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A nonperturbative determination of the energy-momentum tensor is essential for understanding the
physics of strongly coupled systems. The ability of the Wilson flow to eliminate divergent contact terms
makes it a practical method for renormalizing the energy-momentum tensor on the lattice. In this paper, we
utilize the Wilson flow to define a procedure to renormalize the energy-momentum tensor for a three-
dimensional massless scalar field in the adjoint of SUðNÞ with a φ4 interaction on the lattice. In this theory
the energy-momentum tensor can mix with φ2 and we present numerical results for the mixing coefficient
for the N ¼ 2 theory.
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I. INTRODUCTION

The energy-momentum tensor (EMT) plays a funda-
mental role in quantum field theories, by virtue of being the
collection of Noether currents related to space-time sym-
metries. It acts as the source for space-time curvature in the
Einstein field equations, and its expectation value encodes
the energy and momentum carried by quantum excitations.
One of the motivations for this study comes from the
application of holography to cosmology [1]. In this holo-
graphic approach, cosmological observables, such as the
cosmic microwave background (CMB) power spectra, can
be described in terms of correlators of the EMT of a dual
three-dimensional quantum field theory (QFT) with no
gravity. The dual theories introduced in [1] comprise three-
dimensional Yang-Mills theory, coupled to massless scalars
φ in the adjoint of SUðNÞ with a φ4 interaction.
Perturbative calculations of the correlators have been

performed [2–5] and the predictions of holographic cos-
mology were tested favorably against Planck data in [6].
The results in [6] however also implied that a nonpertur-
bative evaluation of the EMT is required in order to fully
exploit the duality in the low-multipole regime.
Here we initiate the computation of nonperturbative

effects by means of lattice QFT. A fundamental limitation
of the lattice framework is the fact that space-time sym-
metries, such as Poincaré invariance, are explicitly broken
at finite lattice spacing; these symmetries are restored only
in the continuum limit. Consequently, the Ward identities
associated with translations are violated, and the EMT,
which generates such transformations, has to be defined
with care. On the lattice, the EMT has to be renormalized
by tuning the coefficients of a linear combination of all
operators with dimension not greater than the space-time
dimension d, which are compatible with lattice symmetries.
This ensures that the Ward identities are recovered in the
continuum limit, up to cutoff effects. Perturbative analytic
calculations using this method have been discussed exten-
sively in [7,8].
Various strategies have been proposed to nonperturba-

tively renormalize the EMT on the lattice (cf. [9], and
references therein) such as the shifted boundary condition
[10–13], applying the Wilson flow on the EMT [14–22],
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and on probe operators [23–25], which is the strategy
considered in this paper. The Wilson flow [26–29] has
been used to renormalize composite operators in various
scenarios [30–34]. The method adopted here is to con-
struct probes from fields at some positive flow time,
which are nonlocal in the elementary fields, that can
eliminate the divergent contact terms present in the corre-
lators. The divergence properties and regularization of
Ward identities of flowed gauge fields are discussed
extensively in [35].
In this paper we are interested in renormalizing the

EMT of the simplest version of the holographic dual
theories, which is the class of 3d massless scalar QFTs
with φ in the adjoint of SUðNÞ and a φ4 interaction,
regularized on a Euclidean space-time lattice [36]. This
model is interesting in its own right. If correct, this model
would provide a remarkably simple description of the very
early Universe, with the microscopic theory containing
only two parameters, N and the nonminimality parameter
ξ.1 Preliminary results show that it provides an excellent fit
to CMB data in the regime where perturbation theory can
be trusted, while suggesting that the model becomes
nonperturbative at higher multipoles than the best fit model
based on Yang-Mills theory coupled to scalars (roughly,
l≲ 250 versus l≲ 30), so this model also serves as an
example of a holographic model where the effective
dimensionless coupling is of intermediate strength (neither
very large nor very small) for a sizeable part of the CMB
spectrum, and as such it requires a nonperturbative
treatment.
This class of massless, super-renormalizable QFT, with

the coupling g of mass dimension one, suffers from severe
infrared (IR) divergences in perturbation theory.
Perturbative calculations of correlation functions and
renormalization parameters, such as the critical mass or
the EMT renormalization coefficients, contain IR diver-
gences, which makes the results dependent on the IR
regulator. The nonperturbative IR finiteness of super-
renormalizable theories, where the dimensionful coupling
constant acts as the IR regulator, has been conjectured and
discussed in [37,38], and has been confirmed nonpertur-
batively for the theory under consideration in [39]. This
allows us to renormalize the theory nonperturbatively
without IR ambiguity. The properties of 3d super-
renormalizable scalar QFTs with various symmetry groups
have been widely studied both perturbatively and on the
lattice [40–45]. In this paper we focus on the N ¼ 2 theory;

theories with N > 2 and the large N limit will be discussed
in a later publication.
This paper is organized as follows. In Sec. II we first

