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We extend HPQCD’s earlier nf ¼ 2þ 1þ 1 lattice-QCD analysis of the ratio of MS masses of the b and
c quark to include results from finer lattices (down to 0.03 fm) and a new calculation of QED contributions
to the mass ratio. We find that m̄bðμÞ=m̄cðμÞ ¼ 4.586ð12Þ at renormalization scale μ ¼ 3 GeV. This result
is nonperturbative. Combining it with HPQCD’s recent lattice QCDþ QED determination of m̄cð3 GeVÞ
gives a new value for the b-quark mass: m̄bð3 GeVÞ ¼ 4.513ð26Þ GeV. The b-mass corresponds to
m̄bðm̄b; nf ¼ 5Þ ¼ 4.202ð21Þ GeV. These results are the first based on simulations that include QED.
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I. INTRODUCTION

Accurate masses for heavy quarks are important for
QCD-phenomenology generally, but they will be particu-
larly important for high-precision searches for new physics
in Higgs decays [1]. In this paper we present a new result
for the ratio m̄b=m̄c of the MSmasses of the b and c quarks.
Our analysis of the mass ratio is completely nonperturba-
tive. This is in contrast to lattice-QCD determinations of the
separate quark masses, which need QCD perturbation
theory to relate MS masses to lattice quantities. Thus the
(nonperturbative) mass ratio provides a nontrivial check on
(perturbative) determinations of the separate masses. The
ratio can also be combined with recent accurate determi-
nations of the c-quark mass to obtain new results for the
b-quark mass.

Lattice simulations of b quarks are complicated by the
quark’s large mass, which leads to large lattice-spacing
errors when the b quarks are described by the Dirac
equation (as opposed to, say, NRQCD [2]). We address
this problem by using a highly improved staggered-quark
discretization of the Dirac equation (HISQ) [3] that is also
highly efficient, making simulations at very small lattice
spacings feasible. Our previous analysis of the mass ratio
[4] used lattices with spacings down to 0.06 fm but still
required an extrapolation in the quark mass to reach mb.
Here we reduce the lattice spacing to 0.03 fm, where
amb ≈ 0.6, which allows us to simulate at the b mass.
Lattice spacing errors at mb are less than 1% on our finest
lattice, and we are able to remove most of that error by
extrapolating from results covering a range of lattice
spacings and heavy-quark masses mh.
Our new result is accurate to about 0.25%, so it becomes

important to include QED effects. We recently analyzed the
QED contributions to the c quark’s mass [5]. Here we adapt
the methods from our earlier paper to provide the first
results for QED contributions to m̄b=m̄c and m̄b. Here and
in our earlier paper we use the quenched QED approxi-
mation, which omits contributions from photons coupling
to sea quarks. The quenched approximation should capture
the bulk of the QED correction in mesons whose valence
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quarks are both heavy; contributions from sea quarks are
expected to be an order of magnitude smaller [5].
In Sec. II we describe our general strategy and the lattice

QCD simulations we employed. In Sec. III, we extract a
value for m̄b=m̄c using results from simulations without
QED. We then add QED effects in Sec. IV. We summarize
our results for the mass ratio in Sec. V and combine them
with HPQCD’s recent c-quark mass to obtain a new result
for the b-quark mass.

II. LATTICE QCD SIMULATIONS

We use gluon configuration sets generated on a variety of
lattices (by the MILC Collaboration [6]), with nf ¼ 4
flavors of HISQ sea quark and lattice spacings ranging
from 0.09 fm to 0.03 fm. These sets are described in
Table I. The u and d quark masses are set equal to
ml ≡ ðmu þmdÞ=2; corrections to this approximation
are quadratic in the light-quark masses for our analysis,
and so are negligible. We include results where the light-
quark masses in the sea are tuned close to their physical
value, but we also include results with much larger light-
quark masses in the sea. Results from these last simulations
are unphysical but are easily corrected [4]. Increasing the
light-quark mass in the sea significantly reduces the cost of
our analysis at small lattice spacings (because smaller
lattice volumes are used).
Ignoring QED for the moment, the ratio of the b and c

MSmasses equals the ratio of the corresponding bare quark
masses used in the lattice Lagrangian, up to corrections that
vanish in the continuum limit [9],

m̄bðμÞ
m̄cðμÞ

¼ mtuned
b

mtuned
c

����
latt

þOðαsðπ=aÞa2Þ; ð1Þ

where the bare masses are tuned so that the QCD
simulations reproduce the experimental results for meson
masses. This relationship between the MS and lattice quark

masses is nonperturbative and independent of the MS
renormalization scale μ.
Pseudoscalar and vector meson masses from our simu-

lations are listed in Table II for a variety of (valence) heavy-
quark masses, ranging on the finest lattices (sets 5 and 6)
approximately from the c mass to the b mass. The analysis
methods for extracting these masses (and most of the
results) come from [5,10]. We use multiexponential fits to
calculate the masses. Fig. 1 compares the result from our fit
with the effective mass values at various times for the
correlator closest to the ηb mass on our finest lattice.
The quark masses amh in Table II are what is used in the

