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Statistical modeling is a key component in the extraction of physical results from lattice field theory
calculations. Although the general models used are often strongly motivated by physics, many model
variations can frequently be considered for the same lattice data. Model averaging, which amounts to a
probability-weighted average over all model variations, can incorporate systematic errors associated with
model choice without being overly conservative. We discuss the framework of model averaging from the
perspective of Bayesian statistics, and give useful formulas and approximations for the particular case of
least-squares fitting, commonly used in modeling lattice results. In addition, we frame the common
problem of data subset selection (e.g., choice of minimum and maximum time separation for fitting a
two-point correlation function), as a model selection problem and study model averaging as a
straightforward alternative to manual selection of fit ranges. Numerical examples involving both mock
and real lattice data are given.

DOI: 10.1103/PhysRevD.103.114502

I. INTRODUCTION

One of the central problems in lattice field theory is that
of model fitting and parameter estimation. This problem
appears repeatedly in analysis of lattice results, from single
two-point correlators up to joint chiral and continuum
extrapolations of results from many simulation streams.
The functional forms which appear in these cases are often
notoriously difficult to work with; the sum of exponentials
which models the two-point correlator is in general quite
numerically unstable, and chiral and continuum extrapo-
lations can involve nonlinear dependence on large numbers
of unknown variables.
Making analysis of lattice simulations even more chal-

lenging, many of the models appearing require an ever-
increasing number of parameters as simulations become
more precise. For example, chiral perturbation theory is an
effective theory which will break down at large masses
or momentum scales, and contains (in principle) an infinite
number of low-energy constants. The spectral decomposi-
tion of a single two-point correlator also contains (in
principle) an infinite tower of excited states. The
Symanzik effective theory describing the appearance of
lattice artifacts similarly contains an organized but infinite
number of terms. These contributions are typically dealt
with by truncating the model, and often the data as well.
However, this can lead to subtle dependence in the results

on the analyst’s choice of fit range and number of terms
included in the model.
This is not to say that lattice theorists are unaware of

these potential sources of systematic error. The effects of
model truncation and data truncation can be estimated by
studying the variation of quantities of interest as the range
of data included is varied, or additional model terms
are added. However, the often-adopted approach of taking
the full difference between these variations as a systematic
error is somewhat crude and likely to be overly
conservative in many cases.
In this paper, we describe the technique of Bayesian

model averaging as an alternative approach to these
systematic errors, and outline its potential applications in
the analysis of lattice simulation results. This approach
allows for a fully rigorous estimation of probability dis-
tributions for parameters of interest by combining results
from several models. All models must reduce to a common
model containing the parameter(s) to be estimated, but
there is no requirement that they be nested models. (For a
continuum extrapolation of a matrix element e.g., the
reduced model can be simply be a single constant param-
eter, the value of the matrix element in the continuum limit.)
Bayesian model averaging is somewhat well known in

the statistical literature [1–5], although it is most often used
in the context of linear models. Here we place no such
restriction, giving formulas which can be used for arbitrary
nonlinear models.1 In general, the model probability
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1Appendix C defines the distinction between linear and non-
linear models.
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weights required for model averaging are complicated
integrals, but we will give approximate formulas which
may be used with sufficient sample sizes. As we will show,
combining statistical results obtained with a set of models
fMg relies on the estimation of the model weight,
prðMjDÞ. We will also argue that the commonly used
procedure of applying cuts to the data can also be under-
stood as a model selection problem. Our key result is that,
at leading order in the data sample sizeN, the model weight
can be estimated by the Akaike information criterion (AIC),
modified with a penalty term for cutting away data points

prðMjDÞ ≈ exp

�
−
1

2
ðχ2augða⋆Þ þ 2kþ 2NcutÞ

�
: ð1Þ

[This is Eq. (44), simplified for the case of uniform model
priors]. Here χ2augða⋆Þ is the standard best-fit augmented
chi-squared [6] [see Eq. (28) below], k is the number of fit
parameters, and Ncut is the number of removed data points
as defined in Sec. IV.
Our work is partially inspired by the Bayesian approach

to effective field theory advocated by Schindler and Phillips
[7]. Other examples of using weighted averages over
models and Bayesian ideas in lattice analysis include
[8–15]. We believe that our treatment is the first attempt
to lay out the procedure rigorously and in a fully Bayesian
framework for a lattice field theory audience.
An outline of the paper is as follows. In Sec. II,

we describe the basic Bayesian framework for model
averaging and derive formal results for model-averaged
expectation values. Section III specializes to the case of
least-squares fitting and derives an approximate formula for
the model probabilities which are needed for model
averaging. Section III C gives a numerical example of
model averaging applied to mock data. In Sec. IV, we
discuss the common problem of data subset selection,
reframing it as a model variation problem in order to apply
model averaging. Section IVA shows an example appli-
cation to the common task of fitting a two-point correlation
function and demonstrates the effectiveness of model
averaging as a replacement for choosing cuts on the data.
We make some concluding remarks in Sec. V. A detailed
discussion of bias correction in the estimation of model
probability is given in Appendix A. Appendix B and
Appendix C describe some technical details related to
the chi-squared function and linear vs nonlinear models.

II. BAYESIAN FRAMEWORK

The basic analysis problem is as follows: we wish to
describe a dataset D using a base model M0 in order to
determine the value of one or more common parameters
facg. In the example of a continuum extrapolation, M0

could simply be the value of a specific matrix element in the
continuum limit.

In estimating the parameters facg, we are often led to
consider several extensions of the base model M0 which
contain various unphysical or uninteresting terms, like
lattice artifacts or undetermined excited states. This extends
our study to a space of models fMg, but our basic interest
is still in estimation of the parameters of M0. All of
the models in fMg must contain M0, in the sense that
marginalizing over additional parameters famg reduces
them to M0. (Note that the set famg implicitly depends on
the choice of model M.)
It is important to note that the base model M0 itself does

not necessarily have to be contained in the set fMg of
models that are actually fit to the data. As a simple example,
in a continuum extrapolation it is certainly not necessary to
include the continuum-only model M0 (without any lattice
spacing dependence) in the set of fits. Indeed, a continuum-
only model would surely describe the data poorly in this
example.
To obtain the marginal probabilities for the common

parameters, we marginalize over both models and addi-
tional parameters [7]

prðacjDÞ ¼
X
M

Z
dam

prðDja;MÞprðajMÞprðMÞ
prðDÞ ; ð2Þ

where “pr” denotes a probability distribution, and the set
of all parameters fag is the union of facg and famg.
In principle, this formula assumes that all parameters fag
are dimensionless. In practice, we will be interested in
model weights which will depend only on ratios of
probabilities, so any units will tend to cancel.
If we can carry out the integrals and explicitly construct

prðacjDÞ, then expectation values for arbitrary functions of
the common parameters ac are immediately available

hfðacÞi ¼
Z

dacfðacÞprðacjDÞ; ð3Þ

from which we can construct the standard mean, variance,
and so forth. However, evaluating the integrals in the
“master formula” Eq. (2) is generally quite difficult,
especially in the context of the complicated nonlinear
models appearing in lattice analyses.2

For our present purposes, it is more interesting to observe
that we can reconstruct the combined estimate from the
individual model fit results. Applying Bayes’s theorem and
using elementary properties of conditional probability gives

2Direct Monte Carlo evaluation of such integrals is an
intriguing option which deserves more attention in the context
of lattice studies, in which much more complicated integrals are
evaluated as a matter of course. This method seems to have
been explored in Ref. [16]. However, we will not pursue this
approach here.

