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We study the emergence of de Sitter space in Euclidean dynamical triangulations (EDT). Working within
the semi-classical approximation, it is possible to relate the lattice parameters entering the simulations
to the partition function of Euclidean quantum gravity. We verify that the EDT geometries behave
semiclassically, and by making contact with the Hawking-Moss instanton solution for the Euclidean
partition function, we show how to extract a value of the renormalized Newton’s constant from the
simulations. This value is consistent with that of our previous determination coming from the interaction of
scalar particles. That the same universal constant appears in these two different sectors of the theory is a
strong indication that EDT provides a viable formulation of quantum gravity.
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I. INTRODUCTION

The quantization of gravity remains one of the great
outstanding problems in theoretical physics. In this work
we continue our studies of Euclidean dynamical triangu-
lations (EDT) [1–3], a lattice approach to formulating
quantum gravity. This approach attempts to make contact
with the asymptotic safety scenario of Weinberg [4],
where the existence of a nontrivial ultraviolet fixed point
would make the theory effectively renormalizable non-
perturbatively. The perturbative nonrenormalizability of
quantum gravity is well known [5,6]. In order to realize
the asymptotic safety scenario, EDT would have to
recover classical general relativity in the appropriate limit,
and there would have to exist a continuous phase tran-
sition in the phase diagram of the lattice theory such that a
divergent correlation length would allow one to take the
continuum limit.
We briefly review here the evidence that EDT satisfies

these conditions. Reference [7] showed that a fine tuning of
the exponent of a local measure term is needed in order to

recover physical results. This local measure term was first
introduced into the lattice theory some time ago in Ref. [8],
but the evidence that this term is needed to recover
semiclassical physics and to take the continuum limit
has been presented more recently [7]. Once the tuning
procedure is implemented, it is found that the geometries in
the simulations are consistent with being four-dimensional,
and their behavior is close to that of Euclidean de Sitter
space. There is a well-established first order phase tran-
sition in the phase diagram [9–13]. Adding the measure
term introduces a new parameter, thus enlarging the phase
diagram and turning the first order point into a first order
line. There appears to be no obstacle to taking the
continuum limit by following this first order line to a
possible critical endpoint; ensembles following this pro-
cedure were generated at a number of different lattice
spacings [7,14].
The evidence for semiclassical physics seen in Ref. [7] is

the following. The global Hausdorff dimension was mea-
sured using finite-volume scaling, and it was shown to be
close to four [7]. The spectral dimension, a fractal dimen-
sion defined by a diffusion process, varies with distance
scale, and it was shown to approach a value close to four at
long distances. This variation of the spectral dimension
with distance had been seen already in other approaches
[15–17]. It was also shown in Ref. [7] that the average over
geometries gives a result that is close to that of Euclidean
de Sitter space, and the quantitative agreement with the
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classical solution gets better as the proposed continuum
limit is approached. The agreement between the classical
solution and the lattice data is actually the worst at long
distances, but it improves as the lattice spacing is reduced.
This might seem counterintuitive, since it is typically the
short-distance behavior that is modified by discretization
effects, but this type of effect on long-distance behavior is
common when a symmetry of a theory is broken by the
regulator, for example by the finite lattice spacing in
the case of lattice regularization. An example of this is
the Wilson fermion formulation of lattice quantum chromo-
dynamics (QCD), where the lattice regulator breaks chiral
symmetry. There a fine-tuning is required to restore the
symmetry, and even then, at finite lattice spacing the chiral
symmetry breaking leads to distortions of the pion sector,
which contains the lightest (and therefore longest Compton
wavelength) states of the theory. Reference [7] argued that
the analogous symmetry that is broken by dynamical
triangulations is continuum diffeomorphism invariance.
Calculations including matter fields (in the quenched

approximation) also provide evidence for the emergence of
semiclassical spacetimes with the hoped-for behavior.
Reference [18] introduced Kähler-Dirac fermions [19] to
the EDT formulation. This approach provides a generali-
zation of staggered fermions to the random lattices of
dynamical triangulations without the need to introduce
vielbeins or spin connections. In the flat-space, continuum
theory the Kähler-Dirac action reduces to four copies of
Dirac fermions [20,21]. This appears to be true of Kähler-
Dirac fermions coupled to EDT as well, but only in the
continuum, infinite-volume limit. This is seen in the
approximate four-fold degeneracy of the low-lying eigen-
values of the Kähler-Dirac matrix, and in the degeneracy of
scalar bound states in the continuum limit [18]. The four-
fold degeneracy is lifted by lattice discretization effects in a
similar manner to what is found with staggered fermions in
lattice QCD [22], but just as in lattice QCD, the degeneracy
appears to be restored in the continuum limit. An additional
advantage of Kähler-Dirac fermions is that they possess an
exact Uð1Þ symmetry, which is related to continuum chiral
symmetry. A study of fermion bilinear condensates pro-
vides strong evidence that this Uð1Þ symmetry is not
spontaneously broken at order the Planck scale, implying
that fermion bound states do not acquire unacceptably
large masses due to chiral symmetry breaking. These
results for Kähler-Dirac fermions in EDT show that lattice
fermions with the desired properties can be incorporated
into the theory.
Ref. [14] followed up this work with a study of the

gravitational interaction of scalar fields. Once again work-
ing in the quenched approximation, Ref. [14] studied the
binding energy of two scalar particles in the nonrelativistic
limit, as originally proposed in Ref. [23]. By looking at the
binding energy as a function of the constituent particle
mass, it was shown in Ref. [14] that the ground-state energy