HISQ Lagrangian. The am̃h masses are corrected to remove
tree-level ðamhÞ2n errors (in the pole mass) through order
2n ¼ 10 [3,11],

am̃h ≡ amh

�
1 −

48

80

�
amh

2

�
4

þ 1472

2240

�
amh

2

�
6

þ 456448

537600

�
amh

2

�
8

−
78789632

23654400

�
amh

2

�
10
�
: ð2Þ

We write the expansion as powers of amh=2 because this
makes the leading coefficients roughly the same size (about
1=2). The correction is −2% at amh ¼ 0.9, which is the
largest value we use.
We give results in Table I for the tuned bare c mass for

each of the configurations. In each case we adjust the c
mass so as to reproduce the continuum value for either the
ηc mass or the J=ψ mass,

mcont
ηc ¼ 2.9766ð13Þ GeV

mcont
J=ψ ¼ 3.09620ð20Þ GeV: ð3Þ

Here we have subtracted 7.3(1.2) MeV from the exper-
imental value formηc [12] to account for the fact that we are
not including contributions from cc̄ annihilation in our

TABLE I. Gluon configuration sets used in this paper. Sets are grouped by approximate lattice spacing, with lattice spacings of 0.09 fm
(sets 1 and 2), 0.06 fm (sets 3 and 4), 0.045 fm (set 5), and 0.03 fm (set 6). Lattice spacings are determined from the values shown for the
Wilson flow parameter w0=a [7] where w0 ¼ 0.1715ð9Þ fm [8]. The sea quark masses are given in lattice units for u=d quarks (aml),
s quarks (ams), and c quarks (amc). Tuned values for the lattice c masses are also given (in GeV). These masses are adjusted to give
correct masses for either the ηc or J=ψ mesons [Eq. (3)]. The c masses are tuned using slope dm̃c=dmcc, which is the same (within
errors) for the ηc and J=ψ . The spatial and temporal sizes of the lattices, L and T, are listed, as are the number of configurations used in
our analysis (the two numbers for set 1 are for quark masses amh below and above 0.5; the three numbers for set 2 are for the
pseudoscalar correlators, the vectors with mass with mass below 0.5 and the vectors with mass above 0.5). The three polarizations were
averaged for vectors. Eight time sources were used on each configuration except for set 6 where four were used.

Set w0=a amsea
l amsea

s amsea
c m̃tuned

c ðηcÞ m̃tuned
c ðJ=ψÞ dm̃c=dmcc L=a T=a Ncfg

1 1.9006(20) 0.0074 0.037 0.44 0.9767 (25) 0.9828 (27) 0.478 (10) 32 96 300, 504
2 1.95175(70) 0.0012 0.0363 0.432 0.9671 (25) 0.9717 (27) 0.478 (10) 64 96 311, 565, 792
3 2.8960(60) 0.0048 0.024 0.286 0.9078 (24) 0.9118 (26) 0.444 (10) 48 144 333
4 3.0170(23) 0.0008 0.022 0.26 0.8944 (23) 0.8966 (25) 0.444 (10) 96 192 100
5 3.892(12) 0.00316 0.0158 0.188 0.8646 (26) 0.8675 (29) 0.433 (10) 64 192 200
6 5.243(16) 0.00223 0.01115 0.1316 0.8234 (27) 0.8251 (29) 0.423 (10) 96 288 100
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simulations; this correction is determined in [5]. The
analogous correction to the J=ψ mass is negligible, but
we have subtracted 0.7(2) MeV from the mass to account
for cc̄ annihilation to a photon; this correction is estimated
perturbatively in [5]. We extrapolate the c masses to their
correct values using

am̃tuned
c ¼ am̃c − ðamlat

cc − amcont
cc Þ dm̃c

dmcc
; ð4Þ

where mcc is either the ηc or the J=ψ mass and the slopes
(see Table I) are estimated from splines fit to the entries in
Table II.

