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In recent years, the existence of a hadronically stable b̄b̄ud tetraquark with quantum numbers
IðJPÞ ¼ 0ð1þÞ was confirmed by first principles lattice QCD computations. In this work we use lattice
QCD to compare two frequently discussed competing structures for this tetraquark by considering meson-
meson as well as diquark-antidiquark creation operators. We use the static-light approximation, where the
two b̄ quarks are assumed to be infinitely heavy with frozen positions, while the light u and d quarks are
fully relativistic. By minimizing effective energies and by solving generalized eigenvalue problems we
determine the importance of the meson-meson and the diquark-antidiquark creation operators with respect
to the ground state. It turns out, that the diquark-antidiquark structure dominates for b̄b̄ separations
r ≲ 0.25 fm, whereas it becomes increasingly more irrelevant for larger separations, where the IðJPÞ ¼
0ð1þÞ tetraquark is mostly a meson-meson state. We also estimate the meson-meson to diquark-antidiquark
ratio of this tetraquark and find around 60%=40%.
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I. INTRODUCTION

A long-standing problem in particle physics is to under-
stand exotic hadrons, i.e., hadrons which have a structure
more complicated than a quark-antiquark pair or a triplet of
quarks [1]. Such exotic hadrons turned out to be not only
difficult to observe experimentally but also technical to
address in quark models [2]. In the last couple of years,
several exotic hadrons, the majority pertaining to the class
of tetraquarks with at least two heavy quarks, were clearly
confirmed by the BELLE, BES-III and LHCb experimental
collaborations. The observed exotic hadrons are resonances
high in the spectrum. Studying them theoretically from first
principles with lattice QCD requires the application and

development of specific techniques from lattice hadron
spectrosopy and scattering theory (see e.g., Refs. [3,4]).
There are two classes of doubly heavy tetraquarks.

Tetraquarks with one heavy quark and one heavy antiquark
Q̄Qq̄q including the Zc and Zb states are easier to detect
experimentally. Their observation at Belle [5–7], Cleo-C
[8], BESIII [9–13] and LHCb [14] Collaborations turned
tetraquarks into a main highlight of particle physics in
recent years. But since they are resonances with more than
one decay channel, we study in this paper tetraquarks with
two heavy antiquarks Q̄Q̄qq (or equivalently two heavy
quarks, i.e., QQq̄q̄), which are theoretically simpler,
because they are either hadronically stable or can only
decay into a pair of heavy-light mesons. Moreover, with the
recent observation of hadronic systems with two heavy
quarks [15,16] at LHCb we expect this second class of
tetraquarks to be observed in the near future. Their
discovery potential is discussed in Refs. [17,18].
These Q̄Q̄qq tetraquarks are expected to form bound

states, when the antiquarks are sufficiently heavy [19–29].
Recently this was confirmed with lattice QCD computa-
tions. One of the approaches uses the Born-Oppenheimer
approximation [30,31], where the problem is split into two
steps. The first step is to compute the potentials of two
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static antiquarks in the presence of two light quarks
using state-of-the-art lattice QCD techniques (see e.g.,
Refs. [32–37]). Then, in the second step, the heavy quark
dynamics is studied using a quantum mechanical
Hamiltonian with the previously computed lattice QCD
potentials. Using this approach, a b̄b̄ud tetraquark bound
state with quantum numbers IðJPÞ ¼ 0ð1þÞ was predicted
[36–40]. Shortly afterwards, this was confirmed by
several full lattice QCD computations using four quarks
of finite mass [41–45].
Our present goal is to explore the structure of this b̄b̄ud

tetraquark with quantum numbers IðJPÞ ¼ 0ð1þÞ using
first principles lattice QCD computations, and to answer a
hotly debated theoretical question [46–70]: Is it a diquark-
antidiquark system (denoted in the following as Dd) or
rather a meson-meson system (denoted in the following
as BB)?
The lattice QCD result for the static potential relevant for

the b̄b̄ud tetraquark with quantum numbers IðJPÞ ¼ 0ð1þÞ
can be parametrized by a screened Coulomb potential
(see left plot of Fig. 1 and Refs. [32,33,35–37]). This is
consistent with the following. (i) At b̄b̄ separations larger
than the typical meson radius each of the two heavy
antiquarks forms a bound state with one of the light quark.
Thus we have a system composed of two separated B
mesons with interactions well-known to decay exponen-
tially [71] with Yukawa-like potentials [72]. (ii) At small b̄b̄
separations the heavy antiquarks interact directly via gluon
exchange and are immersed in a light quark cloud. Thus at
small distances the potential is a Coulomb potential as
expected from the asymptotic freedom of perturbative QCD
(see e.g., Ref. [73] and references therein).
To compare quantitatively the importance of a Dd

structure and of a BB structure for given b̄b̄ separation,
we utilize a set of lattice QCD creation operators, both of

Dd type and of BB type with static b̄ quarks. A similar
approach was previously used to explore systems of four
quarks of finite mass. For example, studies of four-quark
systems including a heavy c̄c pair were to some extent
inconclusive. Neither clear evidence for the existence of a
tetraquark was found, nor a signal improvement was
observed for diquark-antidiquark operators [53,74]. Also
the tetraquark candidates a0ð980Þ and the D�

s0ð2317Þ
were investigated in that way, employing sets of different
creation operators, including quark-antiquark, meson-
meson and/or diquark-antidiquark type [75–79]. The focus
of these studies was more to distinguish between a quark-
antiquark and a four-quark structure, and since computa-
tions of tetraquark correlation functions, where all quarks
have a finite mass, are extremely challenging [80], no
definite conclusion concerning meson-meson or diquark-
antidiquark dominance was reached. On the other hand,
studies of potentials and the corresponding gluon field
distributions were performed with four static quarks, which
are close to a system of four bottom quarks b̄b̄bb [81–83].
In this case it was possible to clearly distinguish between a
diquark-antidiquark structure and a meson-meson structure
for the ground state depending on the geometric positions
of the static sources.
This paper is structured as follows. In Sec. II we review

important technical steps from our previous work [38]
and discuss in detail the lattice QCD creation operators of
Dd type and of BB type. We detail our lattice QCD setup
in Sec. III. In Sec. IV we present our numerical results
concerning the relative importance of a Dd structure and
of a BB structure at given b̄b̄ separation. At the end of
this section we use these results to crudely estimate
the percentage of Dd and of BB in the b̄b̄ud tetraquark
with quantum numbers IðJPÞ ¼ 0ð1þÞ. We conclude
in Sec. V.