WILLIAM I. JAY and ETHAN T. NEIL PHYS. REV. D 103, 114502 (2021)

114502-2



hfðacÞiM ¼
Z

dacfðacÞprðacjM;DÞ; ð4Þ

¼
Z

dacfðacÞ
prðac;M;DÞ
prðM;DÞ ð5Þ

¼
Z

dacfðacÞ
prðDjac;MÞprðac;MÞ

prðMjDÞprðDÞ ð6Þ

¼
Z

dacfðacÞ
prðDjac;MÞprðacjMÞprðMÞ

prðMjDÞprðDÞ ð7Þ

¼ 1

prðMjDÞ
Z

dacfðacÞprðac;MjDÞ: ð8Þ

But now if we marginalize the integral on the right-hand
side over the space of models fMg, we just obtain the total,
model-independent expectation value for f:

X
M

Z
dacfðacÞprðac;MjDÞ

¼
Z

dacfðacÞprðacjDÞ ¼ hfðacÞi: ð9Þ

Thus, we arrive at the relation

hfðacÞi ¼
X
M

hfðacÞiMprðMjDÞ: ð10Þ

This is the central formula of interest for purposes of model
averaging. It shows that all of the moments of the fully
combined probability distribution function (PDF) can be
obtained as a weighted average over individual model
information, with the weight factors given by the posterior
probability prðMjDÞ for each individual model. Due to its
role in model averaging, we will refer to prðMjDÞ inter-
changeably as the “posterior probability” or as the “model
weight.” The model weight itself can be expressed as an
integral over the parameter space

prðMjDÞ ¼
Z

da prðM; ajDÞ ð11Þ

¼
Z

da
prðDja;MÞprða;MÞ

prðDÞ ð12Þ

¼
Z

da
prðDja;MÞprðajMÞprðMÞ

prðDÞ : ð13Þ

These probabilities are normalized to unity

X
M

prðMjDÞ ¼ 1; ð14Þ

which follows immediately from the definition of condi-
tional probabilities and the marginalization formula,

P
M prðM;DÞ ¼ prðDÞ. Another (but perhaps more physi-

cal) argument to obtain the same result is that the expect-
ation of the unit operator h1i should be unity independent
of model choice.
The formulas presented so far are completely general.

However, certain common choices used for the estimators
of the likelihood function and other quantities can intro-
duce bias. Any such biases should be corrected to guarantee
convergence to correct results. We discuss an important
bias correction in detail in Sec. III A.

A. Estimation of model parameters
with model averaging

It is instructive to consider what happens to the simple
estimate of a model parameter under the model combina-
tion procedure. Suppose we are interested in the single
parameter a0, marginalized over a set of NM models fMg.
Using Eq. (10), we find for its mean

ha0i ¼
X
M

ha0iMprðMjDÞ ð15Þ

and variance

σ2a0 ¼ ha20i − ha0i2 ð16Þ

¼
XNM

i¼1

ha20iiprðMijDÞ −
�XNM

i¼1

ha0iiprðMijDÞ
�2

ð17Þ

¼
XNM

i¼1

σ2a0;iprðMijDÞ þ
XNM

i¼1

ha0i2i prðMijDÞ

−
�XNM

i¼1

ha0iiprðMijDÞ
�2

: ð18Þ

This result for the variance also appears in the statistics
literature [4], and has been used in the context of lattice
calculations in [11,13]. The first term is simply the
weighted average of the statistical variance over all models.
The remaining two terms can then be thought of as a
“systematic error” contribution to the variance of a0 due to
model choice. In the special case of equal model weights,
i.e., prðMijDÞ ¼ 1=NM, the latter contribution can be
thought of as the variance over the space of models, since
it reduces to the standard formula

σ2a0;syst ¼
1

NM

XNM

i¼1

ha0i2i −
1

N2
M

�XNM

i¼1

ha0ii
�2

: ð19Þ

We note that in the general case, this is not the same as the
variance computed from the set of weighted estimates
wi ≡ ha0iiprðMijDÞ; such a weighted variance would
contain an extraneous factor of prðMijDÞ in the ha0i2
term. We also note that taking the full width of the
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distribution of results ha0ii, as done in e.g., [17], will give
an estimated systematic error strictly greater than σa0;syst, so
that this procedure is a conservative error estimate.
It is illustrative to specialize to the case of considering

only two models M1, M2, for which we have found the
weights

prðM1jDÞ ¼ 1 − p; ð20Þ

prðM2jDÞ ¼ p: ð21Þ

Suppose now that model 1 is strongly favored by the data,
so p is small. Expanding the expectation values above to
first order in p, we find

ha0i ¼ ha0i1 þ ðha0i2 − ha0i1Þp; ð22Þ

σ2a0 ≈ σ2a0;1 þ ½σ2a0;2 − σ2a0;1 þ ðha0i2 − ha0i1Þ2�p: ð23Þ

In the limit p → 0 we recover the statistical results of M1,
as expected. For small but nonzero p, the corrections to the
mean and variance of a0 due to includingM2 are likely to be
small, but it is clear that this depends on how large the
difference between the estimates from M1 and M2 are.

III. LEAST-SQUARES FITTING

The discussion so far has been completely general with
regards to the form of the probability distributions appear-
ing. We now specialize to the most common usage case in
the context of lattice simulations, namely least-squares
regression of a modelM to some dataset D. The likelihood
function prðDja;MÞ is taken to be

prðDja;MÞ ¼
YN
i¼1

1

ð2πÞd=2ðdetΣÞ1=2 exp
�
−
1

2
χ2i

�
; ð24Þ

where

χ2i ≡ ðyi − fMðaÞÞTΣ−1ðyi − fMðaÞÞ ð25Þ

is the standard chi-square goodness of fit3 involving the
data sample yi and the model function fMðaÞ; we assume
the samples are drawn independently from some under-
lying distribution. Here d denotes the dimension of a single
observation vector yi, and N is the number of independent
observations drawn from the true distribution. The matrix
Σ ¼ 1

N−1
P

N
i¼1ðyi − ȳÞðyi − ȳÞT is the covariance matrix

between the yi.

For the prior distribution, it is standard (and typically
justified by the principle of maximum entropy [6,7]) to
adopt a multivariate Gaussian form

prðajMÞ ¼ 1

ð2πÞk=2ðdet Σ̃Þ1=2 exp
�
−
1

2
ða− ãÞTΣ̃−1ða− ãÞ

�
;

ð26Þ

¼
Yk
x¼1

�
1ffiffiffiffiffiffi
2π

p
σ̃x

�
exp

�ðax − ãxÞ2
σ̃2x

�
; ð27Þ

where k is the number of fit parameters in modelM, Σ̃ is the
prior covariance matrix, and ã are the prior central values.
The second formula holds for the simplified case where
the prior parameter covariance matrix Σ̃ is diagonal with
entries σ̃2x. Below we will write χ2p to refer to the quantity in
the exponent, ða − ãÞTΣ̃−1ða − ãÞ.
The ordinary least-squares likelihood prðDja;MÞ is

normalized by the data covariance matrix and some factors
of ð2πÞ. Since we are considering only the case of a fixed
dataset, this overall normalization is the same for all models
and can be ignored here. On the other hand, we retain for
the present discussion the normalization of the prior
distribution prðajMÞ, which differs for models with differ-
ent numbers of parameters.
The best-fit point a⋆ maximizes the above likelihood

or, equivalently, minimizes the negative log-likelihood
function

−2 logðprðDja;MÞprðajMÞÞ ¼ χ2 þ χ2p ≡ χ2aug; ð28Þ

with the combination of terms defining the “augmented
chi-squared” function [6].

A. Bias correction of the model weights

Estimator bias occurs when a sample estimator
differs from the “true” underlying population value it is
approximating. A common example of such a bias
occurs in the naive estimator of variance for data drawn
from an underlying Gaussian distribution. In this example,
the bias is of order 1=N, where N is the sample size, which
means that it will be automatically removed in the limit of
large N.
However, there are also examples of asymptotic biases

which do not vanish as N → ∞. The sample maximum
likelihood estimate (MLE) of the log likelihood function,
χ2augða⋆Þ, suffers from such an asymptotic bias. Roughly
speaking, because the MLE maximizes the sample log-
likelihood, it tends to overshoot the true asymptotic value.
Fundamentally, this bias arises not from the choice of the
MLE but rather from finite-sample-size fluctuations in the
data itself.