III. m̄b=m̄c WITHOUT QED

We could tune the lattice b mass the same way we tuned
mc, but we have only a few simulation results near the b,
and these have significant ðamhÞ2n errors. Instead we will

use the data in Table II to define functions that relate the
ratio of quark masses to the pseudoscalar (P) or vector (V)
masses,

mP
hh ¼ fPhhðm̄h=m̄cÞ

mV
hh ¼ fVhhðm̄h=m̄cÞ; ð5Þ

where

fPhhð1Þ≡mcont
ηc

fVhhð1Þ≡mcont
J=ψ : ð6Þ

Given these functions, we then obtain two estimates for
m̄b=m̄c by solving each of the equations,

fPhhðm̄b=m̄cÞ ¼ mcont
ηb

fVhhðm̄b=m̄cÞ ¼ mcont
ϒ ; ð7Þ

for m̄b=m̄c, where

mcont
ηb ¼ 9.3987ð22Þ GeV

mcont
ϒ ¼ 9.46030ð26Þ GeV: ð8Þ

The two mass ratios should agree. Here we account for the
bb̄ annihilation contribution to the ηb mass by adding an
extra error of �1 MeV to the experimental result [12]; this
estimate is based on NRQCD perturbation theory and the
meson’s width [3]. The analogous contribution to the ϒ
mass is negligible, as is ϒ annihilation via a photon.
In what follows, we first describe our lattice-QCD

analysis of fPhh and fVhh, and then discuss the results.

TABLE II. Lattice QCD results for the ground-state pseudo-
scalar and vector hh̄ mesons in lattice units: amP

hh and amV
hh,

respectively. Results are given for each configuration sets (Table I)
and a variety of bare quark masses amh and corrected masses
am̃h (in lattice units). The uncertainties in the meson masses are
negligible compared with other errors in our analysis and so
have no impact on the final results. Most of these results are
from [5,10].

Set amh am̃h amP
hh amV

hh

1 0.45 0.44935 1.366803 (89) 1.41567 (21)
0.6 0.59739 1.675554 (47) 1.717437 (70)
0.8 0.79003 2.064088 (40) 2.101542 (57)

2 0.433 0.43246 1.329290 (31) 1.378280 (54)
0.6 0.59739 1.674264 (13) 1.715453 (32)
0.8 0.79003 2.063015 (11) 2.099940 (26)

3 0.269 0.26895 0.885242 (56) � � �
0.274 0.27394 0.896664 (33) 0.929876 (86)
0.4 0.39963 1.175559 (29) 1.202336 (85)
0.5 0.49891 1.387459 (27) 1.411113 (72)
0.6 0.59739 1.593089 (25) 1.614626 (63)
0.7 0.69461 1.793118 (23) 1.813249 (57)
0.8 0.79003 1.987504 (22) 2.006783 (52)

4 0.26 0.25996 0.862671 (27) 0.895702 (52)
0.4 0.39963 1.173904 (23) 1.199806 (36)
0.6 0.59739 1.591669 (19) 1.612586 (27)
0.8 0.79003 1.986246 (17) 2.005047 (24)

5 0.194 0.19399 0.666821 (41) 0.692026 (59)
0.4 0.39963 1.130722 (31) 1.147617 (40)
0.6 0.59739 1.549098 (26) 1.562884 (32)
0.8 0.79003 1.945787 (23) 1.958252 (27)
0.9 0.88303 2.135642 (21) 2.147903 (25)

6 0.138 0.13800 0.496969 (42) 0.516149 (61)
0.45 0.44935 1.201328 (29) 1.211601 (28)
0.55 0.54828 1.410659 (27) 1.420048 (24)
0.65 0.64619 1.614877 (24) 1.623684 (21)

FIG. 1. The effective mass plotted versus time for the amh ¼
0.65 pseudoscalar correlator from configuration set 6. For clarity,
the plot includes only every third point. The orange band and
dotted line show the corresponding mass (Table II) obtained from
a multiexponential fit [5,10]. The error in the fit result (orange
band) is almost entirely statistical in origin. In particular, possible
biases due to excited states are completely negligible (50×
smaller), as is typical in fits for heavy-quark ground-state masses.
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A. Analysis

We determine the fhh functions [Eq. (5)] by fitting the
meson masses amhh from Table II to functions of the
following form:

amhh× ð1�σuÞ¼ afhhðrÞþamhhðδa2 þδseaudsþδseac Þ; ð9Þ

where

r≡ am̃h

am̃tuned
c

ξmðm̃tuned
c ; δmsea

udsÞ
ξmðm̃h; δmsea

udsÞ
ð10Þ

is the effective ratio of quark masses m̄h=m̄c. Pseudoscalar
and vector mesons are fit separately, to determine each of
fPhh and fVhh. We describe each element of the fit function
in turn,

(i) We increase the fractional error on each value of
amhh from Table II to�σu. The amhh errors listed in
the table are very small. It is impossible to fit the
almost six significant digits in these data with a
model as simple as we use here. So we increase the
fractional error on each value to σu, which is then a
measure of the part of the variation in the data that is
unexplained by our model. The σu errors are
uncorrelated from one amhh to another. We use
the same value for σu for every data point and adjust
its size to maximize the Bayes Factor from the fit
[13]. For the parameters and model used here, we
find that

σu ¼ 0.00025; ð11Þ

which means that our model explains the individual
data points to within �0.025%. A simpler model
would have a larger σu: for example, σu more than
doubles if the ξm factors in ratio r are dropped (but
gives consistent results within the larger errors).
Note that the statistical errors listed in Table II can be
neglected when σu is included.