FIG. 1. Left: Lattice QCD results for the potential VðrÞ ¼ Vud−du;0;−;þðrÞ together with the parameterization −ðα=rÞe−ðr=dÞp with
α ¼ 0.293, d ¼ 0.356 fm and p ¼ 2.74. Right: Probability density of the b̄ b̄ separation 4πjRðrÞj2. (The results shown in the two plots
are taken from Ref. [38].)
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II. POTENTIALS OF TWO STATIC ANTIQUARKS
IN THE PRESENCE OF TWO LIGHT QUARKS

AND CORRESPONDING CREATION OPERATORS

In preceding papers [33,35,37,39] we have computed the
potentials Vqq;jz;P;Px

ðrÞ of two static antiquarks Q̄Q̄ at
separation r in the presence of two light quarks qq using
lattice QCD. The computations have been carried out for
many different sectors characterized by the following
quantum numbers: light flavor qq with q ∈ fu; d; s; cg,
total angular momentum of the light quarks and gluons jz
with respect to the Q̄Q̄ separation axis, parity P and
reflection along an axis perpendicular to the Q̄Q̄ separation
axis Px. There are both attractive and repulsive sectors.
Most promising with respect to the existence of Q̄Q̄qq
tetraquark bound states or resonances are attractive poten-
tials with light quarks q ∈ fu; dg, since they are rather wide
and deep.
Using the Born-Oppenheimer approximation, which

amounts to solving the Schrödinger equation for the radial
coordinate of the two heavy quarks Q̄Q̄ ¼ b̄b̄ with the
computed potentials Vqq;jz;P;Px

ðrÞ,
�

1

mb

�
−

d2

dr2
þ LðLþ 1Þ

r2

�
þ Vqq;jz;P;Px

ðrÞ − 2msl

�
RðrÞ

¼ ERðrÞ; ð1Þ

one can explore the existence of hadronically stable
tetraquarks. mb is the b quark mass, L is the relative
orbital angular momentum of b̄b̄ pair andmsl is the mass of
the lightest static-light meson [computed within the same
lattice QCD setup as Vqq;jz;P;Px

ðrÞ; see e.g., Refs. [84,85]].
There is one particular potential VðrÞ ¼ Vud−du;0;−;þðrÞ
(shown in the left plot of Fig. 1), which has quantum
numbers ðI; jz;P;PxÞ ¼ ð0; 0;−;þÞ, leading for L ¼ 0 to
a stable b̄b̄ud tetraquark with quantum numbers IðJPÞ ¼
0ð1þÞ and a binding energy −E ¼ 38ð18Þ MeV [86]. The
probability density of the b̄b̄ separation 4πjRðrÞj2 (shown
in the right plot of Fig. 1) indicates that one typically finds
separations in the range 0.1 fm≲ r≲ 0.6 fm. None of
the other potentials is sufficiently wide or deep to host a
bound state [39].
As discussed in the introduction, the main goal of this

work is to investigate the structure of the predicted b̄b̄ud
tetraquark. In particular, we explore, whether the tetraquark
is more similar to a meson-meson state BB or to a diquark-
antidiquark state Dd, two scenarios frequently discussed in
the literature and at conferences also for other tetraquark
candidates (see the discussion in Sec. I). To this end, we
refine the existing lattice QCD computation of the potential
VðrÞ by using two types of creation operators.
The first type of creation operators, which we used

already in our previous computations [33,35,37,39], excites
two B mesons at separation r,

OBB;Γ ¼ 2NBBðCΓÞABðCΓ̃ÞCDðQ̄a
Cðr1Þψ ðfÞa

A ðr1ÞÞ
× ðQ̄b

Dðr2Þψ ðf0Þb
B ðr2ÞÞ; ð2Þ

with r ¼ jr2 − r1j, color indices a, b, spin indices A, B, C,
D and ψ ðfÞψ ðf0Þ ¼ ud − du. NBB is a normalization, which
will be discussed later. There are two independent choices
for the light spin matrix Γ consistent with ðjz;P;PxÞ ¼
ð0;−;þÞ. Γ ¼ ð1þ γ0Þγ5 predominantly excites two
negative parity ground state mesons Bð�ÞBð�Þ, while Γ ¼
ð1 − γ0Þγ5 mostly generates two positive parity excited
mesons B�

0;1B
�
0;1, as one can see e.g., by applying a Fierz

transformation to OBB;Γ (see also Ref. [37]). Since static
spins have no effect on energy levels, the heavy spin
matrix is irrelevant and can be chosen arbitrarily,
Γ̃ ∈ fð1 − γ0Þγ5; ð1 − γ0Þγjg.
The second type of creation operators, which we use here

for the first time, resembles a diquark-antidiquark pair with
heavy quarks separated by r and connected by a gluonic
string,

ODd;Γ ¼ −NDdϵ
abcðψ ðfÞb

A ðzÞðCΓÞABψ ðf0Þc
B ðzÞÞϵadeðQ̄f

Cðr1Þ
×Ufdðr1; zÞðCΓ̃ÞCDQ̄g

Dðr2ÞUgeðr2; zÞÞ: ð3Þ

Again NDd is a normalization and the allowed light and
heavy spin matrices are the same as for the operator OBB;Γ,
i.e., Γ ∈ fð1 − γ0Þγ5; ð1þ γ0Þγ5g and Γ̃ ∈ fð1 − γ0Þγ5;
ð1 − γ0Þγjg. Since the heavy spins are not part of the
Hamiltonian, it is important to use the same Γ̃ for the
operators OBB;Γ and ODd;Γ, whenever they are part of
the same correlation matrix. For definiteness, we choose
Γ̃ ¼ ð1 − γ0Þγ3. r1 and r2 are always separated along one
of the lattice axes and z ¼ ðr1 þ r2Þ=2. For odd r=a
(a denotes the lattice spacing), z does not coincide with
one of the lattice sites. In these cases we take the average of
the operator (3) with z ¼ ðr1 þ r2Þ=2þ ar̂=2 and with
z ¼ ðr1 þ r2Þ=2 − ar̂=2, where r̂ ¼ ðr2 − r1Þ=jr2 − r1j.
We use smeared light quark and gluon fields, which

implies that the operator ψ ðfÞa
A ðrÞ does not generate a

pointlike excitation at r, but rather a cloudlike excitation of
spherical shape with diameter ≈0.5 fm. Similarly, the
gauge links connecting the two static antiquarks in the
operatorODd;Γ generate a flux tube with a certain thickness.
For details see Sec. III, where our lattice setup is discussed.
Note that the creation operators OBB;Γ and ODd;Γ do not

generate orthogonal states, when applied to the vacuum
jΩi. For r ¼ 0, the operators are even identical, when
properly normalized, i.e., OBB;Γ ¼ ODd;Γ, if NBB ¼ NDd.
This can easily be shown by using the identity ϵabcϵade ¼
δbdδce − δbeδcd. For increasing r, however, they become
more and more different, as we will show numerically
in Sec. IVA. One obvious reason for that is that ODd;Γ
creates a flux tube of length r, whereas OBB;Γ does not.
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In Secs. IVB–IVDwewill explore, whether the ground state
of the ðI; jz;P;PxÞ ¼ ð0; 0;−;þÞ sector at a given separa-
tion r is more similar to aBB stateODd;ΓjΩi or to aDD state
ODd;ΓjΩi. Since the energy of this ground state is the
potential VðrÞ used in the Born-Oppenheimer prediction of
the b̄b̄ud tetraquark with quantum numbers IðJPÞ ¼ 0ð1þÞ,
our investigation will provide information on the structure
of that tetraquark. We will discuss that in Sec. IV E.

