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We study scalar fields propagating on Euclidean dynamical triangulations (EDTs). In this work, we
study the interaction of two scalar particles, and we show that in the appropriate limit we recover an
interaction compatible with Newton’s gravitational potential in four dimensions. Working in the quenched
approximation, we calculate the binding energy of a two-particle bound state, and we study its dependence
on the constituent particle mass in the nonrelativistic limit. We find a binding energy compatible with what
one expects for the ground state energy by solving the Schrödinger equation for Newton’s potential.
Agreement with this expectation is obtained in the infinite-volume, continuum limit of the lattice
calculation, providing nontrivial evidence that EDT is in fact a theory of gravity in four dimensions.
Furthermore, this result allows us to determine the lattice spacing within an EDT calculation for the first
time, and we find that the various lattice spacings are smaller than the Planck length, suggesting that we can
achieve a separation of scales and that there is no obstacle to taking a continuum limit. This lends further
support to the asymptotic safety scenario for gravity.
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I. INTRODUCTION

Quantum gravity is one of the great outstanding prob-
lems of theoretical physics. One possible approach to
obtaining a consistent, predictive theory is the asymptotic
safety scenario of Weinberg [1]. It is well known that
general relativity is not perturbatively renormalizable [2,3].
Although a low-energy effective theory can be formulated
[4,5], it comes with an infinite number of unknown
couplings and is thus limited in terms of its predictive
power. Asymptotic safety rests on the hope that there is a
strongly coupled ultraviolet fixed point, making it effec-
tively renormalizable nonperturbatively, with only a finite
number of parameters needing to be specified from experi-
ment. One would also hope that the number of relevant
parameters needing to be specified from experiment is
small, since a theory with few input parameters is more

predictive than one with many. If asymptotic safety is
realized for gravity, nonperturbative methods will be crucial
to convincingly establish this and to explore the detailed
properties of the theory.
Evidence that the asymptotic safety scenario is realized

for gravity comes mainly from the lattice [6–9] and from
the functional renormalization group [10–12], which was
pioneered for gravity in [13] (see e.g., [14–22] for intro-
ductions and reviews). This paper follows up on previous
work [9] using Euclidean dynamical triangulations (EDTs),
which is one of the original approaches to quantum gravity
on the lattice [23–25]. EDT is a discretization of Euclidean
quantum gravity, where the path integral is given by a sum
over geometries, weighted by the Einstein-Hilbert action
plus the action of the matter sector. In a lattice formulation
of an asymptotically safe theory, the ultraviolet fixed point
would appear as a continuous phase transition, the
approach to which defines a continuum limit. This is the
first test that EDT must pass. In addition to this, the theory
must reproduce classical general relativity in the appro-
priate limit. If EDT could pass these two tests, it would be a
candidate for an ultraviolet-complete theory of four-dimen-
sional quantum gravity.
We briefly review the evidence so far that EDT

may realize the asymptotic safety scenario for gravity.
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Reference [9] introduced a fine-tuning of the exponent of a
local measure term, showing that the tuning of this
parameter is necessary in order to recover semiclassical
physics. Although the local measure term was first intro-
duced some time ago in Ref. [26], the nice features of this
tuning have only been appreciated recently. Once the
tuning is done, four-dimensional geometries are recovered
that resemble Euclidean de Sitter space. There also appears
to be no obstacle to taking the continuum limit by following
the first order line to a possible critical end point, and
ensembles following this procedure were generated at a
number of different lattice spacings. The global Hausdorff
dimension was measured using finite-volume scaling and
shown to be close to four [9]. The spectral dimension,
which is a fractal dimension defined by a diffusion process,
varies with distance scale and approaches a value close to
four at long distances. The variation of the spectral
dimension with distance had also been found earlier in
other approaches [27–29]. The average over geometries in
Ref. [9] gives a result that is close to that of Euclidean de
Sitter space, and the quantitative agreement with the
classical solution gets better as the proposed continuum
limit is approached. The agreement between the classical
solution and the lattice data is actually the worst at long
distances, but improves as the lattice spacing is reduced.
This might seem surprising, since it is typically the short-
distance behavior that is modified by discretization effects,
but this type of effect on long-distance behavior is typical
when a symmetry of a theory is broken by the regulator, for
example, by the finite lattice spacing in the case of lattice
regularization. Then a fine-tuning is needed to approxi-
mately restore the symmetry at finite lattice spacing.
Residual symmetry-breaking effects appear at finite lattice
spacing and can modify the physics that depends on the
symmetry. The correct long-distance physics is then only
recovered when the symmetry is restored in the continuum
limit. An example of this is the Wilson fermion formulation
of lattice quantum chromodynamics, where the lattice
regulator breaks chiral symmetry. There a fine-tuning is
required to restore chiral symmetry, and even then, at finite
lattice spacing the chiral symmetry breaking leads to
distortions of the pion sector, which contains the lightest
physical states of the theory. Reference [9] argued by
analogy to the Wilson fermion case that the symmetry that
is broken by dynamical triangulations is continuum diffeo-
morphism invariance.
Further evidence that dynamical triangulations recover

the correct long-distance limit is given in Ref. [30], where it
is shown how to incorporate Kähler-Dirac fermions [31].
This approach generalizes the staggered fermion formu-
lation to the random lattices of dynamical triangulations
without the need to introduce vielbeins or spin connections.
It is well known that the Kähler-Dirac action reduces to four
copies of Dirac fermions in the flat-space, continuum limit
[32]. Reference [30] found evidence that this is the case for

Kähler-Dirac fermions on dynamical triangulations in the
large-volume (small curvature) limit, but only if the
continuum limit is also taken. This is seen in the approxi-
mate fourfold degeneracy in the low-lying eigenvalues of
the Kähler-Dirac matrix and in the degeneracy of scalar
bound states in the continuum limit. The fourfold degen-
eracy is lifted by lattice effects in a similar manner to what
is found with staggered fermions in lattice quantum
chromodynamics (QCD) [33], but as in lattice QCD, the
degeneracy appears to be restored in the continuum limit.
The evidence that these discretization effects vanish sug-
gests that continuum Kähler-Dirac fermions in four dimen-
sions are recovered at that point. An additional advantage
of Kähler-Dirac fermions is that they possess an exactUð1Þ
symmetry, which is related to continuum chiral symmetry.
A study of fermion bilinear condensates provides strong
evidence that this Uð1Þ symmetry is not spontaneously
broken at order of the Planck scale, implying that fermion
bound states do not acquire unacceptably large masses due
to chiral symmetry breaking. These results for Kähler-Dirac
fermions in EDT are highly nontrivial and provide further
evidence for the asymptotic safety scenario for gravity and
matter.
In this work, we continue our investigation of matter

