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We present a gauge invariant digitization of ð1þ 1Þd scalar quantum electrodynamics for an arbitrary
spin truncation for qudit-based quantum computers. We provide a construction of the Trotter operator in
terms of a universal qudit-gate set. The cost savings of using a qutrit based spin-1 encoding versus a qubit
encoding are illustrated. We show that a simple initial state could be simulated on current qutrit based
hardware using noisy simulations for two different native gate set.
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I. INTRODUCTION

Quantum computing offers a natural way to simulate the
dynamics of quantum field theories. While classical
Monte Carlo simulations of lattice gauge theories have
been able to extract static quantities to high precision [1,2],
classical Monte Carlo simulations encounter problems with
determinations of dynamic quantities due to a sampling to
noise issue known as the sign problem. While work has
been done to begin tackling these problems [3,4] using
classical computers, quantum computing still offers another
path forward.
Many quantum field theories (QFT) have continuous

symmetries such as quantum electrodynamics (QED)
which has a Uð1Þ symmetry; quantum chromodynamics
(QCD), which has a SUð3Þ symmetry, and Scalar ϕ4 which
has continuous values for the field. While classical com-
puters can truncate these continuous symmetries to
machine precision, in order to store the values of the nine
matrix elements for a gauge link in QCD to double-
precision would require Oð1000Þ qubits. This is clearly
infeasible for noisy intermediate scale quantum (NISQ)
hardware and in practice truncations of these symmetries
will be necessary. These truncations of field or group
elements can take various forms. The scalar fields in ϕ4 can
be approximated with even distributions of the field values
and imposing field cutoffs [5,6]. Compact QED can be
mapped to a Zn or Uð1Þ symmetries [7–14]. The non-
Abelian groups SUð2Þ and SUð3Þ can be digitized in
various ways [15–19]. Other methods such as imbedding
the theory into higher dimensions using quantum link
models [20,21] and D-theory [22,23] is also possible.
Since truncations lead to a different theory being simulated
on the computer, understanding how these truncations
distort the physics is an interesting question but regardless
these distortions must be removed [24]. Understanding
how to return to the continuous symmetries is its own
problem [14,15,25–29]. Digitizations of Uð1Þ for quantum

electrodynamics typically use Hilbert spaces that have an
odd integer states per site or link [7–10,13,14,30]; similar
issues will arise for SUð3Þ [15,17]. Because these digitiza-
tions do not nicely map onto Hilbert spaces of dimension 2n

there are states that will not be used and will complicate the
circuit structure.
While simulations of quantum chromodynamics are still

many years off, digital quantum simulations of 1þ 1 and
2þ 1 dimensional field theories are already in progress
[31–42]. Simulations of the transverse Ising model (TIM)
[35,43–55] and some simpler gauge theories such as the
Schwinger model have been a major focus of qubit based
computers [15,24,32,37,56]. Compact scalar quantum
electrodynamics (sQED) in ð1þ 1Þd has implementations
proposed for optical lattices [8,9]. This model is also called
the Abelian Higgs model, however we will refer to it as
sQED in this work. sQED is a natural first step for
simulations on near term qudit NISQ computers because
it is a ð1þ 1Þd gauge theory with a continuous symmetry
that is coupled matter. In addition this theory’s Hamiltonian
can be written in an explicitly local gauge invariant way
[7–10]. The fact that this is a gauge-matter theory and the
algebra for the Hermitian operators acting on the Hilbert
space can naturally be represented by qudits makes this
model amenable to simulations on near term NISQ com-
puters using qudit-based architectures. This is not the only
model amenable to qudit-based machines; O(N) spin
models and spin-1 Ising models are also possible [57] as
well as ð2þ 1Þd U(1) [30,58,59]. Some classical algo-
rithms such as the tensor renormalization group allow
efficient simulation of ð1þ 1Þd U(1) gauge theories
[10,60–64]; this undermines the possibility of quantum
advantage with a ð1þ 1Þd sQED. However, natural exten-
sions given in [30,65] may be an avenue where quantum
advantage can be demonstrated. In this case ð1þ 1Þd sQED
would be a necessary stepping stone to these richer
problems. Simulations of dynamics for sQED would be
timely given the recent interest in algorithms [66–73],
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testing [74–77] and development of qutrit based hardware
[75,78–84].
This paper is laid out as follows. Section II discusses the