III. LATTICE QCD SETUP AND TECHNIQUES

A. Lattice actions

The light quark action used in this work is the Wilson
twisted mass action [87,88],

SF½χ; χ̄; U� ¼
X
x

χ̄ðxÞðDWðm0Þ þ iμγ5τ3ÞχðxÞ; ð4Þ

where DW is the standard Wilson Dirac operator,

DWðm0Þ ¼
1

2
ðγμð∇μ þ∇�

μÞ −∇�
μ∇μÞ þm0; ð5Þ

with the forward and backward covariant derivatives ∇μ

and ∇�
μ. χ ¼ ðχðuÞ; χðdÞÞ is the light quark doublet in the

so-called twisted basis, which is related to quark fields in
the usual “physical basis” via the twist rotation,

ψ ¼ eiγ5τ3ω=2χ; ð6Þ

where ω is the twist angle.
The gluon action used in this work is the tree-level

Symanzik improved action [89],

SG½U� ¼ β

3

X
x

�
b0

X
μ;ν¼1

ReTrð1 − P1×1
μν ðxÞÞ

þ b1
X
μ≠ν

ReTrð1 − P1×2
μν ðxÞÞ

�
; ð7Þ

where b1 ¼ −1=12, b0 ¼ 1–8b1, β ¼ 6=g20, g0 is the bare
coupling and P1×1

μν and P1×2
μν are the plaquette and a 1 × 2

Wilson loop, respectively.
To achieve automatic OðaÞ improvement, the hopping

parameter κ ¼ ð8þ 2am0Þ−1 is tuned to its critical value,
at which the PCAC quark mass vanishes [87,90–93].
This corresponds to maximal twist, i.e., to tuning ω in
Eq. (6) to π=2.

B. Ensembles of gauge link configurations

We have performed computations on two ensembles
of gauge link configurations generated by the European
Twisted Mass Collaboration (ETMC) [94–96]. These
ensembles have different lattice spacings, a ≈ 0.079 fm
and a ≈ 0.063 fm (set via the pion mass and pion decay
constant and chiral perturbation theory [96]), which allows
to study a finer resolution in the static antiquark-antiquark
separation r and to check for discretization errors. The pion
masses mPS and spatial and temporal extents L and T are,
however, very similar. The parameters and details of the
ensembles are collected in Table I.

C. Smearing techniques

As already mentioned in Sec. II, we have used several
smearing techniques.
The spatial gauge links appearing in the Dd creation

operator (3) are APE smeared [97] with parametersNAPE ¼
30 and αAPE ¼ 0.5 [see Ref. [84], Eq. (23)]. The quark
fields appearing in the BB and Dd creation operators (2)
and (3) are Gaussian smeared [98] with parameters
NGauss ¼ 50 and κGauss ¼ 0.5 [see Ref. [84], Eq. (25)]
and APE-smeared spatial gauge links. The intention of both
APE and Gaussian smearing is to increase the ground state
overlaps generated by the creation operators.
In addition to that we also use HYP2-smeared gauge

links in temporal direction [99–101] with parameters
α1 ¼ α2 ¼ 1.0 and α3 ¼ 0.5. This reduces the self energy
of the static quarks and, thus, improves the signal-to-noise
ratio of the computed correlation functions.

IV. NUMERICAL RESULTS

We consider the following four creation operators,

Oj; j ∈ f½BB; ð1þ γ0Þγ5�; ½BB; γ5�;
½Dd; ð1þ γ0Þγ5�; ½Dd; γ5�g; ð8Þ

and define the corresponding trial states as

jΦji ¼ OjjΩi: ð9Þ

OBB;ð1þγ0Þγ5 predominantly excites two negative parity
ground state mesons. Thus, jΦBB;ð1þγ0Þγ5i is expected to
have the largest overlap to the ground state of the
ðI; jz;P;PxÞ ¼ ð0; 0;−;þÞ sector at large r. At small r,

TABLE I. Ensembles of gauge link configurations.

Ensemble name β a in fm ðL=aÞ3 × T=a κ μ mPS in MeV No. configurations

B40.24 3.90 0.079(3) 243 × 48 0.160856 0.004 340(13) 108
C30.32 4.05 0.063(2) 323 × 64 0.157010 0.003 325(10) 98
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however, the diquark-antidiquark operators might be
advantageous. We use jΦDd;γ5i, i.e., a light diquark with
just γ5, as typically discussed in the literature. Since
OBB;Γ ∝ ODd;Γ for r ¼ 0 (see Sec. II), the diquark-
antidiquark trial state jΦDd;ð1þγ0Þγ5i might even be a better
candidate for having a large ground state overlap. For
completeness we also includeOBB;γ5 , the mesonic molecule
counterpart of ODd;γ5 . OBB;γ5 excites a linear combination
of two negative parity ground state mesons and two
significantly heavier positive parity excited mesons [37].
With these operators we computed the 4 × 4 correlation

matrix,

CjkðtÞ ¼ hO†
jðt2ÞOkðt1Þi ¼ hΩjO†

jðt2ÞOkðt1ÞjΩi
¼ hΦjðt2ÞjΦkðt1Þi; ð10Þ

with h…i denoting the path integral expectation value and
t=a ¼ ðt2 − t1Þ=a ≥ 1. For the second equality we assumed
that in the spectral decomposition propagation over tem-
poral separation T − t is suppressed for all states except for
the vacuum. To cross-check our computations, we checked
the numerical results with respect to the symmetries γ5
hermiticity, parity, time reversal, charge conjugation and
cubic rotations around the axis of separation (for details see
Ref. [37]). In a second step we averaged elements of the
correlation matrices related by these symmetries, to reduce
statistical errors.