(ii) We parametrize the fhh functions as splines [14]
with six knots evenly spaced from r ¼ 1 to 4.6
(≈mb=mc), inclusive. The fit parameters are the
function values at the knots. These functions are
linear up to corrections of order v2=c2 ∼ 0.1–0.3,
where v is the typical velocity of the heavy quarks in
the meson. Therefore we use the following priors for
the values at the knots with r > 1:

fhhðrknotÞ

¼ 1.0ð2Þ×
�
mccþ

rknot−1

3.6
ðmbb−mccÞ

�
; ð12Þ

where mcc and mbb are the continuum masses of the
pseudoscalar/vector mesons composed of c and b

quarks, respectively [Eqs. (3) and (8)]. At r ¼ 1, we
require

fhhðr ¼ 1Þ ¼ mcc: ð13Þ

We choose six knots to maximize the Bayes Factor
from the fit. Results obtained using 5 or 7 knots
agree well with those from 6 knots, with similar or
smaller errors. Doubling the width of the priors has
no effect on our results.

(iii) The ξm factors in the mass ratio r rescale the quark
masses to correct for detuned values of the light sea
quarks. From [4],

ξmðmh; δmsea
udsÞ ¼ 1þ gm

ðmh=mcÞζ
δmsea

uds

ms
; ð14Þ

where

δmsea
uds ≡

X
q¼u;d;s

ðmsea
q −mtuned

q Þ ð15Þ

is the difference between the masses used in the
simulation and their tuned values. The tuned masses
are determined from the tuned c-quark mass using
results for mc=ms and ms=ml from [15]. The priors
for the fit parameters are

gm ¼ 0.035ð5Þ ζ ¼ 0.3ð1Þ; ð16Þ

which come from fits described in [4].
(iv) The largest simulation errors are from the discreti-

zation. These are suppressed by αsðπ=aÞ in order a2

because we are using the HISQ formalism [3].
Beyond this order they are suppressed either by
αsðπ=aÞ or by v2=c2, since we have removed the
tree-level a2n errors in the quark masses using
Eq. (2). The fit can not distinguish easily between
αs and v2=c2 since both are around 0.2 for our data,
so we include only an αs correction, modeled after
Eq. (2),

δa2 ≡ αsðπ=aÞ
X3
n¼1

fna2ðrÞ
�
am̃h

2

�
2n
: ð17Þ

Here functions fna2ðrÞ are six-knot splines with
priors at the knots (same locations as above) of

fna2ðrknotÞ ¼ 0.0ð5Þ: ð18Þ

Terms beyond n ¼ 3 have no effect on the fit results;
keeping just then ¼ 1 termgives the same final results
but with errors that are 25% smaller. The splines allow
for mh dependence in the a2n corrections.
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(v) We include a2 corrections to ξm since δmsea
uds is large

for some of our configuration sets,

δseauds ¼ αsðπ=aÞfseaudsðrÞ
δmsea

uds

10ms

�
am̃h

2

�
2

; ð19Þ

where function fseaudsðrÞ is again a six-knot spline,
now with priors at the knots of

fseaudsðrknotÞ ¼ 0.0ð1Þ; ð20Þ

where the width is chosen to be somewhat larger
than suggested by gm above. Omitting this correction
has negligible effect on our final results.

(vi) We also include a correction to ξm from detuned
c-quark masses in the sea. This correction should be
small because of heavy-quark decoupling [4]— the
momentum transfers in the heavy-quark mesons are
too small to produce cc̄ pairs efficiently. We include
the correction,

δseac ¼ fseac ðrÞ δm
sea
c

mc
; ð21Þ

where δmc ≡mc −mtuned
c , and fseac ðrÞ is a six-knot

spline with

fseac ðrknotÞ ¼ 0.00ð1Þ: ð22Þ

We choose the width to maximize the Bayes factor
from the fit. Omitting this correction has negligible
effect on our final results.

The fit parameters are the values of the coefficient functions
(splines) at the knots, together with gm and ζ from the ξm
factors [Eq. (14)]. We use the lsqfit PYTHON module to
do the fits [16,17].