Abelian Higgs model and its Hamiltonian formulation. In
Sec. III, we discuss the systematic errors introduced by spin
truncation. Section IV discusses how the Hamiltonian can
be digitized on qudit base hardware. We walk through the
choice of observable, the methods of state preparation, and
the simulation using a noise model of a qutrit based
quantum computer in Sec. V. Finally, Sec. VI highlights
the results and a road map of future models of interest.

II. MODEL

Following closely [7–10], 1þ 1 − d compact sQEDwith
the magnitude of the scalar field frozen to unity has the
Euclidean lattice action, with similar notation as [7–10] is
used for consistency,

S ¼ Sgauge þ Smatter

Sgauge ¼ −
1

g2asaτ

X
x

X
ν<μ

ReTrðUx;μνÞ

Smatter ¼ −κs
X
x

ðϕ†
xUx;sϕxþŝ þ H:c:Þ

− κτ
X
x

ðϕ†
xUx;τϕxþτ̂ þ H:c:Þ; ð1Þ

where κs ¼ R2aτ=as, κτ ¼ R2as=aτ, and R is the radial
scalar field magnitude and is generally allowed to vary but
will be fixed to one in this work. The magnitude of the scalar
field can be fixed by taking the coupling for a ðϕ†ϕÞ2 term to
infinity which will freeze the Higgs mode around a desired
value [8]. Given the fact that ð1þ 1Þ − d gauge theories are
in general super renormalizable, driving the quartic coupling
to infinity should still leave a continuum limit. Compact
representations of the gauge and matter fields are used:

Ux;μν ¼ Ux;μUxþμ;νU
†
xþν;μU

†
x;ν;

Ux;μ ¼ e−iaμgAx;μ ; and ϕx ¼ eiθx : ð2Þ

To derive a Hamiltonian representation for the action in
Eq. (1), the gauge and matter fields are expanded using a
Fourier analysis of the Boltzmann weights [7–10,85] and
then integrated over. This leaves a set of constraints on the
plaquettes rather than the links creating a “dual” lattice.
Then after taking the temporal lattice spacing to 0, we find
the following Hamiltonian

Ĥ ¼ P
2

XNs

i¼1

ðL̂z
i Þ2 þ

Jz
2

XNs−1

i¼1

ðL̂z
i − L̂z

iþ1Þ2

þ Jz
2
ððL̂z

1Þ2 þ ðL̂z
Ns
Þ2Þ − μ

XNs

i¼1

Ûx
i ð3Þ

where,

L̂zjmi ¼ mjmi

Ûx ¼ 1

2
ðÛþ þ Û−Þ;

and Û�jmi ¼ jm� 1i: ð4Þ

The coefficients in Eq. (3) are related to the lattice
spacing and gauge coupling P ¼ g2as, Jz ¼ ð2R2asÞ−1,
μ ¼ 2R2=as.[86] In theory the operators L̂z and Ûx are
infinite dimensional with the values of m in Eq. (4)
ranging from −∞ to þ∞. In practice a cut off will be
necessary for implementation on quantum hardware so
that the Hilbert space is finite. In this case the spins
m ¼ −nmax;…; 0;…nmax. The following subsections will
highlight the digitization procedure for implementing the
Hamiltonian in Eq. (3) on qudit based hardware as well as
indicating the difficulties of implementation on qubit based
hardware.