of the bound-state system is compatible with the result of
solving the Schrödinger equation with Newton’s potential
in 3þ 1 dimensions. This recovery of Newton’s law of
gravitation in the appropriate limit allowed the determination
of the renormalized Newton’s constant G for the first time
within EDT. This value of G sets the lattice spacing in units
of the Planck length, and given the value that was obtained, it
was determined that the lattice spacings of the simulations
are smaller than the Planck length. This suggests that there is
no barrier to taking the continuum limit.
Given these successes in the quenched matter sector, it is

interesting to return to a study of the global behavior of the
geometries. As noted above, the geometries resemble
Euclidean de Sitter space. This is seen by comparing the
classical de Sitter solution (analytically continued to
imaginary time) to the ensemble average of the shape of
the geometries. The agreement between the lattice data and
the expected classical, continuum curve gets better as the
continuum limit of the lattice theory is approached [7].
Even so, it would be desirable to have additional cross-
checks that the lattice geometries are actually approaching
semiclassical de Sitter space, and that the simulations
properly account for quantum fluctuations about the
classical solution. In this regard we take our inspiration
from causal dynamical triangulations (CDT), a variant of
the dynamical triangulations approach in which a foliation
of the geometries is introduced explicitly [24–26].
Many of the nice properties that appear to be recovered by

EDT in the continuum limit were first seen in CDT,
including the emergence of four-dimensional (Euclidean)
de Sitter space [27–29] and the scale-dependence of the
spectral dimension [15]. In the CDT formulation it has also
been shown that semiclassical fluctuations about de Sitter
space are well described by a simple minisuperspace model
[30,31]. Thus, the evidence for the emergence of four-
dimensional de Sitter space in CDT is quite compelling. The
EDT geometries in our simulations have baby universelike
structures that have a cross section of order the cutoff but are
rather long in linear extent. These baby universes branch off
of the mother universe, and they seem to cause a large
deviation from the putative de Sitter solution at finite lattice
spacing. Nonetheless, this deviation gets smaller and appears
to vanish as the EDT continuum limit is approached [7],
though the study of quantum fluctuations about de Sitter
space is complicated by these effects at finite lattice spacing.
Since branching baby universes are explicitly forbidden in
the CDT path integral, that formulation does not suffer from
this particular problem.
In this work we look at the finite-volume scaling of one

of the bare parameters in the lattice action, the bare
cosmological constant. It can be shown that if semiclassical
physics is to be recovered, then this bare parameter should
be a linear function of 1=

ffiffiffiffi
V

p
, where V is the lattice volume.

We show that for large volumes our lattice data is in fact
consistent with this expectation. Following the discussion
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in Ref. [32], we study the saddle-point approximation of the
Euclidean partition function about de Sitter space, and we
show how the parameters in the effective action for the
lattice theory can be related to the continuum Hawking-
Moss instanton solution [33], evaluated for the special case
of de Sitter space. This relationship allows us to use the
finite-size scaling of our bare cosmological constant to
obtain a result for the renormalized Newton’s constant.
Our result is in excellent agreement with the previous
determination of Newton’s constant from the interaction of
scalar particles in Ref. [14], providing further evidence that
the EDT formulation realizes a theory of gravity, and that
de Sitter space with the correct quantum fluctuations
emerges from our simulations. The determination of G
in this work is to a higher precision than that of Ref. [14],
allowing for a slightly better determination of our absolute
lattice spacing.
This paper is organized as follows: Sec. II reviews

the EDT formulation. Section III discusses the de Sitter
instanton solution and how it may be used to extract
the renormalized Newton’s constant in our framework.
Section IV gives the details of the simulations. Section V
presents our numerical results for the finite-size scaling of
the bare cosmological constant and our determination of G,
as well as our results for the lattice distance conversion
factors needed to complete our calculation of G and to
compare it to previous results. We conclude in Sec. VI.

II. EUCLIDEAN DYNAMICAL TRIANGULATIONS

In Euclidean quantum gravity the partition function is
given by the path-integral sum over geometries,

ZE ¼
Z

D½g�e−SEH½g�; ð1Þ

where the Euclidean Einstein-Hilbert action is

SEH ¼ −
1

16πG

Z
d4x

ffiffiffi
g

p ðR − 2ΛÞ; ð2Þ

with R the curvature scalar, Λ the cosmological constant,
and G Newton’s constant.
The EDT approach to quantum gravity assumes that

the partition function is given by the sum over triangu-
lations [1,34]

ZE ¼
X
T

1

CT

�YN2

j¼1

OðtjÞβ
�
e−SER ; ð3Þ

where the factor CT divides out equivalent ways of labeling
the vertices in a given geometry, the term in brackets is a
local measure term with the product over all triangles,
and OðtjÞ is the order of triangle j, i.e., the number of four
simplices to which it belongs. The exponent β is an

adjustable parameter within the simulations. SER is the
Einstein-Regge action [35] of discretized gravity,

SER ¼ −κ
XN2

j¼1

V2δj þ λ
XN4

j¼1

V4; ð4Þ

with κ ¼ ð8πGÞ−1, λ ¼ κΛ, δj ¼ 2π −OðtjÞ arccosð1=4Þ
the deficit angle around a triangular hinge tj, and with the
volume of a d-simplex of equilateral edge length a given by

Vd ¼
ffiffiffiffiffiffiffiffiffiffiffi
dþ 1

p

d!
ffiffiffiffiffi
2d

p ad: ð5Þ

It is standard to absorb the overall numerical factors into
constants and to perform the sums in Eq. (4) so that the
lattice action is given the convenient form

