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We show that the nature of the topological fluctuations in SUð3Þ gauge theory changes drastically at the
finite temperature phase transition. Starting from temperatures right above the phase transition, topological
fluctuations come in well separated lumps of unit charges that form a noninteracting ideal gas. Our analysis
is based on a novel method to count not only the net topological charge but also separately the number of
positively and negatively charged lumps in lattice configurations using the spectrum of the overlap Dirac
operator. This enables us to determine the joint distribution of the number of positively and negatively
charged topological objects, and we find this distribution to be consistent with that of an ideal gas of unit
charged topological objects.
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The presence of topologically nontrivial gauge field
configurations is a peculiar feature of QCD that has
important phenomenological consequences. Most recently,
this was highlighted by calculations to estimate the axion
mass [1–3]. An essential ingredient of the calculation was
the determination of the temperature dependence of the
topological susceptibility up to temperatures well above the
QCD crossover temperature to the quark-gluon plasma.
At very high temperatures, fluctuations of the topologi-

cal charge are strongly suppressed and occur in the form of
localized lumps of action, carrying a topological charge
�1. These objects are probably close in their shape and
other properties to solutions of the classical Euclidean
gauge field equations, i.e., instantons, or rather their finite
temperature counterparts, calorons1 [4–6]. Moreover, since
at high temperatures, fluctuations of the topological charge
are strongly suppressed, calorons (and anticalorons) are
expected to form a dilute gas, and their size is limited by the
inverse temperature.
These properties of the caloron gas motivate the

so-called dilute instanton gas approximation (DIGA)

which—in principle—makes it possible to calculate the
temperature dependence of the topological susceptibility
perturbatively. However, the topological susceptibility
determined in lattice simulations differs by an order of
magnitude from the DIGA predictions even at temperatures
as high as 5–10Tc [1–3]. It is thus clear that at least one of
the two assumptions that the DIGA is based on is not
satisfied. These two assumptions, both of which are
expected to be valid at high enough temperatures are
A1: The probability of one instanton occurring in a given
volume can be calculated perturbatively in the semiclass-
ical approximation. A2: The instantons gas is so dilute that
interactions among (anti)instantons can be neglected, the
gas of topological objects is an ideal gas.
Assumption A1 has been recently reconsidered, but

despite the correction of the previously grossly under-
estimated uncertainty of the semiclassical one-instanton
calculation, there is still at least a 3σ discrepancy between
the lattice and the DIGA result for the topological suscep-
tibility [7]. In the present paper, we focus on the assumption
A2 and study interactions among topological objects in the
quenched approximation of QCD, just above the finite
temperature phase transition. Even apart from the axion
problem, a full determination of instanton interactions just
above Tc is interesting in itself, as it can shed light on how
typical gauge field configurations change as the system
crosses into the high temperature phase. This might also
help us better understand the chiral and deconfining
transition in QCD with dynamical quarks.
To see how interactions among instantons could be

detected, our starting point is a noninteracting instanton
gas. In a free, noninteracting topological gas, the number

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1Since these objects are not exact solutions of the field
equations, they are not exactly calorons or anticalorons, it would
be more appropriate to call them topological objects. Never-
theless, for simplicity, we will mostly use the word instanton or
caloron for them.
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distribution of topological objects can be characterized with

a single parameter, the topological susceptibility χ ¼ hQ2i
V ,

whereQ ¼ ni − na is the topological charge (the number of
instantons minus the number of antiinstantons), V is the
space-time volume, and h:i denotes the expectation with
respect to the path integral. In an ideal topological gas, all
higher cumulants of the distribution can be exactly calcu-
lated in terms of χ. Any deviations from these ideal-gas
cumulants are a result of interactions among topological
objects.
In the recent literature, several quenched lattice calcu-

lations of the lowest nontrivial cumulant,2

B2 ¼
hQ4i − 3hQ2i2

hQ2i ; ð1Þ

appeared [8,9]. The most precise calculation reports that
even though above 1.15Tc, the value of B2 is consistent
with 1, its ideal-gas value; just above the phase transition, at
1.045Tc, it is still 1.27(7) [9].
For a more complete assessment of the situation, more

information would be desirable about the distribution of the
number of topological objects, beyond the first nontrivial
cumulant of Q. However, higher cumulants of the distri-
bution are notoriously hard to calculate, and even the full
topological charge distribution can in principle miss subtle
correlations among instantons and antiinstantons. Full
information about that is contained only in the joint
distribution of the number of instantons and antiinstantons.
The problem is that while there are well-established