3This form is standard in the statistics literature. For practical
applications, another definition based on the sample means is
generally used, χ2 ¼ ðȳ − fMðaÞÞTΣ−1ðȳ − fMðaÞÞ. Up to data-
dependent constants, these two definitions are actually identical;
see Appendix B for a derivation.
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To ensure convergence to the correct asymptotic model
weight, we define the bias-corrected model weight to
be [18–21]

prðMjDÞBC ¼ exp ð−tr½J−1ða⋆ÞIða⋆Þ�Þ

×
Z

da
prðDja;MÞprðajMÞprðMÞ

prðDÞ ; ð29Þ

where I and J are the sample estimates of the log-likelihood
Fisher information matrix and the (negative) Hessian
matrix, respectively. These matrices are defined in
Appendix A, which also gives an informal derivation of
the bias correction term, ∼tr½J−1ða⋆ÞIða⋆Þ�.
When the model M is correctly specified, i.e., assuming

that the “true model” from which the data are drawn can be
described by M, it is straightforward to show (see [19,20]
and Appendix A) that as N → ∞, the matrices I and J
become identical, so that J−1ða⋆ÞIða⋆Þ → 1, the k × k
identity matrix. For lattice gauge theory applications where
the theoretical model rests on a firm physical foundation,
the assumption of correct specification is likely to hold,
and the bias correction simply becomes expð−kÞ, counting
the total number of parameters in the model.
The appearance of the structure tr½J−1I� is closely related

to the AIC [22,23] and its generalization, the Takeuchi

information criterion (TIC) [18]. We discuss this connec-
tion more below.

B. Gaussian approximation

By construction, the sample likelihood prðajDÞ is locally
maximized at the best-fit parameter values a⋆. Taylor
expansion about the best-fit point gives

χ2augðaÞ ≈ χ2augða⋆Þ þ ða − a⋆ÞTΣ⋆−1ða − a⋆Þ þ � � � ; ð30Þ

where Σ⋆ is the standard best-fit covariance matrix evalu-
ated at the best-fit point,

Σ⋆
xy

−1 ≡ 1

2

∂2χ2aug
∂ax∂ay

����
a¼a⋆

; ð31Þ

This approximation, known in the probability literature as
the “Laplace approximation,” becomes increasingly accu-
rate in the limit of large statistics in the datasetD. For linear
models, as defined in Appendix C, this approximation is
of course exact, since the χ2 function is quadratic in
parameters a. Within this approximation, the integral for
model weight becomes Gaussian and can be evaluated
analytically,

prðMjDÞ ¼
Z

da
prðDja;MÞprðajMÞprðMÞ

prðDÞ ð32Þ

≈
Z

da
1

ð2πÞk=2ðdet Σ̃Þ1=2 e
−χ2augða⋆Þ=2−1

2
ða−a⋆ÞTΣ⋆−1ða−a⋆Þ prðMÞ

prðDÞ ; ð33Þ

¼ prðMÞ
prðDÞ ð2πÞ

−k=2ðdet Σ̃Þ−1=2½ð2πÞk=2e−χ2augða⋆Þ=2ðdetΣ⋆−1Þ−1=2�; ð34Þ

¼ prðMÞ
prðDÞ ðdet Σ̃Þ

−1=2e−χ
2
augða⋆Þ=2ðdetΣ⋆Þ1=2: ð35Þ

Thus, neglecting the term prðDÞ which is the same for all
models, one finds the following form for the log-likelihood

−2 logðprðMjDÞÞ ≈ −2 logðprðMÞÞ þ χ2augða⋆Þ
þ log det Σ̃ − log detΣ⋆: ð36Þ

Including the bias correction term introduced in Eq. (29)
gives the overall result

−2 logðprðMjDÞBCÞ ¼ −2 logðprðMÞÞ þ χ2augða⋆Þ

þ log
det Σ̃
detΣ⋆ þ 2tr½J−1ða⋆ÞIða⋆Þ�:

ð37Þ

From Eq. (37), we see that the posterior probability
prðMjDÞ encapsulates the principle of Occam’s Razor:
models with large χ2augða⋆Þ are penalized, but so are models
which have a large number of free parameters. (As
discussed above, the final bias-correction term reduces to
2k asymptotically, where k is the number of parameters.)
Unfortunately, in the presence of any empirical priors

and/or models with differing dimensions, an effect known
as the Jeffreys-Lindley paradox [24–26] leads to outsized
dependence on the prior widths that can severely distort
the overall results. The presence of the paradox is linked
closely to the use of “empirical priors” which are not based
on true prior information and can be taken to be arbitrarily
wide. Note that for estimation of the best-fit parameters a⋆
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in a fixed model there is no such distortion, and the use of
empirical priors is not problematic. However, when the
normalization of the likelihood is important the paradox
can lead to nonsensical results if the prior width is taken to
be extremely large.
For the particular case at hand, instead of attempting to

confront the Jeffreys-Lindley paradox head on, we will
instead argue that the effect of the ðlog det Σ̃ − log detΣ⋆Þ
terms will vanish asymptotically and so can be viewed as a
1=N effect in the sample size N. For the sake of argument,
imagine adopting the following cross-validation procedure:
partition our full dataset D into a small “training set” DT ,
and the remaining data Dc

T . Then imagine first fitting the
training set DT to determine a set of fit parameters aT .
These results for aT can then be used to fix priors on a for
the fit to the remaining dataDc

T . In practice, the cost of such
a procedure is that it would use up the data in DT to fix
priors, reducing the overall statistical precision of the
analysis. However, in the asymptotic limit N → ∞, both
partitions fDT;Dc

Tg approach the true asymptotic distri-
bution and will yield exactly the same fit results. Therefore,
in this limit Σ̃ → Σ⋆ and the determinant terms in Eq. (37)
cancel completely.
In other words, this argument establishes that the effect

of the determinant terms is subleading in the asymptotic
limit, and they may be dropped even without explicit use of
a cross-validation procedure. In the same N → ∞ limit, the
bias-correction term reduces to twice the number of
parameters (see Appendix A), and we recover the well-
known AIC [22,23]

−2 logðprðMjDÞBCÞ⟶
N→∞

AICM ¼ −2 logðprðMÞÞ
þ χ2augða⋆Þ þ 2k: ð38Þ

This is our main result for the bias-corrected model weights
in the limit N → ∞. We advocate use of Eq. (38) in all
cases; without a more complete treatment of finite-sample-
size effects, there is no guarantee that inclusion of the
determinant terms in Eq. (37) will improve estimation of
the model weights. From this point forward, we adopt
the bias-corrected form as the default choice of prðMjDÞ
unless explicitly stated otherwise and thus drop the “BC”
subscript.
More generally, simply dropping the determinant terms

from Eq. (37) gives the TIC [18]. However, as discussed in
Appendix A, the TIC form of the bias correction is only
necessary in the case of model mis-specification. For
models that obviously fail to describe the data, the χ2aug
term in either information criterion will dwarf the size of
the bias correction, so the distinction between TIC and AIC
is most important in cases where little information is
available about the true model. In the present context,
strong physical motivation often exists for trusting the
correctness of the models in use. We therefore advocate the

use of the AIC for general model averaging purposes in
lattice gauge theory.

C. Practical example: polynomial data

To demonstrate the method and some key features, we
begin by considering a simple toy model. We begin by
specifying a quadratic “model truth” polynomial function,

FðxÞ ¼ 1.80 − 0.53

�
x
16

�
þ 0.31

�
x
16

�
2

: ð39Þ

A set of N mock data samples are generated for x ∈
f1; 2;…; 16g by taking the model truth for each point
and adding Gaussian noise ηðxÞ, uncorrelated in x with
mean zero and standard deviation σ ¼ 1.0. The resulting
mock data yðxÞ ¼ FðxÞ þ ηðxÞ are plotted in Fig. 1 (top
panel) for the choice N ¼ 160; we will also study the
N dependence.4

FIG. 1. Top: synthetic data (green points) for the given
quadratic “model truth” function (black curve) plus Gaussian
noise, with noise sample size N ¼ 160. Bottom: fit results for
degree-m polynomial models (blue circles), compared to the
known value a0 ¼ 1.8 (black dashed line). The model-averaged
result (red open square) obtained from the weighted average of
the blue fits is shown at m ¼ 0. The lower inset shows the
standard p-value (blue dashed line) and the model weight
calculated from the AIC (orange solid line). Comparison of
these curves shows the “Occam’s razor” effect, with the AIC
penalizing fits with roughly equal goodness of fit but more fit
parameters.

4The code used to generate this practical example, as well as
the synthetic correlation function example below, is publicly
available at https://github.com/etneil/model_average_paper/.