A. Squared overlaps of the normalized BB
and Dd trial states

In this subsection we study

αjkðtÞ ¼
jCjkðtÞj2

CjjðtÞCkkðtÞ
: ð11Þ

For t → 0 this quantity is the squared normalized overlap of
trial state jΦji ¼ OjjΩi and trial state jΦki ¼ OkjΩi, i.e.,

α0jk ¼ lim
t→0

αjkðtÞ ¼
jhΦjjΦkij2

hΦjjΦjihΦkjΦki
: ð12Þ

Clearly, 0 ≤ α0jk ≤ 1. Note that for an arbitrary state jΨi and
an orthonormal basis jki, k ¼ 1; 2; 3;…,

X∞
k¼1

jhΨjkij2
hΨjΨihkjki ¼ 1: ð13Þ

Thus for two trial states jΦji and jΦki, α0jk can be
interpreted as a measure of their orthogonality, where
α0jk ≈ 0 indicates almost orthogonal and α0jk ≈ 1 almost
parallel states. For large t all αjk approach 1, because the
ground state dominates in that limit.
In the left plot of Fig. 2 we show αjk for j ¼ BB;

ð1þ γ0Þγ5 and k ¼ Dd; ð1þ γ0Þγ5 as a function of t for
several fixed r [102] for ensemble B40.24. The corre-
sponding trial states become more similar for smaller r, as
indicated by larger values of αjk close to 1. This is not
surprising, because for r ¼ 0 the two operators OBB;Γ and
ODd;Γ are identical, if normalized according toNBB ¼ NDd,
as discussed in Sec. II. For larger heavy quark separations r,
the two trial states clearly differ. OBB;ð1þγ0Þγ5 generates a
pair of spatially separated B mesons, which interact only
by weak residual hadronic forces. In contrast to that, the
antiquarks Q̄Q̄ forming the heavy diquark in the operator
ODd;ð1þγ0Þγ5 are connected by a gluonic flux tube of
length r. The data points for 1 ≤ t=a ≤ 5 can be fitted
consistently with degree-2 polynomials, which are also
shown in Fig. 2. These fits represent crude extrapolations of

FIG. 2. αjk as a function of t for several fixed r for ensemble B40.24. Left: j ¼ BB; ð1þ γ0Þγ5, k ¼ Dd; ð1þ γ0Þγ5. Right: j ¼ BB; γ5,
k ¼ Dd; γ5. For t → 0, αjk is the squared overlap of the corresponding normalized trial states. The curves, which are fits with degree-2
polynomials, represent crude extrapolations to t ¼ 0.
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αjk to t ¼ 0, which are the squared overlaps of the
corresponding normalized BB and Dd trial states.
In the right plot of Fig. 2 we show the corresponding

results for j ¼ BB; γ5 and k ¼ Dd; γ5. They are quite
similar to those for j ¼ BB; ð1þ γ0Þγ5 and k ¼ Dd;
ð1þ γ0Þγ5 and can be interpreted in the same way. The
main point of these two plots is to demonstrate that BB and
Dd trial states, even though not orthogonal, are not linearly
dependent either. In the following subsections we explore,
whether the ground state of the ðI; jz;P;PxÞ ¼ ð0; 0;−;þÞ
sector for given r is more similar to a BB trial state or to a
Dd trial state.
Analog plots of αjk for ensemble C30.32 are very similar

to those of Fig. 2 and, thus, not shown.

B. Effective energies corresponding to diagonal
elements of the correlation matrix at small

and large temporal separations

Now we consider effective energies corresponding to
diagonal elements of the correlation matrix, i.e.,

Veff
j ðr; tÞ ¼ −

1

a
log

�
CjjðtÞ

Cjjðt − aÞ
�
ðno sum overjÞ: ð14Þ

As discussed in Sec. II, all four operators probe the
ðI; jz;P;PxÞ ¼ ð0; 0;−;þÞ sector. Thus, for fixed r and
at sufficiently large t, all four Veff

j ðr; tÞ should approach the
same constant, which is the ground state energy VðrÞ. For
separations r≲ 0.3 fm, our numerical results confirm that
expectation [see e.g., the left plot of Fig. 3, where Veff

j ðr; tÞ
is shown for r ≈ 0.16 fm as a function of t]. For larger r,
however, the two Dd operators seem to generate only little
overlap to the ground state. The consequence is that the
corresponding effective energies Veff

Dd;ð1þγ0Þγ5 and Veff
Dd;γ5

do
not convincingly converge to the plateau at VðrÞ in the t

region, where we carried out computations, and have
rather large statistical errors for larger t separations [see
e.g., the right plot of Fig. 3, where Veff

j ðr; tÞ is shown for
r ≈ 0.79 fm as a function of t]. In contrast to that, the two
BB operators still lead to clear effective energy plateaus.
Thus, if one is just interested to determine VðrÞ, it is
sufficient to implement BB operators. This is, what we did
in previous work, e.g., in Ref. [38] (see also the left plot
of Fig. 1).
A first indicator concerning the structure of the ground

state are effective energies at small temporal separations,
i.e., Veff

j ðr; t ¼ 2aÞ. Since there is little suppression of
excited states by the Euclidean time evolution, a small
value of Veff

j ðr; t ¼ 2aÞ close to the ground state energy
VðrÞ implies an operator, which predominantly excites the
ground state. A larger value of Veff

j ðr; t ¼ 2aÞ, on the other
hand, is a sign that the corresponding operator creates a trial
state less similar to the ground state.
We start with a comparison of the two operators

OBB;ð1þγ0Þγ5 and OBB;γ5 for ensemble B40.24 by showing
the difference of their effective energies, Veff

BB;ð1þγ0Þγ5ðr; t ¼
2aÞ − Veff

BB;γ5
ðr; t ¼ 2aÞ, in the upper left plot of Fig. 4.

This difference is clearly negative for all separations r,
which is not surprising. OBB;ð1þγ0Þγ5 creates predominantly
a pair of ground state static-light mesons, while OBB;γ5
creates roughly a 50%=50% superposition of a pair of
negative parity ground state mesons and a pair of signifi-
cantly heavier positive parity static-light mesons, as dis-
cussed above and as can be shown e.g., by a Fierz
transformation (for details see Ref. [37]). Results from
an analog comparison of the two diquark-antidiquark
operators are very similar (see upper right plot of
Fig. 4). This is interesting, because it indicates that a light
diquark with spin structure given by ð1þ γ0Þγ5 is

FIG. 3. Effective energies Veff
j corresponding to diagonal elements of the correlation matrix for fixed r as functions of t for ensemble

B40.24. Left: r ¼ 2a ≈ 0.16 fm. Right: r ¼ 10a ≈ 0.79 fm. The dotted gray line in both plots represents the BB threshold at 2mB, where
mB is the mass of the lightest static light meson taken from our previous work [85].
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energetically preferred over a light diquark with spin
structure given just by γ5.
Most interesting, of course, is the comparison of a meson-

meson and a diquark-antidiquark operator, specifically
of OBB;ð1þγ0Þγ5 and ODd;ð1þγ0Þγ5 , which we have
just identified as being superior to OBB;γ5 and ODd;γ5 ,
respectively.We show the difference of their effectivemasses,
Veff
BB;ð1þγ0Þγ5ðr; t ¼ 2aÞ − Veff

Dd;ð1þγ0Þγ5ðr; t ¼ 2aÞ, in the
lower plot of Fig. 4. For r≲ 3.15a ≈ 0.25 fm the difference
is positive, indicating that for small separations the diquark-
antidiquark operator generates a trial state more similar to the
ground state. For larger separations, r≳ 0.25 fm the differ-
ence becomes negative and strongly points towards a meson-
meson structure. While the latter is expected (at large r
the flux tube present in a heavy diquark-antidiquark is
energetically disfavored), the former is a first hint towards
a diquark-antidiquark dominance at smaller r.We continue to
investigate this in more detail in the following subsections.
Analog plots of differences of effective energies for

ensemble C30.32 are very similar to those of Fig. 4 and,
thus, not shown.