methods to compute the topological charge Q ¼ ni − na in
lattice simulations, there is no easy way to determine ni
and na separately in lattice configurations.3 In the present
paper, we introduce a novel method to compute ni and na
separately and determine their joint distribution. Our
method is based on the low-lying spectrum of the overlap
Dirac operator. In particular, our main observation is that
mixing instanton-antiinstanton zero modes constitute a
distinct part of the Dirac spectrum close to zero and can
be reliably separated from the rest of the spectrum.
Counting the number of these close to zero modes together
with the exact zero modes of the overlap operator provides
a way to determine not only the topological charge Q but
also the total number of topological objects ni þ na.
Besides yielding much more information than just the

cumulant b2, our method has another advantage compared
to previous studies. By construction, it always gives integer
numbers and thereby, avoids the ambiguities that plague the

definitions of the topological charge based on gauge field
operators. In that case, the values of the topological charge
are not integers and need to be multiplicatively renormal-
ized and—if the full charge distribution is needed—also
rounded to integers. Higher moments of the distribution,
like b2, are very sensitive to these ambiguities.
For the present study, we used quenched lattice con-

figurations generated at T ¼ 1.045Tc on lattices of tem-
poral extension Nt ¼ 8 and aspect ratio 3 and 4. For both
spatial volumes we determined ni and na on 5k lattice
configurations. In the smaller volume, we found that the
number distribution of topological objects significantly
deviated from the expectation based on a free noninteract-
ing gas. In contrast, the larger volume showed no such
deviation. Although in finite temperature lattice QCD, an
aspect ratio of 3 is usually considered safe in terms of finite
(spatial) volume corrections, we show here that the unex-
pectedly large finite volume corrections are due to the
proximity of the phase transition. We conclude that in
quenched QCD already slightly above Tc the number
distribution of topological objects is consistent with that
of a gas of free topological objects.
Let us first motivate the main tool used in our study, the

separation of the bulk of the spectrum and the topology-
related close to zero modes. It is known that in the presence
of an isolated instanton (or antiinstanton) the Euclidean
Dirac operator has an exact zero mode with chirality þ1
ð−1Þ [10]. In the field of a well separated instanton and
antiinstanton, the two would be zero eigenvalues split
slightly and produce two complex conjugate eigenvalues.
The splitting is controlled by the spatial distance of the
topological objects (relative to their size) as well as their
orientation in group space. Generally, the farther away the
two objects are, the smaller the splitting is, and in the limit
of infinite separation, the splitting tends to zero [11]. In this
way, a dilute gas of topological objects is expected to
produce not only jQj ¼ jni − naj exact zero modes, cor-
responding to the net topological charge, but also ni þ
na − jQj small Dirac eigenvalues, from the mixing of
opposite chirality instanton and antiinstanton would be
zero modes. Motivated by the instanton liquid model, we
call the region in the spectrum containing these modes the
zero mode zone (ZMZ).
It should be already clear from the above discussion that

as the temperature gets higher and topological fluctuations
become sparser, the near zero modes of topological origin
will be closer to the origin. At the same time, the low end of
the bulk of the spectrum, the lowest nontopological modes,
controlled by the Matsubara frequency, will move higher as
the temperature increases. Therefore, at a high enough
temperature, the ZMZ should be well separated from the
bulk of the spectrum. In what follows, we will demonstrate
that already slightly above the finite temperature phase
transition the ZMZ can be reliably separated from the rest
of the Dirac spectrum, provided a chirally symmetric Dirac
operator, such as the overlap [12] is used.

2We note that in the literature usually the value of b2 ¼ −B2=12
is quoted, as that is the coefficient appearing in the expansion of the
partition function in terms of the theta parameter.

3One possibility would be to analyze the structure of the
topological charge density and locate individual lumps in it.
However, this would be rather cumbersome and would be
plagued by uncertainties.
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Already in the early days of the overlap, it was noticed
that above Tc, besides the expected exact zero modes, the
overlap Dirac spectrum also contains an unexpectedly large
number of very small close to zero eigenvalues [13]. This
enhancement of the low end of the Dirac spectrum resulted
in a spike in the spectral density, well separated from the
bulk of the spectrum. This came as a surprise, since above
Tc, the restoration of chiral symmetry would imply a
vanishing spectral density at zero virtuality, due to the
Banks-Casher relation. The spike in the spectral density
was conjectured to contain mixing would be zero modes of
instantons and antiinstantons. Subsequent work confirmed
that this enhancement of the spectral density is neither a
discretization nor a quenched artifact [14]. More recently,
the appearance of this spike in the Dirac spectrum was
speculated to signal a genuinely new state of strongly
interacting matter, intermediate between the low temper-
ature hadronic and the high temperature quark-gluon
plasma state [15].
In the present work, we analyze the statistical properties of