B. Results

The functions fP=Vhh obtained from the fits described in the
previous section (and detailed in the Appendix) are plotted in
Fig. 2, together with the data from Table II. Figure 3 shows
that the model [Eq. (9)], with best-fit values for the fit
parameters in the corrections (on the right-hand side),
reproduces the data within errors.1 The difference between
the lattice resultswith andwithout corrections is−0.69ð23Þ%
for the highest quark mass on the finest lattice (set 6).
We can use functions fP=Vhh to extract values for the ratio

of MS masses by solving Eqs. (7). We obtain

m̄b=m̄c ¼
�
4.578ð12Þ from the amP

hh

4.578ð15Þ from the amV
hh;

ð23Þ

independent of renormalization scale. The two estimates
agree to within 0.01(23)%. The weighted average, taking
account of correlations, is

m̄b=m̄c ¼ 4.578ð12Þ: ð24Þ

We tabulate the leading uncertainties in our two results in
Table III. The error budgets are similar for the two mesons

FIG. 2. Lattice QCD (without QED) results for m̄h=m̄c plotted
versus the hh̄ meson masses. Values for m̄h=m̄c are corrected as
in Eq. (10). The lines, which vary in thickness, show results from
the best-fit values for the functions fP=Vhh ; the line thickness shows
the 1σ uncertainty in these functions. These functions can be
reconstructed from information in the Appendix. Separate results
are shown using the pseudoscalar masses mP

hh (top line, squares)
and the vector masses mP

hh (bottom line, circles). Different colors
indicate different configuration sets, with sets 6 (brown) and
5 (purple) having the largest masses, followed by sets 4 (red),
3 (green), 2 (orange) and 1 (blue), in that order. Error bars are
smaller than the plot symbols.

FIG. 3. Relative difference between the data for amhh from
Table II and the model in Eq. (9) with best-fit values for the fit
parameters. Results are shown for both pseudoscalar (squares,
offset right) and vector (circles, offset left) mesons, where data
points for the two mesons are offset slightly in opposite directions
to improve visibility.

1χ2 is less useful as a measure of goodness-of-fit here because
we adjust σu to give a good fit. χ2 per degree of freedom was 0.9
for the pseudoscalar data (26 points) and 0.8 for the vector data
(25 points).
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and are dominated by uncertainties associated with dis-
cretization errors and the lattice spacings. Doubling the
widths of any of the priors associated with these uncer-
tainties has negligible effect on the central values from our
fits (<σ=3), and only doubling the discretization priors
[Eq. (18)] has an appreciable impact on the final uncer-
tainties, as expected from Table III. Omitting results from
the coarsest lattices (sets 1 and 2) has negligible effect on
our results (<σ=10). Omitting results from the finest lattice
(set 6) increases the final uncertainties significantly (by
factors of 5–6) because there is then insufficient data at
large masses to constrain the six-knot splines used in the fit
function; reducing the number of knots decreases the errors
by a third. In either case the results agree with our final
results within errors.
Finally, as discussed in [5], we expect errors from the

finite lattice volume and strong-isospin breaking
(mu ≠ md) in the sea to be less than 0.01% and so
negligible here. We have verified this for the meson masses
(using configuration sets 3A–3B and 5–7 from [5]). The
Wilson flow parameter w0 should be similarly insensitive,
and we have verified this to the level of our statistical errors
(0.03%) for w0=a. See [5] for further details.

IV. ADDING QED

Adding QED complicates the analysis of m̄b=m̄c because
the quarks have different QED charges and therefore
different mass anomalous dimensions. Thus the nonper-
turbative relation in Eq. (1) is only true up to OðαQEDÞ

corrections. We deal with this complication by introducing
QED through two ratios R,

m̄bðμÞ
m̄cðμÞ

����
QCD
QED

¼ Rðm̄b=m̄c; Qc;b ¼ 0 → 1
3
Þ

Rðm̄cðμÞ; Qc ¼ 1
3
→ 2

3
Þ ×

m̄b

m̄c

����
QCD

: ð25Þ

Here,

R

�
m̄cðμÞ; Qc ¼

1

3
→

2

3

�
≡ m̄cðμÞ with Qc ¼ 2

3

m̄cðμÞ with Qc ¼ 1
3

ð26Þ

is the ratio of the cmass in a theory with c-quark charge 2
3
to

the mass in a theory with c-quark charge 1
3
. Similarly,

R

�
m̄b=m̄c;Qc;b ¼ 0→

1

3

�
≡ m̄b=m̄c withQc;b ¼ 1

3

m̄b=m̄c withQc;b ¼ 0
; ð27Þ

where the c and b charges are equal (Qc ¼ Qb) in each case
(and so the ratio is μ independent). In every case, the quark
masses are tuned to reproduce the continuum meson
masses in Eqs. (3) and (8). Either the pseudoscalar or
vector mesons can be used; they give the same results to
within the precision needed here. Only the first of the R
factors [Eq. (26)] depends on the MS renormalization scale
μ; we take μ ¼ 3 GeV, following [5]. We approximate full
QED by quenched QED, where only the valence quarks
carry electric charge. This is expected to be the dominant
contribution inOðαQEDÞ and is much less costly to analyze.
The techniques we use for introducing QED into simu-
lations are standard and are described in [5,10].
The R factor for the c mass [Eq. (26)] is the most

important and can be inferred from our earlier result [5],

R

�
m̄cð3 GeVÞ; Qc ¼ 0 →

2

3

�
¼ 0.99823ð17Þ: ð28Þ

R is quadratic in Qc to better than 0.01% so the QED
correction (R − 1) required to go from charge 1

