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We show how the sphaleron rate (the Minkowski rate for topological charge diffusion) can be determined
by analytical continuation of the Euclidean topological-charge-density two-point function, which we
investigate on the lattice, using gradient flow to reduce noise and provide improved operators which
more accurately measure topology. We measure the correlators on large, fine lattices in the quenched
approximation at 1.5Tc with high precision. Based on these data we first perform a continuum
extrapolation at fixed physical flow time and then extrapolate the continuum estimates to zero flow time.
The extrapolated correlators are then used to study the sphaleron rate by spectral reconstruction based on
perturbatively motivated models.
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I. INTRODUCTION

The classical vacuum of QCD is not unique; there are an
infinite number of topologically distinct classical vacua
defined by different integer values of the Chern-Simons
number. Transitions between different classical vacua are
important because such transitions change the axial quark
number, which would otherwise be conserved for massless
quarks and slowly changing for light quarks. The sphaleron
rate is defined as the mean-squared change in Chern-
Simons number per spacetime volume. It was first consid-
ered within QCD because of the role it may play in
electroweak baryogenesis [1,2]. More recently it has raised
interest because magnetic phenomena in heavy ion colli-
sions might give axial charge density an important role to
play in, for example, the chiral magnetic effect [3,4].
At high temperatures, where the QCD coupling is weak,
there are semiclassical approaches to determine the spha-
leron rate, but they falter long before one considers
physically relevant temperatures [5]. Therefore we will
make a first attempt to study the sphaleron rate non-
perturbatively using the methods of lattice QCD and
spectral reconstruction.
We begin by reviewing the definition and properties of

the sphaleron rate in QCD. Topology in QCD is determined

through the topological charge density qðxÞ and its integral,
the topological charge Q,

Q¼
Z

d4xqðxÞ;qðxÞ¼ g2

32π2
ϵμνρσTrfFμνðxÞFρσðxÞg; ð1Þ

where ϵμνρσ is the totally antisymmetric tensor andFμν is the
field strength tensor. It can be proven thatQ is an integer for
smooth vacuum-to-vacuum configurations [6] and is equal
to the number of left-handed zero modes minus the right-
handed zero modes of the massless Dirac operator [7]. In
Minkowski time, the topological charge density determines
the violation of axial current conservation: neglecting quark
masses, the axial current Jμ5 ¼ ψ̄γμγ5ψ obeys [1]

∂μJ
μ
5 ¼ 2NfqðxÞ; ð2Þ

whereNf is the number of light quark flavors. The sphaleron
rateΓsphal is defined as the rate of themean squared change in
the topological charge per Minkowski 4-volume, or equiv-
alently the integration of the Wightman correlator of the
topological charge density. It can be reexpressed in terms of
the spectral function ρðωÞ of the topological-charge-density
two-point correlator at zero spatial momentum,

Γsphal ¼ 2T lim
ω→0

ρðωÞ
ω

; ð3Þ

which in turn is related to the Euclidean topological-
charge-density correlation function GðτÞ through an inte-
gral relation,
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GðτÞ ¼
Z

d3xhqð0⃗; 0Þqðx⃗; τÞi

¼ −
Z

∞

0

dω
π

ρðωÞ cosh½ωð1=2T − τÞ�
sinhðω=2TÞ : ð4Þ

Here T is the temperature and τ is the temporal distance
between the two charge-density operators, and the unusual
minus sign arises because q is a time reversal odd operator.
The sphaleron rate is of interest both in electroweak

baryogenesis [2,5,8] and heavy ion collisions [3,4,9]. For
electroweak interacting matter the sphaleron rate has been
well understood and determined using Bödeker’s effective
theory [10–13] in the weak-coupling regime. These inno-
vations allowed for a nonperturbative semiclassical real-
time evaluation on a Minkowski lattice [14,15]. A similar
study for the weak-coupling behavior of the SU(3) spha-
leron rate is given in [5], while for the physically interesting
coupling regime a direct evaluation in Minkowski space is
impossible. The results of nonperturbative lattice studies
are also rather limited. A recent lattice QCD study on the
SU(3) sphaleron rate can be found in [16].
In this work we attempt to give a constraint on the