fields living on dynamical triangulations, this time focusing
on scalar fields. We follow the work of de Bakker and Smit
[34] in our implementation of scalar fields. They looked at
scalars propagating on EDT backgrounds (without the
inclusion of a local measure term) and the binding energy
of bound states of scalar particles. They found clear
evidence of gravitational binding, such that there was an
attractive force between the scalars, but they were not able
to make contact with the Newtonian limit (see [35] for
recent work attempting to understand the systematic errors
associated with the original de Bakker, Smit analysis). In
the original reference [34], these authors outlined a pre-
scription for recovering the Newtonian limit. In this work,
we follow their prescription, using our approach to taking
the continuum limit and our general strategy, which has
been successful for other observables. We confirm the
finding that there is an attractive force between scalar
particles, and after taking the continuum, infinite-volume
limit, we find results compatible with Newtonian gravity in
the nonrelativistic limit. We can therefore use Newton’s law
to infer a value of Newton’s constant G, which allows us to
convert lattice units into units of the Planck length. We find
that our lattice spacings are smaller than the Planck length
and that for our finest lattice spacings we are starting to see
a separation of scales, such that the lattice spacing is
starting to become much smaller than the Planck scale. This
provides evidence that not only does the formulation
recover the correct long-distance physics, but also that
there is no barrier to taking the continuum limit.
This paper is organized as follows: Sec. II reviews the

EDT formulation and the details of the lattice simulations.
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Section III reviews how to add scalar fields to EDTand how
to compute the scalar propagator and the binding energy of
a bound state of two scalar particles. Section IV presents
our numerical results for the binding energy and the
analysis needed to recover the form of the interaction
and Newton’s constant. We conclude in Sec. V. Finally, the
Appendix gives some details of the fitter used in the
analysis.

II. EUCLIDEAN DYNAMICAL TRIANGULATIONS

A. The model

In the continuum, for fixed global topology, the four-
dimensional Euclidean quantum gravity partition function
is given by the path integral sum over all geometries,
weighted by the Einstein-Hilbert action and the action for
the matter sector,

ZE ¼
Z

D½g�D½ϕ�e−SEH½g�−SM ½ϕ�; ð1Þ

where the Euclidean Einstein-Hilbert action is

SEH ¼ −
1

16πG

Z
d4x

ffiffiffi
g

p ðR − 2ΛÞ; ð2Þ

with R the curvature scalar, Λ the cosmological constant, G
Newton’s constant, and we adopt for the matter sector a
real, noninteracting massive scalar field minimally coupled
to gravity,

SM ¼
Z

d4x
ffiffiffi
g

p �
1

2
gμν∂μϕ∂νϕþ 1

2
m2

0ϕ
2

�
; ð3Þ

with bare mass m0 for the scalar field.
The partition function for lattice quantum gravity that we

use in this work is that of Euclidean dynamical triangu-
lations, where the path integral at finite lattice spacing is
approximated by the sum over all four geometries con-
structed by gluing together four-dimensional, equilateral
simplices. It is given by [23,36]

ZE ¼
X
T

1

CT

�YN2

j¼1

OðtjÞβ
�
e−SER ; ð4Þ

where the factor CT divides out equivalent ways of labeling
the vertices in a given geometry, the term in brackets is a
local measure term with the product over all triangles, and
OðtjÞ is the order of triangle j, i.e., the number of four-
simplices to which it belongs. SER is the Einstein-Regge
action [37] of discretized gravity,

SER ¼ −κ
XN2

j¼1

V2δj þ λ
XN4

j¼1

V4; ð5Þ

where κ ¼ ð8πGÞ−1, λ ¼ κΛ, δj ¼ 2π −OðtjÞ arccosð1=4Þ
is the deficit angle around a triangular hinge tj, and where
the volume of a d-simplex of equilateral edge length a is
given by

Vd ¼
ffiffiffiffiffiffiffiffiffiffiffi
dþ 1

p

d!
ffiffiffiffiffi
2d

p ad: ð6Þ

It is standard to absorb the overall numerical factors into
constants and to perform the sums in Eq. (5) so that the
lattice action is given by the concise form

SER ¼ −κ2N2 þ κ4N4; ð7Þ

withN4 the number of four-simplices andN2 the number of
triangles. The parameters κ2, κ4, and β are inputs to the
simulations whose values must be adjusted in order to
approach the continuum limit. We do not include the matter
action in the Boltzmann weight when generating our
ensembles; this is known as the quenched approximation.
Although this is an uncontrolled approximation, we still
expect many features of the full theory to be preserved in
the quenched theory. The main advantage of quenching is
that it allows us to reuse the ensembles generated and
analyzed in previous works [9].

B. Simulation details

The details of the generation of the lattice configurations
used in this work are given in Ref. [9], and they are
summarized briefly here. The lattice geometries are made
by gluing together four-dimensional simplices along their
three-dimensional faces. The four-simplices are equilateral,
with constant edge length a, and the dynamics is encoded
in the connectivity of the simplices. We sum over a class of
triangulations known as degenerate triangulations [38].
This class of triangulations does not obey the combinatorial
manifold constraints, though it does lead to a reduction of
finite-size effects by approximately a factor of 10 over
combinatorial triangulations, giving it some numerical
advantages [38]. When the triangulations are degenerate,
not all of the neighbors of a given four-simplex are
necessarily distinct. Also, distinct four-simplices may share
the same five vertex labels. Such configurations are not
allowed when the lattices obey the combinatorial manifold
constraints. Evidence for the existence of a continuum limit
for degenerate triangulations with a nontrivial measure term
is given in Ref. [9]. It is likely that this universality class
would be shared by combinatorial triangulations if the
continuum limit does in fact exist, as discussed in Ref. [9].
The algorithm for evaluating the partition function in

Eq. (4) is now standard and consists of a set of ergodic local
moves, known as the Pachner moves, which are used to
update the geometries [24,39,40]. The proposed local
changes are then accepted or rejected using a Metropolis
step. Most of the lattices used in this work were generated
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using a parallel variant of this standard algorithm
known as parallel rejection [9]. Parallel rejection partially
compensates for the low acceptance of the proposed
local changes by the Metropolis accept/reject step. We
define a sweep as a fixed number of attempted moves,
though the precise number varies across ensembles. A
sweep could be 108 or 109 attempted moves, with the
acceptance rate depending strongly on the location in the
phase diagram. Acceptance rates range from around 10−2

to 10−4. Measurements are made after 10 to 50 sweeps,
and our longer runs were for tens of thousands, or even
100,000 sweeps.
The global topology of the geometries is fixed to S4. The

topology remains fixed since the local Pachner moves are
topology preserving, and we choose S4 by starting from the
minimal four-sphere at the beginning of the Monte Carlo
evolution. In order to take the infinite lattice volume limit, it
is necessary to fine-tune the bare parameter κ4 to its critical
value. This amounts to a tuning of the bare cosmological
constant. Although this tuning is required to take the
infinite lattice volume limit, it does not guarantee that
we can take the infinite physical volume limit. The infinite
lattice volume limit can be taken even in an unphysical
phase where the extent of the lattice “universe” is only a
few lattice spacings, so that the extent of the physical
volume is on the order of the ultraviolet cutoff scale. As
shown in Ref. [9], there is a region of the phase diagram
with extended geometries, so that the large lattice volume
limit also corresponds to the limit of large physical volume.
The simulations are done at approximately fixed lattice

four-volumes. The Pachner moves require the volume to
vary in order for them to be ergotic, though in practice the
volume fluctuations about the target four-volume are con-
strained to be small. This is done by introducing a volume
preserving term in the action δλjNf

