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We present a lattice QCD calculation of the axial γW-box diagrams relevant for the kaon semileptonic
decays. We utilize a recently proposed method, which connects the electroweak radiative corrections in
Sirlin’s representation to that in chiral perturbation theory. It allows us to use the axial γW-box correction in
the SU(3) limit to obtain the low energy constants for chiral perturbation theory. From first principles our
results confirm the previously used low energy constants provided by the minimal resonance model with a
significant reduction in uncertainties.
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I. INTRODUCTION

In the Standard Model, the Cabibbo-Kobayashi-
Maskawa (CKM) matrix is a three-generation quark mixing
matrix which describes how the strength of the flavor-
changing weak interaction in the leptonic sector is distrib-
uted among the three quark generations. The precise
determination of the CKM matrix elements is of vital
importance in the stringent test of CKM unitarity and
search of new physics beyond the Standard Model. As
quoted in the 2020 review by the Particle Data Group
(PDG) [1], there exists a ∼3 sigma deviation from unitarity
in the first row of CKM matrix elements

jVudj2 þ jVusj2 þ jVubj2 ¼ 0.9984ð3ÞVud
ð4ÞVus

: ð1Þ
Here jVubj2 ≈ 1.5 × 10−5 is negligibly small and thus only
jVudj and jVusj play a role in the unitarity test.

The most precise determination of jVudj ¼
0.97370ð10Þexpþnuclð10ÞRC quoted in the 2020 PDG review
[1] stems from the superallowed nuclear beta decays [2,3],
with the first uncertainty arising from the experimental
measurements and nuclear physics corrections and the
second one from the electroweak radiative corrections
(RCs).1 It is the update of the RCs from a dispersive
analysis [4,6] which makes the value of jVudj about 2σ
smaller than that in the 2018 PDG review [7]. Very recently,
the RCs to the πl3 decays were calculated using lattice
QCD with the focus on the so-called axial γW-box
diagrams [8]. It allowed for a significant reduction of
the hadronic uncertainty in the RCs, and provided an
independent cross-check of the dispersion relation analysis
of the neutron RCs [9]. In the future a direct lattice QCD
calculation of the RCs to the neutron decay could help to
further improve the determination of jVudj [10].
The jVusj can be determined from kaon, hyperon or tau

decays, with kaon decays providing the best precision.
Leptonic decays K → μν (denoted by Kμ2) combined with
π → μν give access to the ratio jVus=Vudj, whereas semi-
leptonic decays K → πlν (denoted by Kl3) give a handle

*xu.feng@pku.edu.cn
†gorshtey@uni-mainz.de
‡ljin.luchang@gmail.com
§cseng@hiskp.uni-bonn.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1Notice, however, that this quoted value does not include the
contributions from several new nuclear corrections investigated in
Refs. [4,5].
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on jVusj independently. The traditional way of determining
jVusj relies on the experimental measurements of K0

L →
πeν to avoid the isospin-breaking effects (π0-η mixing) in
the charged kaon decays and the complication from the
second (scalar) form factor present in the muonic decays.
Nowadays, due to the high-statistics data collected in the
experiments, the comparison between different decay
modes is justified [11]. The decays including K0

L → πlν,
K� → π0l�ν and K0

S → πeν with l ¼ e, μ are used to
determine jVusj via the master formula [1]

ΓKl3 ¼
G2

Fm
5
K

192π3
SEWð1þ δlK þ δSU2ÞC2jVusj2f2þð0ÞIlK: ð2Þ

Here, ΓKl3 is the Kl3 decay width, GF is the Fermi
constant, mK is the kaon mass, SEW is the short-distance
radiative correction, δlK is the long-distance radiative
correction, δSU2 is the strong isospin-violating effect, C2

is 1 for the neutral kaon decay and 1=2 for the charged case,
fþðq2Þ is the K0 → π− vector form factor and IlK is the
phase-space integral which contains the information of the
momentum dependence in the form factors. Averaging over
the experimental measurements with appropriate theory
inputs of various Standard Model corrections, the product
jVusjfþð0Þ is given as [12]