WILLIAM I. JAY and ETHAN T. NEIL PHYS. REV. D 103, 114502 (2021)

114502-6

https://github.com/etneil/model_average_paper/
https://github.com/etneil/model_average_paper/


We take as our space of model functions polynomials
labeled by their degree m

fmðxÞ ¼
Xm
j¼0

aj

�
x
16

�
j
; ð40Þ

with 0 ≤ m ≤ 5. We take the flat prior prðmÞ ¼ 1=6,
corresponding to minimal prior knowledge about the
functional form of the model (except that it is polynomial.)
All parameter priors are taken to be Gaussian with
mean 0 and width 10; the parameters are, essentially,
unconstrained.
The results of the fits to individual models as well as the

model-averaging results are shown in Fig. 1 (bottom panel)
and in Table I. Note that although all models with m > 2

provide a good description of the data in terms of χ2, the
bias-corrected model probability estimated through the
AIC places relatively more weight on the simpler models,
with the maximum probability assigned to the correct
choice m ¼ 2. The model-averaged result is consistent
with model truth and has slightly larger uncertainty than the
individual fit to the correct model m ¼ 2.
As noted, the results so far use a fixed sample size of

N ¼ 160. We repeat the test as described above with
several values ofN ∈ ½20; 640�, showing the final estimated
result for a0 using various procedures in Fig. 2. The result
of the model averaging procedure using the AIC is seen to
be consistent with model truth in all cases, with an error that
is uniformly smaller than the more conservative procedure
of taking the full variation of the mean over all models with
p > 0.1 as a systematic error. The AIC model-averaged
error is larger than the error on the “quadratic fixed” result
using the known true quadratic model; this is to be
expected, as using model averaging rather than a fixed
model necessarily builds in an additional systematic error
due to model uncertainty (see the discussion in Sec. II A.)
Although in this simple example the true model is known
exactly, we emphasize that this situation is rare, and in the

absence of such exact knowledge the use of fixed-model
fits can result in underestimation of parameter errors.
Omitting the bias-correction term and averaging using

only the χ2 results to estimate model probability (the “naive”
estimate) also tends to give slightly larger error than model
averaging using AIC, but the results remain consistent with
the correct answer. In the absence of the bias correction,
the likelihood of the models with m > 2 is overestimated.
However, because those higher-order polynomial models
include the m ¼ 2 model within their parameter space, they
tend to estimate the correct value of the intercept a0 on
average. As a result, there is no bias introduced into themean
result for a0 when using biased model probabilities in this
particular example. However, the error bar is slightly
overestimated when using the naive estimator.

TABLE I. Individual best-fit results and associated quantities for N ¼ 160. The model-averaged value for the intercept is
ha0i ¼ 1.867ð89Þ.

m ¼ 0 m ¼ 1 m ¼ 2 m ¼ 3 m ¼ 4 m ¼ 5

a0 1.640(20) 1.725(41) 1.861(65) 1.903(95) 1.88(11) 1.87(11)
a1 −0.170ð72Þ −0.96ð30Þ −1.42ð81Þ −1.1ð1.2Þ −0.9ð1.3Þ
a2 0.80(30) 1.9(1.9) 0.3(4.3) 0.08(4.40)
a3 −0.8ð1.2Þ 1.9(6.4) 1.3(6.8)
a4 −1.4ð3.2Þ 0.3(7.3)
a5 −1.0ð3.9Þ
χ2aug 31.53 25.97 18.76 18.4 18.22 18.15
p-value 0.01 0.04 0.22 0.24 0.25 0.25
AICm 33.54 29.98 24.76 26.4 28.22 30.16
prðMjDÞ 0.01 0.04 0.56 0.25 0.10 0.04

FIG. 2. Scaling of various estimates of the intercept a0 vs the
data sample size N. The true value (dashed line) is a0 ¼ 1.8.
The blue circles (model average using the AIC) show good
consistency with both the model truth and with the estimates
using the correct quadratic model form (red squares). Using the
full-width difference between all models with fit p value
greater than 0.1 as a systematic error (orange crosses) tends
to give larger uncertainty than the AIC model average. Finally,
averaging using a “naive” estimate of prðMjDÞ which omits the
bias-correction term (silver triangles) does not directly lead to
bias in the estimation of a0, but also gives slightly larger
uncertainty due to overweighting of more complicated models
as discussed in the text.
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IV. DATA SUBSET SELECTION AS A MODEL
VARIATION PROBLEM

A routine part of modeling lattice Monte Carlo data is
data subset selection, i.e., choosing a “cut” on the data
beyond which the model is not applied. A canonical and
simple example is fitting a two-point correlation function
CðtÞ to extract the ground-state energy. The full model
expected to describe this correlation function involves an
infinite tower of exponentials,

P∞
i Aie−Eit. In practice, one

truncates the sum after a finite number of terms and then
selects a minimum value tmin below which the data are
simply ignored. Choosing the precise value of tmin is
generally done by hand.
Although this process is typically thought of as a data

selection problem, it can easily be reformulated as a model
selection problem. In the previous example, the justification
for ignoring data below tmin is partially one of expediency. If
we are only interested in the first few states, it suffices to look
at times with t ≥ tmin where they dominate. Times below tmin
will be heavily contaminated by contributions from the
higher excited states, and little to no information about the
first few states is lost by ignoring them.
Based on this observation, we can define a joint model

that describes the full dataset. First, select a subset of the
data and imagine fitting the model of choice M to this
subset as usual. Second, imagine fitting the remaining data
to a “perfect” model with zero degrees of freedom. For
example, the perfect model could be a polynomial with
degree equal to Ncut, but in principle other functional forms
will also work. Because the perfect model has zero degrees
of freedom, there exists a solution for its parameters for
which the differences between the model and the sample
means vanish exactly.
To give an explicit construction, we first define a

partition P of the data vectors into yi ¼ ðycuti ; ykeepi Þ, where
ykeepi are the subset to be modeled and ycuti are the cut data.
We then define the corresponding partitioned model
gMða; PÞ as

yi − gMða; PÞ ¼
� yi − ȳcut; yi ∈ ycuti

yi − fMðaÞ; yi ∈ ykeepi ;
ð41Þ

where ȳcut is the sample average of the ycuti . The partition-
dependent log likelihood is then, dropping constant terms
that do not change with fixed dataset D,

− 2 log prðDja;MÞ

¼
XN
i¼1

χ2i ðPÞ

¼
XN
i¼1

ðyi − gMða; PÞÞTΣ−1ðyi − gMða; PÞÞ ð42Þ

¼
XN
i¼1

ðykeepi − fMðaÞÞTΣ−1
P ðykeepi − fMðaÞÞ þ ðconstÞ;

ð43Þ

where Σ−1
P is the submatrix of the full inverse data

covariance matrix Σ−1 which corresponds to the data subset
ykeepi . All other terms involving the cut data contain the
expression ȳcut − gMða; PÞ at least once and therefore
vanish identically by construction, even in the presence
of off-diagonal correlations between ykeepi and ycuti .
Since matrix inversion does not generally commute with

subspace projection, the matrix Σ−1
P typically differs from

ðΣPÞ−1, the inverse of the covariance sub-matrix. However,
in practical lattice applications ðΣPÞ−1 is often used as an
approximation to Σ−1

P ; the difference between these matri-
ces is given by terms that are suppressed whenever long-
range (i.e., further off-diagonal) correlations are generally
smaller than short-range ones. An obstruction to using Σ−1

P
directly is that finite-sample estimates of the full covariance
matrix Σ−1 are typically ill-conditioned. Therefore, in what
follows we will use ðΣPÞ−1.
The result of this construction is that the contribution

from the perfect model describing the data outside the
chosen subset is Δχ2aug ¼ 0. However, there remains a bias-
correction term which accounts for the Ncut additional
model parameters used to describe the cut data ycuti . The
bias correction is still necessary because although the
“perfect” model exactly describes the data sample as given,
the values of the perfect model parameters will fluctuate
as additional data is added. The difference between the
perfect model parameters at finite sample size and their
asymptotic values leads to a bias correction as described in
Appendix A. We emphasize that the bias correction term
itself does not vanish since the individual terms χ2i ðaÞ do
not vanish identically for the perfect model, only the sum.
Thus, the overall model probability for the joint model is
easily seen to be obtained from the modified expression

AICM;Ncut
¼ −2 logðprðMÞÞ þ χ2augða⋆Þ þ 2kþ 2Ncut;

ð44Þ

where χ2augða⋆Þ is evaluated only for the model M and for
data within our selected subset.
The result Eq. (44) depends only on quantities that may

be estimated from the subset model fit, and on counting
factors. As a result, in practice we do not need to construct
the perfect model at all. We note that a similar penalty term
for removal of data points was also proposed in [14] in a
frequentist context.
Although we were motivated by the example of a two-

point correlator where the data are cleanly divided into two
subsets along a single dimension, the argument above holds
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for arbitrarily complex subdivisions of the full dataset.
Whatever subset of the data we choose to fit explicitly to
model M, the joint model which also describes the
remaining data will contribute an additional factor of
2Ncut to the information criterion. We can also consider
a set of models fMg and perform ordinary model averaging
over the joint space defined by fMg and the parameters that
uniquely define a data subset.