4 − N4j, which keeps the
four-volume close to a fiducial value Nf

4 . This term does
not alter the action when N4 ¼ Nf

4 , but it does keep the
volume fluctuations from becoming too large to be prac-
tical in numerical simulations. In principal, one should take
the limit in which δλ goes to zero, but in practice, setting it
small enough does not appear to lead to significant
systematic errors. In Ref. [9], the parameter δλ was taken
to be 0.04, though taking this value smaller did not lead to a
noticeable change in the results.
The phase diagram for the theory is shown in Fig. 1. The

solid line AB is a first order phase transition line that
separates the branched polymer phase and the collapsed
phase. Neither of these phases looks much like semi-
classical gravity. The branched polymer phase has
Hausdorff dimension 2, while the collapsed phase has a
large, possibly infinite, dimension. The crinkled region
does not appear to be distinct from the collapsed phase, but
is connected to it by an analytic crossover. The crinkled
region requires larger volumes to see the characteristic
behavior of the collapsed phase, suggesting that it is a part

of the collapsed phase with especially large finite-size
effects [41]. The results of Ref. [42] for combinatorial
triangulations are in broad agreement with this picture of
the phase diagram.
The exponent β associated with the local measure term

must be fine-tuned in order to obtain ensembles with four-
dimensional, semiclassical properties. It has been shown in
Ref. [9] that close to the transition line AB the lattice
geometries have semiclassical properties, with global
Hausdorff dimension close to four and a spectral dimension
that approaches four at long distances. The prescription for
recovering semiclassical geometries is to approach the line
AB from the left. Since a first order transition is charac-
terized by tunneling between metastable states, if we
simulate too close to the transition line, then some of
the time a given run will be in the wrong state. In order to
minimize contamination from the wrong phase, we only
take those parts of a run that are in the correct phase. We
find that this selection procedure becomes unnecessary at
the finest lattice spacing considered in this work, since we
can simulate somewhat farther from the transition line
without losing the four-dimensional finite-volume scaling.
This is fortunate, since future runs will be at ever finer
lattice spacings, so will likely not suffer from this system-
atic error.
Table I shows the parameters for the ensembles used in

this work. Most of these ensembles were generated and are
discussed in Ref. [9], but some of them are new. We have
added a larger lattice volume at our finest lattice spacing, as
well as larger and smaller lattice volumes at β ¼ 0 to aid
with the infinite-volume extrapolation.
The determination of the relative lattice spacing follows

the procedure of Ref. [9], which looked at the return
probability of a diffusion process on the lattice geometries.
The return probability is dimensionless, but varies as a
function of the diffusion time step, which is not. One can
rescale the diffusion time step so that the return probability

FIG. 1. Schematic of the phase diagram as a function of κ2
and β.
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lies on a universal curve; the rescaling factor then tells us
the relative lattice spacing. The relative lattice spacings
quoted here differ slightly from those first reported in
Ref. [9]. In that work, the overlap of the return probability
curves was obtained without regard for the lattice volumes
used in the comparison. Here we match in a self-consistent
way ensembles with lattices as close to the same physical
volumes as possible. The shifts are within previously
quoted errors, but the central values quoted here are likely
more accurate. The errors quoted here are similar in size to
those previously obtained and reflect the uncertainties in
matching the curves in this procedure.

III. THEORETICAL BACKGROUND

In this section, we give the necessary theoretical back-
ground for extracting and interpreting the numerical data
associated with the binding energy of two scalar particles.
We begin with a discussion of scalar fields on dynamical
triangulations, then we show how to calculate the binding
energy between scalar particles on our lattices, and finally
we review the nonrelativistic limit of the binding energy in
the continuum limit.

A. Scalar fields on dynamical triangulations

In order to map Eq. (3) on to the lattice, we use a naive
discretization where we associate each scalar field at x,
ϕðxÞ, with a four-simplex (or equivalently a dual-lattice
site). In this way, each scalar field is restricted to only have
five neighbors through the five surrounding tetrahedra (or
the dual edges). The lattice action on the dual lattice can
then be written as

SlatM ¼ 1

2

X
hxyi

ðϕx − ϕyÞ2 þ
m2

0

2

X
x

ϕ2
x; ð8Þ

where hxyi is a nearest-neighbor pair between two dual-
lattice sites (or 2 four-simplices) which is counted once,
and m0 is the bare mass. Note that the lattice scalar action
has a shift symmetry in the absence of a mass term
[30,43,44]. This is also true of the continuum action
Eq. (3) for zero mass and in the absence of any additional
scalar self-interaction terms. This shift symmetry ensures
that the renormalized mass goes to zero as the bare mass
approaches zero without any fine-tuning. It is a nontrivial
check of the calculations that this is the case.
Expanding and collecting terms above—as well as

noting that we work on a compact topology—and normal-
izing the coefficient of the kinetic term to one, we can write
Eq. (8) as

SlatM ¼
X
x;y

ϕxLxyϕy; ð9Þ

with L the dual-lattice Laplacian plus a mass term, and the
sums over x and y are unrestricted over the whole lattice. In
the continuum, L is the Klein-Gordon operator and the
inverse of the L matrix is the scalar propagator. In the next
subsection, we review the form of the binding energy
between scalar particles in the presence of gravity on the
lattice.

B. The binding energy

The binding energy between two particles is given by
Eb ¼ 2m −M, where m is the mass of a single particle and
M is the mass of the two-body bound state. If Eb is greater
than zero, it indicates that the two-body state has a lower
energy than twice the energy of the single-particle state,
and thus a bound state can form.
To compute the binding energy between two scalar

particles, we must first calculate the propagator for a free
scalar field living on a triangulation. Given the lattice scalar
action of Eq. (9), we need only invert the matrix Lxy to
obtain the propagator. For an arbitrary triangulation, we can
write down Lxy explicitly,

Lxy ¼ ðDx þm2
0Þδxy − Axy; ð10Þ

where Dx is the number of neighboring four-simplices to a
four-simplex (in our case always five), m0 is the bare input
mass, δxy is the Kronecker delta, and Axy is the adjacency
matrix, which has matrix elements

Axy ¼
�

1 if xandyshare a dual edge

0 otherwise
: ð11Þ

The matrix elements of L−1 contain the propagators
between 2 four-simplices. To compute the binding energy,
we need the squares of the propagators as well, ðL−1

xy Þ2.