fþð0ÞjVusj ¼ 0.2165ð4Þ; ð3Þ

with the uncertainty dominated by the experimental mea-
surements and RCs. The form factor fþð0Þ can be provided
by lattice QCD calculations [13–17]. The Flavor Lattice
Averaging Group (FLAG) average [18] forNf ¼ 2þ 1þ 1

simulations yields fþð0Þ ¼ 0.9698ð17Þ according to an
update on December 2020, which results in a determination
of

jVusj ¼ 0.2232ð4ÞexpþRCð4Þlat; for Kl3: ð4Þ

High-precision experimental data on Kμ2 and πμ2
decays [19,20] also accurately determine the ratio
jVus=VudjfK�=fπ� ¼0.2760ð4Þ [12]. Employing the
FLAG Nf ¼ 2þ 1þ 1 lattice QCD average [21–24] for
the ratio of decay constants fK�=fπ� ¼ 1.1932ð21Þ, a
value of jVusj ¼ 0.2252ð5Þ is obtained, which has a
2.6σ deviation from the Kl3-based value. Combining
the jVusj from Kl3 and Kμ2 decays yield

2

jVusj ¼ 0.2243ð8Þ; weighted average of Kl3 andKμ2:

ð5Þ

It should also be mentioned that jVusj obtained from
hyperon and tau decays are given by jVusj ¼ 0.2250ð27Þ
[25] and 0.2221(13) [26], respectively, both having larger
uncertainties than the kaon decays.
To gain a better understanding of the violation of the

first-row CKM unitarity in Eq. (1) and the disagreement in
the determination of jVusj between the Kl3 and Kμ2, for the
Kl3 decays it requires both a more precise determination of
the form factor fþð0Þ and a direct calculation of RCs from
lattice QCD. The latter is more challenging due to the
inclusion of both weak and electromagnetic currents in the
calculation and is the focus in this paper.
Recently, the horizons of lattice QCD studies have been

extended to include various processes with higher-order
electroweak interactions. The examples include kaon mix-
ing [27–29], rare kaon decays [30–35], double beta decays
[36–44], inclusive B-meson decays [45–47], as well as the
electromagentic and radiative corrections to the weak
decays [48–55]. Among all these processes, the lattice
QCD calculation of RCs in Kl3 still remains one of the
largest challenges as it essentially involves a computation
of five-point correlation functions. In Ref. [56], it proposes
a new method which bridges the lattice QCD calculation
with chiral perturbation theory (ChPT) [57,58]. For the
Kl3 decay in the flavor SU(3) limit, it demonstrates that the
lattice QCD calculation of the axial γW-box diagrams can
provide all unknown low-energy constants (LECs) that
enter the long-distance radiative correction δlK in the ChPT
representation at the order of Oðe2p2Þ, thus removing the
dependence of the RCs on the model used to estimate these
LECs. In this paper we will first briefly introduce the
methodology and then present the lattice calculation
of RCs.

II. METHODOLOGY

We start the discussion of the treatment of RCs in Kl3
decays with two theoretical frameworks: Sirlin’s represen-
tation and the ChPT representation.
Sirlin’s representation is particularly useful in the

treatment of the semileptonic decay Hi → Hfeν̄e with
the hadrons Hi and Hf having nearly the same masses
mi ≈mf. In this case, theOðGFαeÞ RCs to the decay width
is given as [59]

FIG. 1. The γW-box diagrams for the semileptonic decay
process Hi → Hfeν̄e.

2Here jVusj is slightly different from the PDG value 0.2245(8)
due to the update of the FLAG value of fþð0Þ. Correspondingly,
the value of jVudj2 þ jVusj2 þ jVubj2 given in Eq. (1) also slightly
differs from the PDG value of 0.9985ð3ÞVud

ð4ÞVus
.
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δ ¼ αe
2π

�
ḡþ 3 ln

mZ

mp
þ ln

mZ

mW
þ ãg

�
þ δQEDHO þ 2□VA

γW; ð6Þ

where mZ and mW are the masses for the Z and W bosons.
mp is the proton mass that enters simply by convention.
The Sirlin’s function ḡ, which is a function of the electron’s
end point energy, summarizes the infrared-singular con-
tributions involving both the one-loop and bremsstrahlung
corrections [59–61]. The OðαsÞ QCD correction ãg is
dominated by the high-energy scale Q2 ≃m2