the eigenvalues in this spike of the spectral density in a high
statistics quenched SUð3Þ lattice study. We show that the
statistics of these eigenvalues is to a high precision consistent
with the assumption that they are produced by mixing
instanton and antiinstanton would be zero modes. To this
end, we use quenched gauge ensembles generated with the
Wilson gauge action at β ¼ 6.09 and temporal lattice
extension Nt ¼ 8. This corresponds to a temperature of
T ¼ 1.045Tc, just above the finite temperature transition that
in the quenched SUð3Þ case is a first order phase transition.
For the detailed statistical analysis,we used two ensembles of
gauge configurationswith a spatial extensionL ¼ 24 and 32,
both containing 5000 configurations. In addition, to check
finite volume effects in the spectral density and the Polyakov
loop distribution, we also had an ensemble of 600 configu-
rations on a larger spatial volume L3 ¼ 403. The negative
mass parameter of the overlap Wilson kernel was set to
M ¼ −1.3, and two steps of hex smearing [16] were
performed on the gauge links before inserting them into
theWilson kernel. The statistical analysis we report herewas
performed on the overlap Dirac eigenvalues of smallest
magnitude with jλj=Tc < 2.0 for all ensembles.
Since we want to compare the statistics of small Dirac

eigenvalues with that of noninteracting topological objects,
we first summarize our expectations in such an ideal gas of
topological objects. In the absence of any interaction
among them, both the number of instantons ni and that
of antiinstantons na are expected to follow independent and
identical Poisson distributions with a mean Vχ=2 propor-
tional to the volume, where V is the four volume of the
system, and χ will turn out to be the topological suscep-
tibility. The joint distribution,

Pðni; naÞ ¼ e−Vχ
ðVχ=2Þniþna

ni!na!
; ð2Þ

of ni and na can be used to compute all the relevant
physical quantities of this free topological gas in terms of
the single parameter χ. In particular, the topological
susceptibility is

1

V
hQ2i ¼

X∞

ni¼0

X∞

na¼0

Pðni; naÞðni − naÞ2

¼ n2i þ n2a − 2ni na ¼ χ; ð3Þ

where expectations like ni are understood to be with respect
to the respective Poisson distribution. The topological
charge distribution for Q ≥ 0 is

PðQÞ ¼
X∞

n¼0

e−Vχ
ðVχ=2ÞQþ2n

ðQþ nÞ!n! ¼ e−VχIQðVχÞ; ð4Þ

where IQ are the Bessel functions of imaginary argument.
Due to time-reversal symmetry, the distribution is sym-
metric, PðQÞ ¼ Pð−QÞ.
Another interesting quantity to consider is the distribu-

tion of the total number of topological objects n ¼ ni þ na,

PðnÞ ¼
Xn

ni¼0

e−Vχ
ðVχ=2Þn

ni!ðn − niÞ!
¼ e−Vχ

ðVχÞn
n!

; ð5Þ

which is simply a Poisson distribution with mean Vχ.
Let us now confront the lattice data with these expect-

ations. In Fig. 1, we show the spectral density of the overlap
Dirac operator on the previously mentioned lattice ensem-
bles. Although in the spontaneously broken phase of the
pure gauge theory that we consider here, the three Polyakov
loop sectors are equivalent, the spectrum of the Dirac
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FIG. 1. The spectral density of the overlap Dirac operator on
quenched SUð3Þ gauge ensembles just above the phase transition,
at T ¼ 1.045Tc. The shaded region indicates λZMZ=Tc, the
boundary of the zero mode zone. Eigenmodes below this point
in the spectrum are related to mixing topological would be
zero modes.
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operator and the pattern of chiral symmetry breaking/
restoration is known to be strongly dependent on the
Polyakov-loop sector [6], [17–20]. Since in the present
work we want to study features that are expected to be at
least qualitatively present in QCD with dynamical quarks,
here we restrict the analysis to configurations in the
physical ReP > 0 Polyakov loop sector. This is the only
one that would be present if dynamical fermions were to be
included. In fact, even the slightest explicit breaking of the
Zð3Þ symmetry by dynamical fermions with an arbitrarily
large, but finite mass would force the system into the real
Polyakov-loop sector.
The enhancement of the spectral density near zero is