TABLE I. The parameters of the ensembles used in this work.
The first column shows the relative lattice spacing, with the
ensembles at β ¼ 0 serving as the fiducial lattice spacing. The
quoted error is a systematic error associated with finite-volume
effects. The second column is the value of β, the third is the value
of κ2, the fourth is the number of four-simplices in the simulation,
and the fifth is the number of configurations sampled.

lrel β κ2 N4 Number of configurations

1.59(10) 1.5 0.5886 4000 367
1.28(9) 0.8 1.032 4000 524
1 0.0 1.605 2000 248
1 0.0 1.669 4000 575
1 0.0 1.7024 8000 489
1 0.0 1.7325 16000 501
1 0.0 1.75665 32000 1218
0.80(4) −0.6 2.45 4000 414
0.70(4) −0.8 3.0 8000 1486
0.70(4) −0.776 3.0 16000 2341
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The interpretation of ðL−1
xy Þ2 is the two-particle propagator

between x and y.
With the one- and two-particle propagators, we can

compute the average two-point correlation function as a
function of geodesic distance on the lattice. The one- and
two-particle, two-point correlation functions are, respec-
tively [34],

GðrÞ ¼
�P

x;yL
−1
xy δjx−yj;rP

x;yδjx−yj;r

	
ð12Þ

and

Gð2ÞðrÞ ¼
�P

x;yðL−1
xy Þ2δjx−yj;rP

x;yδjx−yj;r

	
ð13Þ

as a function of r, the geodesic distance between dual-
lattice points. In Eqs. (12) and (13), there are two averages
shown. The first is the average over all possible distances a
separation jx − yj ¼ r away. In practice, this is not done in
its entirety, and a fixed number of source points is chosen,
from which propagators and distances are calculated to all
other points. The second average is indicated with the
angled brackets, which denote an ensemble average—an
average over configurations.
From G and Gð2Þ, it is possible to compute the binding

energy between two scalar masses. We can use the
asymptotic forms of G and Gð2Þ, which are expected to
feature an exponential falloff for large distances,

GðrÞ ∝ e−mr

rp
; Gð2Þ ∝

e−Mr

rq
; ð14Þ

to extract the binding energy. Above,m is the renormalized
one-particle mass, and M is the two-particle renormalized
mass. Consider the function

FðrÞ ¼ Gð2Þ

G2
; ð15Þ

which for sufficiently large source-sink separations
becomes

FðrÞ ∝ e−ðM−2mÞr

rq−2p
: ð16Þ

We can identify the binding energy with the exponent

Eb ≡ 2m −M; ð17Þ

and we can identify the power-law exponent, γ ≡ q − 2p.
Thus, Eb measures the difference in energy between a two-
body system in its ground state and twice the mass of a
single particle in its ground state, with gravitational effects
taken into account.

With these definitions, taking the logarithm of F, we find

logFðrÞ ≃ Ebrþ ZE − γ log r; ð18Þ

where ZE is a constant. The single-particle propagator has
the same form after taking the logarithm

logGðrÞ ≃ −mrþ ZG − p log r: ð19Þ

Besides the constant shifts present in both equations, the
renormalized mass and the binding energy both appear as
linear terms, while the power-law behavior appears as a
logarithmic correction. In the physically relevant case, and
using our conventions, Eb and m should be positive,
indicating an attractive gravitational force and particles
with positive energy density, respectively. In the next
subsection, we consider the nonrelativistic limit of the
binding energy between two scalar masses.

C. Binding energy in the nonrelativistic limit

In this subsection, we consider the energy levels asso-
ciated with gravitational bound states. We follow Ref. [34]
in assuming that the mass of the constituent particles is
much lighter than the Planck mass such that the particles
are weakly coupled. In this case, the magnitude of the
binding energy is well below the mass of the constituent
particles and we can work in the nonrelativistic limit. In that
limit, the effective description for the bound states of two
scalar masses by gravity is simply given by Schrödinger’s
equation with Newton’s gravitational potential. The bound
state solution is then just the Schrödinger solution for
positronium, but with the fundamental constants that
appear in the Coulomb potential exchanged for those of
Newton’s potential.
Thus, we consider the Schrödinger equation

−∇2ψðr; θ;ϕÞ þ 2μðUðrÞ − EÞψðr; θ;ϕÞ ¼ 0; ð20Þ

with potential

UðrÞ ¼ −
Gm2

r
; ð21Þ

wherem is the particle mass, μ is the reduced mass equal to
m=2 in the degenerate case considered here, and G is
Newton’s constant. The solution to this equation for a
potential of this form is well known. The energy eigen-
values, given by the principal quantum number n, are

En ¼
G2m5

4n2
ð22Þ

in units where ℏ ¼ c ¼ 1.
The ground state binding energy for two identical scalar

masses held together by gravity is therefore E1 ¼ m5G2=4,
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giving us a clear prediction for the dependence of the
binding energy on the constituent mass. However, in order
to make contact with this power law using lattice methods,
we first need to take the continuum, infinite-volume limit of
our calculation. To get an idea for what type of discretiza-
tion and finite-volume effects we might expect, we recall
that the fractal dimension of the geometries varies as a
function of distance scale. Even at the largest distance
scales that we can probe, the spectral dimension measured
on the lattices does not get much above three. It is only in
the continuum, infinite-volume limit that the spectral
dimension at long distances extrapolates to four, as it must
to reproduce our world. In a 2þ 1-dimensional world, the
same derivation for the binding energy would lead to
E1 ∝ m2, so we might expect a large extrapolation of the
exponent in the power law, from ∼2 to ∼5, if the scalar
fields on our lattices see a long-distance effective dimen-
sion of around three at coarse couplings and small volumes.
This expectation is borne out by the data, as we show in the
following section.
To further interpret our results, it is useful to model the

binding energy as a function of the dimension d. By
dimensional analysis, we have E1 ∝ m in 1þ 1 dimen-
sions. Taking a simple quadratic fit to the three values of the
exponent quoted here for integer dimension leads to the
scaling E1 ∝ mα, with

α ¼ d2 − 4dþ 5: ð23Þ

The values of d that determine this dependence interpolates
over the range of effective long-distance dimensions have
been found for our lattices in Ref. [9], so this simple
estimate of the relationship between α and d should be
reliable enough to determine what numerical value of d is
implied by the α obtained from our simulations.
The other limit that must be taken in our calculation is

the nonrelativistic limit. Again following Ref. [34], we can
get a rough estimate of the size of relativistic corrections to
Eq. (22). Consider the Hamiltonian

H ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
−
Gm2

r
: ð24Þ

If we replace the momentum p by 1=r and minimize the
energy, we find

Eb ¼ 2m − 2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

G2m4

4

r
: ð25Þ

This implies that Gm2=2 ≪ 1 in the nonrelativistic limit.
The region where we see power-law behavior for the
binding energy as a function of scalar mass in our
numerical data is compatible with this condition.

