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The nucleon-pion-state contribution to QCD two-point and three-point functions relevant for lattice
calculations of the nucleon electromagnetic form factors are studied in chiral perturbation theory. To
leading order, the results depend on a few experimentally known low-energy constants only, and the
nucleon-pion-state contribution to the form factors can be estimated. The nucleon-pion-state contribution to
the electric form factor GEðQ2Þ is at the þ5% level for a source-sink separation of 2 fm, and it increases
with increasing momentum transfer Q2. For the magnetic form factor, the nucleon-pion-state contribution
leads to an underestimation of GMðQ2Þ by about 5% that decreases with increasingQ2. For smaller source-
sink separations that are accessible in present-day lattice simulations, the impact is larger, although the
chiral perturbation theory results may not be applicable for such small time separations. Still, a comparison
with lattice data at t ≈ 1.6 fm works reasonably well.
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I. INTRODUCTION

The internal structure of nucleons is conveniently
described by electromagnetic form factors. Experimentally,
these quantities are accessible by elastic electron-nucleon
scattering experiments. Such experiments have a long history,
going back to the Hofstadter experiments in the 1950s
to recent experiments at Mainz, JLab, and MIT-Bates.
For a review of these experimental efforts see Ref. [1].
Theoretically, the form factors can be calculated numerically
in latticeQCDsimulations. The computational techniques are
well established, but for the numerical results to have
phenomenological impact, reliable results with controlled
errors are needed.
For years, the chiral extrapolation has been among the

dominant sources for the systematic error in lattice results.
Today, increased computer power and improved simulation
algorithms allow physical point simulations with the quark
masses set to their physical values, eliminating the need for
a chiral extrapolation and the associated systematic uncer-
tainty. Instead, the excited-state contamination is widely
accepted to cause the dominant systematic error in many
lattice QCD results. Physical point simulations in particular
are afflicted with an excited-state contamination due to
multiparticle states involving light pions. For a recent

review of the excited-state impact on nucleon structure
observables, see Ref. [2].
In a series of papers [3–5], chiral perturbation theory

(ChPT) [6–8], the low-energy effective theory of QCD, was
employed to study the excited-state contamination due to
two-particle nucleon-pion (Nπ) states in the axial and
pseudoscalar form factors of the nucleon. The leading
order (LO) results were found to describe surprisingly well
various discrepancies between the lattice plateau estimates
and the phenomenologically expected results for the form
factors. In particular, ChPT provides an explanation for the
so-called partially conserved axial vector current (PCAC)
puzzle [9,10]: the apparent violation of the generalized
Goldberger-Treiman relation between the axial and pseu-
doscalar form factors is caused by the contribution of a low-
energetic Nπ state in the induced pseudoscalar form factor.
This conclusion is supported by the ChPT analysis [5] of
the projection method proposed in Ref. [10] to solve the
PCAC puzzle. Even though this method is found to be
insufficient, soon thereafter, an alternative strategy to deal
with the Nπ contamination was proposed and studied with
promising results [11,12].
In this paper, we report our ChPT results for the Nπ

contamination in the electromagnetic nucleon form factors.
The calculational setup is essentially as in Ref. [3], with the
axial vector current replaced by the vector current. This
replacement leads to many changes in the details and the
final results, the most notable one being the absence of a
dominant low-energetic Nπ-state contribution as in the
induced pseudoscalar form factor. Physically, it stems
from the ability of the axial vector current to emit (absorb)
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a pion that is absorbed (emitted) at the sink (source) of the
three-point (3-pt) function that needs to be computed to
obtain the form factors. This is not allowed for the vector
current; two pions instead of one are needed for the
analogous process, and the resulting three-particle Nππ
contamination is expected to be substantially smaller.1

The main results of this paper can be summarized as
follows. In the common plateau and midpoint estimates, the
Nπ-state contamination leads to an overestimation of the
electric form factor, and the misestimation increases with
increasing momentum transfer Q2. In contrast, the magnetic
form factor is underestimated, and the misestimation gets
larger for smaller Q2. How big this effect is depends on the
source-sink separation t assumed for the vector current 3pt
function. For t ¼ 2 fm, the misestimation is at the�5% level
for lattice simulations with physical pion masses. The impact
increases for the smaller values t≲ 1.5 fm that are accessible
in present-day simulations.Applying theChPTresults to such
small source-sink separations is problematic, for the corre-
lation functions are not expected to be dominated by pion
physics. We nevertheless find good agreement when we
compare the ChPT predictions with recent lattice results in
Refs. [14,15]. Moreover, various observations in Ref. [16]
about the excited-state contamination in the electric form
factor obtained with the spatial components of the vector
current 3-pt function are qualitatively explained by ChPT.
The calculational setup employed here is essentially the

same as in Refs. [3,17,18] and is only briefly reviewed in
the following. The methodology for studying the excited-
state contamination using ChPT goes back to Refs. [19,20].
It is also reviewed in Refs. [21,22], to which the reader is
referred to for more details.

II. ELECTROMAGNETIC FORM FACTORS

A. Electromagnetic form factors of the nucleon

We start with summarizing some basic definitions to
settle our notation. The matrix element of the electromag-
netic current

Vμ
em ¼ 2

3
ūγμu −

1

3
d̄γμd… ð2:1Þ

between single-nucleon states can be decomposed in terms
of the Dirac and Pauli form factors FN

1 and FN
2 ,

hNðp0; s0ÞjVμ
emð0ÞjNðp; sÞi

¼ ūðp0; s0Þ
�
γμFN

1 ðq2Þ þ i
σμνqν
2MN

FN
2 ðq2Þ

�
uðp; sÞ:

ð2:2Þ

N ¼ p or n refers to either the proton or neutron as the
nucleon, and uðp; sÞ is a Dirac spinor with momentum p
and spin s. σμν ¼ i

2
½γμ; γν� is the standard Clifford algebra

element formed from the Dirac matrices γμ.MN denotes the
nucleon mass, and the 4-momentum transfer q ¼ p0 − p is
given by

q2 ¼ −Q2 ¼ ðEN;p⃗0 − EN;p⃗Þ2 − ðp⃗0 − p⃗Þ2; ð2:3Þ

with EN;p⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp⃗j2 þM2

N

p
denoting the energy of a

nucleon with spatial momentum p⃗.
Throughout this paper, we assume isospin symmetry

with degenerate up and down quark masses. In that case,
one finds the relation [23]

hpjūγμu − d̄γμdjpi ¼ hpjVμ
emjpi − hnjVμ

emjni; ð2:4Þ

where we suppress the dependency on the momenta and
spins of proton and neutron. The matrix element on the
left-hand side contains the flavor nonsinglet vector
current. Performing the form factor decomposition for
this matrix element, we obtain the same result as in (2.2)
but with the nonsinglet Dirac and Pauli form factors Fu−d

1;2 .
For brevity, we drop the index u − d in the following;
thus, we find

F1ðq2Þ ¼ Fp
1 ðq2Þ − Fn

1ðq2Þ; F2ðq2Þ ¼ Fp
2 ðq2Þ − Fn

2ðq2Þ
ð2:5Þ

for the nonsinglet form factors.
In practice, it is convenient to use linear combinations of

these form factors,

GEðq2Þ ¼ F1ðq2Þ þ
q2

4M2
N
F2ðq2Þ; ð2:6Þ

GMðq2Þ ¼ F1ðq2Þ þ F2ðq2Þ; ð2:7Þ

with the electric and magnetic (Sachs) form factors GE
and GM. These can be determined from electron-nucleon
scattering data [1]. In addition, the slope of the form factors
at vanishing momentum transfer defines the charge radii
squared,

r̄2X ≡ hr2Xi ¼ −6
d

dQ2

�
GXðQ2Þ
GXð0Þ

�����
Q2¼0

; ð2:8Þ

with X ¼ E;M.

B. Lattice calculation of the form factors

The electromagnetic form factors are accessible in lattice
QCD simulations with spacelike momentum transfer

1The three-particle Nππ contamination in the nucleon two-
point function was computed in Ref. [13] and found to be
negligible compared to the two-particle Nπ contamination.
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q2 ¼ −Q2 < 0. The standard procedure is based on evalu-
ating various Euclidean two- and three-point (pt) functions.
Explicitly, the nucleon 2-pt function is given by2

C2ðp⃗; tÞ ¼
Z

d3xeip⃗ x⃗ΓβαhNαðx⃗; tÞN̄βð0; 0Þi: ð2:9Þ

N; N̄ denote nucleon interpolating fields placed at sink
(Euclidean time t) and source (t ¼ 0). Although arbitrary to
a large extent, we assume them to be given by the standard
3-quark operators (either pointlike or smeared) that have
been mapped to ChPT [24]. The matrix Γ acts on spinor
space and is given by

Γ ¼ 1þ γ4
4

ð1þ iγ5γ3Þ: ð2:10Þ

This definition corresponds to the one employed in
Ref. [23] by the ETM Collaboration but differs by a factor
1=2 from the one used in Ref. [25], for example. This
difference, however, is irrelevant since the form factors are
obtained from ratios of correlation functions where the
different normalization drops out.
The form factors depend on the momentum transfer Q2

only. Therefore, the nucleon 3-pt function can be computed
with some simplifying kinematics: the nucleon at the sink is
chosen to be at rest, i.e., p⃗0 ¼ 0, which implies q⃗ ¼ −p⃗ and

Q2 ¼ q⃗2 − ðMN − EN;q⃗Þ2; ð2:11Þ

for the momentum transfer. According to (2.4), we choose
the third isospin component of the vector current, a ¼ 3, in
terms of the standard basis with the familiar Pauli matrices.
Therefore, the 3-pt function we consider reads

C3;μðq⃗; t; t0Þ
≡ C3;V3

μ
ðq⃗; t; t0Þ

¼
Z

d3x
Z

d3yeiq⃗ y⃗ΓβαhNαðx⃗; tÞV3
μðy⃗; t0ÞN̄βð0; 0Þi;

ð2:12Þ

with the Euclidean time t0 denoting the operator inser-
tion time.
With the 2-pt and 3-pt functions, we form the generalized

ratio

Rμðq⃗; t; t0Þ ¼
C3;μðq⃗; t; t0Þ
C2ð0; tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2ðq⃗; t − t0Þ
C2ð0; t − t0Þ

C2ð0; tÞ
C2ðq⃗; tÞ

C2ð0; t0Þ
C2ðq⃗; t0Þ

s
:

ð2:13Þ

By construction, this ratio converges to constant asymptotic
values,

Rμðq⃗; t; t0Þ → Πμðq⃗Þ; ð2:14Þ

in the limit t; t0; t − t0 → ∞, and these are trivially related to
the electromagnetic form factors [16,26]:

ReΠ4ðq⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EN;q⃗ þMN

2EN;q⃗

s
GEðQ2Þ; ð2:15Þ

ReΠiðq⃗Þ ¼ ϵij3qj
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2EN;q⃗ðEN;q⃗ þMNÞ
p GMðQ2Þ; ð2:16Þ

ImΠiðq⃗Þ ¼ qj
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2EN;q⃗ðEN;q⃗ þMNÞ
p GEðQ2Þ: ð2:17Þ

Thus, the form factors are obtained from the Πμðq⃗Þ by
multiplication with some simple kinematical factors involv-
ing the nucleon’s energy and spatial momentum.

