pμ¼0

o
; ðA27Þ

λ2ðp2; 0; p2Þ ¼ 1

ð−ig0Þ
�
−

1

4KðpÞ2
KαðpÞKμðpÞ

KðpÞ2 ½Tr4ðγαΛ̄μÞjα≠μ�
�

¼ Im
g0

�
−

1

4KðpÞ2
KαðpÞKμðpÞ

KðpÞ2 ½Tr4ðγαΛ̄μÞjα≠μ�
�
; ðA28Þ

λ3ðp2; 0; p2Þ ¼ 1

ð−ig0Þ
�
i
2

KμðpÞ
K2ðpÞTr4ðIΛ̄μÞ

�
¼ Re
ð−g0Þ

�
1

2

KμðpÞ
K2ðpÞTr4ðIΛ̄μÞ

�
: ðA29Þ

Although Eq. (A29) is based on the covariant expression (17), we will in practice not sum over μ in Eq. (A29), just as there
is no sum over μ and α in Eqs (A27) and (A28). Combining this with the tree-level form factors, Eqs (A24), (A25), (A26),
we arrive at the expressions we will use to determine the tree-level corrected form factors λi in the soft gluon kinematics,

λ1ðp2; 0; p2Þ ¼ Im
g0

n
½Tr4ðγαΛ̄μÞ�jα¼μ

pμ¼0

o.
λð0Þ1 ; ðA30Þ

λ2ðp2; 0; p2Þ ¼ Im
g0

�
−

1

4KðpÞ2
KαðpÞKμðpÞ

KðpÞ2 ½Tr4ðγαΛ̄μÞjα≠μ�
�
− ðλð0Þ2 þ λ̄ð0Þ

2ðμÞÞ; ðA31Þ

λ3ðp2; 0; p2Þ ¼ Re
ð−g0Þ

�
1

2

KμðpÞ
K2ðpÞTr4ðIΛ̄μÞ

�
− ðλð0Þ3 þ λ̄ð0Þ

3ðμÞÞ: ðA32Þ

These (λ1, λ2, λ3) are the complete form factors required to determine the quark-gluon vertex in the soft gluon limits and
Eqs (A30), (A31), (A32)define the exact procedures to calculate them on the lattice.
For completeness and future reference, we also include the tree-level lattice equivalents of the covariant

expressions (15)–(17),

X
μ

Tr4ðγμΛ̄Rð0Þ
μ ðp;0ÞÞ¼FðpÞ

�
½ð1−c2qK2ðpÞÞ2þ4c2qK2ðpÞ�

�
4−

1

2
Q2ðpÞ

�
þ4cqð1−c2qK2ðpÞÞK2ðpÞ−8c2qKðpÞ · K̃ðpÞ

�

ðA33Þ

X
αμ

KαðpÞKμðpÞTr4ðγαΛ̄Rð0Þ
μ ðp; 0ÞÞ ¼ FðpÞ

�
½ð1 − c2qK2ðpÞÞ2 − 4c2qK2ðpÞ�KðpÞ · K̃ðpÞ þ cqð1 − c2qK2ðpÞÞðK2ðpÞÞ2

�

ðA34Þ

X
μ

KμðpÞ
K2ðpÞTr4ðΛ̄

Rð0Þ
μ ðp; 0ÞÞ ¼ −

iFðpÞ
2

�
ð1 − c2qK2ðpÞÞ2 − 4c2qK2ðpÞ − 4cqð1 − c2qK2ðpÞÞKðpÞ · K̃ðpÞ

K2ðpÞ
�

ðA35Þ

λð0Þ1;cov ¼
1

3

�
ðA34Þ − ðA35Þ

K2ðpÞ
�
¼ FðpÞ

3

�
4 −

1

2
Q2ðpÞ − KðpÞ · K̃ðpÞ

K2ðpÞ
�
½ð1 − c2qK2ðpÞÞ2 þ 4c2qK2ðpÞ� ðA36Þ

λð0Þ2;cov ¼
1

12K2ðpÞ
�
ðA34Þ − 4

ðA35Þ
K2ðpÞ

�

¼ FðpÞ
�ð1 − c2qK2ðpÞÞ2

3K2ðpÞ
�
1 −

KðpÞ · K̃ðpÞ
K2ðpÞ −

1

8
Q2ðpÞ

�
− cqð1 − c2qK2ðpÞÞ þ 4c2q

3

�
1þ KðpÞ · K̃ðpÞ

2K2ðpÞ −
1

8
Q2ðpÞ

��

ðA37Þ
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