C. Optimizing trial states by minimizing
effective energies

Now we consider the two-dimensional space spanned by
the states jΦBB;ð1þγ0Þγ5i and jΦDd;ð1þγ0Þγ5i. Any trial state
from that space can be written as

jΦb;di ¼ bjΦBB;ð1þγ0Þγ5i þ djΦDd;ð1þγ0Þγ5i; ð15Þ

with coefficients b; d ∈ C. To identify a trial state as similar
to the ground state as possible, i.e., with large overlap to the
ground state and little overlap to excitations, we minimize
the corresponding effective energy,

Veff
b;dðr; tÞ ¼ −

1

a
log

�
C½b;d�½b;d�ðtÞ

C½b;d�½b;d�ðt − aÞ
�
; ð16Þ

with respect to b and d. Since, Veff
b;d is independent of

the norm and the phase of jΦb;di, we can fix b ¼ 1 and
minimize Veff

b;d for given r and t with respect to the real and
the imaginary part of d. Such a two-dimensional

FIG. 4. Veff
j ðr; t ¼ 2aÞ − Veff

k ðr; t ¼ 2aÞ, i.e., differences of effective energies corresponding to diagonal elements of the correlation
matrix for t=a ¼ 2, as functions of r for ensemble B40.24. Top left: j ¼ BB; ð1þ γ0Þγ5, k ¼ BB; γ5. Top right: j ¼ Dd; ð1þ γ0Þγ5,
k ¼ Dd; γ5. Bottom: j ¼ BB; ð1þ γ0Þγ5, k ¼ Dd; ð1þ γ0Þγ5.
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minimization is numerically straightforward. In particular,
no further lattice QCD computations are needed, because
C½b;d�½b;d� can be expressed in terms of the correlation matrix
introduced in Eq. (10),

C½b;d�½b;d�ðtÞ ¼
�
b

d

�†

j

CjkðtÞ
�
b

d

�
k

: ð17Þ

In the following we consider

wBB¼
jbj2

jbj2þjdj2 ; wDd¼
jdj2

jbj2þjdj2¼1−wBB; ð18Þ

with b ¼ 1 and d minimizing Veff
b;d. wBB and wDd are the

normalized absolute squares of the coefficients of the
optimized trial states appearing in Eq. (15). These quan-
tities exhibit only a weak dependence on t. For 3 ≤ t=a ≤ 5
and ensemble B40.24 (4 ≤ t=a ≤ 6 and ensemble C30.32)
they are consistent with a constant. For t=a ≥ 6 (t=a ≥ 7),
statistical fluctuations and errors become large and the
signal is quickly lost in noise. The latter is not surprising,
because wBB and wDd are subtle quantities depending on
the amount of excited states in BB and Dd correlation
functions, which are exponentially suppressed in t. In Fig. 5
we show example plots of wBB and wDd as functions of t for
selected separations r=a ¼ 2, r=a ¼ 5 and r=a ¼ 8 for
ensemble B.
We determine each plateau value by a χ2 minimizing fit

of a constant in the range 3 ≤ t=a ≤ 5 (4 ≤ t=a ≤ 6). The
resulting numbers, w̄BBðrÞ and w̄DdðrÞ ¼ 1 − w̄BBðrÞ, can
be interpreted as the relative weight of a meson-meson and
a diquark-antidiquark structure at b̄b̄ separation r in the
ground state, which corresponds to the potential VðrÞ of
two static antiquarks and is, thus, closely related to the
b̄b̄ud tetraquark with quantum numbers IðJPÞ ¼ 0ð1þÞ.
In Fig. 6 we plot w̄BB and w̄Dd as functions of r. One can
clearly see that there is a diquark-antidiquark dominance
for b̄b̄ separations r≲ 0.20 fm. For r≳ 0.30 fm, the

meson-meson structure is more prominent and for
r≳ 0.50 fm, the diquark-antidiquark contribution is neg-
ligible; i.e., the system is exclusively composed of two B
mesons. It is interesting to note that the separation
r ≈ 0.3 fm, where the meson-meson structure starts to
dominate, is of the same order as the size of a B meson.
A precise comparison, however, seems to be difficult,
because the size of a B meson is model dependent and
not precisely known (see e.g., Refs. [103,104]).
We note that the quantities wBB and wDd as well as the

fitted w̄BB and w̄Dd depend on the normalization of the
operators OBB;ð1þγ0Þγ5 and ODd;ð1þγ0Þγ5 or, equivalently,
on the normalization and the corresponding states
jΦBB;ð1þγ0Þγ5i and jΦDd;ð1þγ0Þγ5i. To allow a meaningful
interpretation in terms of the relative weight of a BB and a
Dd structure, the norms of these two states has to be
similar. In this work we use NBB ¼ NDd, which implies
OBB;Γ ¼ ODd;Γ for r ¼ 0 and, thus, jΦBB;Γi ¼ jΦDd;Γi for

FIG. 5. wBB and wDd ¼ 1 − wBB, the normalized absolute squares of the coefficients of the optimized trial states for several fixed r as
functions of t for ensemble B40.24. The horizontal red lines indicate the fit results w̄BB and w̄Dd and the corresponding statistical errors.

FIG. 6. w̄BB and w̄Dd ¼ 1 − w̄BB, the fitted normalized absolute
squares of the coefficients of the optimized trial state, as functions
of r for both ensembles.
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r ¼ 0 (see Sec. II). We expect that NBB ¼ NDd also results
in similar norms for r > 0. A common alternative, which
we have used in previous lattice QCD projects, is to
normalize the operators Oj such that Cjjðt ¼ aÞ ¼ 1 (no
sum over j; see e.g., Refs. [78,79,105]). As a cross-check
we also explored this normalization in our current work and
found almost identical results to those obtained with
NBB ¼ NDd.

D. Eigenvector components obtained by solving
a generalized eigenvalue problem

To further explore the structure of the ground state in the
ðI; jz;P;PxÞ ¼ ð0; 0;−;þÞ sector, we now use N × N
correlation matrices Cjk as defined in Eq. (10) and solve
the generalized eigenvalue problem (GEVP),

CjkðtÞvðnÞk ðtÞ¼ λðnÞðtÞCjkðt0ÞvðnÞk ðtÞ; n¼0;…; N−1;

ð19Þ

for t0=a ≥ 1 and t=a > t0=a (for detailed discussions of the
GEVP in lattice field theory see e.g., Refs. [106–113]).
Effective energies for the lowest N energy eigenstates are
then given by

Veff;ðnÞðr; tÞ ¼ −
1

a
log

�
λðnÞðtÞ

λðnÞðt − aÞ

�
: ð20Þ

These are generalizations of the effective energy defined in
Eq. (14), since Veff;ð0Þðr; tÞ ¼ Veff

j ðr; tÞ for N ¼ 1. For

N > 1, Veff;ð0Þðr; tÞ approaches the same constant VðrÞ
for large t, but plateaus can typically be identified at a
somewhat smaller t, because of an elimination of excita-
tions (see also the second next paragraph and the Appendix,
where a minimization of effective energies is related to
the GEVP).