C. Vector current conservation

For degenerate up and down quark masses, the vector
current is conserved,

∂μVa
μðxÞ ¼ 0; ð2:18Þ

and we find three conserved charges Qa, a ¼ 1, 2, 3. With
our conventions, the conserved charges are Qa ¼ 1.
Current conservation implies a Ward identity for the

correlation functions we have introduced in the last sub-
section. The 3-pt function (2.12) with ∂μV3

μ on the rhs
vanishes because of (2.18). On the other hand, performing a
partial integration on the rhs, we find the relation

∂t0C3;V3
4
ðq⃗; t; t0Þ ¼ i

X3
k¼1

qkC3;V3
k
ðq⃗; t; t0Þ: ð2:19Þ

This is an identity for all momentum transfer and all times
t, t0. It provides a nontrivial relation for the correlation
functions that will be used to test the ChPT results for these
correlation functions; see Sec. IV. For vanishing momen-
tum transfer, Eq. (2.19) simplifies to

0 ¼ ∂t0C3;V3
4
ð0; t; t0Þ: ð2:20Þ

Thus, the 3-pt function is independent of t0, and we find

C3;V3
4
ð0; t; t0Þ ¼ Q3C2ð0; tÞ: ð2:21Þ

2We continue to use the continuum formulation for all
expressions even if we explicitly refer to correlation functions
measured on a discrete space-time lattice.
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III. EXCITED-STATE ANALYSIS

A. Preliminaries

Lattice calculations of the form factors along the lines
sketched in the previous section hinge on the asymptotic
values of the ratios Rμðq⃗; t; t0Þ once all time separations t, t0

and t − t0 are taken to infinity. In practice, the time
separations are always finite and restricted to rather modest
values well below 2 fm. Therefore, in all these cases, t0 and
t − t0 are smaller than 1 fm, and this is far from being
asymptotically large.
For finite time separations, the 2-pt and 3-pt functions

not only contain the contributions of the lowest-lying single
nucleon (SN) state, but also of excited states with the same
quantum numbers as the nucleon. This excited-state con-
tribution enters the form factors, too, if Rμðq⃗; t; t0Þ instead
of Πμðq⃗Þ is used to compute the form factors. In other
words, we obtain effective form factors Geff

E ðQ2; t; t0Þ;
Geff

M ðQ2; t; t0Þ including an excited-state contamination
instead of the actual form factors we are interested in.
In general, we expect the effective form factors to be
of the form

Geff
X ðQ2; t; t0Þ ¼GXðQ2Þ½1þΔGXðQ2; t; t0Þ�; X ¼ E;M;

ð3:1Þ

with the excited-state contribution ΔGXðQ2; t; t0Þ that
vanishes for t; t0; t − t0 → ∞.
For pion masses as small as in nature, one can expect

two-particle Nπ states to cause the dominant excited-state
contamination for large but finite time separations. This
expectation rests on the naive observation that the energy
gaps between the Nπ states and the single nucleon ground
state are smaller than those one expects from true resonance
states like the Roper resonance. This requires not only
small pion masses but also sufficiently large spatial
volumes such that the discrete spatial momenta imply
small energies for the lowest-lying Nπ states. Volumes
with MπL ≃ 4 already fulfill this criterion [21].
In this section, we derive formulas that capture the

Nπ-state contamination in the 2-pt and 3-pt functions, the
ratio Rμ, and the effective form factors. In these expres-
sions, the Nπ-state contamination is parametrized in terms
of coefficients stemming from ratios of various matrix
elements with Nπ states as initial and/or final states. In the
next section, ChPT will be used to compute these coef-
ficients, making the following results useful in practice.

B. Nπ states in the 2-pt function

The results for the 2-pt function have already been
derived in Ref. [17] because the 2-pt functions also enters
the calculation of the axial form factors. For the readers
convenience, we briefly summarize the results here.

Performing the standard spectral decomposition in (2.9),
the 2-pt function can be written as a sum of various
contributions,

C2ðq⃗; tÞ ¼ CN
2 ðq⃗; tÞ þ CNπ

2 ðq⃗; tÞ þ…: ð3:2Þ

The first two terms on the right-hand side denote the SN
and the Nπ contributions. The ellipsis refers to contribu-
tions by excited states other than two-particle Nπ states.
We assume these to be small and negligible compared to the
ones explicitly given.
The SN contribution is given by

CN
2 ðq⃗; tÞ ¼

1

2EN;q⃗
jh0jNð0ÞjNð−q⃗Þij2e−EN;−q⃗jtj: ð3:3Þ

Here, jNð−q⃗Þi denotes the state for a moving nucleon with
momentum −q⃗. The interpolating field Nð0Þ also excites
Nπ states with the same quantum numbers as the nucleon;
thus, we obtain the nonvanishing Nπ contribution

CNπ
2 ðtÞ ¼ 1

L3

X
p⃗

1

4EN;r⃗Eπ;p⃗
jh0jNð0ÞjNðr⃗Þπðp⃗Þij2e−Etotjtj:

ð3:4Þ

The sum runs over all pion momenta that are compatible
with the periodic boundary conditions.3 The nucleon
momentum is fixed to r⃗ ¼ −q⃗ − p⃗. Etot is the total energy
of the Nπ state. For weakly interacting pions, Etot equals
approximately the sum EN;r⃗ þ Eπ;p⃗ of the individual
energies of the nucleon and the pion.
Since the leading SN contribution is nonzero, we can

rewrite Eq. (3.2) as

C2ðq⃗; tÞ ¼ CN
2 ðq⃗; tÞ

�
1þ

X
p⃗

dðq⃗; p⃗Þe−ΔEðq⃗;p⃗Þt
�
: ð3:5Þ

The coefficient dðq⃗; p⃗Þ is essentially the ratio of the matrix
elements appearing in Eqs. (3.4) and (3.3). The first
argument in the coefficients dðq⃗; p⃗Þ refers to the injected
momentum q⃗, while the second one refers to the pion
momentum, which we always label by p⃗.
The energy gap ΔEðq⃗; p⃗Þ reads

ΔEðq⃗; p⃗Þ ¼ Eπ;p⃗ þ EN;q⃗þp⃗ − EN;q⃗: ð3:6Þ

The sum of the pion and nucleon energy is just the total
energy of the two-particle state where at least one of the
two particles carries the opposite injected momentum −q⃗.

3As usual, the spatial volume is assumed to be finite with
spatial extent L, and periodic boundary conditions are imposed
for all spatial directions. The time extent is taken infinite, for
simplicity.
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For vanishing pion momentum, this is the nucleon.
Alternatively, p⃗ ¼ −q⃗, so the nucleon is at rest, and the
pion carries momentum −q⃗.
As mentioned before, Eq. (3.6) ignores the interaction

energy between nucleon and pion. In the next section, we
compute the 2-pt function in ChPT, and to LO, we will
recover the result (3.6) for the energy gap. Deviations due
to the nucleon-pion interaction will show up at higher order
in the chiral expansion.
The 2-pt function enters the generalized ratio Rμðq⃗; t; t0Þ

in (2.13). Introducing the short-hand notation
ffiffiffiffiffiffiffiffiffi
ΠC2

p
for

the square root expression in (2.13) and Taylor expanding,
we obtain

1

C2ð0; tÞ
ffiffiffiffiffiffiffiffiffi
ΠC2

p
¼ 1

CN
2 ð0; tÞ

ffiffiffiffiffiffiffiffiffiffi
ΠCN

2

q �
1þ 1

2
Yðq⃗; p⃗Þ

�
;

ð3:7Þ

where the function Yðq⃗; p⃗Þ contains the Nπ-state contri-
bution,

Yðq⃗; p⃗Þ
¼

X
p⃗

ðdðq⃗; p⃗Þfe−ΔEðq⃗;p⃗Þðt−t0Þ − e−ΔEðq⃗;p⃗Þt0 − e−ΔEðq⃗;p⃗Þtg

− dð0; p⃗Þfe−ΔEð0⃗;p⃗Þðt−t0Þ − e−ΔEð0⃗;p⃗Þt0 þ e−ΔEð0⃗;p⃗ÞtgÞ:
ð3:8Þ

C. Nπ states in the vector current 3-pt function

In analogy to the 2-pt function, we write for the 3-pt
function

C3;μðq⃗; t; t0Þ ¼ CN
3;μðq⃗; t; t0Þ þ CNπ

3;μðq⃗; t; t0Þ: ð3:9Þ

Here, CN
3;μ denotes the SN result for the 3-pt function, and

we assume that this contribution is nonzero. If that is the
case, we can alternatively write

C3;μðq⃗; t; t0Þ ¼ CN
3;μðq⃗; t; t0Þð1þ Zμðq⃗; t; t0ÞÞ; ð3:10Þ

with

Zμðq⃗; t; t0Þ ¼
CNπ
3;μðq⃗; t; t0Þ

CN
3;μðq⃗; t; t0Þ

: ð3:11Þ

The generic form for the ratio Zμðq⃗; t; t0Þ is found as

Zμðq⃗; t; t0Þ ¼
X
p⃗

bμðq⃗; p⃗Þe−ΔEð0;p⃗Þðt−t0Þ

þ
X
p⃗

b̃μðq⃗; p⃗Þe−ΔEðq⃗;p⃗Þt0

þ
X
p⃗

cμðq⃗; p⃗Þe−ΔEð0;p⃗Þðt−t0Þe−ΔEðq⃗;p⃗Þt0

þ
X
p⃗

c̃μðq⃗; p⃗Þe−ΔEð0;p⃗Þðt−t0Þe−ΔEðq⃗;p⃗−q⃗Þt0 ;