clearly seen in Fig. 1. We note that the exact zero
eigenvalues are not shown here; they would appear as a
delta function exactly at zero.
Counting the number of zero eigenvalues allows us to

compute the topological susceptibility χ as well as the
distribution of the topological charge. In Fig. 2, we
compare the distribution obtained in the lattice simulation
with the one expected in a free topological gas with
susceptibility χ. This is essentially a one-parameter fit of
the function in Eq. (4), the fit parameter being Vχ, and the
chi squared per degree of freedom of the fit turns out to
be 0.85.
Encouraged by the good agreement between the lattice

data and the free topological gas, we assume that the exact
zero modes and the small Dirac eigenvalues, up to a point
λZMZ in the spectrum, are the eigenvalues associated to the
topological objects. In this way, by counting them, we
count the number of topological objects n present in the
gauge field. To make this picture consistent, we have to
choose λZMZ such that hni ¼ Vχ, as predicted by Eq. (5)
for an ideal topological gas. Requiring this, results in

λZMZa ¼ 0.045ð6Þ,4 which turns out to be in the depleted
region of the spectral density, separating the spike at zero
from the bulk (see Fig. 1). This shows that the ZMZ is
indeed well separated from the bulk of the spectrum.
We can now identify the total number of eigenvalues in

the zero mode zone, the ones with jλj < λZMZ (including the
exact zero modes) with n, the number of topological
objects. Counting the eigenvalues in the ZMZ configura-
tion by configuration, we obtain the distribution of n, and in
Fig. 3, we compare it with the one expected in a gas of
noninteracting topological objects, given by Eq. (5). We
emphasize that at this point no fitting is involved, since the
only parameter of this distribution, Vχ, had already been
determined independently from the charge distribution. We
do not find a significant deviation from the free topological
gas distribution, as the chi squared per degree of freedom of
the deviation is 0.62.
We emphasize that the fact that the distribution of the

number of eigenmodes of magnitude smaller than λZMZ
exactly reproduces the distribution we expect from eigenm-
odes linked to free topological objects is rather nontrivial.
By choosing λZMZ in the above described manner, we only
fixed the expectation of the distribution, and it follows the
expected analytical form over 3 orders of magnitude, the
whole range where we have data. This shows not only that
the topological objects are indeed noninteracting but also
that already at this temperature the zero mode zone can be
reliably separated from the bulk.
So far, we determined λZMZ from the requirement that the

total number of eigenvalues below λZMZ (including the zero
modes) be consistent with the topological susceptibility
obtained by counting the zero modes only. But is λZMZ
really a special point in the spectrum? To answer this
question, we chose different cuts in the spectrum and
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FIG. 2. The distribution of the topological charge in our lattice
simulations and the distribution expected in a free topological gas
with the same susceptibility. As the distribution is expected to be
symmetric, positive and negative charges of the same magnitude
are counted together. The inset shows the tail of the distribution
on logarithmic scale.
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4The quoted uncertainty includes only the statistical error
computed with the bootstrap.
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checked how close the distribution of the number of
eigenvalues below these cuts are to a Poisson distributions.
To this end, we determined the distribution of the number
of eigenvalues as a function of the cut and for each value of
the cut, plot the chi squared per degree of freedom of the
deviation of the best fit Poisson distribution from the data.
In Fig. 4, we show the results. It can be clearly seen that
there is a range of cuts 0.3 < λcut=Tc < 0.6, where the
distribution is compatible with Poisson, and the previously
independently determined λZMZ happens to be in the middle
of this range. This further supports that the valley of
the spectral density containing λZMZ indeed separates the
topological modes from the bulk of the spectrum. This
valley, however, is rather wide, and even though the
spectrum is quite depleted there and not many eigenvalues
are contained there, the question arises as to how sharply
λZMZ is defined within the valley. Given the present dataset,
this question cannot be unambiguously answered. It is
possible that if we used much larger statistics, the chi
squared test presented in Fig. 4 would further limit the
acceptable range for λZMZ. Another possibility is that in the
continuum limit the spectrum could become more depleted
in the valley, even a gap could appear there. In that case, the
exact location of λZMZ within the gap would not be
important. Finally, it is also possible that even in the
continuum limit and with arbitrarily large statistics, there
would still be some small ambiguity in separating the
topological modes and the bulk. To explore these possibil-
ities further would require more extensive simulations that
are out of the scope of the present work.
The finite temperature SUð3Þ transition is a first order