3
to charge 2

3

is three quarters that required to go from 0 to 2
3
,

R

�
m̄cð3 GeVÞ; Qc ¼

1

3
→

2

3

�
¼ 0.99867ð13Þ: ð29Þ

The other R factor, for m̄b=m̄c, is expected to be much
closer to one for two reasons: the QED corrections for the b
and c masses are similar and tend to cancel in the ratio, and
the charges Qc;b ¼ 1

3
are smaller (and the QED effect is

quadratic in the charge). To estimate the effect, we
calculated the ratio R0 of meson masses mhh with and
without Qc;b ¼ 1

3
QED, holding the quark masses constant,

for two of our configuration sets; our results are in Table IV.
This quantity can be related to the R factor for m̄b=m̄c by
reexpressing the R-factor in terms of lattice masses, using
Eq. (1) (since Qc ¼ Qb), and writing it as

TABLE III. Contributions to the total (1σ) error in m̄b=m̄c from
QCD simulations (without QED), as a percentage of the mean
value. Results are given for determinations using pseudoscalar
mesons (mP

hh) and vector mesons (mV
hh), and for the weighted

average of these results. The dominant errors come from the
extrapolation to zero lattice spacing and from uncertainties in the
lattice spacing. Additional errors are from residual uncertainties
taken in the fit data (σu), uncertainties in ξm used to correct for
unphysical sea-quark masses, uncertainties in the ηc and ηb
masses, and tuning uncertainties in the sea-quark masses. The
error budgets are the same when QED is included aside from an
additional uncertainty of 0.03% associated with the QED
corrections.

m̄b=m̄c½mP
hh� m̄b=m̄c½mV

hh� m̄b=m̄c½avg�
ðamhÞ2 → 0 0.20 0.21 0.20
w0, w0=a 0.10 0.18 0.12
σu 0.12 0.12 0.09
gm, ζ 0.05 0.05 0.05
mcc 0.06 0.01 0.04
mbb 0.03 0.00 0.02
ðamhÞ2δmsea

uds → 0 0.06 0.07 0.06
δmsea

c → 0 0.03 0.03 0.03
dm̃c=dmcc 0.03 0.02 0.02

Total: 0.27 0.32 0.27
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Rðm̄b=m̄c; QÞ ¼ 1þ δm̃Q
b

m̃b
−
δm̃Q

c

m̃c
þOðδm̃2Þ; ð30Þ

where δm̃Q
c;b are the quark mass shifts needed to hold the

meson masses constant when QED is added to the
simulation. The mass shifts can be calculated for different
heavy-quark masses mh from the R0 factors in Table IV,

δm̃Q
h ¼ ð1 − R0ðmhh;QÞÞmhh

dm̃h

dmhh
: ð31Þ

Here the derivative is estimated for each configuration by
fitting a cubic spline to the am̃h values in Table II as a
function of the corresponding amhh values.
Values for Rðm̄h=m̄c; Q ¼ 1

3
Þ are plotted versus m̄h=m̄c

in Fig. 4 for both pseudoscalar (below) and vector (above)
mesons from the two configuration sets. We fit these data to
a simple function suggested by QED perturbation theory,

R ¼ 1þ
X3
i¼1

ci logiðm̃h=m̃cÞ þ
X5
j¼1

djðam̃h=2Þj; ð32Þ

with priors ci ¼ 0.000ð5Þ and dj ¼ 0.0ð5Þ. Extrapolating
to the b mass gives

R

�
m̄b=m̄c; Q ¼ 1

3

�
¼

�
1.000372ð90Þ frommP

hh

1.00036ð19Þ frommV
hh:

ð33Þ

The two results agree with each other, but the corrections
are too small to affect our final results significantly.2

Doubling the fit priors leaves the results unchanged. We
use the larger error in the error budgets for our final result.
Including both R factors, we arrive at new results for the

quarkmass ratio at μ ¼ 3 GeV that include (quenched)QED,

m̄bð3 GeVÞ
m̄cð3 GeVÞ

����
QCD
QED

¼
�
4.586ð13Þ frommP

hh

4.586ð15Þ frommV
hh:

ð34Þ

These again agree with each other. The weighted average,
which is our final result, is

m̄bð3 GeVÞ
m̄cð3 GeVÞ

����
QCD
QED

¼ 4.586ð12Þ: ð35Þ

The error budgets for these ratios are the same as those in
Table III, but with an additional uncertainty of 0.03%
associated with the QED correction.3 Mass ratios for other
values of the renormalization scale are readily calculated
using QED perturbation theory,

m̄bðμÞ
m̄cðμÞ

����
QCD
QED

¼
�

μ

3 GeV

�
αQED=2π m̄bð3 GeVÞ

m̄cð3 GeVÞ
����
QCD
QED

; ð36Þ

where the additional QED correction is negligible compared
to our errors for typical values of μ. Here and elsewhere we
ignore the running of αQED andOðαQEDαsÞ corrections since
they are also negligible compared with our errors.