ð3:12Þ

with the energy gaps specified in Eq. (3.6). The coefficients
bμðq⃗; p⃗Þ, b̃μðq⃗; p⃗Þ, cμðq⃗; p⃗Þ, and c̃μðq⃗; p⃗Þ in (3.12) contain
ratios of matrix elements involving the nucleon interpolat-
ing fields and the vector current. For example, the coef-
ficient bμðq⃗; p⃗Þ contains the matrix element hNπjV3

μjNi
with the Nπ state as the final state. Similarly, b̃μðq⃗; p⃗Þ
contains the matrix element with the Nπ state as the initial
state. Together, the bμðq⃗; p⃗Þ and b̃μðq⃗; p⃗Þ contribution
forms the excited-to-ground-state contribution. Similarly,
the cμðq⃗; p⃗Þ and c̃μðq⃗; p⃗Þ contributions are called the
excited-to-excited-state contribution, since it involves the
matrix elements with Nπ states as initial and final states.
The first one captures the contribution with the nucleon
absorbing the injected momentum at t0, while in the second
one, the pion absorbs it. The time dependence of these
processes is slightly different, except for the special case
where the momentum transfer vanishes.
As before, the sums in (3.12) run over the momentum of

the pion in the Nπ state. The associated nucleon momen-
tum is fixed by momentum conservation and the kinematic
setup we have chosen.
For the calculation of the form factors according to

(2.16) and (2.17), we need the expressions for the real and
imaginary parts of the 3-pt function in (3.9). If we consider
these and rewrite them as before, we obtain

ReC3;μðq⃗; t; t0Þ ¼ ReCN
3;μðq⃗; t; t0Þð1þZre

μ ðq⃗; t; t0ÞÞ; ð3:13Þ

ImC3;μðq⃗; t; t0Þ ¼ ImCN
3;μðq⃗; t; t0Þð1þZim

μ ðq⃗; t; t0ÞÞ: ð3:14Þ

The Zre
μ and Zim

μ are the ratios of the real and imaginary
parts of the Nπ contribution and the SN contribution,

Zre
μ ðq⃗; t; t0Þ ¼

ReCNπ
3;μðq⃗; t; t0Þ

ReCN
3;μðq⃗; t; t0Þ

; ð3:15Þ

Zim
μ ðq⃗; t; t0Þ ¼ ImCNπ

3;μðq⃗; t; t0Þ
ImCN

3;μðq⃗; t; t0Þ
: ð3:16Þ

Note that these are not the real and imaginary parts of Zμ.
The general structure of Zre

μ ; Zim
μ reads (x ¼ re or im)
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Zx
μðq⃗; t; t0Þ ¼

X
p⃗

bxμðq⃗; p⃗Þe−ΔEð0;p⃗Þðt−t0Þ þ b̃xμðq⃗; p⃗Þe−ΔEðq⃗;p⃗Þt0

þ
X
p⃗

cxμðq⃗; p⃗Þe−ΔEð0;p⃗Þðt−t0Þe−ΔEðq⃗;p⃗Þt0 ;

þ
X
p⃗

c̃xμðq⃗; p⃗Þe−ΔEð0;p⃗Þðt−t0Þe−ΔEðq⃗;p⃗−q⃗Þt0 :

ð3:17Þ

Here, too, one should keep in mind that bμ ≠ breμ þ ibimμ and
analogously for the other coefficients.
It is worth pointing out a crucial difference to the

analogous expressions for the axial form factors.
Comparing (3.12) with Eq. (3.11) in Ref. [3], we observe
that the Nπ-state contributions bμ; b̃μ; cμ appear in both
cases. The remaining c̃μ contribution, however, is absent.
Instead, additional ones, parametrized by coefficients
aμ; ãμ, appear in case of the axial vector current. The
reason for this lies in the different symmetry properties of
the vector and axial vector currents and is easily under-
stood. The axial vector current directly couples to a pion;
thus, at operator insertion time t0, it can directly create a
pion that travels to and gets destroyed at the sink (aμ
contribution). Alternatively, the axial vector can directly
destroy a pion created at the source (ãμ contribution). The
direct pion coupling to the vector current must involve at
least two pions; thus, these two contributions are absent
in (3.12). However, the vector current can destroy a pion
stemming from the source and at the same time create a
pion that subsequently travels to the sink. This is exactly
the c̃μ contribution in (3.12).4 The direct analog of the
aμ; ãμ contribution stems from two pions propagating
between either source or sink and the operator. This,
however, is a three-particle Nππ contribution and beyond
the scope of this paper.

D. Ratios and effective form factors

Forming the ratio of the 3-pt function with the 2-pt
function, we obtain the total result for the ratios,

Rμðq⃗; t; t0Þ ¼ Πμðq⃗Þ
�
1þ Zμðq⃗; t; t0Þ þ

1

2
Yðq⃗; t; t0Þ

�
;

ð3:18Þ

with Πμðq⃗Þ referring to the asymptotic values of the ratios
given in (2.14). Obviously, the ratios approach the correct
asymptotic values, by construction.
Equations (2.15)–(2.17) require taking the real or imagi-

nary part of (3.18). We will later find that, to the order
we are working at here, the result for the 2-pt function is
real. In that case, the real and imaginary parts of (3.18) are
given by

ReRμðq⃗; t; t0Þ ¼ ReΠμðq⃗Þ
�
1þ Zre

μ ðq⃗; t; t0Þ þ
1

2
Yðq⃗; t; t0Þ

�
;

ð3:19Þ

ImRμðq⃗; t; t0Þ ¼ ImΠμðq⃗Þ
�
1þZim

μ ðq⃗; t; t0Þ þ 1

2
Yðq⃗; t; t0Þ

�
:

ð3:20Þ

As discussed before, the form factors are obtained from the
asymptotic values by multiplication with trivial kinematic
factors; see Eqs. (2.15)–(2.17). If the ratios at finite times t,
t0 are used we obtain effective form factors that contain the
Nπ excited-state contribution. Explicitly,

Geff
E;4ðQ2; t; t0Þ ¼ GEðQ2Þ

�
1þ Zre

4 ðq⃗; t; t0Þ þ
1

2
Yðq⃗; t; t0Þ

�
;

ð3:21Þ

Geff
M ðQ2; t; t0Þ ¼ GMðQ2Þ

�
1þ Zre

i ðq⃗; t; t0Þ þ
1

2
Yðq⃗; t; t0Þ

�
;

ð3:22Þ

Geff
E;iðQ2; t; t0Þ ¼ GEðQ2Þ

�
1þ Zim

i ðq⃗; t; t0Þ þ 1

2
Yðq⃗; t; t0Þ

�
:

ð3:23Þ

The additional subscript for the electric form factors
indicates what formula has been used to obtain the effective
form factor, Eq. (2.15) or Eq. (2.17). From these, the
familiar estimators for the form factors, the midpoint or
the plateau estimates are defined in the usual way. For
example, the former ones are given by

Gmid
X ðQ2; tÞ ¼ Geff

X ðQ2; t; t0 ¼ t=2Þ: ð3:24Þ

For the plateau estimates, the operator insertion time t0
assumes the value such that the effective form factor is
extremal. For small momentum transfers, one finds
t0 ≈ t=2. Thus, for simplicity, we only consider the mid-
point estimates in the following.
Note that the Ward identity (2.21) implies

Geff
E;4ðQ2 ¼ 0; t; t0Þ ¼ GEðQ2 ¼ 0Þ ¼ 1: ð3:25Þ

4The difference is obvious when looking at the Feynman
diagrams that contribute to the coefficients; see Fig. 2, diagram
m) to p) compared with diagrams (m) and (n) in Fig. 3 of Ref. [3].
Note that the latter ones are tree diagrams. Hence, their
contribution to the Nπ contamination in the axial form factors
is found to be much larger than the other contributions coming
from one-loop diagrams. Since this contribution is missing for the
vector current, we expect a smaller Nπ contamination for the
electromagnetic form factors. This expectation is confirmed in
Sec. V.
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Thus, vector current conservation automatically results in
the correct result for the electric form factor for vanishing
momentum transfer, irrespective of the excited-state con-
tribution to the correlation functions.

IV. Nπ-STATE CONTRIBUTION IN CHPT

A. General remarks

For large times t, t0, pion physics dominates the
correlation functions that we defined in the previous
section. In that case, ChPT, the low-energy effective theory
of QCD [6–8], is expected to provide good estimates for
them. In particular, forming the ratio Rμ, we obtain ChPT
results for the various coefficients parametrizing the Nπ
contamination in the effective form factors.
Such ChPT calculations have been performed for a

variety of nucleon observables, for example, the nucleon
mass, nucleon charges, and moments of parton distribution
functions; see Refs. [17,18,24,27]. Reference [3] reports
an analogous ChPT calculation for the Nπ contamination
in the effective axial form factors of the nucleon. The
computation presented here is completely analogous and
differs only in some details stemming from the different
expressions for the vector and axial vector currents.
The calculation is done in covariant ChPT [28,29] to LO.

The ChPT setup with the Feynman rules and the chiral

expressions for the vector current and the nucleon inter-
polating fields are summarized in Appendix A 1. For some
more details, the reader is referred to the reviews [21,22].
To the order we are working with here, the results for the

various coefficients depend on three low-energy coeffi-
cients (LECs) only: the chiral limit values of the pion
decay constant f, the axial charge gA, and the difference
μp−n ≡ μp − μn of the proton and neutron’s magnetic
moments. Since all these are known phenomenologically
very well, the LO ChPT results are very predictive.