introduce the scalar SUðNÞ theory in the continuum and on
the lattice, and we define the EMToperator and correlators.
We also define the Wilson flow, as well as the relevant
correlators at finite flow time. In Sec. III we list the
parameters of the simulated ensembles for this study,
and summarize the results of the critical mass determined
nonperturbatively in [39]. In Sec. IV we discuss the
procedure to renormalize the EMT using flowed correla-
tors, and finally present the numerical results for the N ¼ 2
theory. We have also included a number of appendixes. In
Sec. A 1 we summarize the method to evaluate massless
lattice scalar integrals in 3d. In Sec. A 2–A 4, we present
the lattice perturbation theory calculations for the EMT
operator mixing, correlators at vanishing flow time, and
correlators at finite flow time respectively.

II. GENERALITIES/DEFINITIONS

A. Continuum and lattice SUðNÞ scalar action

The theory under consideration here is a three-
dimensional Euclidean scalar suðNÞ valued φ4 theory,

S½φ� ¼
Z

d3xTr½ð∂μφðxÞÞ2 þ ðm2 −m2
cÞφðxÞ2 þ λφðxÞ4�;

ð1Þ

with fields φ ¼ φaðxÞTa where φaðxÞ is real, and Ta are the
generators of SUðNÞ, which are normalized so that
Tr½TaTb� ¼ 1

2
δab. Here λ is the φ4 coupling constant with

mass dimension one (which does not renormalize), m2 is
the bare mass. Since the mass of the theory renormalizes
additively, we include the mass counterterm, or critical
mass m2

cðgÞ, i.e., the value of the bare mass such that the
renormalized theory is massless. To make the ’t Hooft
scaling explicit, hereafter the following rescaled version of
the action will be used,

S½ϕ� ¼ N
g

Z
d3xTr½ð∂μϕðxÞÞ2 þ ðm2 −m2

cÞϕðxÞ2 þϕðxÞ4�;

ð2Þ

which can be obtained by identifying ϕ ¼ ffiffiffiffiffiffiffiffiffi
g=N

p
φ and

λ ¼ g=N from Eq. (1).
The theory is discretized on a three-dimensional

Euclidean lattice by replacing the action with

S½ϕ� ¼ a3N
g

X
x∈Λ3

Tr

�X
μ

ðδμϕðxÞÞ2

þ ðm2 −m2
cÞϕðxÞ2 þ ϕðxÞ4

�
: ð3Þ

1One should not confuse the number of parameters appearing
in empirical models, such as the ΛCDM model with the number
of parameters appearing in the microscopic theory. For example,
ΛCDM contains two parameters associated with the very early
Universe (the amplitudes of primordial perturbations and the
spectral index), but the underlying microscopic inflationary
models contain a lot more parameters (the parameters appearing
in the inflaton potential etc.).
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Here δμ is the forward finite difference operator defined by,
δμϕðxÞ ¼ a−1½ϕðxþ aμ̂Þ − ϕðxÞ�, where μ̂ is the unit
vector in direction μ, Λ3 is a lattice with cubic geometry
containing N3

L points (with periodic boundary conditions),
and a the lattice spacing.

B. Energy-momentum tensor

In the continuum theory, the energy-momentum tensor
Tμν is defined as the conserved current of space-time
symmetries. For our scalar SUðNÞ theory, it is given by [46]

Tμν ¼
N
g
Tr

�
2ð∂μϕÞð∂νϕÞ

− δμν

�X
ρ

ð∂ρϕÞ2 þ ðm2 −m2
cÞϕ2 þ ϕ4

�

þ ξ

�
δμν

X
ρ

ð∂ρϕÞ2 − ð∂μϕÞð∂νϕÞ
��

: ð4Þ

Here the term multiplying ξ is the improvement term. In the
continuum theory, due to translational invariance, the EMT
satisfies Ward-Takahashi identities (WI) of the form

h∂μTμνðxÞPðyÞi ¼ −
	
δPðyÞ
δϕðxÞ ∂νϕðxÞ



ð5Þ

wherePðyÞ is any composite operator inserted at point y. IfP
is such that the right-hand side ofEq. (5) is finite for separated
points x ≠ y, the left-hand side correlation function, which
contains the divergence of the EMT, is finite up to contact
terms. For this theory, it can be shown that the insertion ofTμν

does not introduce new UV divergences (as discussed in
more detail in Sec. A 2). The improvement term is identically
conserved and trivially satisfies Eq. (5). Therefore ξ will be
set to 0 for the remainder of the text.
On the lattice, the continuous translational symmetry is

broken into the discrete subgroup of lattice translations;
because of this a naïve discretization of the EMT on the
lattice,