III. SYSTEMATIC ERRORS

An important aspect of truncations is examining the size
of the truncation versus the lattice spacing. It should be
unsurprising that truncation effects will become more
significant the closer to the continuum we go. In order
to measure the effectiveness of these truncations we will
use the following quantity

χ ¼ 1

Ns

XNs

i¼1

XNs

j¼1

hΩjðL̂z
i − L̂z

jÞ2jΩi; ð5Þ

where jΩi is the ground state. This quantity measures how
correlated the fields are at different sites. This measure is
likely more accurate than comparing eigenvalues of the
Hamiltonian because it probes off-diagonal elements
and excited states with respect to the eigenbasis of the
Hamiltonian.
We expect that at small coupling ðg2a2sÞ since the high

spin states are easily excited a larger truncation will be
necessary. Conversely for strong coupling we should
expect that a more coarse truncation will be acceptable.
Figure 1 shows χ normalized by the untruncated value as a
function of the coupling, g2a2s , for a ns ¼ 4 site lattice. The
supposition posited earlier carries out here. For couplings
on the order of g2a2s ≤ 10−2, nmax > 4 to effectively capture
the physics desired. While for couplings of g2a2s ≈ 1, a
truncation of nmax ¼ 2 appears to be sufficient. One key
feature that is evident is that there seems to be a stark
difference between the spin-1 and spin-2 truncation at all
couplings; this was seen as well in [87]. The discrepancy is
not unexpected, for Zn theories there is a marked discrep-
ancy between n ≤ 4 and n ≥ 5 accurate representations of
Uð1Þ [88].
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The key point that should be understood is that in the
strongly coupled regime a spin-2 (qupet) will likely be
sufficient but in theweakly coupled regime a spin-4 to spin-6
truncation will be necessary to capture the desired physics.
In particular, the limit of g2as → 0 Eq. (3) becomes that of
the O(2) model in 1þ 1-dimensions. In this limit the
couplings become XY ¼ 1 in units of as ¼ 1. At this ratio
of couplings a nmax ¼ 6 spin truncation is effective to
capture the desired physics [10]. For nearer term devices
a qupet may not yet be feasible but qutrits are actively being
studies. This will provide a good foundation for bench-
marking and developing tools for higher truncations even if
it does not accurately represent the physics of the theory.

IV. ENCODING

A. Qudit representation

As previously mentioned, implementation on physical
hardware requires a maximal spin cut off denoted nmax. For
a given maximal integral spin, the operators defined in
Eq. (4) behave as follows,

ðL̂zÞi;j ¼ ðn − iÞδi;j ð6Þ

where 0 ≤ i; j < 2nþ 1 and Ux can either truncate at m ¼
�nmax or have highest and lowest states wrap around like a
Znmax

theory.
The Hamiltonian can be separated into two noncommut-

ing parts. The terms containing Lz and the terms containing
Ux. This spin-nmax system is most naturally mapped onto a
ð2nmax þ 1Þ-qudit architecture. A universal basis for this
machine will require a collection of 2nmax þ 1 SUð2Þ
rotations that couple the energies levels together and allow
an arbitrary SUð2nmax þ 1Þ rotation. We can define these
operators that compose the SUð2Þ subalgebras as general-
izations of the Pauli matrices which will be defined as X̂a;b,
Ŷa;b, and Ẑa;b. The behavior on these operators is given by

σ̂xa;bjci ¼
8<
:

jbi c ¼ a

jai c ¼ b

0 c ≠ a; b

; ð7Þ

σ̂ya;bjci ¼
8<
:

−ijbi c ¼ a

ijai c ¼ b

0 c ≠ a; b

; ð8Þ

and

σ̂za;bjci ¼
8<
:

jai c ¼ a

−jbi c ¼ b

0 c ≠ a; b

; ð9Þ

where 1≤a;b;c≤2nmaxþ1. We can also define rotations,

R̂α
ða;bÞðθÞ ¼ eiθσ̂

α
ða;bÞ ; ð10Þ

where α ¼ x; y; z, and a and b indicate the states for the
Pauli subalgebra to mix between. For an arbitrary spin-nmax
system we can write the operators of Eq. (3) as follows:

L̂z ¼
Xnmax

j¼1

ðnmax − jþ 1Þðσ̂zj;nmax
þ σ̂znmax;nmaxþjÞ ð11Þ

and

Ûx ¼ 1

2

�
cboundσ̂xð1;2nmaxþ1Þ þ

X2nmax−1

j¼1

σ̂xðj;jþ1Þ

�
ð12Þ

where cbound is 1 if a Zn model is desired or 0 if a
Uð1Þ-truncation is desired.
Time evolution of a state jψi is carried out via the

traditional operator e−itĤ. In order to implement this on a
quantum computer we need to Trotterize [89] the
Hamiltonian and split it into noncommuting terms:

ÛtrðδtÞ ¼ ðe−iδtðUþ2YÞ=2
P

ðL̂z
i Þ2

e−iδtY
P

L̂z
i L̂

z
iþ1eiδtX

P
Ûx

i Þ: ð13Þ

A diagram of this circuit for any spin truncation is shown in
Fig. 2. This Trotterization is straightforward; three types of
terms will be present:
(1) one qudit rotation e−iδtðUþ2YÞ=2ðL̂zÞ2

(2) one qudit rotation eiδtXÛ
x

(3) two qudit rotations eiδtYL
z
i L

z
iþ1

The ðL̂zÞ2 rotations are relatively straight forward to
implement:

FIG. 1. χ normalized by an infinite bound extrapolation as a
function of the coupling and spin truncation for 4 sites.
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eiθðL̂
zÞ2 ¼

Y2nmax

j¼1

eiaj;jþ1θσ̂
z
ðj;jþ1Þ ð14Þ

where the aj;jþ1 terms are found by solving the linear
equation,

ðL̂zÞ2 ¼ α01þ
X2nmax−1

j¼1

αj;jþ1σ̂
z
j;jþ1 ð15Þ

for the coefficients αj;jþ1 and α0. The values for these
operators are found to scale quadratically with respect to
the spin truncation nmax. With more details provided in the
Appendix A.
The L̂z

i L̂
z
iþ1 term is also relatively straightforward as well

and involves solving a similar set of equations. This
operator can be written for arbitrary n as,

e−iθL̂
zL̂z ¼ Csum

Y2nmax−1

i¼1

� Y2nmax−1

j¼1

Rz;t
j;jþ1ðθβjÞ

�
Csum: ð16Þ

The t on single qutrit rotations indicates they are applied on
the target qutrit of the Csum gates. This coupled LzLz

rotation then can be written in terms of at most 2nmax þ 1

two-qudit gates and 4n2max one qudit diagonal rotations
which are expected to be relatively noiseless [79]. The Csum
operator is a generalization of the CNOT gate and shifts the
state jai to jaþ 1i; it is given by

Csum ¼
X2nmaxþ1

k¼1

jkihkj ⊗ X̂k; ð17Þ

where

X̂ ¼
X2nmaxþ1

k¼1

jkihmod2nmaxþ1ðkþ 1Þj: ð18Þ

The Ûx
i rotations can be implemented in one of two

ways. The naive way is to Trotterize the components of Ûx,

eiθÛ
x ≈ eiθcboundσ̂

x
ð1;2nmaxþ1Þ

Y2nmax

j¼1

eiθσ̂
x
ðj;jþ1Þ ; ð19Þ

which results in 2nmax þ 1 single qudit rotations. A slightly
more complicated but exact way involves finding the
set of rotations fRα

ða;bÞðθjÞg which implement eiθÛ
x
. This

is relatively simple and tractable for most qudit based
architectures because it involves diagonalizing a 2nmaxþ1
dimensional matrix where nmax will be less than 12 for
any approximation of Uð1Þ. This will require at most
ð2nmax þ 1Þ2 − 1 rotations. In the case where cbound ¼ 1
this involves constructing a generalization of the Hadamard
gate to a qudit [79,82],