sphaleron rate by fitting Euclidean correlators to perturba-
tively motivated models in different scenarios. Due to high-
frequency fluctuations of the gauge fields on the lattice, the
correlators considered in this work are noisy, and some
noise reduction method is necessary. Gradient flow [17–19]
is the preferred method because it has a valid definition in
terms of continuum field theory and we have a good
analytical understanding of how it affects the gauge fields.
This makes it preferable to traditional approaches such as
cooling [20,21], or APE [22], stout [23], or HYP [24]
smearing. Related studies can be found in [25–27]. Since its
introduction, gradient flow has proven to be useful for a
variety of issues in lattice QCD [28–32]. It also provides
access to investigate how instantons emerge in the con-
tinuum limit of lattice QCD [16,33–35]. In this work the
gradient flow is mainly employed as a noise reduction
technique. The field smearing nature of the gradient flow
enables the creation of smooth gauge configurations on the
lattice, from which a well-defined topological charge can
be obtained [18,36].
This study is closely related to our previous work [37],

which shares the same implementation of the gradient flow
and lattice setup. The strategy for the continuum and flow-
time-to-zero extrapolation is also similar. The subtle
differences will be addressed in later sections.
In the following we briefly introduce the lattice setup,

including our implementation of the topological charge
(density) and gradient flow on the lattice (Sec. II). In
Sec. III we examine under what conditions our definition
of topological density correctly returns the topology, and we
investigate whether topological freezing will affect our
results. Section IV is devoted to the continuum extrapolation
at fixed flow time and the subsequent extrapolation to zero

flow time. In Sec. V we review the perturbative spectral
function and combine it with various models for low-
frequency contributions to extract the sphaleron rate from
the lattice data. We then discuss the results and conclude
in Sec. VI.

II. LATTICE SETUP

The setup in this work is identical to that of our previous
work [37]. We perform numerical calculations of SU(3)
Yang-Mills theory in 4-dimensional spacetime with peri-
odic boundary conditions for all directions. The configu-
rations are generated on large, fine isotropic lattices in the
quenched approximation using the standard Wilson gauge
action. To make sure that the configurations are sampled
from the thermal equilibrium we first perform 5000 heat-
bath sweeps. Afterwards we save one configuration after
every 500 combined sweeps, where a combined sweep
consists of one heat-bath and four over-relaxation sweeps.
We have checked that this procedure eliminates autocorre-
lations between saved configurations in all quantities we
consider except for total topology, which we discuss later.
With the aim of providing results in the continuum limit,

we measure the topological charge density correlators on
five different lattices. For each lattice the β value is tuned
according to r0Tc ¼ 0.7457ð45Þ [38] so that all are at
almost the same temperature of 1.5Tc. The scale setting is
done via the Sommer parameter r0 [39] with parametriza-
tion from [38] and updated coefficients from [40]. We
summarize the key information in Table I.
We use a gluonic definition of the topological charge

density qðxÞ based on an a2-improved implementation of
the field strength tensor. Rather than the standard “clover”
sum of four square plaquettes, we use a mixture of square
and 1 × 2 rectangular plaquettes [41]

FImp
μν ðnÞ ¼ 5

3
Cð1;1Þ
μν ðnÞ − 1

3
Cð1;2Þ
μν ðnÞ; ð5Þ

where Cðm;nÞ
μν ðnÞ are field strength tensors constructed from

the variant clover terms made up of plaquette rectangles
Wm×n

μν ; see [41] for details. This is, however, insufficient to
provide a qðxÞ definition which captures topological
information, as it suffers both from large renormalization

TABLE I. Lattice spacings, lattice extents, β values and
statistics of configurations in this work. The lattice spacing a
is determined by the Sommer scale (see [39]).

a (fm) a−1 (GeV) Nσ Nτ β T=Tc #conf.