TABLE IV. Ratio R0 of mhh with QED corrections to mhh
without QED corrections, evaluated at the same quark mass mh.
Results are shown for ground-state pseudoscalar and vector
mesons analyzed on two configuration sets. The quark’s QED
charge is Q times the proton’s charge; results for Q ¼ 2=3 can be
converted to Q ¼ 1=3 by replacing R0 with 1þ ðR0 − 1Þ=4.
Set am̃h Q R0ðmP

hh; QÞ R0ðmV
hh; QÞ

1 0.44935 1=3 1.0002907 (26) 1.0003409 (75)
0.59739 1=3 1.0002612 (17) 1.0003106 (30)
0.79003 1=3 1.0002211 (11) 1.0002669 (25)

3 0.27394 2=3 1.0015755 (48) 1.001787 (11)
0.39963 1=3 1.0003639 (20) 1.0004081 (55)
0.49891 1=3 1.0003404 (15) 1.0003821 (43)
0.59739 1=3 1.0003182 (14) 1.0003703 (37)
0.69461 1=3 1.0002978 (11) 1.0003543 (37)
0.79003 1=3 1.00027860 (97) 1.0003412 (38)

FIG. 4. Ratio Rðm̄h=m̄c; Q ¼ 1
3
Þ is plotted versus m̄h=m̄c. It is

the ratio of m̄h=m̄c computed with QED charge Q ¼ 1
3
to the

result without QED (Q ¼ 0), where the quark masses are tuned to
give the same results for mP

hh (bottom, red) or mV
hh (top, blue).

Results are shown from configuration sets 1 (squares) and 3
(circles). Errors are smaller than the plot symbols. The blue and
red shaded areas show the �1σ fits to the data [Eq. (32)].

2Rðm̄b=m̄c; Q ¼ 1
3
Þ ¼ 1.00059 to leading order in QED per-

turbation theory. Our results are close to this value but also
include nonperturbative corrections from QCD.

3The QED uncertainty is obtained by adding (in quadrature)
the 0.013% uncertainty in Eq. (29), the 0.019% uncertainty in
Eq. (33), and 0.017% for possible corrections due to quenching
QED (10% of the QED correction).
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V. CONCLUSIONS

In this paper we described a new calculation of the ratio
of the MS masses of the b and c quarks,

m̄bð3 GeV; nf ¼ 4Þ
m̄cð3 GeV; nf ¼ 4Þ

����
QCD
QED

¼ 4.586ð12Þ; ð37Þ

where nf is the number of quark flavors in the sea. This is
the first calculation of the mass ratio based on simulations
that include QED, and it makes no use of weak-coupling
perturbation theory. Earlier analyses used phenomenologi-
cal models to estimate QED corrections to the mass ratio,
but the precision of the most recent results requires a more
accurate treatment, like the one described in this paper.
QED increased the mass ratio by 0.17(3)% relative to our
ratio without QED [Eq. (24)], which is almost equal to the
standard deviation of our final result.4

Our new result is consistent at the 1σ level with earlier
results from nf ¼ 4 simulations that did not include QED
(and so are μ independent),

m̄b

m̄c
¼

�
4.578ð8Þð10Þ Fermilab=MILC=TUMQCD ½15�
4.528ð54Þ HPQCD ½4�:

ð38Þ
In both cases the listed uncertainties include estimates of
the QED effects.5 Our new result and HPQCD’s previous
results are nonperturbative; the Fermilab/MILC/TUMQCD
result relies upon perturbation theory (and heavy quark
effective theory), although sensitivity to the perturbative
contributions mostly cancels in the ratio. The Fermilab/
MILC/TUMQCD result comes from simulations of heavy-
light mesons (Ds and Bs) rather than the heavy-heavy
mesons used here.
In a recent paper, HPQCD presented a new value for the

cmass that includes (quenched) QED effects as we do here,

m̄cð3 GeV; nf ¼ 4ÞjQCD
QED

¼ 0.9841ð51Þ GeV: ð39Þ

Combining this result with our mass ratio gives a new result
for the b-quark’s MS mass,

m̄bð3 GeV; nf ¼ 4ÞjQCD
QED

¼ 4.513ð26Þ GeV; ð40Þ

which is the first based on simulations that include QED.
Using perturbation theory to run to the b mass gives6

m̄bðm̄bÞjQCD
QED

¼
�
4.209ð21Þ GeV nf ¼ 4

4.202ð21Þ GeV nf ¼ 5;
ð41Þ

where we now include an evolution factor from QED,

ZQED
m ðμÞ ¼ ðμ=3 GeVÞ−αQED=6π; ð42Þ

with μ ¼ m̄b (which shifts the result by less than 0.02% and
so is negligible). This new result for the b quark is
compared with earlier results in Fig. 5. All of these results
agree to within errors.