SER ¼ −κ2N2 þ κ4N4; ð6Þ

with N4 the number of four simplices and N2 the number of
triangles.
The lattice geometries are constructed by gluing together

four-simplices along their (4 − 1)-dimensional faces. The
four-simplices are equilateral, with constant edge length a,
and the dynamics is encoded in their connectivity. In
practice one would like to simulate for a fixed bare
cosmological constant, but this is impractical since the
simulations would take an exponentially long time to make
excursions to large four-volumes. Instead, it is standard in
dynamical triangulations to simulate at fixed lattice vol-
ume, adding a volume preserving term to the action such
as δλjNf

4 − N4j. This term keeps the lattice volume in the
simulations close to the target fiducial volume Nf

4 . In
principle one should take the limit where δλ is sent to zero,
though in practice it suffices to take it sufficiently small.
Once the volume is fixed, the value of the parameter κ4 is
then completely fixed, as discussed in the following
section. The other parameters, κ2 and β, form a two-
dimensional parameter space for the phase diagram in
which to search for a fixed point.
The phase diagram for this model has been mapped out

in previous work [12], and it is shown in Fig. 1. The solid
line AB is a first order transition line that separates
the branched polymer phase from the collapsed phase.
Neither of these phases resembles semiclassical gravity.
The branched polymer phase has Hausdorff dimension 2,
while the collapsed phase has a large, possibly infinite,
dimension. The crinkled region and the collapsed phase do
not appear to be distinct phases; rather the crinkled region
appears to be connected to the collapsed phase by an
analytic crossover. The crinkled region requires very large
volumes to see the characteristic behavior of the collapsed
phase, suggesting that it is a part of the collapsed phase with
especially large finite-size effects [11,12].
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It was shown in Ref. [7] that a fine-tuning of β, such that
one approaches the first-order transition line from the left,
leads to semiclassical geometries with a dimension close to
four. The continuum limit appears to exist and is
approached by following the transition line to large,
possibly infinite, κ2.

III. THE DE SITTER INSTANTON

The overall shape of our lattice geometries resembles
that of Euclidean de Sitter space, and this agreement gets
better as we take the continuum limit, as shown in
Ref. [7]. Though this appears promising, we can do
better by looking at the semiclassical approximation of
the EDT partition function about the classical de Sitter
solution. The first part of the discussion in this section
mirrors that of Ref. [32], and following that we present
our strategy for testing the expected behavior using our
simulations.
Consider the partition function of Euclidean dynamical

triangulations, where we assume that the sum over trian-
gulations of fixed four-volume has already been performed,
and we are only interested in the dependence on N4. Then
the path integral defining the partition function reduces to a
sum over N4. The leading behavior of the partition function
is exponential in the four-volume

Zðκ4; κ2Þ ¼
X
N4

e−ðκ4−κc4ÞN4fðN4; κ2Þ; ð7Þ

where fðN4; κ2Þ is subexponential in N4, and κc4 is the
pseudocritical value of the coupling κ4. The limit κ4 → κc4
allows one to take the infinite lattice-volume limit
N4 → ∞. This is not necessarily the infinite physical-
volume limit, since this procedure is equally valid in the
unphysical crumpled phase, where the numerical simula-
tions show that the emergent geometries are on the order of
the size of the cutoff. The critical value κc4 is not known

a priori, but emerges from the nonperturbative sum over
triangulations. In practice it is determined by adjusting the
constant κ4 at a particular target volume until the moves are
equally likely to cause an upward fluctuation in volume as a
downward one.
This term in the exponential corresponds in the con-

tinuum to the renormalized cosmological constant term, so
that we can identify

ðκ4 − κc4ÞN4 ¼
Λ

8πG
V; ð8Þ

where V ¼ C4N4a4, with C4 a geometric factor equal toffiffiffi
5

p
=96. Once the bare parameters κ2 and β are chosen such

that the simulations are in the physical region of the phase
diagram, the size of the semiclassical universe is specified
when we input the target volume N4. The size of the
de Sitter universe at a given κ2 and β uniquely fixes κ4, and
thus the renormalized cosmological constant Λ.
If the partition function in Eq. (7) is to reproduce

semiclassical gravity, the subleading exponential behavior
should be given by the Einstein-Hilbert term. By power
counting, the 4-volume dependence of this term should
scale like

1

16πG

Z
d4x

ffiffiffi
g

p
R ∝

ffiffiffiffi
V

p

G
: ð9Þ

Thus, the partition function with all other degrees of
freedom integrated out except for the four-volume should
have the form [32]

Zðκ4; κ2Þ ¼
X
N4

e−ðκ4−κc4ÞN4þkðκ2Þ
ffiffiffiffi
N4

p
; ð10Þ

where the expected scaling of k is

kðκ2Þ ∝
a2

G
: ð11Þ

If a continuum limit exists, then for some values of the bare
parameters k approaches zero in lattice units, and N4

approaches infinity, leaving the volume fixed in physical
units. The constant k at a given lattice spacing must be
determined from the simulations. To see how, we consider
the expectation value of the number of four-simplices,
hN4i, which a straightforward saddle-point expansion
shows to be [32]

hN4i ¼
P

N4
N4e−ðκ4−κ

c
4
ÞN4þkðκ2Þ

ffiffiffiffi
N4

p

P
N4
e−ðκ4−κ

c
4
ÞN4þkðκ2Þ

ffiffiffiffi
N4

p

≈
k2ðκ2Þ

4ðκ4 − κc4Þ2
: ð12Þ

FIG. 1. Schematic of the phase diagram as a function of κ2
and β.
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In our simulations we fix N4, so the expectation value
hN4i ¼ N4 is just an input to our simulations. Solving
Eq. (12) for k we find