0.0262 7.534 64 16 6.8736 1.51 10000
0.0215 9.187 80 20 7.0350 1.47 10000
0.0178 11.11 96 24 7.1920 1.48 10000
0.0140 14.14 120 30 7.3940 1.51 10000
0.0117 16.88 144 36 7.5440 1.50 10000

LUIS ALTENKORT et al. PHYS. REV. D 103, 114513 (2021)

114513-2



issues and nontopological noise. In order to obtain a well-
defined definition of qðxÞ that accurately captures topo-
logical information, we need to apply gradient flow to
smooth out the highest-frequency fluctuations in the gauge
fields.
The gradient flow introduces a flow-time variable τF and

a gauge field BμðτF; xÞ which is set equal to the physical
gauge field AμðxÞ at τF ¼ 0 and subsequently evolves with
increasing flow time τF by gradient descent under the Yang-
Mills action:

BμðτF ¼ 0; xÞ ¼ AμðxÞ;
∂Bμ

∂τF ¼ DB
νGB

νμ: ð6Þ

The superscript B indicates that DB
νGB

νμ is evaluated using
BμðτFÞ rather than Aμ. We adopt a Symanzik improved
discretization of the gradient flow called Zeuthen flow [42],
which introduces no new Oða2Þ discretization errors. The
discretized flow equation is integrated in small steps using a
third-order Runge-Kutta algorithm with an adaptive step-
size. The same numerical implementation of the gradient
flow is also employed in [37]. The observables aremeasured
on flow times

ffiffiffiffiffiffiffi
8τF

p
T ∈ f0; 0.001;…; 0.2; 0.205;…; 0.3g.

Gradient flow can be understood as a modification of the
operators used in the measurement, replacing the elemen-
tary links with unitarized averages over many paths, an
extreme form of the use of “fat links.” At lowest perturba-
tive order it is equivalent to replacing the gauge fields with
their averages over a Gaussian envelope with width

ffiffiffiffiffiffiffi
8τF

p
,

but gradient flow is a nonperturbatively well-defined and
gauge invariant procedure.
Using gradient flow to modify our operators is a two-

edged sword. As we increase the amount of flow, the
elimination of UV fluctuations makes the correlation
functions less noisy. In addition, the lattice definition of
qðxÞ is always contaminated by nontopological high-
dimension operators suppressed by powers of the lattice
spacing a, and if fluctuations with wave number k ∼ 1=a
are present, these operators contaminate our measurement
with nontopological effects. By eliminating such short-
distance fluctuations, gradient flow improves the topologi-
cal behavior of qðxÞ. As we will soon see, there is a lattice
spacing dependent flow depth above which qðxÞ correctly
captures topological information. Smaller values cannot be
trusted and must be avoided. But the value of the corre-
lation function is τF-dependent and only the τF → 0 limit
corresponds to the desired correlation function. This limit
must be extracted by extrapolation; but as we increase τF,
the difference eventually becomes enough that the finite τF
correlator is not useful in trying to extrapolate to τF → 0, as
very coarse lattices do not help us to take the continuum
limit. On dimensional grounds, one expects that, for a
correlation function measured over a separation τ, these
corrections will be dependent on τF=τ2. Only sufficiently
small τF=τ2 values will be in a useful scaling window where

they help determine the τF → 0 extrapolation. For larger
values physical information is lost; indeed, above a certain
ratio of τF=τ2 the correlation function even has the wrong
sign [43]. Therefore there is also a τ-dependent upper limit
on available τF values; Ref. [43] conservatively advisesffiffiffiffiffiffiffi
8τF

p
< 0.33τ.

III. ROLE OF TOPOLOGY

Because the observable q is a topological density, it
makes sense to first check what role topology plays in our
calculations. This means, first, to see what τF value is
necessary before q returns accurate topological informa-
tion, and second, to check that topological freezing does
not significantly affect our results.
If we define q using the field strength from Eq. (5)

but without applying any gradient flow, the desired
topological density operator mixes with nontopological
higher-dimension operators which contribute large noisy
contributions to the determined topology. This effect is
ameliorated as we increase the amount of flow. To examine
this in detail, we study the topological susceptibility χ ≡
hQ2i=Ω where Ω is the spacetime volume of the lattice. We
compute this on each lattice at a series of flow times τF. Our
results, shown in Fig. 1, indicate that our determined
topological susceptibility stabilizes above τF ¼ 0.5a2.
For smaller values, the aforementioned artifacts signifi-
cantly contaminate the determined topological susceptibil-
ity. We will therefore only rely on data with τF ≥ 0.5a2 in
what follows, so that we can be confident that our operator
faithfully represents the topological density.
In analyzing the susceptibility, we found that Q evolves

slowly on our finer lattices, a phenomenon called topo-
logical freezing. This is visible in Fig. 1 in the much larger