The eigenvector components vðnÞj ðtÞ, which we always

normalize according to
P

j jvðnÞj ðtÞj2 ¼ 1, contain informa-
tion about the relative importance of the creation operators
included in the correlation matrix and, thus, hints about the
structure of the corresponding energy eigenstates. For large
t and t0,

jni ≈
X
j

vðnÞj ðtÞjΦji; ð21Þ

where the ≈ sign denotes an approximate expansion of the
energy eigenstate jni in terms of the trial states jΦji. For
such values of t and t0, the squared eigenvector components
as functions of t form plateaus, and we determine the

corresponding asymptotic values of jvð0Þj ðtÞj2 by χ2 min-
imizing fits of constants. The results of these fits are

denoted by jv̄ð0Þj j2. The squared eigenvector components

jvðnÞj ðtÞj2 as well as the fitted jv̄ð0Þj j2 depend on the
normalization of the creation operators, as it is the case
for wBB, wDd, w̄BB and w̄Dd (see the discussion at the end of
Sec. IV C). As before, we use NBB ¼ NDd, which amounts
to having trial states jΦji with similar norm.
It is interesting to note that for a 2 × 2 correlation

matrix with trial states jΦ1i ¼ jΦBB;ð1þγ0Þγ5i and jΦ2i ¼
jΦDd;ð1þγ0Þγ5i and t0=a ¼ t=a − 1, the eigenvector compo-

nents vð0Þj are proportional to the coefficients b and d
minimizing Veff

b;dðr; tÞ defined in Eq. (16). Moreover,

ðjvð0ÞBB;ð1þγ0Þγ5 j2; jv
ð0Þ
Dd;ð1þγ0Þγ5 j2Þ ¼ ðwBB; wDdÞ and, thus,

ðjv̄ð0ÞBB;ð1þγ0Þγ5 j2; jv̄
ð0Þ
Dd;ð1þγ0Þγ5 j2Þ ¼ ðw̄BB; w̄DdÞ, as we show

in the Appendix. In other words, the results on the structure
of the b̄b̄ud ground state obtained in Sec. IV C by
determining a trial state, which minimizes an effective
energy, are identical to results from a specific correspond-
ing GEVP. This allows us to understand and interpret the
GEVP eigenvector components from another perspective.
Compared to the trial state optimization from Sec. IV C, the
GEVP, however, offers further possibilities, for example to
choose t0 independent of t (i.e., not as t0=a ¼ t=a − 1) or to
study the full correlation matrix with N ¼ 4.
As discussed in the previous paragraph, solving the

GEVP with a 2 × 2 correlation matrix including the
operators OBB;ð1þγ0Þγ5 and ODd;ð1þγ0Þγ5 and using t0=a ¼
t=a − 1 yields exactly the same results as shown in Fig. 6

(one just has to replace labels according to w̄BB →

jv̄ð0ÞBB;ð1þγ0Þγ5 j2 and w̄Dd → jv̄ð0ÞDd;ð1þγ0Þγ5 j2). However, many

lattice QCD papers using the GEVP fix t0 to a rather small
value independent of t. For small values of t0, statistical
errors are somewhat reduced, which in turn allows
us to consider larger values of t. Thus we also computed

jv̄ð0ÞBB;ð1þγ0Þγ5 j2 and jv̄ð0ÞDd;ð1þγ0Þγ5 j2 for t0=a ¼ 1. As already

observed in the previous subsection for the related quan-
tities wBB and wDd, the resulting squared eigenvector

components jvð0ÞBB;ð1þγ0Þγ5 j2 and jvð0ÞDd;ð1þγ0Þγ5 j2 exhibit

only a mild t dependence and the majority is consistent
with a constant for large t. Results for selected b̄b̄
separations r are shown in Fig. 7. For ensemble C30.32

we use the fit range 6 ≤ t=a ≤ 8 to determine jv̄ð0ÞBB;ð1þγ0Þγ5 j2
and jv̄ð0ÞDd;ð1þγ0Þγ5 j2. For ensemble B40.24 the analysis and

interpretation of the data is less obvious. While for t=a ≤ 5
plateaus are indicated, for t=a ≥ 6 there is a weak, almost
linearly increasing deviation from these plateaus for some
separations r (see e.g., the plot in the center of the upper
line of Fig. 7). Note, however, that errors are also increasing
at larger t. For example, the data points at 8 ≤ t=a ≤ 9 are
just around 2σ away from those at 4 ≤ t=a ≤ 5. Also the
monotonic almost linear behavior is not necessarily an
indication of a systematic deviation from a constant,
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because all data points were computed on the same gauge
link configurations and neighboring points in t are,
thus, correlated. Consequently, we interpret the observed
deviations as statistical fluctuations and use the fit range
4 ≤ t=a ≤ 5.

In the left plot of Fig. 8 we show jv̄ð0ÞBB;ð1þγ0Þγ5 j2
and jv̄ð0ÞDd;ð1þγ0Þγ5 j2 for both ensembles. These curves for

t0=a ¼ 1 are quite similar to those corresponding to t0=a ¼
t=a − 1 (and shown in Fig. 6). Again, one can see a clear
dominance of the diquark-antidiquark operator for separa-
tions r≲ 0.20 fm. In the range 0.20 fm ≤ r ≤ 0.30 fm
there is a rapid change towards a meson-meson structure.
For r≳ 0.50 fm there is almost no diquark-antidiquark
contribution anymore and the b̄b̄ud four-quark system
seems to be composed exclusively of two B mesons.
This plot confirms our results from Sec. IV B obtained
by minimizing effective energies.
It should be noted that the quantities w̄BB and w̄Dd as well

as the fitted squared eigenvector components jv̄ð0ÞBB;ð1þγ0Þγ5 j2
and jv̄ð0ÞDd;ð1þγ0Þγ5 j2 depend on the creation operators used,

e.g., the details of the quark and gauge field smearing or
their normalization. Besides discretization errors, this
might be part of the reason for the slight differences
between the results obtained for ensemble B40.24 and
ensemble C30.32 shown in Fig. 6 and the left plot of Fig. 8.
Since these differences are quite small and since we found
almost identical results for different normalization pre-

scriptions, we consider w̄BB and w̄Dd as well as jv̄ð0Þj j2 as
reliable indicators characterizing the quark and gluon
structure of the ground state of the ðI; jz;P;PxÞ ¼
ð0; 0;−;þÞ sector.
Finally we performed the same GEVP analysis using the

full 4 × 4 correlation matrix including all operators defined

in Eq. (8). We determined jv̄ð0Þj j2 using the same fit ranges
as for the previous 2 × 2 analyses (results for ensemble
C30.32 are shown in the right plot of Fig. 8). Again, there is
a diquark-antidiquark dominance for r≲ 0.20 fm, this time
represented by the eigenvector components corresponding
to two operators ODd;ð1þγ0Þγ5 and ODd;γ5 , while there is
meson-meson dominance for r≳ 0.30 fm, reflected by the
eigenvector components corresponding to two operators

FIG. 7. The squared eigenvector components jvð0ÞBB;ð1þγ0Þγ5 j2 and jv
ð0Þ
Dd;ð1þγ0Þγ5 j2 ¼ 1 − jvð0ÞBB;ð1þγ0Þγ5 j2 for several fixed r as functions of t.