k ¼ 2jκ4 − κc4j
ffiffiffiffiffiffi
N4

p
; ð13Þ

and from this we see that a plot of κ4 as a function of
1=

ffiffiffiffiffiffi
N4

p
should be linear if the semiclassical limit is realized

in the simulations. Thus, a finite-volume scaling study of κ4
should allow us to determine the slope of that linear
dependence and thereby determine k. Given k we can
getG=a2, since by Eq. (11), they are inversely proportional.
It remains to find that proportionality constant, which we
get from the following argument.
The same saddle-point expansion used in Eq. (12) gives

for the partition function

Zðκ4; κ2Þ ≈ exp

�
k2ðκ2Þ

4ðκ4 − κc4Þ
�

¼ exp

�
3π

GΛ

�
; ð14Þ

where the equality comes from a calculation of the
continuum partition function, assuming that it is dominated
by the de Sitter instanton. This continuum expression for
the partition function is the well-known Hawking-Moss
instanton production amplitude [33]. In making this equal-
ity we assume that the approximate agreement between our
lattice geometries and the continuum de Sitter solution gets
better and better in the continuum limit, such that the de
Sitter instanton dominates the partition function in that
limit. This picture can be tested, first by seeing whether κ4
plotted versus 1=

ffiffiffiffiffiffi
N4

p
is linear, and second by computing

the renormalized Newton’s constant and comparing it to
our recent determination of G from the binding energy of
scalar particles [14]. One can obtain the renormalized
Newton’s constant G from the semiclassical partition
function as follows. Combining Eqs. (8), (13), and (14),
one finds

G ¼ 5
1
4a2

16
ffiffiffiffiffiffi
N4

p jκ4 − κc4j
; ð15Þ

which implies

G
a2

¼ 5
1
4

16jsj ; ð16Þ

with s the slope determined by a fit to κ4 as a function
of 1=

ffiffiffiffiffiffi
N4

p
.

In practice we must calculate this slope for each new pair
of values of κ2 and β in the bare action. Even different
volumes at the same nominal lattice spacing require
separate additional volume runs to perform the finite-
volume scaling, since the bare parameters vary to follow

the transition line, which moves as a function of volume.
Each slope determined from finite-volume scaling at fixed
values of κ2 and β determines a value of G at some finite
volume and nonzero lattice spacing. These values of G
must then be extrapolated to the continuum, infinite
volume limit.
There is another subtlety involved in this analysis. We

wantG in the same physical units across ensembles, but our
relative lattice spacing is given in simplex units l rather
than link units a, normalized at our fiducial lattice spacing
(β ¼ 0). The above prescription gives us G in link units a,
so if we want to put G into common units across lattice
spacings using the relative lattice spacing in simplex units
l, then we must first convert G into simplex units. We also
want to compare our final value for G with that determined
from the Newtonian binding of scalar particles given in
Ref. [14], but this determination involved scalar fields
living on the simplices, and their correlation functions were
measured on the dual lattice, making the corresponding
masses, and thus G, in simplex units. Therefore, we must
use the conversion

G
l2
fid

¼ G
a2

�
a
l

�
2

l2
rel; ð17Þ

where the lattice spacing conversion factors are given in
Table I, and lrel ¼ l=lfid, with lfid the fiducial lattice
spacing in simplex units at β ¼ 0. We discuss the deter-
mination of the lattice spacing conversion factors a=l
in Sec. V.

TABLE I. The parameters of the ensembles used in our studies
of EDT. The first column shows the relative lattice spacing in
units of simplex distance, with the ensembles at β ¼ 0 serving as
the fiducial lattice spacing. The quoted error is a systematic error
associated with matching the return probabilities across lattice
spacings. The second column shows the ratio of the link distance
a to the simplex distance l on a given ensemble, with a
systematic error associated with the matching procedure. All
a=l have been corrected for finite size effects. The third column
is the value of β, the fourth is the value of κ2, the fifth is the
number of four-simplices in the simulation, and the sixth is the
number of configurations sampled.

lrel a=l β κ2 N4 Number of configs

1.59(10) 3.4(3) 1.5 0.5886 4000 367
1.28(9) 3.9(2) 0.8 1.032 4000 524
1 5.2(1) 0 1.605 2000 248
1 5.2(1) 0 1.669 4000 575
1 5.2(1) 0 1.7024 8000 489
1 5.2(1) 0 1.7325 16000 501
1 5.2(1) 0 1.75665 32000 1218
0.80(4) 7.2(7) −0.6 2.45 4000 414
0.70(4) 8.6(9) −0.8 3.0 8000 1486
0.70(4) 8.6(9) −0.776 3.0 16000 2341
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IV. DETAILS OF THE SIMULATIONS

The generation of the EDT ensembles is described in
detail in Ref. [7], but we review some of those details here.
The lattices used in that and subsequent works [14,18] have
been saved and are reused here. The path-integral sum is
over a set of degenerate triangulations, where the usual
combinatorial manifold constraints are relaxed [36]. Thus,
distinct four-simplices may share the same five distinct
vertex labels, and the neighbors of any given four-simplex
are not necessarily unique. Either of these conditions
is a violation of the combinatorial manifold constraints.
However, degenerate triangulations have an advantage;
there is a factor of ∼10 reduction in finite-size effects
compared to combinatorial triangulations [36]. Since it is
likely that degenerate and combinatorial triangulations are
in the same universality class, if a continuum limit does in
fact exist, we continue to use degenerate triangulations.
The numerical methods used to perform the simulations