A. Practical example: Synthetic correlation functions

To test the data subset selection procedure, we set up
another toy-model example resembling a two-point corre-
lation function, following the example description above.
The “model truth” in this case is a two-state exponential,

FðtÞ ¼ 2.0e−0.8t þ 10.4e−1.16t: ð45Þ

To generate synthetic data, we add correlated Gaussian
noise ηðtÞ with mean zero and variance 0.09. The noise is
added fractionally to the data, i.e., the synthetic data are
generated according to the formula yðtÞ ¼ FðtÞð1þ ηðtÞÞ.
The correlation matrix of the noise takes the form ρt;t0 ¼
ρjt−t0j, i.e., equal to 1 on the diagonal and decreasing
according to a power law as the temporal separation
between points increases, similar to a real lattice quantum
chromodynamics (QCD) correlation function. We fix the
numerical correlation coefficient ρ ¼ 0.6. N mock data
samples are generated for t ∈ f0; 1;…; 31g.
Additional trials in which the above parameters have

been varied were also tried, including using uncorrelated
Gaussian noise instead of correlated. No qualitative differ-
ence in the outcome of the tests was observed with these
variations.
For this test, we consider a single model which consists

of a single exponential term

fðtÞ ¼ A0e−E0t: ð46Þ

This model is fit to all data in the range ½tmin; 31�. We
consider all values of tmin from 1 to 28, with the goal of
using model averaging with Eq. (44) to obtain a combined
result for the ground-state energy E0.
The results of four independent trials following the above

procedure with N ¼ 500 are shown in Fig. 3. Excited-state
contamination, i.e., the influence of the second exponential
state which is not present in our fit model, is clearly visible
at low tmin. In each case, excellent agreement of the model-
averaged result with model truth is seen. As in the
polynomial example, the bias-corrected model probability
is seen to weight simpler models more strongly, which in
this case means favoring fits that cut away less of the data.
In Fig. 4, we repeat the above exercise while varying the

sample size N, once again over the range N ∈ ½20; 640�.
The results of model averaging using the AIC, i.e., using
Eq. (44), show good consistency with the known result.

Although the error of the model-averaged result is gen-
erally somewhat larger than the error for using a single
fixed choice of tmin, the latter has an unaccounted for
systematic error due to model truncation. (Indeed, if we do
not adjust tmin as N → ∞, we expect the result for E0 to
become incompatible with the correct ground-state energy,
as the contamination from the second state will eventually
be resolved in a large enough sample.)

FIG. 3. Fit results for the ground-state energy with true value
E0 ¼ 0.8 (black dashed line), with the data cut away below tmin
(blue points). The model-averaged result (red open square) shows
good agreement with model truth in all cases. The lower inset
shows the standard p value (blue dashed line) and the model
weight calculated from Eq. (44) (orange solid line). The four
subfigures represent four random draws of correlated Gaussian
noise, but are otherwise identical.
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On the other hand, the error on the model-averaged result
is generally much smaller than the more conservative full-
width estimate, resulting from taking the full variation of
mean results over all models with p > 0.1 as a systematic
error as in the polynomial example Sec. III C. In contrast to
the polynomial example, here omission of the important
bias-correction term in the AIC (i.e., dropping the Ncut
contribution to model weight) causes a drastic inflation of
the error in the averaged result for E0. Once again, the
interpretation is that omitting the bias correction causes
overestimation of the likelihood for the more complicated
models, in this case models with larger tmin. These models
generally give results for E0 consistent with the correct
answer, but with much larger errors, and the model-
averaged result is altered accordingly.

B. Practical example: QCD correlation functions

1. Masses from a two-point correlation function

We now consider the example of model averaging
applied to a pion two-point correlation function from a
real lattice QCD calculation. This correlator has been used
in published work by the Fermilab Lattice and MILC
collaborations [27]. The underlying gauge-field ensemble
used has a lattice spacing of a ≈ 0.09 fm and a pion mass of
about 215 MeV. In this example, the correlation function
was constructed using staggered fermions and corresponds
to a pion with energy Eπ ≈ 300 MeV.
The results of our procedure are shown in Fig. 5. The top

pane shows the effective mass and the final result of model
averaging, which is consistent with by-eye expectations.5

The oscillations in the effective mass are a familiar feature
of staggered two-point correlation functions with nonzero
momentum. The middle pane shows intermediate results
for the ground-state energy E0 from individual fits.6 The
green band indicates the model-averaged result for
the points shown. For clarity of presentation, the results
in the middle pane are from fits with (1þ 1) states only,
i.e., one decaying state and one oscillating state. We also
tried fits including (2þ 2), (3þ 3), and (4þ 4) states. The

FIG. 5. Model averaging results for a pion two-point correlation
function using staggered fermions. Top: the effective mass in
lattice units and the final result of model averaging. The
oscillating contributions are from the opposite-parity states
associated with staggered fermions. Middle: individual fit results
for the ground-state energy E0 in lattice units together with the
result of model averaging. Bottom: model weights for the
individual fits.

FIG. 4. Scaling of various estimates of the ground-state energy
E0 vs the data sample size N. The true value (dashed line) is
E0 ¼ 0.8. The blue circles (model average using the AIC) show
good consistency with the model truth and generally comparable
error to fitting with fixed tmin (red squares). Using the full-width
difference between all models with fit p value greater than 0.1 as
a systematic error (orange crosses) tends to give significantly
larger uncertainty than the AIC model average. Finally, averaging
using a naive estimate of prðMjDÞ which omits the bias-
correction term (silver triangles) also leads to significantly larger
uncertainty due to overweighting of more complicated models as
discussed in the text.

5The effective mass of a correlation function CðtÞ is defined by
meffðtÞ ¼ logCðtÞ=Cðtþ 1Þ.

6The ground-state energy E0 comes from the first term in the
spectral decomposition, Eq. (C3). Incidental technical compli-
cations related to staggered fermions and oscillating states
are discussed in Ref. [27], where this data was originally used
[cf. their Eq. (2.6)].
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only qualitative difference from including more states is
that good fits are obtained for smaller tmin. The model
average is unchanged. The bottom pane shows the model
weights for the fits with (1þ 1) states. As expected, the
weights peak in the middle and taper off at both ends.
When tmin is small, the fit quality rapidly declines due to
contributions from excited states. When tmin is large,
Eq. (44) disfavors cutting too aggressively. In the inter-
mediate region, the model weights fluctuate visibly with
respect to ttmin. This behavior is related to the fact to the
that model weights of Eq. (44) exhibit discrete jumps as
Ncut ∈ Z is varied. Although the total χ2 is also expected to
change by roughly one unit when a degree of freedom is
removed, the precise value of course depends on the details
of the data. Given the form of Eq. (44), there is no reason to
expect that model weights should be a smooth function of
Ncut for a finite data sample. Overall, the model-averaged
result agrees with intermediate results that went into the
analysis of Ref. [27] to better than 1σ [28].