FIG. 1. Topological susceptibility measured at different flow
times. The vertical line is the flow time which we have chosen as
a lower limit to ensure that q properly captures topology.
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error bars for the susceptibility for the finest lattices. If the
correlation functions we are interested in are sensitive to the
topological sector, then this can cause large autocorrelation
problems and poor statistical power in our results.
However, it is not clear that correlation functions of the
topological density should be especially sensitive to the
topological sector. After all, the sphaleron rate which we
are seeking to compute is not related to the topological
susceptibility; at weak coupling the sphaleron rate is
completely unrelated to Euclidean topology and instantons
]44 ]. Therefore, we will examine how much the topological

charge density correlators are affected by topological
sector, and therefore how much of a problem topological
freezing may be. We do this by measuring the qq
correlators separately in different topological sectors, and
then analyzing how much a misweighting or exclusion of
the Q ≠ 0 sectors might affect our results. We use the
Nτ ¼ 16 lattice for this study because the topological
susceptibility is relatively well determined there. To
improve our determination of the properties of the Q≠0
sector, we perform a Markov chain in which we prevent
Q ¼ 0 via an extra accept-reject step, to get a pure sample
of Q ≠ 0 configurations. We can then compare this with
both theQ ¼ 0 sector, and the proper mixture ofQ ¼ 0 and
Q ≠ 0 as determined from the topological susceptibility.
The results are shown in Fig. 2. TheQ ¼ 1 sector disagrees
with the Q ¼ 0 sector by more than their error bars, but
nevertheless the difference is so small that, given the small
fraction of Q ¼ 1 configurations in the full sample, the

difference is smaller than our statistical errors even for the
largest flow time where the errors are the smallest. This
implies that a misweighting of the Q ¼ 1 sector, even by a
factor of 2 relative to its correct weighting, will change the
correlation functions of interest by less than their statistical
errors and can therefore be ignored. Since the finer lattices
have a still smaller topological susceptibility and therefore
even less Q ¼ 1 configurations, we expect that this result
holds for those lattices as well. Therefore we will proceed
without considering topological freezing further.

IV. DOUBLE EXTRAPOLATION

Physics resides at zero lattice spacing, and Eq. (4) only
holds for the correlation function at τF ¼ 0. Therefore it is
necessary to perform both a continuum and a flow-time-to-
zero extrapolation. We first perform the continuum extrapo-
lation at each flow time, and then use these continuum-limit
values of GτFðτÞ to extrapolate to τF → 0.

A. Interpolation

In order to perform a continuum extrapolation, we first
have to interpolate the discretized data of the coarser
lattices to the distances of the finest one. For that we
use cubic splines in which the first derivative is constrained
to vanish at τT ¼ 0.5 which reflects the symmetry of the
correlator on the lattice.
The data is only interpolated in the range τT∈ ½0.166;0.5�.

The correlator at shorter distances is not very helpful in
extracting the low-frequency spectral function, and our
scaling window of useful τF values closes up at small τT,
so we make no attempt to study smaller τT values. A set of
interpolations at one selected flow time is shown on the left
side of Fig. 3.

B. Continuum extrapolation

The continuum extrapolation is performed by linear fits
in 1=N2

τ of the interpolated data at separations of the finest
lattice (Nτ ¼ 36) using the Ansatz

Gτ;τFðNτÞ
T5

¼ m · N−2
τ þ b; ð7Þ

where b is the continuum correlator normalized by T5. To
estimate the statistical error, we do bootstrap resampling
with 10000 samples, where each sample consists of 10000
configurations. The interpolations and extrapolations are
done on each sample.
In the next subsection, we will define minimum and

maximum ranges for τF to ensure that we are in a scaling
window for the τF extrapolation. In some cases that window
will be in conflict with the condition τF > 0.5a2 obtained in
Sec. III. For each τ value, we will then exclude those
lattices where this conflict occurs from the continuum