Upper line: Ensemble B40.24. Lower line: Ensemble C30.32. The horizontal red lines indicate the fit results jv̄ð0ÞBB;ð1þγ0Þγ5 j2 and

jv̄ð0ÞDd;ð1þγ0Þγ5 j2 and the corresponding statistical errors.
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OBB;ð1þγ0Þγ5 and OBB;γ5 . When adding the two diquark
eigenvector components as well as the two meson-
meson eigenvector components, i.e., when considering

jv̄ð0ÞDd;ð1þγ0Þγ5 j2 þ jv̄ð0ÞDd;γ5
j2 and jv̄ð0ÞBB;ð1þγ0Þγ5 j2 þ jv̄ð0ÞBB;γ5

j2, we
find within errors the same curves as obtained above by
the 2 × 2 analysis. This is reassuring, because the results
concerning the meson-meson percentage and the diquark-
antidiquark percentage do not change, even though we
increased the dimension of the basis of trial states used to
approximate the ground state from 2 to 4.
We note that the GEVP can also be used to study

excited states. In our case, i.e., for quantum numbers
ðI; jz;P;PxÞ ¼ ð0; 0;−;þÞ, the first and second excitation
correspond to the repulsive potential of a negative and a
positive parity B meson and to the attractive potential of
two positive parity B mesons. We computed these poten-
tials in a pevious work [37] (see in particular Fig. 4 in
Ref. [37], “singlet A”), where operatorsOBB;Γ with a larger
set of matrices Γ were used. To study the structure of these
excitations would require also a comparable set of oper-
ators ODd;Γ and goes beyond the scope of this work.

E. Meson-meson and diquark-antidiquark percentages
of the b̄b̄ud tetraquark with IðJPÞ= 0ð1+ Þ

During the lattice QCD computation of the potential
VðrÞ the heavy antiquarks b̄b̄ are considered as static, i.e.,
their positions are fixed and only the light quarks ud and
the gluons are dynamical degrees of freedom. The dynam-
ics of the heavy quarks can, however, be studied in a second
step, by inserting the potential VðrÞ into the Schrödinger
equation (1). This two step approach is widely known as the
Born-Oppenheimer approximation (see e.g., Ref. [31] for a
detailed discussion in the context of exotic mesons). In
Ref. [38] we solved the Schrödinger equation (1) using
mb ¼ mB ¼ 5279 MeV [114] and found a single bound

state with binding energy −E ¼ 38ð18Þ MeV indicating
the existence of a hadronically stable b̄b̄ud tetraquark with
quantum numbers IðJPÞ ¼ 0ð1þÞ. Moreover, the wave
function RðrÞ=r gives the probability density of the b̄b̄
separation, prðrÞ ¼ 4πjRðrÞj2, which is shown in the right
plot of Fig. 1.
The quantities w̄BB and w̄Dd (see Fig. 6) as well as

jv̄ð0ÞBB;ð1þγ0Þγ5 j2 and jv̄ð0ÞDd;ð1þγ0Þγ5 j2 (see left plot of Fig. 8) can
be interpreted as meson-meson and diquark-antidiquark
percentages for fixed r. We define

pBB;wðrÞ ¼ w̄BB; pDd;wðrÞ ¼ w̄Dd ð22Þ

and

pBB;vðrÞ ¼ jv̄ð0ÞBB;ð1þγ0Þγ5 j2; pDd;vðrÞ ¼ jv̄ð0ÞDd;ð1þγ0Þγ5 j2;
ð23Þ

where pBB;wðrÞ ≈ pBB;vðrÞ and pDd;wðrÞ ≈ pDd;vðrÞ. These
percentages together with the probability density prðrÞ can
be used to crudely estimate the total meson-meson and
diquark-antidiquark percentages of the b̄b̄ud tetraquark,
which we denote by%BBj and%Ddj. To this end, we use a
parametrization, which is a simple mathematical function
able to consistently describe our lattice QCD results,

pBB;jðrÞ ¼
1

2
ðtanhðαjðr − r0;jÞ þ 1Þ;

pDd;jðrÞ ¼ 1 − pBB;jðrÞ; ð24Þ

where the parameters r0;j and αj are determined by χ2

minimizing fits to the results of both ensembles as shown in
Figs. 6 and 8. Then we compute %BB and %Dd via

FIG. 8. Fitted squared eigenvector components jv̄ð0Þj j2 as functions of r. Left: 2 × 2 correlation matrix including the operators
OBB;ð1þγ0Þγ5 and ODd;ð1þγ0Þγ5 for both ensembles. Right: 4 × 4 correlation matrix including all operators [see Eq. (8)] for
ensemble C30.32.
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%BBj ¼
Z

drprðrÞpBB;jðrÞ;

%Ddj ¼
Z

drprðrÞpDd;jðrÞ ¼ 1 −%BBj: ð25Þ

We find %BBw ¼ 0.58, %Ddw ¼ 0.42 and %BBv ¼ 0.60,
%Ddv ¼ 0.40, i.e., almost the same result, when using w̄BB

and w̄Dd and when using jv̄ð0ÞBB;ð1þγ0Þγ5 j2 and jv̄ð0ÞDd;ð1þγ0Þγ5 j2.
Note that we have lattice QCD results for pBB;jðrÞ and
pDd;jðrÞ only for separations r≳ 0.1 fm. Thus, it is unclear,
whether the parametrization (24) is a valid description also
for r≲ 0.1 fm. The corresponding systematic error is,
however, quite small, because the probability to find the
b̄b̄ pair at separation r≲ 0.1 fm is also rather small [see the
plot of prðrÞ ¼ 4πjRðrÞj2 in Fig. 1]. To quote a crude
and very conservative upper bound for this systematic error,
we solved again the integral in Eq. (25) replacing in the
interval 0 ≤ r ≤ 0.1 fm the almost vanishing pBB;jðrÞ ¼
ðtanhðαjðr − r0;jÞ þ 1Þ=2 ≈ 0 by pBB;jðrÞ ¼ 1. The results
are quite similar, %BBw ¼ 0.63, %Ddw ¼ 0.37 and
%BBv ¼ 0.65, %Ddv ¼ 0.35, indicating that the corre-
sponding systematic error is well below 0.05. Moreover,
the eigenvector components are slightly operator depen-
dent, as discussed in Sec. IV D. Thus, the percentages
%BBj and %Ddj should only be considered as crude
estimates. As total systematic error, reflecting both the
parametrization and the operator dependence, we estimate
≈0.10. Still it seems to be clear that the b̄b̄ud tetraquark
with quantum numbers IðJPÞ ¼ 0ð1þÞ is neither strongly
meson-meson dominated nor strongly diquark-antidiquark
dominated, but rather an approximately equal linear com-
bination of both structures. Finally we note that these
results for %BBj and for %Ddj are fully consistent with
squared eigenvector components obtained during a recent
lattice QCD study [44] of the same tetraquark using four
quarks of finite mass. There, a meson-meson component of
0.65(4) and a diquark-antidiquark component of 0.35(4)
was found [115].