B. Nπ-state contribution

With the Feynman rules given in Appendix A 1, it is
straightforward to draw the leading diagrams for the
correlation functions of interest. Figure 1 shows the single
diagram for the leading SN contribution in the vector
current 3-pt function. The leading Nπ contribution stems
from the 16 loop diagrams depicted in Fig. 2. The
calculation of these diagrams is a standard task in ChPT.
Five more diagrams are needed for the 2-pt function, but
the results can be taken from Ref. [3]. With the expressions
for the 2-pt and 3-pt functions, we form the ratio Rμ and
read off the coefficients bxμðq⃗; p⃗Þ, b̃xμðq⃗; p⃗Þ, cxμðq⃗; p⃗Þ, and
c̃xμðq⃗; p⃗Þ.
Following Ref. [3], it is useful to separate the coefficients

into a universal part and a “reduced” coefficient, for
instance,

dðq⃗; p⃗Þ ¼ 1

8ðfLÞ2Eπ;p⃗L
Dðq⃗; p⃗Þ ð4:1Þ

and analogously for the other coefficients bxμðq⃗; p⃗Þ,
b̃xμðq⃗; p⃗Þ, cxμðq⃗; p⃗Þ, and c̃xμðq⃗; p⃗Þ. The universal factor
collects the spatial volume L3 in the dimensionless

FIG. 1. Feynman diagram for the leading single nucleon
contribution in the vector current 3-pt function. Squares represent
the nucleon interpolating fields at times t and 0, and the diamond
stands for the vector current at insertion time t0. The solid lines
represent a nucleon propagator, and a momentum −q⃗ is injected
at t0.

(a) (b) (c) (d)

(h)

(l)

(p)

(g)

(k)

(o)

(f)

(j)

(n)

(e)

(i)

(m)

FIG. 2. Feynman diagrams for the leading Nπ contribution in the vector current 3-pt function. Circles represent a vertex insertion at an
intermediate space-time point, and an integration over this point is implicitly assumed. The dashed lines represent pion propagators.
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combinations Eπ;p⃗L and fL. This factor is expected to
appear and stems from the loop diagrams in Fig. 2.
The reduced coefficients, denoted by capital letters, are

dimensionless functions involving the nucleon and pion
energies and momenta and the injected momentum transfer.
The expressions are rather cumbersome in full covariant
form. They simplify significantly if we perform the non-
relativistic (NR) expansion for the nucleon energy,

EN;q⃗ ¼ MN þ q⃗2

2MN
; ð4:2Þ

and keep only the first two terms. For practical uses, this is
sufficient. For example, the expansion of the reduced
coefficient Dðq⃗; p⃗Þ, defined in (4.1), reads

Dðq⃗; p⃗Þ ¼ D∞ðq⃗; p⃗Þ þ Eπ;p⃗

MN
Dcorrðq⃗; p⃗Þ: ð4:3Þ

D∞ðq⃗; p⃗Þ gives the value if the nucleon mass were infinite,
and Dcorrðq⃗; p⃗Þ gives the Oð1=MNÞ correction. Both were
calculated in Ref. [3] with the following results,

D∞ðq⃗; p⃗Þ ¼ 3g2A
p2

E2
π;p⃗

; ð4:4Þ

Dcorrðq⃗; p⃗Þ ¼ 3gA
gAM2

πðp2 þ 2pqÞ − E2
π;p⃗ðp2 þ pqÞ

E4
π;p⃗

;

ð4:5Þ

where we used the abbreviations

p2 ¼ p⃗2; pq ¼ p⃗ · q⃗: ð4:6Þ

The main new results of this paper are the coefficients
stemming from the vector current 3-pt function. For the
index μ ¼ 4, our results for the leading NR limit coef-
ficients read

Bre;∞
4 ðq⃗; p⃗Þ ¼ 4g2A

�
p2

E2
π;p⃗

−
p2 − pq
E2
π;s⃗

�
; ð4:7Þ

B̃re;∞
4 ðq⃗; p⃗Þ ¼ 4g2A

�
p2

E2
π;p⃗

−
p2 þ pq
E2
π;r⃗

�
; ð4:8Þ

Cre;∞
4 ðq⃗; p⃗Þ ¼ −g2A

p2

E2
π;p⃗

; ð4:9Þ

C̃re;∞
4 ðq⃗; p⃗Þ ¼ 2g2A

ðEπ;p⃗ þ Eπ;s⃗Þðp2 − pqÞ
Eπ;p⃗E2

π;s⃗

: ð4:10Þ

Two different pion energies appear in these results, in
particular the energies of a pion carrying the sum and the
difference of p⃗ and q⃗,

r⃗ ¼ p⃗þ q⃗; s⃗ ¼ p⃗ − q⃗: ð4:11Þ

The NR expansion is slightly different for the spatial
components μ ¼ k, k ¼ 1, 2, 3. The reason is that the SN
contribution to the 3-pt function is Oð1=MNÞ; thus, it
vanishes in the infinite nucleon mass limit. The Nπ
contribution, on the other hand, is O(1). The coefficients
we are interested in are the ratios of these two contributions.
Therefore, for μ ¼ k, the inverse power 1=MN in the SN
contribution shifts the NR expansion of the ratio such that
powers linear in the nucleon mass appear. Explicitly, we
need to define

Bx
kðq⃗; p⃗Þ ¼

MN

Eπ;p⃗
Bx;∞
k ðq⃗; p⃗Þ þ Bx;corr

k ðq⃗; p⃗Þ ð4:12Þ

and analogously for B̃x
i ðq⃗; p⃗Þ and C̃x

i ðq⃗; p⃗Þ. Keep in mind
that these coefficients diverge in the infinite nucleon mass
limit, because the single nucleon contribution vanishes in
this limit while the Nπ contribution tends to a nonvanishing
constant.
Because of the factor MN=Eπ;p⃗ in (4.12), we call these

coefficients OðMNÞ enhanced.5 The remaining coefficient
Cx
k, on the other hand, starts as usual and is expanded

as in (4.3),
For the Nπ contamination in the effective magnetic form

factor in (3.22), we need the real parts for μ ¼ k ¼ 1 or 2.
For k ¼ 1, we find the leading coefficients

Bre;∞
1 ðq⃗; p⃗Þ ¼ þ 8g2A

μp−n

ð2p1 − q1Þðp2q1 − p1q2Þ þ E2
π;s⃗p2

E2
π;s⃗q2

;

ð4:13Þ

B̃re;∞
1 ðq⃗; p⃗Þ ¼ þ 8g2A

μp−n

ð2p1 þ q1Þðp2q1 − p1q2Þ − E2
π;r⃗p2

E2
π;r⃗q2

;

ð4:14Þ

C̃re;∞
1 ðq⃗; p⃗Þ ¼ −

4g2A
μp−n

ð2p1 − q1Þðp2q1 − p1q2Þ
E2
π;s⃗q2

; ð4:15Þ

Cre;∞
1 ðq⃗; p⃗Þ ¼ þ g2A

μp−n

p2q2 þ 2p3ðp2q3 − p3q2Þ
E2
π;p⃗q2

: ð4:16Þ

Recall the short-hand notation μp−n ¼ μp − μn for the
difference between the magnetic moments of the proton

5This kind of enhancement was already observed in the Nπ
contamination in the axial form factors [3].
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and neutron. The corresponding results for k ¼ 2 are
obtained by the simple substitution q2 → q1; p2 → p1.
For the Nπ contamination in the effective electric form

factor in (3.23), we need the imaginary parts for μ ¼ k
and find

Bim;∞
k ðq⃗; p⃗Þ ¼ þ8g2A

ðp2 − pqÞð2pk − qkÞ − E2
π;s⃗pk

E2
π;s⃗qk

;

ð4:17Þ

B̃im;∞
k ðq⃗; p⃗Þ ¼ þ8g2A

ðp2 þ pqÞð2pk þ qkÞ − E2
π;r⃗pk

E2
π;r⃗qk

;

ð4:18Þ

C̃im;∞
k ðq⃗; p⃗Þ ¼ −4g2A

ðp2 − pqÞð2pk − qkÞ
E2
π;s⃗qk

; ð4:19Þ

Cim;∞
k ðq⃗; p⃗Þ ¼ −g2A

p2ð2pk þ qkÞ
E2
π;p⃗qk

: ð4:20Þ

These results hold for k ¼ 1, 2, 3. Note that here the LEC
μp−n does not appear. To the order in the NR expansion we
are working to, this LEC enters the effective magnetic form
factor only. In the effective electric form factors, it enters at
Oð1=M2

NÞ and has been dropped (see Appendix A 2).
The results for the correction coefficients Bcorr

k ðq⃗; p⃗Þ,
B̃corr
k ðq⃗; p⃗Þ, Ccorr

k ðq⃗; p⃗Þ, and C̃corr
k ðq⃗; p⃗Þ are cumbersome.

Since the detailed expressions reveal no additional quali-
tative insight, they are listed in Appendix B.

V. IMPACT ON LATTICE CALCULATIONS

A. Preliminaries

To LO in ChPT, the Nπ contribution to the ratio Rμ and
the effective form factors depends on a few LECs only, and
their values can be obtained rather precisely from exper-
imental data. Assuming these values in the ChPT results of
the previous section, we obtain estimates for the impact of
the Nπ contribution on lattice calculations of the form
factors. The rationale for this application is the same as for
the axial and pseudoscalar nucleon form factors [3,4]. The
reader is referred to these references for more details. Here,
we merely summarize the values for the various input
parameters that need to be fixed for the analysis.
Three LECs are the chiral limit values of the pion

decay constant, the axial charge, and the difference of
the magnetic moments of the proton and neutron. To LO, it
is consistent to use the experimental values for these LECs,
and we set them to f ¼ fπ ¼ 93 MeV, gA ¼ 1.27, and
μp−n ¼ 4.706 [30]. We ignore the errors in these values
since they are too small to be significant for the LO results
in this paper

Two more LECs are associated with the pion and
nucleon mass. We are mainly interested in the Nπ con-
tribution in physical point simulations, so we fix the pion
and nucleon masses to their (approximate) physical values
Mπ ¼ 140 MeV and MN ¼ 940 MeV.
The finite spatial volume determines the accessible

spatial momenta. In practice, it is fixed by the lattice
spacing and the number of lattice points in the spatial
directions. Typical values in recent lattice calculations
cover a range MπL ∼ 4 to 6, and we will assume such
values in the following analysis.6 Imposing periodic
boundary conditions, the spatial momentum transfer can
assume the values q⃗n ¼ ð2π=LÞn⃗q with the vector n⃗q
having integer-valued components.
ChPT is an expansion in the small pion mass and in small

pion momenta. Therefore, we select an upper bound on the
pion momentum in the Nπ state. Following Refs. [17,18],
we choose jp⃗nj ≲ pmax with pmax=Λχ ¼ 0.45, where the
chiral scale Λχ is equal to 4πfπ . Nπ states with pions
satisfying this bound are called low-momentumNπ states in
the following. For these, we expect the LO ChPT results to
work reasonably well. States with pion momenta larger
than this bound are called high-momentum Nπ states.
These, too, contribute to the excited-state contamination.
However, choosing all Euclidean time separations suffi-
ciently large, the contribution of the high-momentum Nπ
states can be made small and negligible. The results in
Refs. [17,18] suggest that a separation of at least 1 fm
between the operator and both source and sink is necessary
for a sufficient suppression. This corresponds to source-
sink separations of 2 fm or larger in the 3-pt function.
Therefore, we take t ¼ 2 fm as our generic source-sink
separation in the following.
Note that an upper bound jp⃗nj ≲ pmax translates into a

number np;max that depends on the spatial volume, i.e., on
MπL. The larger the volume, the more discrete momenta
satisfy the bound. A list of np;max for various volumes is
given in Ref. [3], Table 1.