FIG. 2. Topological charge density correlator of the Nτ ¼ 16

lattice at flow times
ffiffiffiffiffiffiffiffiffiffiffi
8τmax

F

p
T ¼ 0.5220τT (the largest flow times

used in the later extrapolation). Top: Comparison of the full
correlator with the correlators of the Q ¼ 0 and Q ¼ 1 sectors.
Bottom: Difference between the full correlator and the correlator
computed using only the Q ¼ 0 sector, in comparison to the
statistical error bars.
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extrapolation; otherwise we extrapolate using all available
lattices.
The left-hand side of Fig. 3 shows the topological charge

density correlators at flow time
ffiffiffiffiffiffiffi
8τF

p
T ¼ 0.15 for each

lattice spacing. The error bands belong to the interpola-
tions, and we see that the relative cutoff effects of the
lattices are small. This is also visible on the right-hand side
of Fig. 3, where we show the correlator as a function of
1=N2

τ for some selected separations at flow times chosen
from a flow range which we will define in the next section
[see Eq. (8)]. The continuum extrapolated values are
within the error bars of the lattice data in every case.
This is not surprising since the gradient flow produces
renormalized operators that are insensitive to lattice-scale
fluctuations.

C. Flow-time-to-zero extrapolation

In order to perform an extrapolation to zero flow time,
we first need to decide on the flow time range for the
extrapolation. In Ref. [43] the authors propose a criterion
for the upper limit of the flow time at given separation; it is
determined by allowing the leading-order term of
hFa

μνF̃a
μνðτÞFb

αβF̃
b
αβð0Þi to differ from its nonflowed

counterpart by at most 1%. For our nonperturbative data
this constraint appears to be overly strict: the correlator’s τF
dependence is still moderate even for somewhat larger τF
values, which can therefore be used in the small flow-time
extrapolation. We loosen the criterion to a 20% deviation,
which leads to a maximum flow time within which a linear
extrapolation is applicable, namely

ffiffiffiffiffiffiffiffiffiffiffi
8τmax

F

p
T ¼ 0.5220τT.

Because very small τF values are noisy, we then fit in the
range

τF ∈ ½0.5τmax
F ; τmax

F �: ð8Þ

A general analysis of continuum operators on gradient-
flowed field configurations shows that, in terms of
unflowed operators, they can be expanded as an operator
product expansion, and correspond to the desired operator,
possibly with a renormalization factor, plus a series of high-
dimension operators with compensating positive powers of
τF as determined by operator dimension; see for instance
Refs [29,45]. In our case we know that the topological
charge does not renormalize (as we easily verify by seeing
that it integrates to an integer) and that the high-dimension
operators must vanish on space integration, implying that
they are of form, e.g., τFD2q. Such a contaminating high-
dimension operator does not affect the determined total
topology

R
qd4x, but it does affect the correlation functions,

leading to corrections of order τF=τ2 based on dimensional
reasoning. Therefore, an appropriate Ansatz for our corre-
lation function at small τF, incorporating the lowest-order
corrections, is

GτðτFÞ
T5

¼ c · τFT2 þ d; ð9Þ

where d is the correlator at zero flow time, again normal-
ized by T5. The extrapolation procedure is illustrated in
Fig. 4. Each curve represents the continuum-extrapolated
GτFðτÞ at a fixed separation τ, as a function of τF. The areas
which are used for the flow-time-to-zero extrapolation
according to Eq. (8) are colored. The gray areas are not
used in the extrapolation. The straight lines in black
indicate the linear flow-time-to-zero extrapolation, while
the discrete points at τFT2 ¼ 0 are the final extrapolated

FIG. 3. Left: topological charge density correlation function at flow time
ffiffiffiffiffiffiffi
8τF

p
T ¼ 0.15 for all lattice spacings. Error bands represent

cubic spline interpolations. Right: continuum extrapolation for some selected separations at flow times halfway between the beginning
and the end of each flow range Eq. (8).
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values at τF ¼ 0. We see that the extrapolated value and the
value at the largest-used τF differ by at most 20%,
indicating that a small-τF expansion should still be valid
and that higher-order τ2F terms should only give a few
percent corrections and are not (yet) needed.
The topological charge density qðxÞ is odd under time

reflections. Due to arguments based on reflection positivity
[46,47], the correlation function has to be negative for all
nonzero separations τT ≠ 0 in the continuum [46,48].
Fig. 5 shows our final continuum and flow time extrapo-
lated correlator. We indeed observe that the correlator is
negative in the range we are analyzing, that is τT > 0.