2. Matrix elements from three-point correlation functions

Model averaging also shows promising results for
extraction of more complicated matrix elements. In this
example, we test the extraction of a K → π transition
matrix hπjJjKi, again using correlation functions that were
a part of published work by the Fermilab Lattice and MILC
collaborations [27]. In this case, the underlying gauge-field
ensemble has a lattice spacing of about 0.12 fm, with pion
and kaon masses of about 220 and 515 MeV, respectively.
Staggered fermions were also used for these correlators.
The calculation occurs in the rest frame of the kaon. The
pion momentum has been adjusted to be near the point of
zero recoil, q2 ≡ ðpK − pπÞ2 ≈ 0. The methodology for
extracting these matrix elements is complicated but rela-
tively standard within the lattice community. The desired
matrix element is the result of a joint correlated fit to two-
and three-point functions. In order to visualize the result, it
is standard to construct a ratio Rðt; TÞ of two- and three-
point functions whose asymptotic plateau is proportional to
the bare lattice matrix element. Here T denotes the location
of the sink operator which couples to the kaon. In
conducting such a fit, the analyst is faced with several
choices: the number of states in the pion channel (nþ n),
the number of states in the kaon channel (mþm), and the
fit window t ∈ ½tmin; T − tmin�. We refer the reader to
Ref. [27] for additional details about fits like these.
Figure 6 shows the result of model averaging for the

matrix element. We adopt a flat prior model weight
prðMÞ ¼ C for all choices of (mþm) and (nþ n), which
drops out of the model average. The top pane shows the
ratio Rðt; TÞ for two different sink locations alongside the
result of model averaging. The middle pane shows inter-
mediate fit results and the model average. The particular
choices made for each of the fits is displayed along the
horizontal axes, with the fit window displayed on top and

the number of states on the bottom. For instance, the
leftmost point used ðnþ nÞ ¼ ð3þ 3Þ states for the pion
channel, ðmþmÞ ¼ ð3þ 3Þ states for the kaon channel
and a fit range window t ∈ ½3; T − 3�. Finally, the bottom
pane gives the model weights. In this case, all the results
displayed give consistent results, and the weight of the
leftmost fit is essentially unity. This is Occam’s razor, as
encoded by Eq. (38), at work. For matching results, the
model with the fewest parameters and most data should be
preferred. The model-averaged result, once appropriately
converted into a form factor, agrees to better than 1σ with
the published result of Ref. [27].
This example suggests another important application

of the framework we are describing. A complete analysis of
a lattice matrix element might consider a more general set
of fits, e.g., with different numbers of decaying and

FIG. 6. Model averaging results for a matrix element associated
with a K → π transition form factor. Top: a ratio of two- and
three-point correlation functions (whose plateau is proportional to
the matrix element hπjJjKi) and the final result of model
averaging. Middle: individual fits together with the result of
model averaging. Bottom: model weights for the individual fits.
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oscillating states in each channel or with different tmin cuts
for the source and sink. Scanning over all possibilities can
easily produce tens or hundreds of individual fit results.
Finding an objective selection criterion for choosing a best-
fit result can be difficult. The model weights in Eq. (37) and
Eq. (38) offer a potential solution to this problem, particu-
larly when used in conjunction with expert knowledge and
the usual careful thinking.

V. CONCLUSION

We have presented a Bayesian approach to the problem
of model averaging. The statistical methods we describe
apply very generally, though our examples have focused on
practical problems in lattice gauge theory. The context for
regression problems is rather exceptional in many lattice
studies, since the models often rest on firm theoretical
foundations. For instance, multiexponential fits to corre-
lators are based on the spectral decomposition, which only
requires the existence of a positive-definite transfer matrix.
Effective field theory governs extrapolations to the chiral,
continuum, or heavy-mass limit. If a model fails to describe
the data, the simulation itself is rightfully viewed with
additional scrutiny. Hypothesis testing is typically less
important than reliably extracting the values of parameters
capturing the physics of interest. When predictions from
nested models (say, the next-to-leading order versus next-
to-next-to-leading order predictions from effective field
theory) differ slightly, it is important to be able to produce a
final number with associated statistical and systematic
uncertainties. Bayesian model averaging is an attractive
approach to problems like these.
Two key practical results are the model-averaged mean

and variance, Eq. (15) and Eq. (18); the general result
Eq. (10) allows for averaging of arbitrary expectation
values of functions of fit parameters. These formulas rely
on the model weights prðMjDÞ. In general, the model
weights are defined through complicated integrals.
However, analytic results are available in the Gaussian
approximation, which is exact for linear least-squares
fitting. For nonlinear least-squares fitting, the approxi-
mation is expected to become increasingly good for larger
datasets.
For a fixed dataset with no cuts, Eq. (38) is the final

expression used to construct the model weights used in the
examples. Since this expression is computable just using
the familiar augmented χ2 and the number of parameters in
the model, it is easy to include and test in existing lattice
analyses. However, it relies on taking an asymptotic limit in
the sample size, and it would be interesting to study
improved estimators at finite sample size in future work.
A particularly nice application of these ideas is data

subset selection, which we recast as a model variation
problem. The basic observation was to reinterpret cuts on
the data as additional model parameters, leading to a model
weight given by Eq. (44). The model averaging approach

gives a straightforward way to replace the common practice
of tuning such data subset cuts by hand.
Broadly speaking, perhaps the most attractive feature of

Bayesian model averaging is the natural appearance of
Occam’s razor. The model weights appearing in Eqs. (38)
and (44) favor models which use the fewest parameters
while describing the most data. Inclusion of an asymptotic
bias correction to the estimated likelihood, which yields the
AIC as a model-selection criterion in the limit of large
sample size, is crucial to the occurrence of this effect.
Although this technique allows the data to remove much

of the subjectivity from analyses including model varia-
tions, this does not extend to the choice of the model prior
weights prðMÞ. In the absence of specific and strong beliefs
about particular models, we advocate for the use of a flat
prior, i.e., weighting all models equally in the prðMÞ. In all
of the practical examples shown in the text, this is precisely
what has been done. In particular, we emphasize that one
should not attempt to impose parsimony through the model
priors by overweighting models with fewer parameters;
this principle (i.e., Occam’s razor) is built into the bias-
corrected model weights as we have discussed.
An interesting direction to explore in future work would

be to study improved estimators at finite sample size, rather
than relying on the asymptotic result to estimate the model
weights. This will necessarily involve careful treatment of
the covariance matrix terms in Eq. (37). It would also be
interesting to explore direct Monte Carlo evaluation of the
integral in Eq. (29), although the bias correction should
be studied carefully in the context of whatever specific
approach is used. Studying the interplay of model averag-
ing with resampling methods such as jackknife and boot-
strap, commonly used in lattice analyses, would likely be a
useful extension of this work.
It is worthwhile to compare Bayesian model averaging to

another commonly-used technique in lattice data analysis,
the empirical Bayes method [6,15,16]. In this approach, the
number of fit parameters is increased until the description
of the physics of interest (e.g., the ground state in a two-
point correlation function) becomes stable. Empirical (data-
driven) priors are used for the additional fit parameters,
which are generally treated as nuisance parameters. The use
of the empirical Bayes method provides an alternative to
model averaging with fixed data as presented in Sec. III C.
However, data subset selection can be used in conjunction
with empirical Bayes modeling, and may be particularly
useful for more complicated analyses where comparison of
discrete model choices is required.
Within the lattice community, the empirical Bayesian

method is most widely developed and applied in the
analysis of correlation functions. The usual empirical
Bayesian methods also extend gracefully to “effective field
theory fits” [7], where power-counting arguments furnish
firm theoretical motivation for imposing order-unity priors
on certain coefficients. In such cases, one can simply add
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terms until the parameters of interest stabilize. However, for
more generic fits (e.g., when the correct power-counting
scheme is not a priori obvious), adding a large number of
terms may destabilize the fit and inject undesirable noise into
the results. The generality and flexibility of model averaging
makes it an appealing tool for analyzing difficult problems
like these, particularly in conjunction with existing methods.
Overall, we emphasize that the empirical Bayesian and
model averaging techniques are complementary.