Ĥ ¼
X2n
k¼0

X2n
j¼0

jkihjjeiðkþjÞπ=ð2nþ1Þ: ð20Þ

B. Spin 1: Qubit vs qutrit

Up until this point the work has been generalized to
qudits. While high spin truncations are needed to simulate
actual quantum electrodynamics [7,10], qudits become
more difficult to control the more states that are included

]67,73 ]. From this point on we will specialize to the spin-1
truncation through out this work and set cbound ¼ 0. The
fundamental operators from the Hamiltonian defined in
Eq. (3) L̂z and Ûx. For a spin-1 (3 state) truncation the L̂z

operator is defined as

L̂z ¼

0
B@

1 0 0

0 0 0

0 0 −1

1
CA ð21Þ

and can be embedded into a two qubit Hilbert space with
the following encoding:

L̂z ¼ ðẐ2 þ Ẑ1 ⊗ Ẑ2Þ=2; ð22Þ

where the Ẑi correspond to the Pauli-z matrix on qubit i. By
extension, the operator ðL̂zÞ2 is given by

FIG. 2. Quantum circuit for UtrðδtÞ defined in Eq. (13).

ERIK J. GUSTAFSON PHYS. REV. D 103, 114505 (2021)

114505-4



ðL̂zÞ2 ¼ ð1þ Ẑ1Þ=2: ð23Þ

Similarly the Ûx operator is given by

Ûx ¼ 1

2

0
B@

0 1 0

1 0 1

0 1 0

1
CA; ð24Þ

and can be embedded into the Hilbert space of two qubits
with the following linear combination of tensor products

Ûx ¼ X̂1 ⊗ ð1þ X̂2 þ Ẑ2Þ=2þ Ŷ1 ⊗ Ŷ2=2: ð25Þ

The Trotterization can be broken up into the two one-qutrit
rotations,

e−iδtðU=2þYÞðLz
i Þ2 and eiδtXU

x
; ð26Þ

and the two-qutrit rotation,

eiδtYL̂
z
i L̂

z
iþ1 : ð27Þ

In the case of physical qutrits, since both of the single
qutrit rotations are an element of SU(3) they can easily be
broken up into 8 rotations [90] defined in Eq. (10) as
follows:

V̂¼ eiα1σ̂
z
01eiα2σ̂

y
01eiα3σ̂

z
01eiα4σ̂

y
02eiα5σ̂

z
01eiα6σ̂

y
01eiα7σ̂

z
01eiα8σ̂

z
12 ; ð28Þ

where V̂ is an arbitrary SUð3Þ rotation.
Using this Euler decomposition we find that these

operators can be written with the following rotations,

e−
iδtðUþ2YÞ

2
ðL̂zÞ2 ¼ Rz

0;1ð−δtðU=6þ Y=3ÞÞ
× Rz

1;2ðδtðU=6þ Y=3ÞÞ; ð29Þ

and

eiδtXÛ
x ¼ R̂y

0;1

�
−
π

4

�
R̂y
0;2

�
π

4

�
R̂z
0;1

�
δtX

ffiffiffi
2

p

2

�

× R̂y
0;2

�
−
π

4

�
R̂y
0;1

�
π

4

�
: ð30Þ

Given the native gate set of [79,82], these two rotations
together can be implemented in at most 15 one-qutrit
rotations and likely fewer depending on the angles in the of
the σaby rotations; while the implementation of [76] can
implement this with at most 5 rotations for the Ûx term and
2 for the ðLzÞ2 term, the extra gates from [79] come from
the noncontinuous parametrization of the X and Y rotations.
Given that σabz rotations are done virtually they are
effectively noiseless and at most only 8 noisy gates are
present.
The two qutrit Lz ⊗ Lz rotation is implementable with 3

controlled sum gates,

Csum ¼
X
k¼0

2jkihkj ⊗ ðX01X12Þk; ð31Þ

and 4 single qutrit σz rotations. This implementation is,

eiθL
z⊗Lz ¼ CsumR

z;t
0;1ð2θ=3ÞRz;t

1;2ðθ=3Þ
× CsumR

z;t
1;2ð2θ=3ÞRz;t

0;1ðθ=3ÞCsum: ð32Þ

The controlled sum is a generalization of the qubit-CNOT
gate to qudit based architecture [91] and is realizable on
current qutrit based hardware [79,82]. The t on the single
qutrit rotations indicates that they are applied on the target
qutrit of the Csum gate.
In the context of the implementing on physical qubits,