V. SPHALERON RATE

The sphaleron rate is determined by the small-frequency
limiting behavior of the spectral function as shown in
Eq. (3), but the Euclidean function receives large contri-
butions from the high-frequency tail of the spectral func-
tion, particularly at smaller temporal separations, as shown
in Eq. (4). Therefore we need to incorporate as much
information as we can about this large-frequency region.
Fortunately, the behavior at large frequencies should be
more perturbative than the small-frequency part, and the

spectral function has been computed both at leading order
(LO) and at next-to-leading order (NLO) in the coupling in
Ref. [49]:

ρLOðωÞ ¼ dAω4g4

212π5
coth

�
ω

4T

�
; ð10Þ

ρNLOðωÞ ¼ ρLOðωÞ þ dAω4

212π5
coth

�
ω

4T

�
g6ðμ̄ÞNc

ð4πÞ2

×

�
22

3
ln

μ̄2

ω2
þ 97

3
þ 8ϕTðωÞ

�
: ð11Þ

Note that our definition of the spectral function differs from
that in Ref. [49] by a relative minus sign. Here dA ¼
N2

c − 1 ¼ 8 is the dimension of the adjoint representation,
which counts the number of gluon states. At leading order
one does not obtain a prescription on determining the value
of the running coupling. We therefore make an educated
guess of the renormalization point choosing the value
from the 1-loop order “EQCD” setup yielding (Eq. (5.26)
in [49])

lnðμ̄optðTÞÞ≡ ln ð4πTÞ − γE −
1

22
: ð12Þ

Using this relation the coupling is fixed to the value
g2ðμ̄optðTÞÞ ¼ 2.2346 at T ¼ 1.5Tc, where we use an
updated relation Tc ¼ 1.24ΛMS [38]. We introduce an
overall scaling coefficient B in the LO models to compen-
sate for the possibly bad choice of value of the coupling
constant. As determined in [49], at NLO, see Eq. (11), the
optimization of the scale μ̄ and the running of the strong
coupling constant with ω is possible in the regime ω ≫ πT.
In this regime the function ϕTðωÞ, defined in Eq. (4.4) of

FIG. 4. Continuum-extrapolated topological charge density
correlator as a function of flow time. Dark/light areas are the
central value/one sigma error region. The colored parts are the
ranges which are used to perform the flow time extrapolations,
while the black lines on top indicate the linear extrapolations. The
gray areas are not considered in the flow time extrapolation.

FIG. 5. Continuum extrapolated topological charge density
correlator as well as the final flow-time-extrapolated correlator.
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[49], is small which allows to define the optimized
renormalization point as a function of ω as (Eq. (5.25)
in [49])

lnðμ̄optðωÞÞ≡ lnðωÞ − 97

44
: ð13Þ

For values of ω outside this regime one again falls back to
the renormalization point given by Eq. (12). Following the
prescription given in [49], one uses the larger value of
Eqs. (12) and (13) for given ω. The switch between the two
formulations happens at ω=T ¼ 19.456π.
However, we also introduce the scaling parameter B in

the NLO models in order to compensate for higher order
corrections to the value of the renormalization point as well
as other uncertainties in renormalization. Because the
perturbative series is not rapidly converging at this temper-
ature, we fit the lattice data using both the LO and the NLO
spectral function, considering the difference as an estimate
of the uncertainties which arise due to our incomplete
knowledge of the spectral function’s high frequency func-
tional form.
First, we consider a fit to just the leading-order spectral