A. Practical suggestions and warnings

Model averaging has performed well for us in many test
cases. However, as with any statistical tool, the techniques
we describe should not be used blindly. In particular,
model averaging should not be used as a substitute for
plotting data and fits and thinking carefully about the
results [29].
A basic assumption underlying this technique is that only

statistically correct results are included in the model
average. Including results for fits that fail to converge
numerically, for example, will likely result in incorrect
answers. Incomplete treatment of autocorrelation effects in
the data will similarly yield invalid statistical estimates and
thus invalid model-averaged results.
The model weights of Eq. (38) and Eq. (44) are useful

beyond model averaging à la Eq. (10). For instance, many
lattice calculations oblige the analyst to make many choices
beyond tmin. In this situation, the model weights can help
guide the decision about which, say, a dozen fit results (out
of potentially hundreds) are most promising for further
investigation and scrutiny using more familiar and estab-
lished techniques. Model selection is equivalent to model
averaging in the limit that a single model has very high
probability of correctness; this situation can naturally
emerge from the data analysis, as in the example shown
in Fig. 6.
Model averaging may be especially useful in the

context of fitting models that contain discrete degrees of
freedom that are not amenable to standard numerical
minimization procedures. For example, a multiexponential
model

P∞
i Aie−Eit in which the sign of the amplitudes Ai is

a priori unknown could be studied with improved numeri-
cal stability by fixing the signs of all included amplitudes
one by one, and then averaging together the results.
In certain cases, we have found that the systematic errors

due to model truncation or variation can be significantly
overestimated by more conservative methods. Revisiting
old lattice analyses which are limited by systematic errors
related to model variation may be worthwhile. On the other
hand, in our tests we have found excellent agreement
between correlator fits with few states and those with
many states; the combination of model averaging with few-
state fits as a method could reduce problems related to
numerical convergence and reduce the computational cost
of fitting.
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APPENDIX A: CALCULATION OF ASYMPTOTIC
BIAS FOR MODEL WEIGHTS

In this Appendix we derive the asymptotic bias of the
log-likelihood. The form of the bias is well known in the
statistics literature, and it appears in the Takeuchi
Information Criterion, a generalization of the well known
Akaike Information Criterion. What follows is not a tight
mathematical proof, but rather an informal derivation
designed to illustrate how the bias term arises. For technical
details, we refer interested readers to the extensive original
literature [18–21]. Our presentation follows closely the
introduction of Ref. [30], which is particularly accessible.
The maximum likelihood estimator (MLE) a⋆ is a

consistent estimator of the asymptotic or “true” â.
However, the estimated log-likelihood function evaluated
at a⋆ is not a consistent estimator of the expected log-
likehood function. Roughly speaking, because the MLE
maximizes the estimated log-likelihood, it tends to over-
shoot the population expected log-likelihood.
Consider the log likelihood

logLðx;aÞ ¼ log
YN
i¼1

Lðxi; aÞ ¼
XN
i¼1

logLðxi; aÞ; ðA1Þ

where Lðxi;aÞ is the likelihood for a single sample xi
evaluated with model parameters a. The sample and
population expectation values of a function gðxÞ are defined
according to

EN ½gðxÞ� ¼
1

N

XN
i¼1

gðxiÞ≡ hgðxÞiN ðA2Þ

Ez½gðzÞ� ¼
Z

dzfðzÞgðzÞ≡ hgðzÞiz; ðA3Þ

where fðzÞ is the population distribution from which the
samples fxig are presumed to be drawn. Because a⋆ and â
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maximize their respective log-likelihoods, they are solu-
tions to the usual equations:

h∂a logLðx; aÞiN ja¼a⋆ ¼ 0; ðA4Þ

h∂a logLðz; aÞizja¼â ¼ 0: ðA5Þ

Note that, for a fixed number of samples N, a⋆ is a fixed
number. The sample Fisher information matrix IN and the
negative sample Hessian matrix JN are defined as

IN;xyðaÞ≡ 1

ðN − 1Þ
XN
i¼1

�∂ logLðxi; aÞ
∂ax

��∂ logLðxi;aÞ
∂ay

�

ðA6Þ

¼ 1

4ðN − 1Þ
XN
i¼1

�∂χ2i
∂ax

��∂χ2i
∂ay

�
; ðA7Þ

JN;xyðaÞ≡ −
1

N

XN
i¼1

∂2 logLðxijaÞ
∂ax∂ay ¼ 1

2N

XN
i¼1

∂2χ2i
∂ax∂ay :

ðA8Þ

The final equalities are valid for the special case of least-
square fitting, where −2 logLðx; aÞ ¼ χ2 (cf. Sec. III for
additional notation). Similarly,

IxyðaÞ≡ Ez

�∂ logLðz; aÞ
∂ax

∂ logLðz; aÞ
∂ay

�
ðA9Þ

JxyðaÞ≡ −Ez

�∂2 logLðz; aÞ
∂ax∂ay

�
: ðA10Þ

With Eq. (A1) and Eq. (A2), the total log-likelihood can
be written as logLðx; aÞ ¼ NhlogLðx; aÞiN . The bias in
the log-likelihood is defined as the difference between its
estimated and expected values,

bða⋆ðxÞÞ≡ NhlogLðx; a⋆ðxÞÞ − hlogLðz; a⋆ðxÞÞiziN:
ðA11Þ

We are interested in the behavior of this bias in the limit of
many samples, N → ∞. To emphasize the dependence on
the data, we have written a⋆ ¼ a⋆ðxÞ. To evaluate the bias
explicitly and resolve the mixed expectation value, it helps
to add and subtract terms judiciously:

bða⋆ðxÞÞ ¼ NðhlogLðx; a⋆ðxÞÞiN − hlogLðx; âÞiNÞ
þ NðhlogLðx; âÞiN − hlogLðz; âÞizÞ
þ NðhlogLðz; âÞiz − hhlogLðz; a⋆ðxÞÞiziNÞ:

ðA12Þ

This trivial rewriting pays immediate dividends. The first
and third terms involve matching expectation values at
nearby points and are amenable to Taylor expansion. As we
will argue shortly, the second term vanishes.
Before evaluating each term, we quote a useful technical

result due to White [31]. The necessary regularity con-
ditions for this result, which White calls the “usual
maximum likelihood regularity conditions,” are stated
carefully and at length in Ref. [31].
Theorem 1. Asymptotic Normality. Given White’s

regularity conditions, the difference ða⋆ − âÞ is asymptoti-
cally normally distributed with mean zero and width CðâÞ,

ffiffiffiffi
N

p
ða⋆ − âÞ ∼N→∞Normalð0; CðâÞÞ; ðA13Þ

where

CðâÞ ¼ J−1ðâÞIðâÞJ−1ðâÞ; ðA14Þ

CNða⋆Þ ¼ J−1N ða⋆ÞINða⋆ÞJ−1N ða⋆Þ; ðA15Þ

is a product of (inverse) Hessian and Fisher matrices.

Moreover, CNða⋆Þ →
N→∞

CðâÞ element by element.
Now we turn to the evaluation of Eq. (A12), beginning

with the first term. Expanding around the MLE point a⋆
gives

NðhlogLðx;a⋆ðxÞiN − hlogLðx; âÞiNÞ

¼ −
N
2

	
ðâ − a⋆ðxÞÞ ∂

2 logL
∂a∂a0 ðâ − a⋆ðxÞÞ



N

ðA16Þ

→
N→∞ þ 1

2
tr½IðâÞJ−1ðâÞ�: ðA17Þ

In the first equality, the linear term vanishes by the
definition of a⋆, Eq. (A4). The second line follows from
the asymptotic normality of

ffiffiffiffi
N

p ða⋆ − âÞ and the fact that

− ∂2 logL
∂a∂a0 converges to J in probability. The final line also

uses a standard result about expectation values of random
quadratic forms,

E½εTAε� ¼ tr½ΣA� þ μTAμ; ðA18Þ

where ε is a random variable with mean μ and covari-
ance Σ.
The second term in Eq. (A12) vanishes. To see this,

first observe that both terms are evaluated at the
same fixed parameters â, which remain unchanged by
the limit N → ∞. Next, note that the estimated log-
likelihood converges point-by-point to the asymptotic
distribution. Therefore, the difference vanishes in this
limit. This argument fails when the MLE a⋆ðxÞ is
involved, since a⋆ðxÞ depends on the data and thus itself
moves with N.
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Finally, we consider the third term, which contains
population expectation values. In this case it is useful to
expand around â, since the linear term will vanish by
Eq. (A5):