are by now well established [37]. The standard (scalar)
algorithm to perform the Monte Carlo integration of the
path integral consists of an ergodic set of local moves,
known as the Pachner moves, which are used to update the
geometries [2,38,39], and a Metropolis step, which is used
to accept or reject the proposed move. Most of the lattice
ensembles used in this work were generated using a parallel
variant of the standard algorithm, called parallel rejection.
This algorithm gives identical results, configuration by
configuration, to the scalar algorithm, but the parallel
streams can lead to a significant speed-up of the calcu-
lation. Parallel rejection takes advantage of, and partially
compensates for, the low acceptance of the Metropolis step
in our simulations and is described in more detail in
Ref. [7]. The sum over geometries is restricted to the fixed
global topology S4. In order to enforce this restriction it is
sufficient to start from the minimal four-sphere at the
beginning of the Monte Carlo evolution, since the local
moves are topology preserving.
Table I shows the ensembles that have been generated

previously that are used in the present work. They include
ensembles at several different physical volumes and lattice
spacings. The relative lattice spacing quoted here was
obtained in Ref. [7] (and updated in Ref. [14]) by looking
at the return probability of a diffusion process on the lattice
geometries. The return probability is dimensionless, but
varies as a function of the diffusion time step, which is not.
One can rescale the diffusion time step so that the return
probability lies on a universal curve; the rescaling factor
then leads to the relative lattice spacing. The errors quoted
reflect the uncertainties in matching the curves in this
procedure. The ratio of link length a and simplex distance l
on each ensemble is also given in Table I; the determination
of this ratio is described in detail in the next section.
Table II shows the new ensembles created in this work to

perform the finite-size scaling of κ4 for fixed values of the
other two parameters κ2 and β. As the volume of the lattice

is increased at fixed lattice spacing, one of these other two
parameters must be re-tuned in order to move the simu-
lation closer to the phase transition line, which shifts as the
volume changes, even for what is nominally the same
lattice spacing. Thus, we need a series of additional runs at
different volumes even where we already have multiple
volumes at the same nominal lattice spacing. Since the
phase transition line shifts to the right for increasing
volume, and to the left for decreasing volume, it is
necessary to go to larger volumes than the nominal volume

TABLE II. The parameters of the ensembles used to extract the
volume scaling of κ4. The first three columns label the ensembles.
The first column is β, the second is κ2, and the third is the lattice
volume N4. The fourth column is the number of configurations
used to determine κ4, and the fifth column is the value of κ4
determined on that ensemble, along with its statistical error.

β κ2 N4 Number of configs κ4

1.5 0.5886 4000 414 7.989973(93)
8000 327 7.99258(18)

16000 801 7.99530(27)
32000 584 7.996832(49)
64000 494 7.997903(77)

0.8 1.032 4000 262 7.00464(11)
8000 495 7.00800(18)

16000 91 7.01003(15)
32000 369 7.011645(77)
64000 869 7.012781(43)

0 1.605 2000 1712 6.147791(67)
4000 414 6.152958(79)
6000 579 6.154980(81)
8000 327 6.15600(12)

12000 244 6.15733(12)
16000 28 6.15800(31)

0 1.669 4000 476 6.32841(18)
8000 2849 6.330489(58)

16000 1216 6.332214(59)
32000 1208 6.333493(49)
64000 903 6.33420(11)

0 1.7024 8000 489 6.42259(18)
12000 1056 6.424000(58)
16000 1145 6.424592(59)
32000 1529 6.425800(49)
64000 295 6.42652(11)

0 1.7325 16000 402 6.50854(20)
24000 430 6.509460(96)
32000 1369 6.509929(58)
64000 95 6.510592(73)

−0.6 2.45 4000 414 6.78342(25)
8000 298 6.78545(15)

12000 807 6.786175(94)
16000 973 6.786636(98)
24000 1057 6.787203(78)
32000 343 6.78758(15)
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when we do the finite-size scaling, since only in that case
do we remain in the correct phase. Thus, all of the volumes
used in the finite-size scaling of κ4 are larger than the
nominal volume of our original ensembles.

V. NUMERICAL RESULTS

A. Relating lattice distance measurements

We present the calculation of the conversion factors
between link units a and simplex units l on our EDT
ensembles. First, we review the calculation of the return
probability PðσÞ, with diffusion time σ, on the dual lattice.
This quantity has been used to set the relative lattice
spacing in previous works [7,14]. Before starting the
random walk of the diffusion process on the dual lattice,
the lattice is first shelled, with a starting four-simplex
chosen at random as the source; the next shell consists of
the nearest neighbors of the source simplex. The next shell
consists of all of their nearest neighbors, without replace-
ment, and so on until all of the four-simplices of the lattice
configuration have been counted. The starting simplex for
the diffusion process is then chosen from the shell with the
maximum number of four-simplices. We find that restrict-
ing our sources to come from the largest three-slice
minimizes finite lattice spacing effects, and it is the same
procedure that has been used throughout the recent EDT
work involving the present authors, including the study
of Kähler-Dirac fermions [18] and the study of scalar
interactions [14].
The diffusion process on the dual lattice uses a random

walk where the next jump is chosen from the neighbors of a
given simplex. Because degenerate triangulations are used,
some of the five neighbors of a four-simplex are not unique,
that is, sometimes the same four-simplex shares multiple
tetrahedra with a neighboring four-simplex. Even so, each
of the five neighbors of a given four-simplex is given equal
weight when choosing the next step of the random walk.
One source is used per configuration, and many random
walks starting from that source are run in order to sample
the probability of returning to the starting four-simplex.
One peculiarity of degenerate triangulations is that for the
dual lattice return probability, all of the odd time steps have
zero probability, at least for time steps sufficiently early in
the diffusion process. In order to compute the return
probability, and the corresponding spectral dimension,
we take only the even time steps, so that each step σ is
actually two lattice hops in the diffusion process. This
procedure of omitting the odd steps in the return probability
was shown to work in the branched polymer phase, where it
correctly reproduces the known spectral dimension of 4=3
[12]. This procedure was also used to compute the return
probability and spectral dimension in the subsequent work
on the tuned semi-classical geometries [7].
In order to get the ratio of the link distance and the