phase transition, so the correlation length does not diverge;
however, large finite volume corrections cannot be
excluded. To assess their importance, we repeated the
analysis in a smaller volume with a linear extension
L ¼ 24. In that case, we found significant deviations from

the expected free topological gas behavior. The resulting
chi squared per degree of freedom was 1.99 and 6.29 in the
case of the charge distribution and the distribution of the
total number of topological objects, respectively.
To understand finite volume corrections in the vicinity of

a phase transition, it is instructive to look at the volume
dependence of the distribution of the order parameter. In
Fig. 5, we show the probability distribution of the magni-
tude of the Polyakov loop, the order parameter of the
quenched finite temperature transition. Besides the widen-
ing of the distribution, expected for smaller volumes, the
data for L ¼ 24; 32 lattices also show an unusual enhance-
ment of smaller values of the Polyakov loop. The reason for
this is that in the high temperature phase, the Zð3Þ center
symmetry is spontaneously broken, and the system ran-
domly chooses one of the three Zð3Þ sectors. However, in a
finite volume, tunneling among the sectors is still possible,
the tunneling probability is enhanced in smaller volumes,
and configurations in the process of tunneling have small
magnitudes of the Polyakov loop.
As also seen in Fig. 5, in larger volumes, these tunneling

states get suppressed; however, in smaller volumes they can
still give significant contributions to physical quantities,
resulting in large finite-size effects. To see how these
tunneling states can affect the topological charge, we looked
at the correlation between topology and the Polyakov loop.
The simplest quantity to study is the topological suscep-
tibility. We computed its dependence on the Polyakov loop
by restricting the averaging of Q2 to configurations with
Polyakov loop magnitudes in intervals of length 0.01. The
results for the L ¼ 24 and 32 ensembles, shown in Fig. 6,
reveal a strong dependence of the susceptibility on the
Polyakov loop. The previously seen enhanced contribution
of the tunneling region (small Polyakov loop), where the
susceptibility is larger, will thus result in significantly larger
topological susceptibilities in smaller volumes. To have a
feeling about the relative importance of the enhanced region,
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we note that the probability that jPj < 0.08 is 0.11, 0.028,
and 0.004 for the lattices with linear spatial size size
L ¼ 24; 32; and 40, respectively. For the two ensembles
shown in Fig. 6, we also indicated the overall susceptibilities
and their uncertainties with the horizontal stripes. Since on
theL ¼ 24 lattices even the susceptibility suffers large finite-
size effects, it is not surprising that the same occurs for the
distribution of the topological charge and the number of
topological objects.
We would also like to comment on the apparent

discrepancy between our results and those of Ref. [9],
who found a significant ½27ð7Þ%� deviation of the B2

coefficient from its value (1.0) expected in a noninteracting
instanton gas. In fact, our data yield B2 ¼ 1.35ð41Þ, which
is compatible with that of the above reference. However,
judging from their much smaller uncertainty, their statistics
could be more than an order of magnitude larger than ours.
Since it is based on the overlap spectrum, our method is
computationally much more expensive, and in the present

study, we could not compete in the statistics, but our
method has two advantages. First, it necessarily yields
integer charges and avoids the large ambiguity in B2 due to
any small random fluctuations of the topological charge
around integers and the possibly necessary normalization
and rounding of the charges. Secondly, our method allows
for a full determination of the joint distribution of instan-
tons and antiinstantons. It would be interesting to repeat our
calculation using a much larger statistics and to see if there
is any deviation in this distribution from that of the number
of noninteracting instantons.
In the present paper, we used a novel way to compute the

joint distribution of the number of topological objects in
lattice simulations. We showed that right above the critical
temperature of pure SUð3Þ gauge theory, the distribution is
consistent with the one expected in an ideal gas of non-
interacting charges of unit magnitude. It is remarkable that
while below the phase transition topological fluctuations
form a dense medium without easily identifiable individual
lumps [21], right above the phase transition an ideal gas of
well separated topological lumps emerges. Our result also
implies that the most likely explanation of the large
discrepancy between the lattice and DIGA based calcu-
lation of the topological susceptibility is that the topologi-
cal lumps we found are not close enough in shape to ideal
calorons to warrant a semiclassical treatment.
We expect that—at least on a qualitative level—this

picture of the topological fluctuations that we found in the
quenched case carries over to QCD with dynamical quarks.
However, the fermion determinant might introduce some
interaction even among well separated topological lumps,
but to study that one would need to use a chiral Dirac
operator also for the simulation of the sea quarks.
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