ACKNOWLEDGMENTS

We are grateful to the MILC collaboration for the use of
their configurations. We are also grateful for the use of
MILC’s QCD code. We have modified it to generate
quenched Uð1Þ gauge fields and incorporate those into
the quark propagator calculation as described here. This
work used the DiRAC Data Analytic system at the
University of Cambridge, operated by the University of
CambridgeHigh Performance Computing Service on behalf
of the STFC DiRAC HPC Facility ([31]). This equipment
was funded by BIS National E-infrastructure capital
grant (Grant No. ST/K001590/1), STFC capital Grants
No. ST/H008861/1 and No. ST/H00887X/1, and STFC
DiRAC Operations Grant No. ST/K00333X/1. DiRAC is
part of the National E-Infrastructure. We are grateful to the
Cambridge HPC support staff for assistance. Funding for

FIG. 5. Values for the MS mass of the b quark from lattice QCD
simulations with nf ¼ 2þ 1þ 1 flavors of sea quark. Results are
shown from: HPQCD ’21 (this paper), Fermilab/MILC/
TUMQCD [15], Gambino et al. [28], ETM [29], HPQCD ’14
(NRQCD) [30], and HPQCD ’14 (HISQ) [4]. The gray band
corresponds to the top result (HPQCD ’21), the only one from
simulations that include QED.

4Note that the “QED correction” to a QCD-only analysis
depends in detail on how parameters are set in the QCD-only
simulation. Since QCD without QED is not the real world, it
makes a difference, for example, which hadron mass is used to
tune a quark mass; and the QED correction will differ for different
choices. Our QED correction is relative to the specific QCD-only
theories defined in Sec. III.

5The second error in the Fermilab/MILC/TUMQCD result is
their estimate of residual QED uncertainties not included in their
main analysis (and therefore not included in the errors stated in
their abstract) [15].

6We use αMSð5 GeV; nf ¼ 4Þ ¼ 0.2128ð25Þ from [4], together
with five-loop results for the beta function and mass anomalous
dimension, and four-loop results for adding a flavor [18–27].

HATTON, DAVIES, KOPONEN, LEPAGE, and LYTLE PHYS. REV. D 103, 114508 (2021)

114508-8



this work came from the Science and Technology Facilities
Council and the National Science Foundation.

APPENDIX: BEST-FIT SPLINES

The fPhhðrÞ function plotted in Fig. 2 can be recreated
from the its values at the knot locations r ¼ m̄h=m̄c,

fPhhðrÞ ¼

8>>>>>>>><
>>>>>>>>:

2.9766ð13Þ
4.3951ð34Þ
5.7058ð61Þ
6.9835ð93Þ
8.216ð14Þ
9.435ð22Þ

at r ¼

8>>>>>>>><
>>>>>>>>:

1.0

1.72

2.44

3.16

3.88

4.6

; ðA1Þ

together with the correlation matrix for these values,

0
BBBBBBBB@

1.0000 0.5857 0.4282 0.3546 0.2838 0.2113

0.5857 1.0000 0.5531 0.5205 0.4244 0.3565

0.4282 0.5531 1.0000 0.6617 0.4088 0.4113

0.3546 0.5205 0.6617 1.0000 0.5206 0.6074

0.2838 0.4244 0.4088 0.5206 1.0000 0.4216

0.2113 0.3565 0.4113 0.6074 0.4216 1.0000

1
CCCCCCCCA
:

The analogous results from the vector mesons are

fVhhðrÞ ¼

8>>>>>>>><
>>>>>>>>:

3.09620ð20Þ
4.4836ð32Þ
5.7951ð63Þ
7.054ð11Þ
8.282ð16Þ
9.497ð25Þ

at r ¼

8>>>>>>>><
>>>>>>>>:

1.0

1.72

2.44

3.16

3.88

4.6

; ðA2Þ

with correlation matrix,

0
BBBBBBBB@

1.0000 0.0999 0.0678 0.0480 0.0403 0.0302

0.0999 1.0000 0.8547 0.6582 0.5779 0.4747

0.0678 0.8547 1.0000 0.7891 0.6215 0.5017

0.0480 0.6582 0.7891 1.0000 0.7001 0.5338

0.0403 0.5779 0.6215 0.7001 1.0000 0.6628

0.0302 0.4747 0.5017 0.5338 0.6628 1.0000

1
CCCCCCCCA
:
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