B. Impact on the electromagnetic form factors

The effective form factors Geff
X ðQ2; t; t0Þ in (3.21)–(3.23)

depend on the source-sink separation t and the operator
insertion time t0. For fixed t, the Nπ contamination is
expected to be minimal for t0 ≈ t=2, at least for small
momentum transfers. As a measure for the Nπ-state
contribution, we introduce the relative deviation from the
true form factors,

ϵeffX ðQ2; t; t0Þ≡Geff
X ðQ2; t; t0Þ
GXðQ2Þ − 1: ð5:1Þ

6A recent simulation of the PACS Collaboration [31] was
carried out at a larger volume with MπL ≈ 7.4.
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Figure 3 shows ϵeffX ðQ2; t; t0Þ as a function of the shifted
operator insertion time τ≡ t − t=2 for fixed source-sink
separation t ¼ 2 fm, MπL ¼ 6, and the three momentum

transfers with nq ¼ 1 (solid lines), nq ¼ 6 (dashed lines),
and nq ¼ 12 (dotted lines). These values correspond to
Q2

nq ≈ 0.02, 0.13, and 0.24 GeV2, respectively.
For the electric form factor obtained with the timelike

component V4 (top panel), the effective form factor over-
estimates GE, and the overestimation increases for increas-
ing momentum transfer. For the magnetic form factor
(middle panel), we observe an underestimation, which is
larger for the smaller momentum transfers. In both cases,
we observe a coshlike behavior with the extremum close to
t0 ¼ t=2. This means that both midpoint and plateau
estimate are essentially the same, as expected.
The results for the electric form factor obtained with

the spatial component V2 (bottom panel) are qualitatively
different. Instead of a coshlike behavior, we find an
approximate sinhlike behavior. Hence, the effective form
factor does not have a plateau estimate. In addition, we
observe that ϵeffE;2ðQ2; t; t0Þ is significantly larger than the
other two (note the different scale on the bottom panel). In
other words, the Nπ contamination in Geff

E;2 is much larger
than in Geff

E;4, suggesting a preference for the latter to
compute the electric form factor.
The reason for the larger Nπ contamination is the

OðMNÞ enhancement (4.12) in the coefficients for the
spatial components. Note that the same enhancement is at
work in the real parts that give the effective magnetic
form factor. There, however, it is largely compensated by
the factor 1=μp−n in (4.13) and (4.14). This factor is
roughly 0.2, so the Nπ contamination in Geff

E;2 is about five
times larger than in Geff

M , in qualitative agreement with
what we observe when comparing the middle and bottom
panels in Fig. 3.
Figure 4 shows the relative deviation for the midpoint

estimates, i.e.,

ϵmid
X ðQ2; tÞ ¼ ϵeffX ðQ2; t; t0 ¼ t=2Þ; ð5:2Þ

as a function of Q2 for t ¼ 2 fm. Results are shown for
three different spatial volumes with MπL ¼ 4 (diamonds),
5 (squares), and 6 (circles). The results for a given volume
show a smoothQ2 dependence. A small finite volume (FV)
effect is visible when we compare the results for MπL ¼ 4
and 6. However, it is much smaller than the anticipated
precision of the LO results.
ϵmid
E;4 is positive and rises monotonically to aboutþ5% for

Q2 ¼ 0.25 GeV2. As discussed before, it vanishes for
Q2 ¼ 0 as a result of the Ward identity in (2.20). The
deviation ϵmid

M for the magnetic form factor is negative and
ranges between −5% and −2% for the momenta displayed
in the figure. Here, in contrast to ϵmid

E;4 , the deviation
increases for Q2 getting smaller. Finally, the deviation
ϵmid
E;2 is close to ϵmid

E;4 , even though the difference between the

FIG. 3. The relative deviation ϵeffX ðQ2; t ¼ 2 fm; t0Þ as a function
of the shifted operator insertion time τ≡ t0 − t=2 for X ¼ E; 4 (top
panel), X ¼ M (middle), and X ¼ E; 2 (bottom), for three different
nonzero momentum transfers with nq ¼ 1 (solid lines), nq ¼ 6

(dashed lines), and nq ¼ 12 (dotted lines) for MπL ¼ 6.
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two increases for small Q2. Still, the difference is not
pronounced enough to clearly favor one of the two ratios.
We emphasize that the low-momentum Nπ contamina-

tion shown in Fig. 4 is the cumulative effect of many Nπ
states with different spatial momenta. For MπL ¼ 4,
we have taken into account all discrete momenta with
np up to 5, and this number rises to 12 for the larger volume
with MπL ¼ 6.
Naively, we expect the excited-to-excited-state Nπ con-

tribution to be significantly smaller than the excited-to-
ground-state contribution. In terms of the coefficients we
introduced, this expectation says that the bμ; b̃μ contribu-
tions are the dominant ones in Eq. (3.12) for t0 ≈ t=2. The
reason is the additional suppression by an exponential
factor expð−ΔEt=2Þ in the cμ; c̃μ contributions.
Figure 5 shows the individual contributions to the

relative deviations; e.g., ϵmid
X;bðQ2; tÞ denotes the bμ con-

tribution (red symbols), and analogously for b̃μ (blue), cμ
(orange), and c̃μ (green). The Nπ-state contribution stem-
ming from the 2-pt functions is shown by the brown
symbols. Apparently, the bμ and b̃μ contributions are
significantly larger than the other three. Note the relative
sign between the bμ and b̃μ contributions in case of the
X ¼ E; 2 (bottom panel), which is responsible for the
sinhlike behavior in the effective form factor Geff

E;2, seen
in Fig. 3.
The sum of all individual contributions in Fig. 5 gives

the total results shown in Fig. 4. Since the cμ and c̃μ
contributions are small, we can ignore them and still obtain
a very good approximation for the total result. It is shown
by the open symbols in Fig. 4.

FIG. 4. The relative deviation ϵmid
X ðQ2; t ¼ 2 fmÞ for the mid-

point estimates as a function of Q2. Results for X ¼ E; 4 in red,
X ¼ M in blue, and X ¼ E; 2 in purple. Results for three different
spatial volumes with MπL ¼ 4 (diamonds), 5 (squares), and
6 (circles). Open symbols for the approximation with the excited-
to-excited-state contributions c; c̃ ignored; see main text.

FIG. 5. The individual relative deviations ϵmid
X;z ðQ2; t ¼ 2 fmÞ

for the midpoint estimates as a function of Q2. Results for
contribution z ¼ bμ (red), b̃μ (blue), cμ (orange), c̃μ (green), and
Y (brown) and for X ¼ E; 4 (upper panel), X ¼ M (middle),
and X ¼ E; 2 (bottom). Results for three different spatial
volumes withMπL ¼ 4 (diamonds), 5 (squares), and 6 (circles).
Typically, the bμ and b̃μ contributions are larger than the
other three.
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As stated before, the results shown so far are obtained
with a finite number of Nπ states in Eqs. (3.8) and (3.17).
The spatial momentum of the pion in the Nπ state was
restricted to jp⃗nj≲ pmax with pmax=Λχ ¼ 0.45. We have
checked that for t ¼ 2 fm these low-momentum Nπ states
essentially saturate the sums in (3.8) and (3.17); i.e., the
contribution of the high-momentum Nπ states is negligible.
Two examples are shown in Fig. 6. The lower panel

shows the relative deviation ϵmid
M ðQ2; tÞ as a function of t for

MπL ¼ 4 and the smallest accessible momentum transfer,
i.e., with nq ¼ 1. The black line corresponds to our
canonical choice pmax=Λχ ¼ 0.45. In addition, the results
for two other momentum bounds are shown, a smaller
one with pmax=Λχ ¼ 0.3 (blue) and a larger one with
pmax=Λχ ¼ 0.6 (red). In terms of the integer np, these
bounds correspond to np;max ¼ 2 (blue), 5 (black), and
10 (red). For t ¼ 2 fm and larger, the difference between

the black and red curves is tiny and negligible, and this does
not change if pmax is chosen even larger. However, a spread
of about 25% is seen between pmax=Λχ ¼ 0.3 and 0.45
(for t ¼ 2 fm).
The upper panel in Fig. 6 shows the analogous result

for ϵmid
E;4 ðQ2; tÞ, but for nq ¼ 5, corresponding to Q2≈

0.225 GeV2. We find the same result, the low-momentum
Nπ states with pmax=Λχ ¼ 0.45 essentially saturate the sum
and capture the dominant part of the Nπ excited-state
contribution
Finally, Fig. 7 shows the ratio Gmid

M ðQ2; tÞ=Gmid
E;4 ðQ2; tÞ

as a function of Q2, again for t ¼ 2 fm and various MπL
values. To a very good approximation, this ratio is
constant; it varies by less than 2% over the range of
Q2 displayed in Fig. 7. This mild Q2 dependence is
anticipated since the slopes of ϵmid

E;4 ðQ2; tÞ and ϵmid
M ðQ2; tÞ

are similar, see Fig. 4, and essentially cancel in the ratio.
However, this flat Q2 behavior should not be misinter-
preted as the absence of the excited-state contamination.
The ratio is about 6% below μp−n, the value it assumes
without the Nπ contamination at vanishing momentum
transfer.7 Since ϵmid

E ð0; tÞ ¼ 0, this underestimation stems
dominantly from the Nπ contamination in the magnetic
form factor estimate Gmid

M ðQ2; tÞ.