IV. NUMERICAL RESULTS

In this section, we discuss the details of the numerical
analysis of the correlators, which yields the binding energy
and renormalized mass. We then explain the details of the
power-law fits to the binding energy versus the renormal-
ized mass. Finally, we discuss the infinite-volume, con-
tinuum extrapolation of the exponent in the power law as
well as our determination of Newton’s constant.

A. Correlation functions

The correlators defined in Eqs. (12) and (13) are obtained
from exact inversions of the matrix Lxy calculated on a
given lattice configuration for a given bare mass value. We
do not consider every simplex on the lattice as a possible
source. Instead, we vary the number of sources on each
configuration from 1, 5, 20, and 60 in order to assess the
effect the number of source simplices used has on the
statistical error. We find that for a large number of sources,
say 60, the systematic errors associated with modeling the
deviations of the data from the model fit function are
dominant. These deviations could be due to excited states,
and finite-size and discretization effects. In order to avoid
this difficulty of modeling the systematics, we use a single
source per configuration in our main analysis. All source
simplices are selected randomly from the largest three-
volume cross section of the entire lattice. This is done by
first shelling a configuration starting from a source chosen
at random and then only selecting sources for the propa-
gator from the largest slice in the shelling. We find that
restricting our sources to come from the largest three slice
minimizes finite lattice spacing effects, and it is the same
procedure that we have used in previous work on the
spectral dimension [9] and for our studies of Kähler-Dirac
fermions [30].
An example of correlator data is shown in Fig. 2, and an

example of the ratio F defined in Eq. (15) is shown in
Fig. 3. Both plots use log-linear coordinates and show
results for several masses. These figures display a feature
that appears across all ensembles to varying degrees. We
see around r ≈ 10 lattice spacings a bend in the correlator
and a peak where the derivative of log½F� changes sign. We
also see this feature is a function of the bare mass, and as
the bare mass is increased, this bend is pushed out further to
larger distances. The same thing happens as the volume of
the system is increased. In Fig. 4, we see the peak is pushed
to larger distances as the system volume is increased. This
indicates that the turnover in the data is most likely due to
long-distance lattice artifacts. As noted in Ref. [9], there are
baby universes that branch off of the mother universe,
where the baby universes can be quite long, although their
cross section is of order the lattice spacing. This effect is
most pronounced on our coarsest lattices, where it can
significantly modify long-distance physics, although the
effect appears to vanish in the continuum limit. It is useful
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to keep this in mind when choosing a fit window to extract
masses from our correlation functions, since it sets an upper
bound on how far in the Euclidean time extent we can fit
and still expect our model fit function to describe the data.
This bend in the data that we see is most likely due to baby
universe effects at long distances. At short-distance scales,
we expect the usual discretization effects, as well as excited
state contamination. Thus, the fit window to the correlation
function is rather constrained in our current approach.
The peak in log½F� is one of the first clues on how to

extract a physically motivated answer for the binding
energy. From the definition of Eb in Eq. (17), the coefficient

of r should be positive if the two-particle state is bound. We
see this is only possible between r ¼ 0 and the peak around
r ≈ 10 lattice spacings (for the specific ensemble in Figs. 2
and 3). In fact, the existence of such a region is already
encouraging, since it implies there exists an attractive force
between scalar masses inside the dynamical triangulations
framework. This has been noticed already in Ref. [34].
Additionally, looking at Fig. 3, we can see a change in

concavity for the larger masses around a value of r ≈ 5.
This inflection point marks the change of the concavity
from a region that is concave up, to a region where the data
turns over, i.e., the peak. This inflection point denotes the
end of the valid fitting region according to Eq. (18), since
after this point the long-distance effects begin to dominate
the shape of the function. Across all bare masses and
ensembles, we fit to a region that begins at r ¼ 1 and ends
around the inflection point of log½F�. We fit this same range
in the one-particle correlator and the F function.
The choice of fit function is decided by Eqs. (18) and

(19). Thus, we use a function of the form

fðrÞ ¼ Xrþ Y þ Z log r ð26Þ

for both the log½F� and log½G� data, with X, Y, and Z as fit
parameters. By fitting the log½F� and log½G� data to the
functional form in Eq. (26), we can extract the binding
energy, the renormalized mass, and the exponents p and γ
as a function of the bare mass.
The fits are done with nonlinear least squares fitting

including the correlations of the dependent data. The errors
are estimated using single-elimination jackknife resam-
pling, including the off-diagonal terms in the correlation
matrix. The size of autocorrelation errors is estimated using

FIG. 3. The logarithm of the ratio between the two-particle,
two-point correlator, and the square of the one-particle, two-point
correlator, FðrÞ. Five different bare masses are shown on the
N4 ¼ 8000, β ¼ 0 ensemble. We see a peak in the data,
separating a positively sloped region and a negatively sloped
region, which is pushed to larger r values for larger bare mass
values. The distances displayed on the horizontal axis are in units
of the distance between the centers of adjacent four-simplices,
i.e., a dual edge length.

FIG. 2. The logarithm of the two-point correlator,GðrÞ, for five
masses on the N4 ¼ 8000, β ¼ 0 ensemble. We see a bend in the
data which is pushed progressively out to larger r values as the
bare mass is increased. The distances displayed on the horizontal
axis are in units of the distance between the centers of adjacent
four-simplices, i.e., a dual edge length.

FIG. 4. The logarithm of the ratio of the two-particle correlator
to the square of the one-particle correlator as a function of
distance for multiple volumes at β ¼ 0, andm0 ¼ 0.02. We see as
the volume is increased the peak is pushed to larger values of r
indicating the turnover in the data is most likely a long-distance
lattice artifact. The distances displayed on the horizontal axis are
in units of the distance between the centers of adjacent four-
simplices, i.e., a dual edge length.