W with a
relatively small contribution of αe

2π ãg ≈ −9.6 × 10−5

[59,62]. The contribution from the resummation of the
large QED logs is contained in δQEDHO ¼ 0.0010ð3Þ [63].
All the contributions that are sensitive to hadronic scales
reside in the axial γW-box contribution □

VA
γW , as shown in

Fig. 1. Different from the approach developed in
Ref. [64], where an effective field theory is utilized
and the W regularization is applied to make the RCs UV
finite, here the photon-W box diagram is treated in the
full electroweak theory. As all the details were already
given by Sirlin in Ref. [59], in this paper we only give a
simple illustration in the Appendix to show how □

VA
γW is

introduced. The total contribution δ is equivalent to
ðSEW − 1Þ þ δeK shown in Eq. (2).
In the Kl3 decays, since mK is not close to mπ , the

nonperturbative hadronic effects are contained not only in
□

VA
γW , but also in other diagrams. As a consequence,

Eq. (6) cannot be used directly. To evaluate the total RCs,
the calculation of the five-point correlation function is
required. To simplify this problem, Ref. [56] proposes to
calculate the RCs for K̄0 → πþeν̄e in the flavor SU(3)
limit, where mK ¼ mπ . The relevant contractions are
shown in Fig. 2 with the disconnected diagram
(C) vanishing in the flavor SU(3) limit. Although the
physical value of δ cannot be determined directly using
this unphysical setup, the lattice calculation can help to
extract the LECs for ChPT. Then by using ChPT one
can obtain the physical RCs. Besides for the K̄0 → πþ

transition, the semileptonic decay of K0 → Kþeν̄e can
also be used to determine the same LECs as it has the
same contractions as K̄0 → πþ up to the discon-
nected parts.
In ChPT, the RCs to Kl3 are computed to Oðe2p2Þ

[57,58,65] with the short-distance radiative correction

SEW ¼ 1 − e2
�
−

1

2π2
ln
MZ

Mρ
þ ðXphys

6 Þαs
�
þ δQEDHO

¼ 1.0229ð3Þ; ð7Þ

where Mρ ¼ 0.77 GeV is the rho mass and ðXphys
6 Þαs ≈

3.0 × 10−3 [66] summarizes the OðαsÞ perturbative QCD
(PQCD) contribution to Xphys

6 with Xphys
6 ðμÞ≡ Xr

6ðμÞ −
4Kr

12ðμÞ the combination of two renormalized LECs.
The scale μ is usually taken as μ ¼ Mρ in the numerical
analysis. The long-distance radiative correction δlK has the
dependence on the LECs through the relation3

δlK� ¼ 2e2
�
−
8

3
X1 −

1

2
X̃phys
6 ðMρÞ

�
þ � � � ;

δl
K0 ¼ 2e2

�
4

3
X1 −

1

2
X̃phys
6 ðMρÞ

�
þ � � � ; ð8Þ

where the ellipses indicates the omission of the known
kinematic terms, which does not depend on the LECs. X1

and X̃phys
6 are LECs relevant at Oðe2p2Þ. X̃phys

6 ðMρÞ≡
Xphys
6 ðMρÞ þ ð2π2Þ−1 lnðMZ=MρÞ − ðXphys

6 Þαs removes the
large electroweak logarithm and the OðαsÞ PQCD correc-
tion from Xphys

6 . In a similar way, one can define the
quantity δl

π� for πl3

δl
π� ¼ 2e2

�
−
2

3
X1 −

1

2
X̃phys
6 ðMρÞ

�
þ � � � : ð9Þ

Since the neutral kaon decay mode K̄0 → πþeν̄e is
theoretically cleaner as it does not receive contributions
from the π0-η mixing, which complicates the analysis in
the flavor SU(3) limit, we may use it to extract the
LECs. Comparing the ChPT and Sirlin’s representations,
the relation between the axial γW-box contribution
□

VA
γW jK0;SUð3Þ and the LECs is given by [56]

(a) (b) (c)

FIG. 2. Quark contractions for K̄0 → πþeν̄e and K0 → Kþeν̄e.