FIG. 7. The ratio Gmid
M ðQ2; tÞ=Gmid

E;4 ðQ2; tÞ for t ¼ 2 fm and
MπL ¼ 4 (diamonds), 5 (squares), and 6 (circles). The dashed
line shows the value μp−n ¼ 4.71.

FIG. 6. The relative deviations ϵmid
E;4 ðQ2; tÞ (top panel) and

ϵmid
M ðQ2; tÞ (bottom) for the midpoint estimates as a function
of the source-sink separation t for three different upper limits for
the pion momentum, np;max ¼ 2 (blue), 5 (black), and 10 (red);
see main text. Results forMπL ¼ 4 and Q2 obtained with nq ¼ 5

(top) and nq ¼ 1 (bottom).

7Appendix F in Ref. [32] reports results of linear fits to lattice
data for the ratio to extract the magnetic moment μp−n. For almost
all ensembles, the extracted value is found well below the
experimental value, including an ensemble with physical pion
mass. However, for this ensemble, the maximal source-sink
separation was t ≈ 1.4 fm. A similar finding is reported in
Ref. [33].
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C. Impact on the charge radii

The Nπ contamination in the form factor estimates is Q2

dependent, and this affects the extraction of the charge
radii. Estimates for the charge radii are obtained by
Eq. (2.8), with the midpoint estimates on the right-hand
side,

r̄2;mid
X ðtÞ≡ −6

d
dQ2

�
Gmid

X ðQ2; tÞ
Gmid

X ð0; tÞ
�����

Q2¼0

: ð5:3Þ

In practice, the lattice form factor data are described by
fitting a suitable parametrization of the Q2 dependence, for
example, a dipole form or the z-expansion [34]. The charge
radii are then obtained from these analytic forms. Here, we
can directly compute the derivative on the right-hand side
in (2.8) to obtain an explicit expression for the midpoint
estimates of the charge radii,

r̄2;mid
X ðtÞ ≈ r̄2X − 6ϵ0;mid

X ð0; tÞ: ð5:4Þ

The prime denotes the derivative d=dQ2 of the relative
deviation ϵmid

X , and we have dropped terms quadratic or
higher in ϵmid

X . According to Fig. 4 ϵ0;mid
X ðQ2; tÞ is positive

for both the electric and the magnetic form factors. Hence,
both charge radii are underestimated by the midpoint
estimates.
It is straightforward to obtain the analytic expressions

for ϵ0;mid
X ; however, it is simpler and sufficient to obtain

approximations directly from ϵmid
X . For example, for X ¼ E,

we approximate ϵ0;mid
X ð0; tÞ ≈ ϵmid

X ðQ2
1; tÞ=Q2

1, where Q2
1 is

the smallest discrete momentum transfer displayed in
Fig. 4. With ϵmid

E ðQ2
1 ≈ 0.024 GeV2; tÞ ≈ 0.009, we find

that r̄mid
E ðtÞ is about 7% smaller for t ¼ 2 fm than the true

charge radius r̄E. Proceeding analogously for the magnetic
form factor, we find roughly −4% for the underestimation
in case of r̄mid

M ðtÞ.

VI. COMPARISON WITH LATTICE DATA

A. Preliminaries

In the last section, we studied theNπ contamination for a
source-sink separation of 2 fm, a rough lower bound for the
ChPT results to be applicable with confidence. Present-day
lattice calculations, however, are carried out at significantly
smaller source-sink separations, the reason being the
notorious signal-to-noise problem [35,36] with exponen-
tially growing statistical errors in the lattice data.
Recent physical point simulations have been done with

maximal source-sink separations tmax ≈ 1.5 fm. For in-
stance, the ETMC Collaboration reported results [15] with
tmax ≈ 1.6 fm for twisted mass fermions with a (charged)
pion mass of about 140 MeV and a spatial lattice extent
satisfying MπL ≈ 3.6. While this volume may still be
acceptable for sufficiently small FV effects, it limits the

accessible momentum transfers to only a few small values.
In contrast, recent simulations by the PACS Collaboration
[14] were performed with MπL ≈ 6.0 and close to physical
pion mass, Mπ ≈ 146 MeV, admitting a smallest momen-
tum transfer of about Q2 ≈ 0.024 GeV2. However, the
maximal source-sink simulation tmax ≈ 1.3 fm was even
smaller than the one in the ETMC simulations.
Despite these shortcomings, we compare the ChPT

results to these lattice data, mainly to illustrate that the
ChPT predictions for the Nπ-state contamination is quali-
tatively in agreement with what has been observed in lattice
QCD data.8 Since the source-sink separation is significantly
smaller than 2 fm, we find a larger Nπ contribution in the
lattice estimates for the form factors. In addition, we may
expect the contribution of other than low-momentum Nπ
states to be non-negligible. Thus, one should not be
surprised that the ChPT results of the previous section
do not fully account for the excited-state contribution
observed in the lattice data.

B. Electric and magnetic form factors

Figure 8 shows the ETMC plateau estimates Gplat
E;4 ðQ2; tÞ

(top panel) and Gplat
M ðQ2; tÞ (bottom panel) for the electric

and magnetic form factors, respectively (orange symbols).9

The results were obtained with Nf ¼ 2þ 1þ 1 twisted
mass clover-improved Wilson fermions at maximal twist
and a lattice spacing a ≈ 0.08 fm. The parameters relevant
here are Mπ ≈ 139 MeV, MN=Mπ ≈ 6.74, MπL ≈ 3.6, and
t ≈ 1.6 fm. For more details, we refer to Ref. [15].
The figure shows the data for the lowest momentum

transfers below Q2 ¼ 0.25 GeV2. Also shown is Kelly’s fit
(dashed lines) to the experimental data [41]. In case of the
electric form factor, the lattice data lie above the Kelly line,
overestimating the experimental results. The discrepancy
increases for increasing momentum transfer. For the mag-
netic form factor, the plateau estimates lie below the Kelly
line, with the underestimation increasing for smallQ2. This
agrees qualitatively with the ChPT results described in the
last section for the impact of the Nπ-state contamination.
For a direct comparison, Fig. 9 shows the relative

deviation of the lattice data from the Kelly line (orange

8Other collaborations, too, have reported lattice form factor
results obtained with (close to) physical pion masses. However,
either the summation method [37,38] and/or multiexponential fits
have been used to obtain the form factor estimates (e.g., in
Refs. [16,32,39]), or plateau estimates obtained at even smaller
source-sink separations below 1 fm have been reported (e.g., in
Ref. [40]), which seem way too small for a meaningful com-
parison with the ChPT results. In principle, the Nπ contamination
in the summation method can be studied in ChPT (see Ref. [17]),
but it was concluded that in practice the necessary minimal
source-sink separation is even larger than for the plateau or
midpoint methods. For this reason, we refrain from studying the
summation method in this paper.

9See Table VI in Ref. [15].
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symbols, with error bars) together with the ChPT results
for ϵmid

E;4 and ϵmid
M (blue symbols). ChPT captures qualita-

tively the Q2 dependence but falls short roughly by a factor
2 for the largest (smallest) Q2 in case of ϵmid

E;4 (ϵmid
M ) shown

in the figure.
There may be various sources for this discrepancy. We

mentioned already that at t ¼ 1.6 fm we expect other than
low-momentum Nπ states to contribute to the total excited-
state contamination. In addition, the ChPT results are
obtained at LO only and may have a substantial higher-
order contribution. For MπL ≈ 3.6, we may also expect a
sizeable FVeffect in the lattice data. Finally, the lattice data
we compare with are obtained for a nonzero lattice spacing
and may change when extrapolated to the continuum limit.
With this in mind the fair agreement in Fig. 9 is better than
naively expected.

We can use the ChPT results in a slightly different but
equivalent way. With the ChPT results for ϵplatX ðQ2; tÞ we
can “correct” the lattice data by analytically removing the
LO Nπ-state contamination [3]. For this, we compute

Gcorr
X ðQ2; tÞ≡ Gplat

X ðQ2; tÞ
1þ ϵplatX ðQ2; tÞ : ð6:1Þ

In the numerator on the right-hand side, we take the lattice
plateau estimates, while the denominator involves the
ChPT results for the relative deviation. Provided higher-
order corrections and other than low-momentum Nπ-state
contributions are small, we conclude

Gcorr
X ðQ2; tÞ ≈ GXðQ2Þ; ð6:2Þ

i.e., the corrected data should be essentially t independent
and equal to the true form factors. The corrected data are

FIG. 9. The relative deviations ϵplatE;4 ðQ2; tÞ (top panel, orange
symbols) and ϵplatM ðQ2; tÞ (bottom panel, orange symbols) of the
ETMC data [15] from the Kelly line compared to the ChPT
prediction for the deviation due to Nπ states (blue).

FIG. 8. ETMC data Gplat
E;4 ðQ2; tÞ (top panel, orange symbols)

and Gplat
M ðQ2; tÞ (bottom panel, orange symbols) for t ¼ 1.6 fm

and Q2 smaller than 0.25 GeV2 [15]. The Kelly line (dashed)
represents the experimental data [41]. Removing the Nπ con-
tamination with Eq. (6.2) results in the corrected data points (blue
symbols); see main text.
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also shown in Fig. 8 (blue symbols). The correction
alleviates the discrepancy with the Kelly line, but a
substantial deviation remains.
Figures 10 and 11 show the analogous data of the

PACS Collaboration, obtained with Nf ¼ 2þ 1 OðaÞ
improved Wilson fermions at a ≈ 0.085 fm.10 Due to the
larger volume (MπL ≈ 6.0 with Mπ ≈ 146 MeV and
MN=Mπ ≈ 6.56), smaller momentum transfers are acces-
sible, and the FV effects are expected to be negligible.
Less favorable are the even smaller source-sink separation
t ≈ 1.3 fm and the larger statistical errors.
We observe the same qualitative features as in the ETMC

data. The plateau estimates (red symbols) deviate from
the Kelly line the same way: the electric form factor is
overestimated, and the magnetic one underestimated. Also

shown are the corrected form factors (blue symbols). The
improvement looks better to the eye, but it is statistically
not significant because of the large statistical errors.