function. The fit is poor, with χ2=d:o:f: ¼ 68.6. Replacing
the leading-order spectral function with the NLO expres-
sion from Eq. (11), even allowing for an additional
multiplicative overall rescaling B, also gives a poor fit,
with χ2=d:o:f: ¼ 33.2. Therefore it is necessary (and
theoretically justified) to incorporate an additional struc-
ture, representing a low frequency contribution to the
spectral function. Due to a lack of theoretical guidance,
we will consider three possibilities. The first is a simple δ-

peak in ρ=ω whose overall coefficient A=T4 is treated as
another fit parameter. This model is theoretically motivated
by the appearance of a sharp feature in perturbative
calculations [50]. We call this Model M1 when combined
with the LO given in Eq. (10) times the scaling parameter B
and M4 when combined with B times the NLO spectral
function from Eq. (11). Because the actual coupling is
rather large, the assumption of a sharp peak may not be
reliable, so we also consider a model in which the peak is
broadened into a Breit-Wigner distribution, e.g.,
ρpeak=ðωT3Þ ¼ ðA=T4ÞCT2=ðC2T2 þ ω2Þ. We treat A=T4

as a fitting parameter and consider a few distinct C values,
varying from a rather narrow to a quite wide structure. We
call this model M2 when combined with Eq. (10) and M5
when combined with Eq. (11). Finally we consider the
large-width limit of this form, ρpeak=ðωT3Þ ¼ A=T4, which
is model M3 or M6. In summary, our models are:

M1∶
ρðωÞ
ωT3

¼ A
T4

δ

�
ω

T

�
þ B

ρLOðωÞ
ωT3

M2∶
ρðωÞ
ωT3

¼ A
T4

CT2

C2T2 þ ω2
þ B

ρLOðωÞ
ωT3

M3∶
ρðωÞ
ωT3

¼ A
T4

þ B
ρLOðωÞ
ωT3

M4∶
ρðωÞ
ωT3

¼ A
T4

δ

�
ω

T

�
þ B

ρNLOðωÞ
ωT3

M5∶
ρðωÞ
ωT3

¼ A
T4

CT2

C2T2 þ ω2
þ B

ρNLOðωÞ
ωT3

M6∶
ρðωÞ
ωT3

¼ A
T4

þ B
ρNLOðωÞ
ωT3

: ð14Þ

The sphaleron rate is 2T4 times the value of the right-hand
side at ω ¼ 0. For M2 and M5 the sphaleron rate can be
calculated as Γsphal=T4 ¼ 2A=CT4 while for M3 and M6 it
is Γsphal=T4 ¼ 2A=T4. For M1 and M4, the δ-peak leads to
an infinite sphaleron rate.
The fit results are summarized in Table II. In each case,

our data rather tightly constraints the fit parameters, and the
quality of the fit (χ2=d:o:f:) is fairly good. The fits based on
the NLO high-frequency spectral function are slightly
better than those using the LO spectral function, but no
model for the low-frequency behavior is clearly preferred.
We also show the ratio of fit correlators to the lattice data,
and the resulting spectral functions in Figs. 6 and 7.
We use the Levenberg-Marquardt algorithm for χ2-fitting

and stop the iteration when a relative tolerance of 10−7 is
reached for the fit parameters or the χ2=d:o:f. Only data
points at or beyond τT ¼ 0.25 are used in the fit, since the
transport information is mainly encoded in the correlator at
large separations and the τF-window over which we can
perform the flow-time-to-zero extrapolation closes up as we
go to shorter and shorter separations.

FIG. 6. The ratio of fit correlators to lattice data for different
models.
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Now we calculate the sphaleron rate in different models
according to Eq. (3) and summarize them in Fig. 8. From
our analysis we can see that a δ-like transport peak and a
linear-in-frequency transport peak are just special cases of a
Breit-Wigner transport peak with zero and infinite width.
Within the set of fit models we have considered, we find
that the sphaleron rate varies within the range

Γspha=T4 ≥ 0.030ð2Þ; based onM1–M3;

Γspha=T4 ≥ 0.024ð2Þ; based onM4–M6: ð15Þ

The first line is based on the LO high-frequency spectral
function and the second line is based on the NLO spectral
function.
Note that our results indicate that a spectral function with

only a high-frequency part does not provide a good fit;
there must be a low-frequency structure in addition. The
functional forms we have considered contain two extremes
for such a form; an infinitely sharp peak (M1/M4) and an
infinitely broad peak (M3/M6). Therefore we consider
them to span the range of likely functional forms for a
“peak,” and we propose that the lower value found can be
viewed as a lower limit on the sphaleron rate. We are aware
that this claim depends somewhat on our choice of fitting

FIG. 7. Left: small frequency parts of the fit spectral functions from different models. For M1 and M4 there is a δ-peak at zero
frequency, which is invisible in the plot. Right: same as the left panel but in larger ω=T range.