3Notice that in a similar expression in Ref. [56], the quantity
δl
K� includes also contributions from the LECs fKr

ig. That,
however, was not the standard convention adopted by the ChPT
community, which chooses to lump the fKr

ig contribution
into δSU2.
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−
8

3
X1 þ X̄phys

6 ðMρÞ ¼ −
1

2πα

�
□

VA
γW jK0;SUð3Þ −

α

8π
ln
M2

W

M2
ρ

�

þ 1

8π2

�
5

4
− ãg

�
; ð10Þ

with X̄phys
6 ðMρÞ defined as X̄phys

6 ðMρÞ≡ Xphys
6 ðMρÞþ

ð2π2Þ−1 lnðMZ=MρÞ, which removes only the large electro-
weak logarithm but retains the full PQCD corrections. For
the πl3 decay, the relation is given by

4

3
X1 þ X̄phys

6 ðMρÞ

¼ −
1

2πα

�
□

VA
γW jπ −

α

8π
ln
M2

W

M2
ρ

�
þ 1

8π2

�
5

4
− ãg

�
: ð11Þ

The box contribution □
VA
γW jπ for the πl3 decay has been

calculated in Ref. [8]. The focus of this paper is on the
determination of □

VA
γW jK0;SUð3Þ, from which the LECs X1

and X̄phys
6 ðMρÞ can be obtained.

The lattice QCD calculation of □VA
γW jK0;SUð3Þ can follow

the procedures given in Ref. [8]. We first define the
hadronic function HVA

μν ðt; x⃗Þ in Euclidean space

HVA
μν ðt; x⃗Þ≡ hπþðPÞjT½Jemμ ðt; x⃗ÞJW;A

ν ð0Þ�jK̄0ðPÞi; ð12Þ

where Jemμ ¼ 2
3
ūγμu − 1

3
d̄γμd − 1

3
s̄γμs is the electromag-

netic quark current, and JW;A
ν ¼ ūγνγ5s is the axial part

of the weak charged current. The Euclidean momentum P
is chosen as P ¼ ðimK; 0⃗Þ with mK ¼ mπ in the flavor
SU(3) limit. The box contribution □

VA
γW jK0;SUð3Þ can be

determined through the integral

□
VA
γW jK0;SUð3Þ ¼

3αe
2π

Z
dQ2

Q2

m2
W

m2
W þQ2

MKðQ2Þ ð13Þ

with

MKðQ2Þ¼−
1

6

ffiffiffiffiffiffi
Q2

p
mK

Z
d4xωðt; x⃗Þϵμνα0xαHVA

μν ðt; x⃗Þ;

ωðt; x⃗Þ¼
Z π

2

−π
2

cos3θdθ
π

j1ð
ffiffiffiffiffiffi
Q2

p
jx⃗jcosθÞ
jx⃗j cosð

ffiffiffiffiffiffi
Q2

p
tsinθÞ:

ð14Þ

Here j1ðxÞ is the spherical Bessel function. To compute the
integral in Eq. (13), for small Q2, we use lattice QCD input
ofHVA

μν ðt; x⃗Þ. The operator product Jemμ ðxÞJWν ð0Þ behaves as
ϵμναβðxα=x4ÞJW;V

β ð0Þ when x → 0. Thus the integral of
MKðQ2Þ is well behaved at small Q2. The situation is
different from the lattice calculation of the hadronic
vacuum polarization function where Jemμ ðxÞJemν ð0Þ
behaves as ðgμν∂2 − ∂μ∂νÞ=x4 when x → 0. For large
Q2, the operator product expansion of Jemμ ðxÞJW;A

ν ð0Þ is
utilized with the Wilson coefficients given at the four-loop
accuracy [67,68]. For more details, we refer the readers
to Ref. [8].