the Ux operator will require 3 CNOTs to implement [92].
The L̂z ⊗ L̂z term will require approximately 16 CNOTs to
couple the all the 2-, 3-, and 4-qubit rotations (shown
in Fig. 3)
At this point, it is clear the qutrit formulation clearly is

better than the qubit formation because of the reduced
number of entangling gates but a qubit formulation is

FIG. 3. Circuit for eiθL̂
z⊗L̂z

using a qubit embedding.

TABLE I. Gate costs assuming native Qiskit gates compared to
decompositions shown in Eqs. (29), (30), and (32).

Gate Qubit encoding Qutrit encoding

Type 1 qubit 2 qubit 1 qutrit 2 qutrit

Ûx 15 3 5 0

ðL̂zÞ2 1 0 2 0

L̂z ⊗ L̂z 4 8 4 3
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possible. The gate costs for each operator in the qubit and
qutrit formulations are listed in Table I. The circuit depth in
the qutrit formulation is 6 two-qutrit gates deep per Trotter
step, while the qubit formulation is 19 CNOTs deep per
Trotter step.

V. SIMULATION

A. State preparation and time evolution

We will work in a regime g2a2s ¼ 5 and ns ¼ 4. In this
regime the ground state accurately represented by the
iterative tensor product of the lowest eigenstate of the
matrix

A ¼ 1

2

0
BB@

g2a2s þ 1 −2 0

−2 0 −2
0 −2 g2a2s þ 1

1
CCA; ð33Þ

where we have set Y ¼ 1=2 and X ¼ 2. The lowest energy
eigenstate of this operator can be written

jΨ0i ¼
1

N
ðj0iq þ bj1iq þ j2iqÞ; ð34Þ

where

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ b2

p
and

b ¼ g2a2s þ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg2a2s − 1Þ2 þ 32

p
4

: ð35Þ

The subscript q indicates these are represented in the qutrit
state values rather than the L̂z spin values. The overlap of
the state

jΓi ¼
Y4
i¼1

ðjΨ0iÞ⊗ ð36Þ

as a function of the couplings and lattice sizes is shown in
Fig. 4. We will demonstrate measuring the correlator,

C ¼ hΓjeitĤÛ−
1 e

−itĤÛþ
1 jΓi: ð37Þ

In order to measure this correlator, we need to be able to
prepare the states jΓi and ÛþjΓi. This is relatively
straightforward to accomplish. The state jΨ0i in Eq. (34)
can be prepared from the state j0iq with two one qutrit
rotations,

V̂g ¼ R̂y
1;2ð−ρ2ÞR̂y

0;1ðρ1Þ ð38Þ

where ρ1¼arccosð−1=N Þ and ρ2¼arcsinð−1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2−1

p
Þ.

Preparing the super position of jΨ0i and 1
N 0 ÛþjΨ0i is

slightly harder. Using an ancilla, 2 Csum gates, and 7 one
qutrit gates, we can prepare this superposition of states

jψi ¼ 1ffiffiffi
2

p
�
jΨ0ij0ia þ

1

N 0 ðj1i þ aj2iÞj1ia
�
: ð39Þ

The circuit, V̂prep, which constructs this state is shown
in Fig. 5.
After this it is relatively straight forward to measure the

correlator. The Trotterized time evolution operator from
Eq. (13) is applied to the working qubits followed by C†

sum

controlled on the ancilla to the first qutrit. Then by
measuring the σ̂x0;1 on the ancilla and the states on the
working qubits we extract the real part of the correlator. If
σ̂y0;1 is measured on the ancilla, then the imaginary part of
the correlator is extracted instead. Diagramatically this
circuit is shown in Fig. 6. The correlator is then given by the
following quantum operations