C. Comment on the spatial correlator
for the electric form factor

As discussed before, the electric form factor is accessible
either with the timelike or a spatial component of the vector
current in the 3-pt function. In a recent publication [16], the
PNDME Collaboration studied and compared both ways.
The lattice data were obtained in a mixed-action setup with
highly improved staggered sea quarks and clover improved
Wilson valence quarks. Among the ensembles are two with
a (close-to) physical pion mass and reasonably large spatial
volumes satisfying MπL ≈ 3.9 and 3.7, respectively. For
more details on the lattice ensembles, see Refs. [16,42].
The data displayed in Figs. 24 and 25 of Ref. [16] show

indeed the sinhlike behavior that we found for the spatial
correlator, in contrast to the timelike correlator which

FIG. 11. The relative deviations ϵplatM ðQ2; tÞ of the ETMC data
[15] from the Kelly line (orange symbols) compared to the ChPT
prediction (blue).

FIG. 10. PACSdataGplat
M ðQ2; tÞ (orange symbols) for t ¼ 1.3 fm

and Q2 smaller than 0.25 GeV2 [14]. The Kelly line (dashed)
represents the experimental data [41]. Removing the Nπ contami-
nation with Eq. (6.2) results in the corrected data points (blue
symbols); see main text.

10See Table V in Ref. [14].
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displays the coshlike behavior (recall top and bottom
panel in Fig. 3). Moreover, the excited-state contamination
in the spatial correlator is found to be an order of magnitude
larger—for the smallest nonvanishing momentum
transfer—as compared to those from the timelike correlator.
This, too, agrees qualitatively with the OðMNÞ enhance-
ment of the Nπ contamination in the ratio with the spatial
correlator, cf. Eq. (4.12).
The main obstacle for a more quantitative comparison is

the analysis strategy used in Ref. [16]. Instead of simple
plateau or midpoint estimates, multiexponential fit Ansätze
were used to extract the form factors with simultaneous fits
to the 2-pt and 3-pt function data. Proceeding this way, the
excited-state contamination we are interested in here is at
least partially removed from the form factor estimators.

VII. CONCLUSIONS

The ChPT results presented here provide an under-
standing for the anticipated impact of Nπ excited states
in lattice computations of the nucleon electromagnetic form
factors. ChPT predicts an overestimation of the electric
form factor by the plateau or midpoint estimates, and this
overestimation gets larger for increasing momentum trans-
fer. For the magnetic form factor, we find the opposite
impact: it is underestimated, and the smaller the momentum
transfer, the larger the misestimation. The size of this effect
is about�5% for source-sink separations of 2 fm and small
momentum transfers smaller than 0.25 GeV2. If percent
level accuracy is the goal for lattice calculations, this
source of systematic error is not negligible and needs to
be taken care of.
The effect is larger for source-sink separations that are

presently accessible with standard simulation methods, for
t ≈ 1.6 fm by roughly a factor 2. However, we stress once
again that at this t we probably have pushed the ChPT
results beyond their range of applicability. At such rather
small source-sink separations, we expect the excited-state
contamination not to be dominated by low-momentum Nπ
states alone. Additional excited states are expected to
contribute as well, with potentially large modifications to
the results given here. Comparison with more lattice data at
larger t is needed to elucidate this issue.
A subleading excited-state contamination is caused by

three-particle Nππ states. In general, their contribution
stems from two-loop diagrams with two propagators for the
two pions, and these are expected to be very small [13].
However, there are also some one-loop diagrams respon-
sible for anNππ contribution, for instance diagrams n) to p)
in Fig. 2. We have checked this contribution and found
it, not surprisingly, to be of the same size as the Nπ
contribution captured by c̃, to which these diagrams also
contribute. Since the c̃ contribution is small and negligible,
we expect the same for the entire Nππ contribution,
even though this has to be confirmed by a complete
calculation.

A common way to cope with the excited-state contami-
nation is the use of multiexponential fit Ansätze in the
analysis of lattice data. In a recent publication [39], a
variety of different Ansätze have been used and compared
with each other, including Ansätze that fix the energy gaps
to the lowest Nπ excited state. In most cases, these Ansätze
work as well as the ones that leave the energy gaps free
parameters to be determined by the fits. However, in some
cases, the results for the form factors differ significantly
depending on the fit Ansatz chosen. This exemplifies the
need for physical understanding of the excited-state con-
tamination in lattice data. Judging the quality of the fits by
the χ2 values alone might be misleading and insufficient for
percent level calculations of the form factors.
Finally, lattice data at larger source-sink separations seem

mandatory for obtaining precise lattice results with con-
trolled errors. To overcome the notorious signal-to-noise
problem, new simulation techniques are required. The idea
proposed in Refs. [43,44] seems promising but remains to be
tested in lattice calculations of nucleon correlation functions.
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APPENDIX A: CHPT SETUP

1. Summary of the Feynman rules

We employ the covariant formulation of baryon ChPT
[28,29]. To LO, the chiral effective Lagrangian consists of

two parts, Leff ¼ Lð1Þ
Nπ þ Lð2Þ

ππ . Expanding this Lagrangian
in powers of pion fields and keeping interaction terms with
one pion field only, we obtain

Leff ¼ Ψ̄ðγμ∂μ þMNÞΨþ 1

2
πað−∂μ∂μ þM2

πÞπa

þ igA
2f

Ψ̄γμγ5σaΨ∂μπ
a: ðA1Þ

The nucleon fieldsΨ ¼ ðp; nÞT and Ψ̄ ¼ ðp̄; n̄Þ contain the
proton and the neutron fields p and n.Mπ denotes the pion
mass, while MN , gA, and f are the chiral limit values of
the nucleon mass, the axial charge, and the pion decay
constant. The interaction term in (A1) leads to the well-
known nucleon-pion interaction vertex proportional to the
axial charge. A factor i appears here because we work in
Euclidean space-time.
From the terms quadratic in the fields, one reads off

the nucleon and pion propagators. For our calculations, the
time-momentum representation seems most convenient. In
that representation, the pion propagator reads
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Gabðx; yÞ ¼ δabL−3
X
p⃗

1

2Eπ;p⃗
eip⃗ðx⃗−y⃗Þe−Eπ;p⃗jx0−y0j; ðA2Þ

with the pion energy given by Eπ;p⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þM2

π

p
. The

nucleon propagator Sabαβðx; yÞ is given by

Sabαβðx; yÞ ¼ δabL−3
X
p⃗

Z�
p;αβ

2EN
eip⃗ðx⃗−y⃗Þe−EN jx0−y0j: ðA3Þ

a, b and α, β refer to the isospin and Dirac indices,
respectively. The factor Z�

p⃗ in the nucleon propagator
(spinor indices suppressed) is defined as

Z�
p⃗ ¼ −ip⃗ · γ⃗ � ENγ4 þMN; ðA4Þ

where the þ (−) sign applies to x0 > y0 (x0 < y0), and the
nucleon energy is given by EN;p⃗ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp⃗j2 þM2

N

p
. The sum

in both propagators runs over the discrete spatial momenta
that are compatible with periodic boundary conditions
imposed on the finite spatial volume, i.e., p⃗ ¼ 2πn⃗=L
with n⃗ having integer-valued components.
The expressions for the nucleon interpolating fields in

ChPT have been derived in Ref. [45]. To LO and up to one
power in pion fields, one finds

NðxÞ ¼ α̃

�
ΨðxÞ þ i

2f
πaðxÞσaγ5ΨðxÞ

�
; ðA5Þ

N̄ð0Þ ¼ β̃�
�
Ψ̄ð0Þ þ i

2f
Ψ̄ð0Þγ5σaπað0Þ

�
ðA6Þ

These are the effective fields for the standard nucleon
interpolating fields composed of three quarks without
derivatives [46,47]. The interpolating fields do not neces-
sarily need to be pointlike but can also be constructed from
“smeared” quark fields. These operators map to the same
chiral expressions provided the smearing procedure is
compatible with chiral symmetry. In addition, the “smear-
ing radius” needs to be small compared to the Compton
wavelength of the pion. In that case, smeared interpolating
fields are mapped onto pointlike fields in ChPT just like
their pointlike counterparts at the quark level [24,48].
The expressions differ only by the LECs α̃; β̃. If the same
interpolating fields are used at both source and sink, we
find α̃ ¼ β̃.
Finally, for the computation of the 3-pt function, we need

the expression for the vector current. It is obtained from the
effective Lagrangian in the presence of an external source
field for the vector current [28]. The source field enters via
covariant derivatives acting on the nucleon and pion fields,
guaranteeing invariance of the Lagrangian under local
chiral transformations.

The LO Lagrangian Leff ¼ Lð1Þ
Nπ þ Lð2Þ

ππ leads to the
following expression for the vector current:

Va;ð1Þ
μ ¼ Ψ̄γμσaΨ −

gA
f
ϵabcπbΨ̄γμγ5σcΨ − 2iϵabc∂μπ

bπc:

ðA7Þ

The first two terms on the right-hand side stem from Lð1Þ
Nπ ,

and the remaining one stems from Lð2Þ
ππ . The same expres-

sion has already been used in Refs. [17] for the computation
of the nucleon vector charge gV .
For the computation of the electromagnetic form

factors, we also need the contribution to the vector
current from the nucleon-pion Lagrangian with chiral
dimension 2,

Lð2Þ
Nπ ¼ c6

MN

f2
Ψ̄σμνfþμνΨþ…; ðA8Þ

with the usual tensor σμν ¼ ½γμ; γν�=2 and fþμν being the
field strength tensor formed with the external source
field [28]. We have omitted terms, represented by the
ellipsis, that are not relevant in the following. c6 is a LEC
that can be related to the magnetic moments of the proton
and neutron; see the next subsection. The term in (A8) leads
to the contribution

Va;ð2Þ
μ ¼ 4c6

MN

f2
ð∂αΨ̄σμασaΨþ Ψ̄σμασa∂αΨÞ ðA9Þ

in the vector current (dropping all terms with more than
one pion field). For the calculation in this paper, the

current Va
μ ¼ Va;ð1Þ

μ þ Va;ð2Þ
μ was used.