III. NUMERICAL RESULTS

Five gauge ensemble withNf ¼ 2þ 1-flavor domain wall
fermion are used in the calculation. The detailed information
is shown in Table I. Here 48I and 64I use the Iwasaki gauge
action in the simulation (denoted as Iwasaki) while the other
three ensembles use Iwasakiþ DSDR action (denoted as
dislocation suppressing determinant ratio (DSDR)). We place
the Coulomb gauge-fixed wall-source quark propagators on
all time slices. For each configuration we calculate point-
source propagators at 1024 (2048 for 32D) random spacetime
locations. This setup allows us to perform Oð1000Þ mea-
surements per configuration. The number of configurations
for each ensemble is listed in Table I. We use wall-source
operators to create the kaon in the initial state and the pion in
the final states. The wall-source operators are known to have
a good overlap with the meson ground state. Using Δt to
specify the minimal time separation between meson inter-
polating operators and the current insertions, we find the
ground-state saturation for Δt ∼ 1 fm in our past studies of
various kaon/pion related quantities. In this work, to be
conservative, we chose Δt with a range of about 1.4–1.5 fm
as shown in Table I and the excited-state contamination can

TABLE I. Ensembles used in this work. For each ensemble we list the pion mass mπ , the spatial and temporal extents, L and T, the
inverse of lattice spacing a−1, the number of configurations used, Nconf , and the minimal time separation between the kaon/pion
operators and the current insertions, Δt.

Ensemble mπ [MeV] L T a−1 [GeV] Nconf Δt [fm]

DSDR 24D 141.2(4) 24 64 1.015 46 1.56
32D 141.4(3) 32 64 1.015 32 1.56

32D-fine 143.0(3) 32 64 1.378 71 1.43
Iwasaki 48I 135.5(4) 48 96 1.730 28 1.37

64I 135.3(2) 64 128 2.359 62 1.51
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be safely neglected. We use local vector and axial-vector
currents in the calculation. These currents are matched to the
conserved ones by multiplying the renormalization factors
ZV=A, whose value are quoted from Ref. [69]. The correlation
functions are constructed using the field sparsening technique
[70,71] with a significant reduction in the propagator storage.
For the locations of two current insertions Jemμ and JW;A

ν , we
treat one as the source of the propagator and the other as the
sink. In this way the hadronic function HVA

μν ðt; x⃗Þ, which
depends on the coordinate-space variable x can be obtained.
Such technique has also been used in the computation of
three-point correction function to extract the pion charge
radius [72]. The flavor SU(3) limit is achieved by tuning
down the strange quark mass to be the same as the light
quark mass.

InsertingHVA
μν ðt; x⃗Þ into the integral (14), we calculate the

scalar function MKðQ2Þ. The lattice results for MKðQ2Þ ×
ðm2

W=Q
2Þ as a function of Q2 are shown in the left panel of

Fig. 3. At large Q2 (Q2 ≳ 1 GeV2), the lattice results from
different gauge ensembles start to disagree, suggesting the
obvious lattice discretization effects. In the right panel of
Fig. 3, a continuum extrapolation is performed to obtain the
results in the continuum limit for Iwasaki and DSDR
ensembles separately. To reduce the systematic uncertainties
contained in the lattice data at large Q2, we calculate the
MKðQ2Þ in PQCD using the RunDec package [73]. At lowQ2

the perturbative results suffer from large PQCD truncation
effects due to the lack of higher-loop and higher-twist
contributions.We observe an expected discrepancy between
the orange and magenta curves at lowQ2, where the former

0 1 2 3 4

Q
2
 [GeV

2
]

0

100

200

300

400

M
K

(Q
2 )

 (
m

2 W
/Q

2 )

64I
48I
32D-fine
32D
24D

0 1 2 3 4

Q
2
 [GeV

2
]

0

100

200

300

400

Cont. Limit, DSDR
Cont. Limit, Iwasaki
PT (n

f
=4 match with n

f
=3)

PT (n
f
=4 down to 1 GeV)

FIG. 3. MKðQ2Þ × ðm2
W=Q

2Þ as a function ofQ2. In the left panel, the lattice results for all five ensembles are given. In the right panel,
we have extrapolated the Iwasaki and DSDR results to their continuum limit. The remaining orange and magenta curves are the results
from perturbation theory.

TABLE II. For each ensemble, given three choices of Q2
cut, the lattice results of □VA;≤

γW jK0;SUð3Þ are shown.