NðhlogLðz; âÞiz − hhlogLðz; a⋆ðxÞÞiziNÞ ðA19Þ

¼ N

�
hlogLðz; âÞiz − hhlogLðz; âÞiziN

þ 1

2
hða⋆ − âÞJðâÞða⋆ − âÞiN

�
ðA20Þ

¼ N

�
hlogLðz; âÞiz − hlogLðz; âÞiz

þ 1

2
hða⋆ − âÞJðâÞða⋆ − âÞiN

�
ðA21Þ

¼ N
2
hða⋆ − âÞJðâÞða⋆ − âÞiN ðA22Þ

⟶
N→∞ 1

2
tr½IðâÞJ−1ðâÞ�: ðA23Þ

The final line follows from the asymptotic normality offfiffiffiffi
N

p ða⋆ − âÞ and the formula for random quadratic forms.
Combining results for all three terms, we see that

bða⋆ðxÞÞ⟶N→∞ þ 1

2
tr½IðâÞJ−1ðâÞ� þ 0þ 1

2
tr½IðâÞJ−1ðâÞ�

ðA24Þ

¼ tr½IðâÞJ−1ðâÞ�: ðA25Þ

As indicated, this result is evaluated at the (unknown)
parameters â. However, since the sample INða⋆Þ and
JNða⋆Þ are consistent estimators of IðâÞ and JðâÞ, the
bias may be evaluated using them instead [20,21,30].
For the sake of concreteness, the proof sketched here has

used the MLE a⋆. However, a similar bias term is expected
to be present quite generally. For instance, Theorem 2.1 of
Ref. [21] proves the existence of bias for a more general
class of estimators. Roughly speaking, the bias arises from
finite-sample-size fluctuations in the data and not from the
choice of the maximum likelihood estimator itself. Due to
the generality of this bias term, we include the correction in
the general formula Eq. (29) and not only in the following
Gaussian approximation.
So far the discussion has been for general log-

likelihoods. Now we specialize to the case of least-square
fitting, where −2 logLðx;aÞ¼ χ2ðx;aÞ. Taking χ2ðx; a⋆Þ ↦
χ2ðx; a⋆Þ þ 2tr½INða⋆ÞJ−1N ða⋆Þ� as in Eq. (37) removes
this bias.
In most cases of interest in lattice gauge theory (spectral

decomposition of correlation functions, effective theory

descriptions of the chiral-continuum limit, etc.), the correct
model for the data is assumed to be known. When the
model is specified correctly, the following theorem, proven
by White in Ref. [31] with careful attention to regularity
conditions, gives the familiar equivalence between the
negative Hessian and the Fisher information matrix.
Theorem 2. Information Matrix Equivalence. Given

White’s regularity conditions and assuming that the model
is specified correctly,

CðâÞ ¼ JðâÞ−1 ¼ IðâÞ−1: ðA26Þ

In other words, the negative Hessian equals the Fisher
information matrix. Likewise, if the model is specified
incorrectly, then Eq. (A26) fails to hold in general, i.e., JðâÞ
is generically not equal to IðâÞ.
For completeness, we sketch how this equivalence arises

and how it can break down. Consider the log-likelihood
logLðz; aÞ. Elementary use of the product rule shows that

∂2 logLðz; aÞ
∂ax∂ay ¼ 1

Lðz; aÞ
∂2Lðz;aÞ
∂ax∂ay

−
∂ logLðz; aÞ

∂ax
∂ logLðz; aÞ

∂ay : ðA27Þ

Taking the expectation of both sides (and using the like-
lihood function as the PDF) gives:

Ez

�∂2 logLðz; aÞ
∂ax∂ay

�
¼ −Ez

�∂ logLðz; aÞ
∂ax

∂ logLðz; aÞ
∂ay

�
;

ðA28Þ

since the first term on the right-hand side vanishes:

Ez

�
1

Lðz; aÞ
∂2Lðz; aÞ
∂ax∂ay

�

≡
Z

dzLðz; aÞ
�

1

Lðz; aÞ
∂2Lðz; aÞ
∂ax∂ay

�
ðA29Þ

¼ ∂2

∂ax∂ay
Z

dzLðz; aÞ ¼ ∂2

∂ax∂ay 1 ¼ 0: ðA30Þ

Equation (A28) is the familiar equivalence between the
negative Hessian and the Fisher matrix. The vanishing
expectation value of the first term on the right-hand side of
Eq. (A27) depends on the appearance of logLðx; aÞ in the
numerator. That is, it assumes that the true likelihood
appears within the model space. In general, if the model is
incorrectly specified, Theorem 2 says that the equivalence
between the negative Hessian and Fisher matrices ceases
to hold. White also provides specification-robust proce-
dures [31]. We emphasize that many statistical analyses in
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lattice gauge theory are expected to be in the privileged
position of knowing the correct model.

APPENDIX B: EQUIVALENCE OF
SAMPLE-BASED AND MEAN-BASED FORMS

OF CHI-SQUARED LIKELIHOOD

In this brief Appendix, we discuss the definition of the
likelihood function in Eq. (24) and Eq. (25), based on the
individual sample values χ2i . This definition is not mani-
festly equivalent to the standard definition based on the data
means,

χ2 ≡ ðȳ − fMðaÞÞTðΣ=NÞ−1ðȳ − fMðaÞÞ; ðB1Þ

where ȳ ¼ 1
N

P
N
i¼1 yi is the sample mean (cf. Sec. III for

additional notation). However, it is straightforward to prove
that the two definitions agree up to an additive constant,

XN
i¼1

χ2i ¼ ðN − 1Þdþ χ2; ðB2Þ

where d is the dimension of the observation vector yi, as
defined in the main text. The proof follows by elementary
matrix manipulations. By definition, the left-hand side is

XN
i¼1

χ2i ¼
XN
i¼1

ðyi − fMðaÞÞTΣ−1ðyi − fMðaÞÞ ðB3Þ

¼
XN
i¼1

ðyTi ÞΣ−1yi − 2NfMðaÞTΣ−1ȳ

þ NfMðaÞTΣ−1fMðaÞ ðB4Þ

¼ ðN − 1Þdþ NȳTΣ−1ȳ − 2NfMðaÞTΣ−1ȳ

þ NfMðaÞTΣ−1fMðaÞ ðB5Þ

¼ ðN − 1Þdþ ðȳ − fMðaÞÞTðΣ=NÞ−1ðȳ − fMðaÞÞ
ðB6Þ

≡ðN − 1Þdþ χ2; ðB7Þ

where we have used the definition of the sample mean,
ȳ ¼ 1

N

P
N
i¼1 yi. To obtain the third equality, we have

used the relation
P

N
i¼1 yiy

T
i ¼ ðN − 1ÞΣþ NȳȳT (which

follows from rearrangement of the definition of the sample
covariance matrix), as well as the matrix identityP

N
i¼1 y

T
i Σ−1yi ¼

P
N
i¼1 tr½Σ−1yiyTi �.

This proof shows clearly how the standard error of the
mean, σ2ȳ ¼ σ2=N, arises in χ2 from the sample covariance
matrix. We also clearly see that minimization of chi-
squared to find the best-fit parameters a⋆ will give identical
results in either case.

APPENDIX C: LINEAR AND NONLINEAR
MODELS

Both linear and nonlinear models appear commonly in
lattice gauge theory analyses. Linear models are linear
functions of the fit parameters. A common example of the
linear case is an order p polynomial model, which can be
written as

fðx; aÞ ¼ Xa ðC1Þ
0
BBBBB@

f0
f1

..

.

fd

1
CCCCCA

¼

0
BBBBB@

0 x0 x20 � � � xp0
0 x1 x21 � � � xp1

..

. ..
. ..

. ..
.

0 xd x2d � � � xpd

1
CCCCCA

0
BBBBB@

a0
a1

..

.

ap

1
CCCCCA

ðC2Þ

where x is the d-dimensional data vector, a is the
p-dimensional vector of model parameters, and X is the
ðd × pÞ design matrix. We note that design matrix is
rectangular but not generally square. In the special case
of one dimensional data, the previous equation reduces to
the familiar fðx; aÞ ¼ a0 þ a1xþ a2x2 þ � � � þ apxp.
Nonlinear models are nonlinear functions of the fit

parameters. The most important example in lattice gauge
theory is the spectral decomposition of Euclidean two-point
correlation functions, for which a p-state model takes the
form

fðt; aÞ ¼ A0e−E0t þ A1e−E1t þ � � � þ Ape−Ept; ðC3Þ

where here a denotes the full set of 2p model parameters,

a ¼ fA0; A1;…; Apg ∪ fE0; E1;…; Epg: ðC4Þ

Since each term involves the product of an amplitude Ai

with e−Eit, the model function is clearly nonlinear in the fit
parameters.
We emphasize that the distinction between linear and

nonlinear models applies only to the functional dependence
on the model parameters. As the polynomial example
shows, a generic linear model can be an arbitrary nonlinear
function of the data.
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