C ¼ ðhjĈ†ðσ̂x0;1ÞaĈji þ hjĈ†ðσ̂x0;1ÞaðẐ2ÞĈji
þ ihjĈ†ðσ̂y0;1ÞaĈji þ hjĈ†ðσ̂y0;1ÞaðẐ2ÞĈjiÞ=2; ð40Þ

where ji represents the state j0000i ⊗ ðj0ia þ j1iaÞ. The
operator Ẑ2 can be applied classically after measuring the
qutrit state by apply a −1 to any measurement of the first
working qutrit that is in the state j2i.

B. Noisy emulations

While many noise channels are available such as decay
channels that correspond to spontaneous decays from

FIG. 4. Overlap of the state j1.::1iq and exact ground state jΩi
as a function of lattice size ð2 ≤ ns ≤ 9Þ and coupling
strength g2a2s .

ERIK J. GUSTAFSON PHYS. REV. D 103, 114505 (2021)

114505-6



higher excited states [93] and Pauli channels [94] which
correspond to “bit” flips, phase flips. Here we use the
following Pauli channel noise model for qutrit,

Eðρ; qÞ ¼
�
1 −

X
i<j

X
α

ðpα
i;jÞq

�
ρ

þ
X
i<j

X
α

ðσαi;jÞqρðσαi;jÞq; ð41Þ

where α ¼ x; y; z, ði; jÞ indicates the mixing between qutrit
states jii and jji, pα

i;j is the probability of such error
occurring, and q indicates which qutrit to apply the noise
operation on. This noise model is inspired by the way
the fidelities of [82] are reported. This should not be
surprising as it looks like an extension of the qubit
version of a Pauli noise model used by many
[44,49,50,95]. The two qutrit noise model is easily

extendable from this using a tensor product of all the
Pauli terms for the two qutrits.
Simulations using the noise model described in Eq. (41)

are discussed here. The probabilities for the Pauli errors
used are listed in Table II which were found for a recent
randomized benchmark for a Transmon based qutrit system
[82]. The noise model was applied assuming that Rx, Ry

and two-qutrit rotations are noisy and that Rz rotations are
noiseless [79].
The results of noisy emulations of the observable C are

shown in Fig. 7 for Trotter step size δt ¼ 0.39 (additional
simulations at δt ¼ 0.235 and 0.31 are shown in
Appendix B). These steps sizes were chosen because they
balanced the Trotter fidelity with the emulated noise in the
gates to allow time dynamics to be observed. While the
computer tested in [82] had the controlled sum ðCsumÞ as
the native two-qutrit gate, we also consider a case where a
e−iθL

z⊗Lz
rotation can be used as a native gate assuming the

same Pauli errors.
A clear feature is that the native LzLz rotation

allows for a 8 to 9 Trotter steps before the gate noise
completely suppresses the signal while the native Csum
allows for 4 to 5 Trotter steps before the signal is lost.
This suggests that near term qutrit based machines such
as those tested by [79,82] may be able to simulate short
term dynamics of this model and allow for early bench-
marking of a more complicated field theory than the
transverse Ising model.

FIG. 5. Quantum circuit that creates the initial state, jΨ0ijΨ0ijΨ0iðjΨ0ij0ia þ 1=N 0ÛþjΨ0ij1iaÞ. H0;1 is the Hadamard gate on the
(0,1) subspace of the ancilla qutrit, V̂g is defined in Eq. (34). The angles for gsa2s ¼ 5 areω1 ¼ −0.65273, ω2 ¼ −1.43696, ω3 ¼ 1.7837
and ω4 ¼ 2.65568.

FIG. 6. Circuit for measuring the correlator. The real part is
found by measuring σ̂x0;1 on the ancilla and the occupations on the
on the first qubit. While the imaginary part is found by measuring
σ̂y0;1 on the ancilla instead. The boxed region will be defined as the

operator Ĉ.