TABLE II. Fitted parameters and χ2=d:o:f: for different Ansä-
tze. The numbers in the parentheses are statistical uncertainties
from a bootstrap analysis. The sphaleron rate Γsphal=T4 is
calculated from the fitted parameters A=T4 and C. The meaning
of each fit parameter and how the sphaleron rate is determined in
each Ansatz can be found in Sec. V. In Ansatz M1–M3 the LO
spectral function has been used at large frequencies while for
M4–M6 the NLO spectral function has been used.

Ansatz A=T4 × 10 B C χ2=d:o:f: Γsphal=T4 × 10

M1 0.68(4) 2.27(7) 1.86 ∞
M2 0.49(3) 2.25(7) 0.5 2.07 1.94(10)
M2 0.54(3) 2.24(7) 1.0 2.02 1.08(6)
M2 0.65(4) 2.21(7) 2.0 1.93 0.65(4)
M2 1.01(5) 2.14(7) 5.0 1.76 0.40(2)
M3 0.15(1) 1.98(8) 1.36 0.30(2)
M4 0.53(4) 1.25(4) 1.35 ∞
M5 0.38(3) 1.25(4) 0.5 1.53 1.50(11)
M5 0.42(3) 1.24(4) 1.0 1.51 0.84(6)
M5 0.50(4) 1.23(4) 2.0 1.48 0.50(4)
M5 0.79(6) 1.20(4) 5.0 1.47 0.32(3)
M6 0.12(1) 1.12(5) 1.29 0.24(2)

FIG. 8. The sphaleron rate from different models at 1.5Tc.
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functions considered, but again we have considered a broad
range with peak structures ranging from sharp to perfectly
wide, so we consider our bound to be reasonable.

VI. CONCLUSION

We have calculated the topological charge correlation
functions on 5 different large and fine isotropic lattices in
pure-glue QCD at a temperature T ¼ 1.5Tc. To improve the
signal we used the gradient flow method. Within the
framework of the gradient flow we developed a method-
ology to perform reliable double-extrapolations for the
topological charge correlators. The correlators extrapolated
to the a → 0 and τF → 0 limit are then used in the spectral
reconstruction, where we use perturbatively inspired mod-
els considering uncertainties from different sources. Using
either the LO or the NLO spectral function alone leads to a
very poor fit; the data demand the addition of a low-
frequency structure. By considering a range of such
structures, the lowest value we can obtain for the sphaleron
rate, for the case that the added structure is completely flat,
is Γspha=T4 ≥ 0.024 at 1.5Tc. Low-frequency structures
containing an actual peak give higher values for Γspha. If
only the LO spectral function is used in the fit, then a
stronger constraint, Γspha=T4 ≥ 0.030 is obtained.
In our opinion there are a few take-home messages from

our work. First, the use of gradient flow is essential to
ensure that the topological charge correctly captures

topological information. However, only a limited flow
time range is useful for the flow-time-to-zero extrapolation.
At small separations and coarse lattices these constraints
cannot both be maintained, and we are driven to very fine
lattice spacings and can only use the larger available
separations. Second, although we were able to extract
continuum and flow-time-to-zero extrapolated data with
a few percent statistical error bars, the lack of clear
theoretical guidance in fitting the spectral function leads
to rather severe theory errors in the resulting sphaleron rate.
We can place a lower bound on the sphaleron rate, but not a
useful upper bound. It would be useful to improve our
theoretical understanding of the expected form for the
topological charge-density spectral function, particularly in
the low-frequency region; such improvements might allow
a reasonably good determination of the sphaleron rate.
All data from our calculations, presented in the figures of

this paper, can be found in [51].
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