DAI, LAIHO, SCHIFFER, and UNMUTH-YOCKEY PHYS. REV. D 103, 114511 (2021)

114511-8



a blocking procedure; the data are blocked until the errors
no longer increase. In order to retain enough information to
resolve the correlation matrix when performing fits, the
data are not blocked, but the errors are inflated to reflect the
increased error due to autocorrelations. The fits are per-
formed under a jackknife, and the correlation matrix is
reconstructed for each individual fit under the jackknife
from the data on each jackknife subensemble. By including
correlations in the fit, the χ2 per degrees of freedom (d.o.f.)
is expected to be a reliable measure of goodness of fit. We
compute from the χ2 and the number of degrees of freedom
a confidence interval (a p-value) for the fit, correcting for
finite sample size. We make a histogram of p-values from
the fits for which the fit parameters are propagated through
to the rest of the analysis. This includes fits from all
ensembles. The resulting histogram of p-values is relatively
uniform and shown in Figs. 5 and 6 for the correlator fits
and F fits, respectively. Only the lowest bin possesses a
small spike. Since the fits in this bin are scattered

throughout the parameter values of the analysis more or
less at random, we do not ascribe an additional error to this
slight deviation from a flat distribution. An example of the
fit for the N4 ¼ 16; 000 simplex ensemble with β ¼
−0.776 to the log½F� and log½G� data can be seen in
Figs. 7 and 8. Given the results for the binding energy and
the renormalized mass for a wide range of bare mass values
on many different ensembles, we are able to test the theory
presented in Sec. III C. This is done in the following
subsections.

B. Mass dependence of the binding energy

The dependence of the renormalized mass on bare mass
is shown in Fig. 9 for four different volumes at fixed lattice
spacing (β ¼ 0). It is clear from this plot that the renor-
malized mass goes to zero as the bare mass also approaches

FIG. 5. A histogram of the p-values extracted from fits to
log½G�. This histogram contains the p-values from the individual
jackknife fits for all ensembles and mass values used downstream
in the analysis, combined into a single data set.

FIG. 6. A histogram of the p-values extracted from fits to
log½F�. This histogram contains the p-values from the individual
jackknife fits for all ensembles and mass values used downstream
in the analysis, combined into a single data set.

FIG. 7. An example of a fit to the N4 ¼ 16, 000 simplex
ensemble with β ¼ −0.776 for log½F� at bare mass m0 ¼ 0.004.
Here the chosen fit range is shown in black, along with the best fit
line. The χ2=d:o:f: ¼ 0.77 for the fit at this mass and this
ensemble corresponding to a p-value of 0.46.

FIG. 8. An example of a fit to the N4 ¼ 16, 000 simplex
ensemble with β ¼ −0.776 for log½G� at bare mass m0 ¼ 0.004.
Here the chosen fit range is shown in black, along with the best fit
line. The χ2=d:o:f: ¼ 0.19 for the fit at this mass and this
ensemble corresponding to a p-value of 0.83.
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zero, which is a consequence of the shift symmetry of
the lattice action. This provides a useful check of our
calculation.
The dependence of the binding energy on the renormal-

ized mass is shown in Figs. 10–13 for four different
ensembles. In order to make contact with Newtonian
gravity, we must look for a power-law dependence for
the binding energy as a function of renormalized mass, as
given in Eq. (22). As a first step, in order to eventually be
able to compare results across lattice spacings, we put the
results in the same lattice spacing units. Before performing
the fits, we rescale all the binding energies and renormal-
ized masses to that of the fiducial lattice spacing at β ¼ 0
using the relative lattice spacings given in Table I.
To study the power-law behavior, we must also deter-

mine a fit window for the masses m, to which we fit the
data. To find the beginning of a fit range, we search for the
smallest bare mass for which the expected physical

inflection exists in the quantity logF (e.g., in Fig. 3,
≥ m0 ¼ 0.02). This identifies the minimal bare mass at
which physical behavior appears in the correlation func-
tion. The renormalized mass m corresponding to this bare
mass is the beginning of the fit window. The end of the fit
window is determined by a change of inflection in the plots
of binding energy versus renormalized mass. This point is
where the nonrelativistic power-law behavior has been
overtaken by effects due to strong coupling at larger mass
values.
For our power-law fits, we assume the functional form

Eb ¼ Amα; ð27Þ

where A and α are fit parameters, which in the continuum,
nonrelativistic limit are expected to be A ¼ G2=4, and

FIG. 9. The renormalized mass plotted against the bare mass for
four-volumes with β ¼ 0. Here we see the renormalized mass is
multiplicatively renormalized for sufficiently small bare masses.

FIG. 10. The power-law fit to the binding energy plotted against
the renormalized mass for the N4 ¼ 16; 000, β ¼ −0.776 en-
semble. The fit range is shown in black, and the solid line is the fit
to the data. The fit corresponds to a χ2=d:o:f: ¼ 0.59, with a
p-value of 0.62.

FIG. 11. The power-law fit to the binding energy plotted against
the renormalized mass for the N4 ¼ 4; 000, β ¼ −0.6 ensemble.
The fit range is shown in black, and the solid line is the fit to
the data. The fit corresponds to a χ2=d:o:f: ¼ 0.64, with a p-value
of 0.79.

FIG. 12. The power-law fit to the binding energy plotted against
the renormalized mass for the N4 ¼ 16; 000, β ¼ 0 ensemble.
The fit range is shown in black, and the solid line is the fit to the
data. The fit corresponds to a χ2=d:o:f: ¼ 0.15, with a
p-value of 0.93.
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α ¼ 5, as given in Eq. (22). We find that this simple fit
function is a good description of the data on all of our
ensembles, with two exceptions: our two coarsest ensem-
bles (β ¼ 1.5 and β ¼ 0.8). For these ensembles, we notice
negative (in our convention) binding energy at small
masses indicating the absence of an attractive force, which
can be seen in Figs. 13 and 14. We do not have a good
model for how discretization effects modify the expected
behavior of the binding energy at very coarse lattice
spacings, but it is at least encouraging that this unphysical
behavior is absent on our three finest lattice spacings. We
have the option of dropping these coarse lattices in our
continuum extrapolation, and this is something we do as a
cross-check, since we have to model the unphysical
behavior of the binding energy on these two ensembles.
In order to describe these data, we choose a model with two
additional fit parameters beyond the simple power law of

Eq. (27). The motivation for the fit function to the coarser
ensembles is data driven; this is the simplest Ansatz that
describes the data that also reduces to the expected fit form
when the new parameters are taken to zero. Thus, for our
two coarsest ensembles, we use the fit function