simplex distance, we compare the return probability on the

direct lattice with that on the dual lattice. The implemen-
tation of the diffusion process on the direct lattice is new to
the present work. Since the hops are now between vertices,
and each vertex is separated by link length a, this allows us
to convert simplex distance to link distance. The random
walk used to compute the return probability is once again
chosen from the shell with the maximal volume, but this
time the shelling is performed on the vertices. In the
diffusion process, a given vertex does not have a fixed
number of neighbors. In fact, the number of neighbors can
occasionally grow to be quite large. For this reason it is
helpful to use dynamical memory allocation while comput-
ing the diffusion process. For this work, an array of linked
lists was used to store all of the neighboring vertices to any
particular vertex on a given configuration. Because the
triangulations are degenerate, there can exist multiple links
connecting the same two vertices. All such links are given
equal weight when computing the probability of a hop to a
nearest neighbor. In the case of the return probability on the
direct lattice, both even and odd diffusion time steps are
non-zero and are used in the calculation. There is an
oscillation visible between the even and odd steps at early
times due to discretization effects; this oscillation dies out
after a sufficiently large number of time steps. This effect is
common in computations involving the return probability
or spectral dimension on random lattices [28].
Figure 2 shows the return probabilities for both the dual

and direct lattice diffusion processes on the 32k, β ¼ 0
ensemble. The return probability on the direct lattice has
been rescaled along the σ axis so that the two curves
overlap. This rescaling factor is used to determine the ratio
a=l. Recalling that the diffusion step is proportional to
distance squared, calling σdual the diffusion time step on the

0 200 400 600 800 1000
σ

(r)

0

0.01

0.02

0.03

0.04

0.05

P(
σ)

dual lattice
direct lattice

FIG. 2. The return probability PðσÞ as a function of the
diffusion step size σ for both the dual lattice and the direct
lattice at a volume of N4 ¼ 32, 000 and β ¼ 0. The return
probability for the direct lattice has a rescaled σr so that it
overlaps with the return probability of the dual lattice.
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dual lattice, and σdirect the diffusion time step on the direct
lattice, we find

a
l
¼

ffiffiffiffiffiffiffiffiffiffiffi
2σdual
σdirect

s
ð18Þ

where it is assumed that the σs are at matching points on the
return probability curve. The factor of 2 accounts for the
fact that each step of the diffusion process on the dual
lattice is actually two lattice hops. As can be seen in Fig. 2,
the agreement between the rescaled curves is very good.
Figure 3 shows this same matching on the finer ensemble at
β ¼ −0.6. Again, the rescaled curves line up nicely.
Table III presents our values for a=l extracted from each

of our ensembles. For our Newton’s constant analysis we
quote a single number for a=l at a given lattice spacing.
These values are corrected for finite-volume effects. In the
case of the β ¼ 0 ensembles, where we have multiple lattice
volumes, we do a direct extrapolation to infinite volume.
This extrapolation is shown in Fig. 4. In order to correct
all of the values of a=l at other lattice spacings for
finite-volume effects, we assume that the finite volume
dependence is the same as that of the β ¼ 0 ensembles, and
we use that dependence to determine a correction factor for
a=l. This is done by matching the physical volume of the
ensembles at other lattice spacings against those at β ¼ 0,
and computing the percentage difference between where
that physical volume lines up with the curve in Fig. 4 and
the infinite volume limit.
The errors in the values of a=l are estimated as follows.

First, the statistical errors are taken into account by varying
the matching factor according to the 1σ statistical errors in

the data points for the return probabilities. Second, we
account for the errors associated with extrapolating a=l at a
given lattice spacing to its value in the infinite volume limit.
At β ¼ 0, where the extrapolation to infinite volume can be
done explicitly, we vary the fit form and the number of data
points included in the fit in order to estimate a systematic
error associated with the infinite-volume extrapolation.
Figure 4 shows a quadratic fit to all five volumes at
β ¼ 0 and a linear fit to the largest three volumes. We
also consider a quadratic fit to the four largest volumes.
Based on the spread in these results, we quote an infinite

0 200 400 600 800
σ

(r)

0

0.005

0.01

0.015

0.02

0.025

P(
σ)

dual lattice
direct lattice

FIG. 3. The return probability PðσÞ as a function of the
diffusion step size σ for both the dual lattice and the direct
lattice at a volume of N4 ¼ 4000 and β ¼ −0.6. The return
probability for the direct lattice has a rescaled σr so that it
overlaps with the return probability of the dual lattice.

TABLE III. The values of a=l for the different ensembles in our
analysis. The first two columns identify the ensemble, the first by
its relative lattice spacing in units of simplex distance, with
the ensembles at β ¼ 0 serving as the fiducial lattice spacing. The
second column identifies the ensemble by the lattice volume.
The third column is the value of a=l on that ensemble, with an
error associated with matching the return probability curves.

lrel N4 a=l

1.59(10) 4000 3.6(3)
1.28(9) 4000 4.3(2)
1 2000 6.2(3)
1 4000 6.3(2)
1 8000 6.1(2)
1 16000 5.7(2)
1 32000 5.43(16)
0.80(4) 4000 8.6(2)
0.70(4) 8000 10.6(6)
0.70(4) 16000 10.4(5)

FIG. 4. The ratio of direct to dual lattice spacings a=l as a
function of 1=V at β ¼ 0 for multiple volumes, and two sample
fits extrapolating this quantity to the infinite volume limit.