TABLE II. Pauli errors for one and two qutrit Pauli terms. The
two qutrit term applies to each element of the Pauli noise channel,
i.e., each σαi;jσ

β
k;l has that probability of occurring.

Term (0, 1) (0, 2) (1, 2)

One qutrit term 0.00038 0.00143 0.00068
Two qutrit term 0.003 0.003 0.003

PROSPECTS FOR SIMULATING A QUDIT-BASED MODEL OF … PHYS. REV. D 103, 114505 (2021)

114505-7



VI. CONCLUSIONS

Thiswork has shownhow to implement theAbelianHiggs
model on a qudit based digital quantum computer with a
strong focus on qutrit which will be available in the near
future. The qudit encoding for theTrotter operators requires a
depth of 4nmax þ 2 entangling gates per Trotter step; this is
certainly an improvement of qubit encodings and is dem-
onstrated explicitly for the case of qutrits. We show how to
measure a two point correlation function and demonstrate
that a fewTrotter steps are feasible using current estimates for
the Pauli channel noise on transmon qutrits [82]. If entan-
gling gate errors can be achieved that are of the same
magnitude as the two-qubit engangling errors on current
hardware we expect that it may be possible to measure two
point correlation functions for a spin-1 truncation.
Simulations of this model on qutrit based quantum

computers would be an significant step toward real time
simulations of quantum electrodynamics and other field
theories with continuous or larger symmetry groups. These
simulations will help pave the way toward understanding
the dynamics from an ab initio perspective inelastic
scattering processes. In addition this model has natural
extensions to formulations of Abelian field theories in
ð2þ 1Þ [30] and ð3þ 1Þ-dimensions [65].
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APPENDIX A: ROTATION DECOMPOSITIONS

The coefficients aj;jþ1, bj;jþ1, and cj;jþ1 scale according
to the following equations,

aj;jþ1 ¼
2

3
jþ 2

3

bj;jþ1 ¼ −j2 −
4

3
j −

1

3

cj;jþ1 ¼
1

3
j3 þ 1

2
j2 þ 1

6
j: ðA1Þ

Using Eq. (A1), we can find an closed form expression for
the angles αj;jþ1,

αj;jþ1ðnÞ ¼
2jþ 2

3
n2 −

3j2 − 4j − 1

3
n

þ 2j3 þ 3j2 þ j
6

. ðA2Þ

Explicit values for the coefficients to determine the angles
αjðnÞ are listed in Table III.

FIG. 7. Noisy Emulation of the real part of the correlator C defined in Eq. (37) for Trotter step size, dt ¼ 0.39. Two different native gate
sets were used: native e−iθL

z⊗Lz
plus one qutrit rotations from Eq. (10) and native Csum plus one qutrit rotations from Eq. (10). Only

statistical errors are shown.

TABLE III. Angles αi;iþ1 for the e−iθðLzÞ2 rotations to provide
rotations up to a spin truncation n ¼ 9. There is an antisymmetry
of the angles after passing the αðn−1Þ=2;ðn−1Þ=2þ1 where the angles
are then follow the reverse pattern and are negative, e.g., for
n ¼ 1 α0;1 ¼ −α1;2, and for n ¼ 2 α0;1 ¼ −α3;4 and α1;2 ¼ −α2;3.

Angle aj;jþ1 bj;jþ1 cj;jþ1

α0;1 2/3 −1=3 0
α1;2 4/3 −8=3 1
α2;3 2 −7 5
α3;4 8/3 −40=3 14
α4;5 10/3 −65=3 30
α5;6 4 −32 55
α6;7 14/3 133=3 91
α7;8 16/3 −176=3 140
α8;9 6 −75 204
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APPENDIX B: ADDITIONAL CORRELATORS

Here we show the noisy simulations of the time evolution of C for 2 additional Trotter steps, δt ¼ 0.235 and δt ¼ 0.31.
These Trotter step sizes were chosen because they are highly faithful as demonstrated in Fig. 8. In addition we can see a
signal for these smaller Trotter step sizes using both native gate sets.
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