Eb ¼ Ajx − Bjα þ C; ð28Þ

with A, B, α, and C the fit parameters. As before, A and α
can be identified with their continuum, infinite-volume
counterparts in Eq. (22). For these two ensembles, the
criteria for selecting the starting mass value of the fit are
never satisfied, i.e., the correct inflection in log½F� is not
observed for any bare mass. This is most likely due to large
discretization errors on these coarse lattices masking the
physical behavior. Therefore, the start of the fit window is
somewhat arbitrary on these ensembles. We choose a fit
range that begins in the region where the binding energy
trends negative and ends before the inflection in the Eb
versus m plot at larger masses. We vary this fit range to
include a systematic error due to this choice.
The form in Eq. (27)—even at finite lattice spacing—is

reinforced by the existence of the shift symmetry, which
ensures that the bare mass is only multiplicatively renor-
malized, and hence, the binding energy is strictly propor-
tional to some power of the renormalized mass. In
Figs. 10–12, we show examples of the binding energy
plotted against the renormalized mass, along with a best fit
line and the fit range used (in black), for three different
lattice spacings. These are the finer lattices at lrel ¼ 0.7 and
lrel ¼ 0.8, and one of the coarser ensembles at lrel ¼ 1,
respectively. In Figs. 13 and 14, we show the same
quantities for the extra coarse, lrel ¼ 1.59 ensemble, and
lrel ¼ 1.28 ensemble. We see good agreement between the
fit functions Eq. (27) and (28) and the data.
These fits are done by taking the correlations in the data

into account. We use weighted orthogonal distance regres-
sion [45,46] to incorporate correlations in the renormalized
mass and in the binding energy data sets simultaneously.
For the weights, we use the inverse covariances in both data
sets to obtain the best fit to the data points using χ2

minimization. A detailed discussion of this procedure can
be found in the Appendix. To assess a systematic error
associated with the choice of fit range, we vary the start and
end points of a fit range over a reasonable set of values
guided by the quality of fit and tabulate the results. We then
calculate the standard deviation of those results and include
it as a systematic error, adding it in quadrature to the
statistical error of the result from the central fit to give a
total error.
We perform this power-law fit across all of our ensem-

bles, extracting a power α and a coefficient A. From that
coefficient A, we calculate

ffiffiffiffiffiffi
4A

p
, which we associate with a

value for G at fixed volume and lattice spacing. While this
association with G at finite lattice spacing or volume may

FIG. 13. The power-law fit to the binding energy plotted against
the renormalized mass for the N4 ¼ 4; 000, β ¼ 1.5 ensemble.
The fit range is shown in black, and the solid line is the fit to the
data. The fit corresponds to a χ2=d:o:f: ¼ 1.16, with a p-value
of 0.31.

FIG. 14. The power-law fit to the binding energy plotted against
the renormalized mass for the N4 ¼ 4; 000, β ¼ 0.8 ensemble.
The fit range is shown in black, and the solid line is the fit to the
data. The fit corresponds to a χ2=d:o:f: ¼ 1.24, with a p-value
of 0.26.
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suffer from systematic errors, in the continuum, infinite-
volume limit the quantity

ffiffiffiffiffiffi
4A

p
should extrapolate to G.

With these results for α and G across ensembles, we are
able to obtain their continuum, infinite-volume values.

C. Continuum, infinite-volume extrapolation

To preform the extrapolation to the continuum, infinite-
volume limit, we take the simplest Ansatz suggested from
finite-size scaling and the discretization dependence sugge-
sted by the symmetries of the theory. This approach is
similar to what has been used in our previous analyses on
dynamical triangulations, with the choice of fit functions
given by

α ¼ Hα

V
þ Iαl2

rel þ
Jα
V2

þ Kαl4
rel þ Lα ð29Þ

and

G ¼ HG

V
þ IGl2

rel þ
JG
V2

þ KGl4
rel þ LG; ð30Þ

where Hi, Ii, Ji, Ki, and Li are fit parameters for their
respective quantities. Here V is the physical volume and
lrel is the relative lattice spacing. We include quadratic
corrections in the inverse physical volume, and the squared
lattice spacing, since we find curvature in our data when we
include small volumes and coarse lattice spacings. In
addition to the fit Ansätze in Eqs. (29) and (30), we also
perform fits dropping the ∼l4

rel term, which we are able to
do when we also drop the two coarsest lattice spacings. The
results from this fit are consistent within one-sigma to the
results of the fit to the full data set including the l4

rel term.

The extrapolations for α and for G are shown in Figs. 15
and 16, respectively, where they are plotted against the
inverse physical volume. There, lines of constant lattice
spacing are drawn, and the zero-lattice-spacing limit is
shown in black. In Figs. 17 and 18, we show the same
extrapolations to the infinite-volume, continuum limit as
the fits shown in Figs. 15 and 16, but with a different cross
section through the two-dimensional parameter space. In
these plots, we show the values for α and G plotted versus
the squared lattice spacing. There, lines of constant
physical volume are drawn with the infinite-volume limit
shown as a solid black line. Note that the continuum,
infinite-volume limit is taken separately for α and G.
These fits are performed assuming that the data points

are uncorrelated, which is reasonable given that the points

FIG. 15. The power α as a function of the inverse physical
volume (expressed in units of 1000 simplices) for all of the
ensembles (colored), as well as the continuum limit (in black).
Here quadratic corrections in 1=V as well as l2

rel were used to
model the extrapolation. For this fit, we find χ2=d:o:f: ¼ 0.56
corresponding to a p-value of 0.73, and the continuum, infinite-
volume value is α ¼ 4.6ð9Þ.

FIG. 16. Newton’s constant G as a function of the inverse
physical volume (expressed in units of 1000 simplices) for all of
the ensembles (colored), as well as the continuum limit (in black).
Here quadratic corrections in 1=V as well as l2

rel were used to
model the extrapolation. For this fit, we find χ2=d:o:f: ¼ 0.37
corresponding to a p-value of 0.87, and the continuum, infinite-
volume value is G ¼ 15ð5Þ.

FIG. 17. The same data and fit from Fig. 15 however now
plotted as a function of the squared lattice spacing. Here example
lines of constant physical volume are plotted along with the
infinite-volume limit as a solid black line, and the data are
represented in the same manner as Fig. 15.
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are all from different ensembles. For the α extrapolation, we
find the χ2=d:o:f: ¼ 0.56, corresponding to a p-value of
0.73. For the G extrapolation, we find χ2=d:o:f: ¼ 0.37,
corresponding to a p-value of 0.87. The infinite-volume,
continuum extrapolated values are α ¼ 4.6ð9Þ and
G ¼ 15ð5Þ. The errors on these quantities are fairly large,
around 20%–30%, but the value of α is consistent with
what is needed to recover the Newtonian limit. In fact, this
result is somewhat better than it at first appears because of
the sensitive dependence of α on the effective dimension.
Given Eq. (23) for the dependence of α on dimension, one
finds that our 1σ error band on α implies a 1σ error range
for the dimension of between 3.6 and 4.1. Thus, our result
implies Newtonian binding in a dimension quite close to 4
at long-distance scales in the continuum limit. Note that at
coarser coupling and smaller lattice volumes where the
effective dimension of the lattice geometries is around 3 or
lower, the value of α drops to 2 or lower, which is what we
expect given the dependence of α on dimension. Thus, our
results are consistent with expectations.
The value of G that we should expect is not known

a priori, since it sets the lattice spacing in physical units,
but it should satisfy certain consistency checks, as dis-
cussed in Sec. III C. The constraint that the binding be
nonrelativistic implies that Gm2=2 ≪ 1, which translates
into m2 ≪ 0.13 in our fiducial lattice units, given our value
of G in those units. The upper range of masses in our fit
window is at m2 ≈ 0.02, so the nonrelativistic condition is
satisfied.
One particularly nice feature of this calculation is that

our value of G allows us to determine the lattice spacing in
units of the Planck length for the first time. Because our
extrapolation procedure recovers the correct Newtonian
limit, we can have some confidence that the value of G
computed via this method is reliable. We find thatffiffiffiffi
G

p ¼ lPl ¼ ð3.9� 0.7Þlfid. Thus, our fiducial lattice

spacing is around 1=4 the Planck length. Our finest lattice
spacing is around 1=6 the Planck length, so we see that the
lattice spacing can indeed be made smaller than the Planck
length.