□
VA;≤
γW jK0;SUð3Þ

Ensemble

Q2
cut 1 GeV2 2 GeV2 3 GeV2

24D 0.160ð6Þ × 10−3 0.274ð7Þ × 10−3 0.346ð7Þ × 10−3

DSDR 32D 0.160ð5Þ × 10−3 0.275ð5Þ × 10−3 0.347ð6Þ × 10−3

32D-fine 0.145ð6Þ × 10−3 0.260ð6Þ × 10−3 0.337ð7Þ × 10−3

Iwasaki 48I 0.149ð8Þ × 10−3 0.268ð8Þ × 10−3 0.350ð9Þ × 10−3

64I 0.149ð7Þ × 10−3 0.273ð8Þ × 10−3 0.360ð9Þ × 10−3
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uses the 4-flavor theory down to 1GeV,while the latter turns
to the 3-flavor theory upon decoupling the charm quark
at 1.6 GeV.
We introduce a momentum-squared scale Q2

cut that
separates the Q2 integral into two regimes. We use the
lattice data to determine the integral for Q2 ≤ Q2

cut and
perturbation theory to determine the integral for Q2 > Q2

cut.
Three values of Q2

cut ¼ 1, 2, 3 GeV2 are used to check the

Q2
cut dependence in the final results. The lattice results of

□
VA;≤
γW jK0;SUð3Þ for each ensemble are listed in Table II and

the continuum extrapolation is shown in Fig. 4. After the
extrapolation, the lattice results for □

VA;≤
γW jK0;SUð3Þ and

perturbative results for□VA;>
γW jK0;SUð3Þ are listed in Table III.

Combining the lattice data and perturbative results given
in Table III, we have

□
VA
γW jK0;SUð3Þ ¼

8>><
>>:

2.460ð18Þstatð42ÞPTð22Það1ÞFV × 10−3 Q2
cut ¼ 1 GeV2

2.437ð20Þstatð15ÞPTð36Það1ÞFV × 10−3 Q2
cut ¼ 2 GeV2

2.433ð22Þstatð07ÞPTð45Það1ÞFV × 10−3 Q2
cut ¼ 3 GeV2

: ð15Þ

0 0.01 0.02 0.03 0.04

a
2
  [fm

2
]

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

Box contribution for Q
2
 < Q

2

cut
, with Q

2

cut
=1,2,3 GeV

2

24D32D-fine48I64I

Q
2

cut
 = 1 GeV

2

Q
2

cut
 = 2 GeV

2

Q
2

cut
 = 3 GeV

2

FIG. 4. For three choices of Q2
cut, the continuum extrapolation of □VA;≤

γW jK0;SUð3Þ is performed for Iwasaki and DSDR ensembles,
respectively.

TABLE III. Using the scale Q2
cut to split the integral range, the contributions of □VA;≤

γW jK0;SUð3Þ from lattice QCD and □
VA;>
γW jK0;SUð3Þ

from perturbation theory are shown. For the lattice results, we have performed the continuum extrapolation for Iwasaki and DSDR
ensembles as shown in Fig. 4. Here we show the results after the extrapolation. For the perturbative results, the central values are
compiled using the 4-flavor theory and uncertainties include the higher-loop effects and the higher-twist effects with the error analysis
following Ref. [8].

□
VA;≤
γW jK0;SUð3Þ □

VA;>
γW jK0;SUð3Þ

Q2
cut Iwasaki DSDR PQCD

1 GeV2 0.150ð18Þ × 10−3 0.128ð15Þ × 10−3 2.310ð42Þ × 10−3

2 GeV2 0.278ð20Þ × 10−3 0.242ð16Þ × 10−3 2.159ð15Þ × 10−3

3 GeV2 0.371ð22Þ × 10−3 0.326ð17Þ × 10−3 2.062ð07Þ × 10−3
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Here we take the combination of the Iwasaki and pertur-
bative results as the central value and estimate the residual
lattice artifacts (with a subscript a) using the discrepancy
between Iwasaki and DSDR. The lattice finite-volume
effects (with a subscript FV) are estimated by comparing
the 24D and 32D results. As a final result, we quote the
value of □

VA
γW jK0;SUð3Þ at Q2

cut ¼ 2 GeV2 and add the
statistical and systematic errors in quadrature

□
VA
γW jK0;SUð3Þ ¼ 2.437ð44Þ × 10−3: ð16Þ

Inserting the result of □
VA
γW jK0;SUð3Þ into Eq. (10), we

obtain

−
8

3
X1 þ X̄phys

6 ¼ 22.6ð1.0Þ × 10−3 or

−
8

3
X1 þ X̃phys

6 ¼ 19.6ð1.0Þ × 10−3: ð17Þ

The previous ChPT analysis [58] quoted the LECs from
the minimal resonance model [66,74] with