2. Single nucleon results

With the Feynman rules in the last subsection, we obtain
the diagram in Fig. 1 for the leading SN contribution in the
3-pt function. The analogous diagram for the 2-pt function
is essentially the same but without the vector current
insertion. The calculation of these diagrams is trivial,
and forming the generalized ratio (2.13) with these results,
we obtain

ReRN
V3
4

ðq⃗; t; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EN;q⃗ þMN

2EN;q⃗

s �
1 −

EN;q⃗ −MN

2MN
c̃6

�
;

ðA10Þ

ReRN
V3
i
ðq⃗; t; t0Þ ¼ ϵij3qj

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EN;q⃗ðEN;q⃗ þMNÞ

p ð1þ c̃6Þ;

ðA11Þ
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ImRN
V3
i
ðq⃗; t; t0Þ ¼ qi

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EN;q⃗ðEN;q⃗ þMNÞ

p
×

�
1 −

EN;q⃗ −MN

2MN
c̃6

�
; ðA12Þ

with the short-hand notation c̃6 ¼ 8M2
Nc6=f

2. By con-
struction, the time dependence cancels for the SN results;
hence, the rhs correspond to the asymptotic values
(2.15)–(2.17) of the ratios. Comparing with these expres-
sions, we read off the leading SN results for the electro-
magnetic form factors,

GEðQ2Þ ¼ 1 −
EN;q⃗ −MN

2MN
c̃6; GMðQ2Þ ¼ 1þ c̃6:

ðA13Þ
The result GEð0Þ ¼ 1 agrees with the constraint set by the
Ward identity, as expected. The leading result for the
magnetic form factor is independent of the momentum
transfer. We fix the LEC c̃6 by setting (A13) to the
phenomenological value at Q2 ¼ 0,

GMð0Þ ¼ μp − μn; ðA14Þ
the difference of the magnetic moments of proton and
neutron. The experimental value for this difference is
4.706 [49].
Note that the c̃6 contribution is rather large. With the

contribution in (A7) only, we find GMð0Þ ¼ 1, which is a
crude approximation and significantly underestimates
(A14). The SN results enter the Nπ contamination in the
denominator of the coefficients in (3.12). Therefore, with-
out the contribution (A9) for the vector current, we would
overestimate the ratios by roughly a factor of 5.
Even though c6 enters GE as well, its impact is much

smaller. In fact, performing the NR expansion in (A13),
we find GEðQ2Þ ¼ 1þ Oð1=M2

NÞ. Since we only work to
Oð1=MNÞ, our results for the electric form factor in
Sec. IV B do not depend on c6.

APPENDIX B: RESULTS FOR THE
CORRECTION COEFFICIENTS

The correction coefficients Bcorr
k ðq⃗; p⃗Þ, B̃corr

k ðq⃗; p⃗Þ,
Ccorr
k ðq⃗; p⃗Þ, and C̃corr

k ðq⃗; p⃗Þ are introduced in Sec. IV B
and listed here. The results are rather lengthy, so we have
split them in OðgAÞ and Oðg2AÞ contributions, with the
complete result being the sum of the two contributions. The
spatial indices k;m assume values 1,2, and k ≠ m holds if
both appear in an equation.
For the real part of the spatial components, we find the

following: OðgAÞ:

Bre;corr
k ¼ −

Bre;∞
k

2gA
ðB1Þ

B̃re;corr
k ¼ 4gAðpm þ qmÞ

qm
ðB2Þ

Cre;corr
k ¼ −

Cre;∞
k

gA
−
gA
2

�
pm

qm

jq⃗j2
E2
π;p⃗

−
2pk

qm

ðpkqm − pmqkÞ
E2
π;p⃗

�

ðB3Þ

C̃re;corr
k ¼ −

C̃re;∞
k

2gA
ðB4Þ

Oðg2AÞ:

Bre;corr
k ¼ M2

π

2E2
π;p⃗

B∞;re
k −

2g2A
E2
π;p⃗qm

ðE2
π;p⃗pm − jp⃗j2qm

þ p3ðpmq3 − p3qmÞÞ ðB5Þ

B̃re;corr
k ¼ −

1

2

�jp⃗j2 þ 2p⃗ · q⃗
E2
π;p⃗

þ 1

�
B̃re;∞
k

þ 2g2A
E2
π;p⃗qm

ðjp⃗j2qm − p3ðpmq3 − p3qmÞ

− E2
π;p⃗ð3pm þ 4qmÞÞ ðB6Þ

Cre;corr
k ¼ −

jp⃗j2 þ p⃗ · q⃗
E2
π;p⃗

C∞;re
k

þ g2A
E2
π;p⃗qm

ð2pmp⃗ · q⃗þ jq⃗j2pm − jp⃗j2qmÞ ðB7Þ

C̃re;corr
k ¼ −

C̃re;∞
k

2E2
π;p⃗Eπ;p⃗−q⃗

ð2Eπ;p⃗ðjp⃗j2 − p⃗ · q⃗Þ

þM2
πðEπ;p⃗ − Eπ;p⃗−q⃗ÞÞ ðB8Þ

For the real part of the time component, we get the
following: OðgAÞ:

Bre;corr
4 ¼ −

Bre;∞
4

2gA
ðB9Þ

B̃re;corr
4 ¼ −

B̃re;∞
4

2gA
þ 2gA

�jq⃗j2 þ p⃗ · q⃗
E2
π;p⃗þq⃗

−
p⃗ · q⃗
E2
π;p⃗

�
ðB10Þ

Cre;corr
4 ¼ −

Cre;∞
4

gA
þ gA
2E2

π;p⃗

p⃗ · q⃗ ðB11Þ

C̃re;corr
4 ¼ −

C̃re;∞
4

2gA
−

gA
E2
π;p⃗Eπ;p⃗−q⃗

ðEπ;p⃗ þ Eπ;p⃗−q⃗Þjp⃗j2

ðB12Þ
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Oðg2AÞ:

Bre;corr
4 ¼ Bre;∞

4

2
− g2A

jp⃗j2
E2
π;p⃗

ð4jp⃗j2 þ p⃗ · q⃗Þ
E2
π;p⃗

þ g2A
E2
π;p⃗E

2
π;p⃗−q⃗

ð2ðjp⃗j2 − p⃗ · q⃗Þð2jp⃗j2 − jq⃗j2Þ − E2
π;p⃗−q⃗p⃗ · q⃗Þ ðB13Þ

B̃re;corr
4 ¼

�
1

2
−
jp⃗j2 þ 2p⃗ · q⃗

E2
π;p⃗

�
B̃re;∞
4 þ g2A

E4
π;p⃗

p⃗ · q⃗ðE2
π;p⃗ þ jp⃗j2Þ þ 2g2A

E2
π;p⃗E

2
π;p⃗þq⃗

ðp⃗ · q⃗ð4p⃗ · q⃗þ 3jq⃗j2Þ − jq⃗j2ðM2
π þ E2

π;p⃗ÞÞ

ðB14Þ

Cre;corr
4 ¼ M2

π

E2
π;p⃗

Cre;∞
4 −

g2AM
2
π

E4
π;p⃗

p⃗ · q⃗ ðB15Þ

C̃re;corr
4 ¼ C̃re;∞

4

2

�jq⃗j2 − jp⃗j2
Eπ;p⃗Eπ;p⃗−q⃗

−
jp⃗j2
E2
π;p⃗

�
þ g2A
E2
π;p⃗E

2
π;p⃗−q⃗

ðjp⃗j2ðEπ;p⃗ þ Eπ;p⃗−q⃗Þ2 − p⃗ · q⃗ðE2
π;p⃗ − E2

π;p⃗−q⃗ÞÞ ðB16Þ

For the imaginary part of the spatial components, we get the
following: OðgAÞ:

Bim;corr
k ¼ −

Bim;∞
k

2gA
ðB17Þ

B̃im;corr
k ¼ −

B̃∞;im
k

2gA
þ 4gA

�
1 −

ð2pk þ qkÞ
qk

ðjq⃗j2 þ p⃗ · q⃗Þ
E2
π;p⃗þq⃗

�

ðB18Þ

Cim;corr
k ¼ −

Cim;∞
k

gA
þ gA

2

pk

qk

ðjq⃗j2 þ 2p⃗ · q⃗Þ
E2
π;p⃗

ðB19Þ

C̃im;corr
k ¼ −

C̃im;∞
k

2gA
þ 2gA

ð2pk − qkÞ
qk

jp⃗j2
Eπ;p⃗Eπ;p⃗−q⃗

ðB20Þ

Oðg2AÞ:

Bim;corr
k ¼ M2

π

2E2
π;p⃗

Bim;∞
k þ 2g2A

pk

qk
þ 2g2A

ðpk þ 2qkÞ
qk

jp⃗j2
E2
π;p⃗

ðB21Þ

B̃im;corr
k ¼ 1

2

�
1 −

jp⃗j2 þ 2p⃗ · q⃗
E2
π;p⃗

�
B̃∞;im
k þ 2g2A

�
pk

qk

�
1þ jp⃗j2

E2
π;p⃗

�
þ 2

jp⃗j2
E2
π;p⃗

�
− 8g2A

�
1 −

ð2pk þ qkÞ
qk

ðjq⃗j2 þ p⃗ · q⃗Þ
E2
π;p⃗þq⃗

�
ðB22Þ

Cim;corr
k ¼ −

jp⃗j2 þ p⃗ · q⃗
E2
π;p⃗

Cim;∞
k − g2A

�ð2pk þ qkÞ
qk

jp⃗j2
E2
π;p⃗

þ pk

qk

ðjq⃗j2 þ 2p⃗ · q⃗Þ
E2
π;p⃗

�
ðB23Þ

C̃im;corr
k ¼ M2

π

2E2
π;p⃗

C̃im;∞
k −

2g2A
Eπ;p⃗Eπ;p⃗−q⃗

2pk − qk
qk

ðM2
πðjp⃗j2 þ p⃗ · q⃗Þ þ 2ðjp⃗j2jq⃗j2 − ðp⃗ · q⃗Þ2ÞÞ

E2
π;p⃗−q⃗

ðB24Þ
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[43] M. Cè, L. Giusti, and S. Schaefer, Phys. Rev. D 93, 094507

(2016).
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