V. DISCUSSION AND CONCLUSION

One of the tests that any formulation of lattice gravity
must pass is that it must have the correct classical limit. In
this work, we have shown that the interaction of scalar
particles is well described by Newton’s potential in the
appropriate nonrelativistic, classical limit. This conclusion
comes from our study of the binding energy of the two
particle bound state as a function of the constituent scalar
particle mass. The analysis makes use of a number of
ensembles with multiple volumes and lattice spacings,
allowing us to extrapolate our results to the continuum,
infinite-volume limit.
Our calculation passes a number of nontrivial cross-

checks. We show numerically that the renormalized scalar
mass approaches zero as the bare mass approaches zero,
which is expected given the shift symmetry of the lattice
action. We study the two-particle binding energy as a
function of its constituent mass, and we find that it is well
described by a power law in the nonrelativistic limit. At
finite lattice spacing and finite volume, the exponent in the
power law is close to what one expects if the effective
dimension of the geometry is near the measured values for
the effective dimension on these same lattices in Ref. [9].
Only in the continuum, infinite-volume limit does the
power law correspond to that of the Newtonian potential
in four dimensions. The consistency of the binding with
Newtonian gravity allows us to extract a value of G from
the calculation, and knowing G allows us to determine the
Planck scale for the first time within EDT. We find that the
Planck length is lPl ¼ ð3.9� 0.7Þlfid, so that our fiducial
lattice spacing is about 1=4 the Planck length, and our finest
lattice spacing is around 1=6 the Planck length. This shows
that as the continuum limit is approached the lattice spacing
becomes a decreasing fraction of the Planck length, sug-
gesting that there is no barrier to taking a continuum limit.
Although the calculation is done in the quenched

approximation, such that the backreaction of the scalar
field on geometry is neglected, we still expect the binding
of particles to be governed by tree-level graviton exchange.
The effects of quenching only appear at one loop in the
low-energy effective theory, so they should not affect the
recovery of the classical limit, as seen here.
Further improvements of the calculation are desirable in

order to test the consistency of EDT coupled to scalar
fields. In order to reduce the errors on G, we need to go to
larger, finer lattices, thus improving our continuum, infin-
ite-volume extrapolation. Finer lattice spacings may also
lead to a larger fit window for the correlation functions,
with less contamination from unphysical effects, such that
we could determine the ground state masses and binding

FIG. 18. The same data and fit from Fig. 16 however now
plotted as a function of the squared lattice spacing. Here example
lines of constant physical volume are plotted along with the
infinite-volume limit as a solid black line, and the data are
represented in the same manner as Fig. 16.
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energies to higher precision. It would also be interesting to
unquench the simulations to test if the picture presented
here remains qualitatively the same.
Our recovery of the Newtonian potential within EDT is a

strong cross-check of all of the ingredients that go into the
formulation of lattice gravity used here, from our deter-
mination of the relative lattice spacing to our approach to
taking the continuum, infinite-volume limit. This nontrivial
result provides powerful evidence that EDT is in fact a
theory of gravity and that investigations of the formulation
as a possible realization of the asymptotic safety scenario
should continue.
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APPENDIX: CORRELATED FITTING

When fitting the binding energy versus the renormalized
mass, both quantities come with errors, and the different
data points are actually correlated, both in the x and y data
sets. This is because the fits for the renormalized masses
and binding energies—while at different bare input
masses—used the same configurations for each fit, thus
introducing correlations between fits. In order to account for
this, we did simultaneous correlated fits in both the x and y
data sets using orthogonal distance regression. Orthogonal
distance regression attempts to minimize the radial distance
between the fit function and the input data—as opposed to
the vertical distance between the fit function and the y data
that is typical in nonlinear least squares fitting.
The idea is the following: one seeks to minimize the

function,

Qðfx̄g; fβgÞ ¼ ðA1Þ
X
i;j

ðfðx̄i; βkÞ − yiÞw−1
ij ðfðx̄j; βkÞ − yjÞþ ðA2Þ

ðx̄i − xiÞϵ−1ij ðx̄j − xjÞ; ðA3Þ

where x̄i is the collection of ideal x values which minimizes
the expression, f is the fitting function, βk is the collection
of fit parameters, yi is the collection of y data, xi is the
collection of x data, w−1 is the inverse of the covariance
matrix for the y data, and ϵ−1 is the inverse of the co-
variance matrix for the x data. The problem can be recast,
with a change of variables, into a different expression to be
minimized,

Qðfδg; fβgÞ ¼
X
i;j

ðA4Þ

ðfðxi þ δi; βkÞ − yiÞw−1
ij ðfðxj þ δj; βkÞ − yjÞþ ðA5Þ

δiϵ
−1
ij δj: ðA6Þ

Now, there are two sets of parameters to minimize, the δi,
and the βi, where δi ¼ x̄i − xi is the residual in the x data.
The above expression can be recast into a very simple

form for numerical purposes. The w−1 and ϵ−1 can be
combined into a single block-diagonal matrix,

C−1 ¼ w−1 ⊕ ϵ−1; ðA7Þ

and the residuals can be combined into a single vector,

v ¼ ðfðxþ δ; βkÞ − yÞ ⊕ δ: ðA8Þ

This allows the above function to be written as

Qðfδg; fβgÞ ¼
X
i;j

viC−1
ij vj: ðA9Þ

For this work, the covariance matrices are positive definite,
so we can take the above expression one step further and
perform a Cholesky decomposition,

C−1
ij ¼

X
k

LikLT
kj; ðA10Þ

which in turn allows us to expressQ as a simple dot product
between vectors, Q ¼ P

i riri, with ri ¼
P

k vkLki. To
minimize Q, we use the Levenberg-Marquardt algorithm
and minimize with respect to the δi and the βi. The resulting
β values are the desired fit parameters for the input
function, f.
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