X1¼−3.7ð3.7Þ×10−3; X̃phys
6 ¼10.4ð10.4Þ×10−3: ð18Þ

As it is hard to accurately estimate the uncertainty in these
LECs from the ChPT perspective, Ref. [58] attributed to
them a 100% uncertainty. Combining X1 and X̃

phys
6 together

yields

−
8

3
X1þ X̃phys

6

¼20.3ð14.3Þ×10−3 ½minimal resonancemodel�: ð19Þ

Our result for − 8
3
X1 þ X̃phys

6 agrees with the minimal
resonance model within few percent. Such a good agree-
ment could easily be fortuitous as the methods used in the
two studies are very different and a large uncertainty is
assigned to the estimate based on the model.
For the πl3 decay, substituting the lattice QCD result

□
VA
γW jπ ¼ 2.830ð28Þ × 10−3 [8] into Eq. (11) yields

4

3
X1 þ X̄phys

6 ¼ 14.0ð6Þ × 10−3: ð20Þ

Combining Eqs. (17) and (20) together, we have

X1 ¼ −2.2ð4Þ × 10−3; X̄phys
6 ¼ 16.9ð7Þ × 10−3: ð21Þ

Here the uncertainty is estimated conservatively through a
linear addition. It should be pointed out that in Eq. (21) the
estimate of the higher order terms in the ChPT expansion
are not included yet.
In ChPT, the RCs δlK have two major sources of

theoretical uncertainties: the input of the LECs at

Oðe2p2Þ and the unknown Oðe2p4Þ terms in the ChPT
expansion. Using the LECs from this calculation, the
former uncertainty is significantly reduced, while the latter
one remains. It results in an update of δlK (in units of %)

δe
K0 ¼ 0.99ð19Þe2p4ð11ÞLEC → 1.00ð19Þ;
δμ
K0 ¼ 1.40ð19Þe2p4ð11ÞLEC → 1.41ð19Þ;

δe
K� ¼ 0.10ð19Þe2p4ð16ÞLEC → −0.01ð19Þ;
δμ
K� ¼ 0.02ð19Þe2p4ð16ÞLEC → −0.09ð19Þ: ð22Þ

We refrain from presenting a corresponding update of jVusj
in this paper, because (1) our results for δlK still agree with
the existing literature within error bars, and (2) our lattice
calculation removes only the LEC uncertainty but not the
dominant Oðe2p4Þ uncertainty. Therefore, we shall instead
await a next round of global analysis in the near future such
as that in Ref. [11], whose impact on the precision low-
energy tests will be more significant. Our lattice result may
serve as an important input to such an analysis.

IV. CONCLUSION

Modern-day lattice QCD has reached the era when
realistic calculations for many interesting second-order
electroweak processes have become feasible. In this
work we perform a study of the γW-box correction to
the kaon semileptonic decay K̄0 → πþeν̄e. We adopt the
new method proposed in Ref. [56], which connects the
Sirlin’s representation to the ChPT representation in
the flavor SU(3) limit. It allows us to determine the
LECs forChPT by computing the axial γW-box correction.
We find that the values of the LECs devised from the lattice
calculation agree well with the minimal resonance model
used in the literature, while a dramatic reduction of the
respective uncertainties is achieved. From Table III, we find
that the nonperturbative lattice QCD contribution amounts
to about 10% of □VA

γW jK0;SUð3Þ, while the remaining con-
tribution is from the perturbative part. Thus even a 10%
precision in the nonperturbative contribution is enough to
guarantee a percent-level accuracy of the determination of
the box diagram and, consequently of the relevant LECs.
Finally, these LECs are used to estimate the RCs δlK and
help to reduce its uncertainty. To further improve the
determination of RCs, the inclusion of higher-order terms
in ChPT and the lattice QCD computation of the complete
set of Feynman diagrams are necessary.
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APPENDIX: γW-BOX DIAGRAM CONTRIBUTION
FROM FULL ELECTROWEAK THEORY