V. CONCLUSIONS AND OUTLOOK

In this work we used lattice QCD to study a recurrent
question on the nature of tetraquarks in the context of a
b̄b̄ud tetraquark with quantum numbers IðJPÞ ¼ 0ð1þÞ:
Are they more similar to meson-meson systems or rather
to diquark-antidiquark pairs? Moreover we addressed the
Dirac structure of the light quarks, comparing γ5 with
ð1þ γ0Þγ5, which are both consistent with IðJPÞ ¼ 0ð1þÞ.
We implemented four different lattice QCD creation

operators, two of meson-meson type and two of
diquark-antidiquark type. We solved the GEVP both for
2 × 2 and 4 × 4 correlation matrices, to determine quanti-
tatively, which of the implemented structures is prepon-
derant in the ground state at b̄b̄ separation r. Moreover, we

optimized trial states by minimizing effective energies and
proved that this is equivalent to solving a specific corre-
sponding GEVP.
Notice that the question we are addressing is quite subtle.

We first showed that the BB and Dd trial states are not
orthogonal. Nevertheless, since they are not linearly de-
pendent either, we were able to determine, which one is
more similar to the ground state. In what concerns light spin
we found the ð1þ γ0Þγ5 is the dominant Dirac structure at
all separations r, both for BB and for Dd. This is what we
expected, since the less favorable γ5 structure generates not
only negative parity mesons, but also excited positive parity
mesons. As for color we showed that at small separations
r≲ 0.25 fm the diquark-antidiquark structure dominates,
whereas at larger separations the meson-meson trial state is
clearly more similar to the ground state of the b̄b̄ud system.
For r≳ 0.5 fm, the percentage of BB is already larger than
95% and approaches 100% for even larger r.
Using these results as well as the wave function of the b̄b̄

separation already obtained in Ref. [38], we estimated
the meson-meson to diquark-antidiquark ratio of the b̄b̄ud
tetraquark with quantum numbers IðJPÞ ¼ 0ð1þÞ and
found around 60%=40%. Thus BB and Dd components
seem to be present in comparable parts.
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APPENDIX: EQUIVALENCE OF OPTIMIZING A
TRIAL STATE BY MINIMIZING AN EFFECTIVE

ENERGY AND OF SOLVING A GEVP

We start with the N × N GEVP defined in Eq. (19),
choose t0 ¼ t − a and use the simplified notation,

vðnÞ ≡ ðvðnÞ1 ðtÞ; vðnÞ2 ðtÞ;…; vðnÞN ðtÞÞ and λðnÞ ≡ λðnÞðtÞ,

CðtÞvðnÞ ¼ λðnÞCðt − aÞvðnÞ; n ¼ 0;…; N − 1: ðA1Þ

The correlation matrix C defined in Eq. (10) is Hermitean,
i.e., C† ¼ C, the eigenvalues λðnÞ are real, and we assume
them to be positive and nondegenerate, i.e., λð0Þ >
λð1Þ > … > λðN−1Þ > 0.
We can rewrite vðmÞ†CðtÞvðnÞ in two ways by using

Eq. (A1) and its Hermitean conjugate,
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vðmÞ†CðtÞvðnÞ ¼ vðmÞ†Cðt − aÞvðnÞλðnÞ ðA2Þ

vðmÞ†CðtÞvðnÞ ¼ vðmÞ†Cðt − aÞvðnÞλðmÞ: ðA3Þ

Since λðmÞ ≠ λðnÞ for m ≠ n, we conclude vðmÞ†Cðt −
aÞvðnÞ ¼ 0 for m ≠ n. In the same way one can
show vðmÞ†CðtÞvðnÞ ¼ 0 for m ≠ n. Moreover, it is
convenient to normalize the eigenvectors according to
vðnÞ†Cðt − aÞvðnÞ ¼ 1.
Now we consider an arbitrary trial state jΨi from the

N-dimensional space spanned by the states jΦji included in
the correlation matrix C,

jΨi ¼
X
j

ajjΦji: ðA4Þ

The corresponding correlation function is

CΨðtÞ ¼ a†CðtÞa: ðA5Þ

Since a (as well as any other complexN-component vector)
can be expanded in terms of the eigenvectors according to

a ¼
X
n

μðnÞvðnÞ; ðA6Þ

with μðnÞ ∈ C, we can write for temporal separation t,

CΨðtÞ ¼
X
m;n

μðmÞ�vðmÞ†CðtÞvðnÞμðnÞ

¼
X
n

jμðnÞj2vðnÞ†CðtÞvðnÞ

¼
X
n

jμðnÞj2λðnÞvðnÞ†Cðt − aÞvðnÞ

¼
X
n

jμðnÞj2λðnÞ; ðA7Þ

and analogously for temporal separation t − a,

CΨðt − aÞ ¼
X
n

jμðnÞj2vðnÞ†Cðt − aÞvðnÞ ¼
X
n

jμðnÞj2:

ðA8Þ

Now we consider the effective energy corresponding to
the correlation function CΨ,

Eeff
μ⃗ ðtÞ ¼ −

1

a
log

�
CΨðtÞ

CΨðt − aÞ
�

¼ −
1

a
log

�X
m

jμðmÞj2P
njμðnÞj2

λðnÞ
�
: ðA9Þ

Since 0 ≤ jμðmÞj2=Pn jμðnÞj2 ≤ 1 and
P

mðjμðmÞj2=P
n jμðnÞj2Þ ¼ 1, the argument of the logarithm in

Eq. (A9) is a weighted sum of the eigenvalues, i.e., can
assume values between the maximal eigenvalue λð0Þ and the
minimal eigenvalue λðN−1Þ. Minimizing Eeff

μ⃗ ðtÞ with respect
to μ⃗ is equivalent to maximizing the argument of the
logarithm, which corresponds to arbitrary μð0Þ and
μð1Þ ¼ μð2Þ ¼ … ¼ μðN−1Þ ¼ 0. Thus, Eeff

μ⃗ ðtÞ is minimized

for a ∝ vð0Þ, which implies jΨi ∝ P
j v

ð0Þ
j jΦji.

This is, what we wanted to show: The coefficients of the
trial state (A4) with minimal effective energy at temporal
separation t are identical to the components of the eigen-
vector vð0Þ from the GEVP with t0 ¼ t − a.
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