BASSLER, LAIHO, SCHIFFER, and UNMUTH-YOCKEY PHYS. REV. D 103, 114504 (2021)

114504-8



volume result of a=l ¼ 5.2ð1Þ at β ¼ 0. The errors in the
infinite-volume results for a=l at other lattice spacings are
obtained by combining the error in the finite volume
correction with the error in a=l at a given lattice spacing;
the central values with their errors are quoted in Tab. IV.

B. Finite volume scaling and Newton’s constant

To compute Newton’s constant given in Eq. (16) in link
units a, we need to extract the value of

ffiffiffiffiffiffi
N4

p jκ4 − κc4j, with
the pseudocritical value κc4. The parameter κc4 corresponds
to the value of the coupling κ4 needed to take the infinite
lattice-volume limit, and it is a function of β and κ2. To
extract

ffiffiffiffiffiffi
N4

p jκ4 − κc4j, we therefore perform simulations
at fixed values of κ2 and β, and increasing volumes N4,
and measure the tuned value of κ4 at each of the volumes.
A linear fit

κ4ðN4Þ ¼ Aκ4 þ s
1ffiffiffiffiffiffi
N4

p ; ð19Þ

then allows us to determine the slope s to obtain Newton’s
constant G=a2 in link units. The errors on the values for
κ4ðN4Þ are assumed to be purely statistical, and are
estimated using single-elimination jackknife resampling.
Autocorrelation errors are taken into account by a blocking
procedure, where κ4 data sets are blocked until the error
stops increasing. The κ4 values of all ensembles are
summarized in Table II, where the smallest volume at
fixed values of β and κ2 corresponds to the tuned ensemble
close to the first order phase transition on which measure-
ments of physical quantities have been performed in
previous works. Table V summarizes the resulting slopes
jsj for each pair of κ2 and β values, together with the
χ2=d:o:f. and the p-value corresponding to each fit. In
Figs. 5–7, we display examples of these fits, each of them
showing a different finite-volume scaling study at a differ-
ent relative lattice spacing lrel. In some of these fits, the κ4
value of the tuned ensemble, i.e., the smallest volume for
each set of values for κ2 and β, was discarded due to it not
being well described by a linear fit to the rest of the data
points. A possible reason for this is that the lattice volume is

too small, or that its closeness to the first-order phase
transition results in contamination by occasional tunneling
into the branched polymer phase, where the values of κ4
differ significantly [12]. We find good evidence of
linear scaling of κ4 as a function of 1=

ffiffiffiffiffiffi
N4

p
across lattice

spacings and nominal volumes, showing strong numerical
evidence for the validity of the semiclassical approxima-
tion, Eq. (13).
Given the finite-volume scaling of κ4, the conversion

factor for link units into simplex units a=l, and the relative
lattice spacing in simplex units lrel, we compute a value of
Newton’s constant in units of our fiducial lattice spacing
using Eq. (17) for all of our results across lattice spacings
and nominal volumes. To perform the extrapolation to the
continuum, infinite volume limit, we use the simplest
viable ansatz for the dependence of G on the physical
volume and lattice spacing. We use a fit function for the

TABLE IV. The values of a=l for different lattice spacings. The
first column identifies the ensemble by its relative lattice spacing
in units of simplex distance. The second column is the value of
a=l at that lattice spacing in the infinite volume limit, including
the total error.

lrel a=l

1.59(10) 3.4(3)
1.28(9) 3.9(2)
1 5.2(1)
0.80(4) 7.2(7)
0.70(4) 8.6(9)

TABLE V. Extracted slopes s following a fit of the data in
Tab. II to Eq. (19), together with the other relevant parameters of
the ensembles. The first column is the relative lattice spacing in
simplex units. The second is the relative physical volume, given
by Vrel ¼ N4l4

rel, in units of thousands of four-simplices. The
third and fourth columns are β and κ2, respectively. The fifth
column is the slope jsj, the sixth column is the χ2=d:o:f. of the
linear fit, and the seventh column is the p-value of that fit.

lrel Vrel β κ2 jsj χ2=d:o:f. p-value

1.59(10) 25.6(6.4) 1.5 0.5886 0.724(32) 1.4 0.24
1.28(9) 10.7(3.0) 0.8 1.032 0.6840(55) 0.35 0.79
1 2.0(0) 0 1.605 0.652(14) 0.60 0.62
1 4.0(0) 0 1.669 0.521(11) 1.4 0.24
1 8.0(0) 0 1.7024 0.502(12) 0.43 0.65
1 16.0(0) 0 1.7325 0.436(39) 0.76 0.38
0.80(4) 1.64(32) −0.6 2.45 0.393(22) 0.15 0.96

FIG. 5. The κ4 values corresponding to the parameters β ¼ 0

and κ2 ¼ 1.669 versus 1=
ffiffiffiffiffiffi
N4

p
. The line is a linear fit with

χ2=d:o:f: ¼ 1.4 and p-value of 0.24, resulting in a slope
s ¼ 0.521ð11Þ, cf. Table V. The data point corresponding to
the tuned ensemble, i.e., the smallest volume, was not included in
the fit.
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Newton constant extrapolation that is similar to what was
used in the recent study of gravitational binding [14],