The γW-box diagram contribution to the KðpÞ →
πðp0ÞeðpeÞν̄ðpνÞ process is given by the amplitude

MγW ¼ g2e2

8

Z
d4q
ð2πÞ4

1

ðqþ p0 − pÞ2 −M2
W

×
ūeγμð=pe − =qþmeÞγνð1 − γ5Þvν
½ðpe − qÞ2 −m2

e�½q2 −M2
γ �

Tμνðq;p0; pÞ;

ðA1Þ

where

Tμνðq;p0; pÞ ¼
Z

d4xeiq·xhπðp0ÞjTfJemμ ðxÞJWν ð0ÞgjKðpÞi:

ðA2Þ

Since MW≫p0−p, one can set 1=ððqþp0−pÞ2−M2
WÞ→

1=ðq2−M2
WÞ where the induced error is of order 1=M2

W
which is negligible. Furthermore, using g2=ð8M2

WÞ ¼
GF=

ffiffiffi
2

p
, one obtains:

MγW ¼ −
GFe2ffiffiffi

2
p

Z
d4q
ð2πÞ4

M2
W

M2
W − q2

×
ūeγμð=pe − =qþmeÞγνð1 − γ5Þvν
½ðpe − qÞ2 −m2

e�½q2 −M2
γ �

Tμνðq;p0; pÞ:

ðA3Þ

This integral is UV finite because of the existence of the full
W propagator. So there is no need to introduce any extra
UV regularization.
Next, the lepton spinor can be split into several pieces

using the identity:

γμγνγρ ¼ gμνγρ − gμργν þ gνργμ − iϵμνραγαγ5: ðA4Þ

In this project we work in the limitMK → Mπ . In this limit,
according to Sirlin’s current algebra analysis [59], the only
piece inMγW that depends on the details of nonperturbative
QCD is the term with an ϵ-tensor from the lepton spinor.
This term is IR finite, so one can set Mγ ¼ 0, pe ¼ 0 and
p ¼ p0 ¼ P in the integral. Also this term can only survive
if there is an ϵ tensor from Tμν, which is contributed from
the axial component of the charged weak current. One can
then write this term as

Mϵ
γW ¼ −

GFffiffiffi
2

p ūeγλð1 − γ5ÞvνIλ; ðA5Þ

where

Iλ ¼ ie2
Z

d4q
ð2πÞ4

M2
W

M2
W − q2

ϵμναλqα
ðq2Þ2 Tμνðq;P;PÞ: ðA6Þ

The effect of Iλ can be expressed as a relative correction to
the hadron form factor:

Iλ ¼ hπðPÞjJλWð0ÞjKðPÞi□VA
γW ¼ 2Fþ□VA

γWP
λ; ðA7Þ

where P2 ¼ M2 gives the squared mass of the degenerate
meson. That gives

□
VA
γW ¼ ie2

2M2

Z
d4q
ð2πÞ4

M2
W

M2
W − q2

ϵμναλqαPλ

ðq2Þ2
Tμνðq;P; PÞ

Fþ
:

ðA8Þ

Therefore, □VA
γW is a UV- and IR-finite quantity. The above

derivations have also been presented in Ref. [56]. In
Euclidean space, following the procedures given in
Ref. [8], one can write the expression of □VA

γW in the form
of Eq. (13).
Although□VA

γW is UV finite, there are other diagrams in the
OðαemÞ RCs to the hadron semileptonic beta decays that are
UV divergent in the full electroweak theory. The examples
are thewave function renormalization and vertex corrections.
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In those contributions, one needs to split the photon
propagator into two pieces following Sirlin’s approach,

1

q2
¼ 1

q2 −M2
W
þ M2

W

M2
W − q2

1

q2
; ðA9Þ

in order to separate the UVand IR physics. The first term on
the right-hand side gives UV-divergent integrals. However,

it was shown by Sirlin in Ref. [59] that this divergent
structure is exactly the same as in the OðαemÞ RCs in the
muon decay. Therefore, as long as one defines the Fermi’s
constant GF as that measured from the muon decay, all the
OðαemÞ RCs to semileptonic beta decay processes are
completely UV finite in the full electroweak theory. As
a result, there is no renormalization scale in Sirlin’s
representation (6).
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