G ¼ HG

V
þ IGl2

rel þ JGl4
rel þ KG; ð20Þ

where HG, IG, JG, and KG are fit parameters. We include
quartic corrections in the relative lattice spacing, since the
coarse lattices introduce curvature as a function of the relative
lattice spacing. The inclusion of 1=V2 corrections is not
necessary, however, since the additional fit parameter does
not improve the quality of the fit. To test the results of the fit
ansatz Eq. (20), we perform an additional fit with JG set to
zero, while simultaneously dropping the data points with
lrel > 1. The result for the continuum, infinite-volume limit
ofG for this fit is consistent within one sigmawith that of the
extrapolation using the full ansatz given in Eq. (20).
The extrapolation of G is shown in Fig. 8 against the

inverse physical volume. The colored lines correspond to

lines of constant lattice spacing, and the black line
represents the continuum limit extrapolation. Figure 9
shows the same data, plotted against the squared relative
lattice spacing, which represents a different slice through
the parameter space spanned by 1=V and lrel. Here, lines of
fixed physical volume at the fiducial lattice spacing, i.e.,
lrel ¼ 1 are shown. In both figures, the black cross
corresponds to the infinite-volume continuum extrapolation
of the Newton constant. We find for the extrapolated value
of the Newton constant G ¼ 14.3ð3.6Þ. The χ2=d:o:f. for
the extrapolation fit is 0.87, corresponding to a p-value of
0.46, an acceptable confidence level for this fit. This result
for G in fiducial simplex units can be compared directly to
our recent result from Newtonian binding in Ref. [14],
where the value G ¼ 15ð5Þ was quoted. The agreement is
clearly excellent, and it is a powerful check that both
calculations are making contact with the correct semi-
classical limit.

FIG. 7. The κ4 values corresponding to the parameters
β ¼ −0.6 and κ2 ¼ 2.245 versus 1=

ffiffiffiffiffiffi
N4

p
. The line shows a

linear fit with χ2=d:o:f: ¼ 0.15 and a p-value of 0.96, resulting
in a slope s ¼ 0.393ð22Þ.

FIG. 6. The κ4 values at the coarsest lattice spacing with β ¼
1.5 and κ2 ¼ 0.5886 versus 1=

ffiffiffiffiffiffi
N4

p
. The line is a linear fit with

χ2=d:o:f: ¼ 1.4 and p-value of 0.24, resulting in a slope of
s ¼ 0.724ð32Þ. The data point at the smallest volume was not
included in the fit.

FIG. 8. Newton’s constant G as a function of the inverse
physical volume (expressed in units of 1000 simplices) for all of
the ensembles (colored), as well as the continuum limit (in black).
Here quadratic corrections in 1=V as well as l2

rel were used to
model the extrapolation. For this fit we find χ2=d:o:f: ¼ 0.87
corresponding to a p-value of 0.46, and the continuum, infinite
volume value is G ¼ 14.3ð3.6Þ.

FIG. 9. The same data and fit from Fig. 8 however now plotted
as a function of the squared lattice spacing. Here example lines of
constant physical volume are plotted along with the infinite
volume limit as a solid black line, and the data are represented in
the same manner as Fig. 8.
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VI. CONCLUSION

In this work we have revisited the emergence of de Sitter
space in the EDT formulation. We have studied whether the
lattice geometries that emerge from our simulations are
compatible with the semiclassical de Sitter solution in the
continuum, large-volume limit. Following the discussion in
Ref. [32], we have studied the saddle-point approximation
of the Euclidean partition function about de Sitter space.
The finite-volume scaling of the bare cosmological con-
stant in the semiclassical approximation can be shown to be
a linear function of 1=

ffiffiffiffi
V

p
, where V is the lattice volume.

Our data confirms this expectation. Given this agreement, it
is possible to use this result to extract a value of the
renormalized Newton constant G from a comparison
between the lattice partition function in the semiclassical
limit and a similar calculation in the continuum. The
continuum calculation in this case is the well-known
Hawking-Moss instanton solution [33], evaluated for the
special case of tunneling to a de Sitter universe.
This identification provides a value of G at a series of

volumes and lattice spacings, so that it is necessary to
extrapolate these values to the continuum, infinite-volume
limit. Before doing so, we must put G at the different lattice
spacings into common physical units. There is a subtlety
here, in that we obtain our raw values of G in link units,
while our relative lattice spacings are determined in simplex
units. We calculate the conversion factor by comparing the
return probabilities computed on the dual lattice and on the
direct lattice. With the appropriate conversion factors,
and after the extrapolation, we finally find a value of
G ¼ 14.3ð3.6Þ, measured in simplex units at our fiducial
lattice spacing at β ¼ 0. This result can be compared to our
previous calculation of Newton’s constant obtained by
studying the gravitational interaction of scalar particles.
Both calculations use the same tuned ensembles described
in this work, and the value G ¼ 15ð5Þ given in Ref. [14] is
normalized in the same units as the one presented here, so
that a comparison is possible. The agreement is clearly very
good. Our new result for G implies a somewhat improved
determination of our absolute lattice spacing in Planck units,
with lPl ¼ ð3.8� 0.5Þlfid.
The main source of error in the determination of

Newton’s constant in the present analysis is the error in

the conversion factor a=l between link and simplex units,
and the determination of the relative lattice spacing. The
latter also determines the uncertainties on the physical
volume and the squared lattice spacing, cf. Figs. 8 and 9.
A reduction of the uncertainties on the quantities a=l
and lrel in the future will most likely require larger
volumes at finer lattice spacings. Additional measure-
ments of the finite-volume scaling of the bare cosmo-
logical constant at finer lattice spacings and larger
volumes should also allow for a better determination of
G in the continuum, infinite-volume limit. Improved
precision on this quantity is important for testing the
consistency of the EDT formulation.
In conclusion, the good agreement between the deter-

mination of Newton’s constant in Ref. [14] and the present
work is highly nontrivial, since one calculation studies the
semiclassical expansion of the partition function about de
Sitter space, and the other measures the gravitational
interaction between scalar particles. That both of these
features emerge from Euclidean dynamical triangulations
governed by the same universal constant provides strong
evidence that EDT is not merely a theory of random
geometry, but a theory of gravity.
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