T0
μν ¼

N
g
Tr

�
2ðδ̄μϕÞðδ̄νϕÞ

− δμν

�X
ρ

ðδ̄ρϕÞ2 þ ðm2 −m2
cÞϕ2 þ ϕ4

��
; ð6Þ

which is obtained by replacing the partial derivatives ∂μϕðxÞ
with the central finite difference δ̄μϕðxÞ ¼ 1

2a ½ϕðxþ aμ̂Þ−
ϕðx − aμ̂Þ� (this is chosen in order to obtain a Hermitian
EMT), does not satisfy the WI Eq. (5). Now, the WI on the
lattice includes an additional term [7],

hδ̄μT0
μνðxÞPðyÞi ¼ −

	
δ̄PðyÞ
δ̄ϕðxÞ δ̄νϕðxÞ



þ hXνðxÞPðyÞi: ð7Þ

Here δ̄PðyÞ
δ̄ϕðxÞ is obtained by replacing the fields and derivatives

in the continuum functional derivative δPðyÞ
δϕðxÞ with their lattice

counterparts, andXν is an operator proportional to a2, which
classically vanishes in the continuum limit. However, radi-
ative corrections cause the expectation value hXνðxÞPðyÞi to
produce a linearly a−1 divergent contribution to the WI.
Therefore, the naïvely discretized EMT will not reproduce
the continuumWI when the regulator is removed; Tμν has to
be renormalized by adjusting the coefficients of a linear
combination of lower-dimensional operators which satisfy
the same symmetries.
In four dimensions, it has been shown in [7] that Tμν

potentially mixes with five lower-dimensional operators,
which can generate such divergences. However, in three
dimensions, dimensional counting indicates that divergent
mixing can only occur with O3 ¼ δμν

N
g Trϕ

2. The renor-
malized EMT on the lattice can therefore be defined as an
operator mixing,

TR
μν ¼ T0

μν − C3δμν
N
g
Trϕ2: ð8Þ

C3 has to be tuned to satisfy the continuum WI up to
discretization effects when the regulator is removed.
At leading order (LO) OðgÞ (i.e., one loop) in lattice

perturbation theory, C3 is shown to be

C1 loop
3 ¼ g

a
c1 loop
3 ; ð9Þ

where

c1 loop
3 ¼

�
2 −

3

N2

��
6Z0 − 1

12

�
; ð10Þ

Z0 ¼ a
Z π

a

−π
a

d3k
ð2πÞ3

1

k̂2
¼ 0.252731…; ð11Þ

for lattice momentum k̂ ¼ 2
a sinðka=2Þ, see Sec. A 2. In the

continuum limit, a → 0, the value of C1 loop
3 diverges. To

account for this leading behavior, we define

C3 ¼
g
a
c3; ð12Þ

and by determining the value of c3 nonperturbatively, we
are able to renormalize the EMT on the lattice. As
mentioned in the Introduction, the two-loop contribution
diverges logarithmically with the IR regulator.
Before discussing the strategy to obtain the value of c3

nonperturbatively, we define an EMT correlator which will
be useful in our analysis. Consider the momentum-space
two-point correlator,

CμνðqÞ ¼
N
g
a3
X
x∈Λ

e−iq·xhTR
μνðxÞTrϕ2ð0Þi: ð13Þ
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Here q ¼ 2π
aNL

n is the momentum where n is a vector with
integer components. This particular correlator is chosen
since Trϕ2 is the lowest dimension nonvanishing scalar
operator in the theory. By inserting the definitions in
Eqs. (8) and (12), we obtain

CμνðqÞ ¼ C0
μνðqÞ −

g
a
c3δμνC2ðqÞ; ð14Þ

where

C0
μνðqÞ ¼

N
g
a3
X
x∈Λ

e−iq·xhT0
μνðxÞTrϕ2ð0Þi; ð15Þ

C2ðqÞ ¼
�
N
g

�
2

a3
X
x∈Λ

e−iq·xhTrϕ2ðxÞTrϕ2ð0Þi: ð16Þ

The superscript 0 is used to distinguish the naïvely
discretized EMT from the renormalized one.
On the lattice, the correlator CμνðqÞ has a contact term

which arises when the operators coincide in position
space; in momentum space, this manifests as a constant
(momentum-independent) contributionCμνð0Þwhich needs
to be subtracted before the proper continuum limit can be
obtained,

ĈμνðqÞ ¼ CμνðqÞ − Cμνð0Þ: ð17Þ

By dimensional counting, Cμνð0Þ has a leading a−1

divergent contribution. We therefore define

Cμνð0Þ ¼
κ

a
δμν: ð18Þ

Lattice perturbation theory at next-to-leading order (NLO)
gives the following results for the various expressions from
above (details can be found in Sec. A 3):

Ĉ1 loop
μν ðqÞ ¼ N2q

64

�
1 −

1

N2

�
πμν þOðaÞ; ð19Þ

Ĉ2 loop
μν ðqÞ ¼ −

N2q
256

geff

�
1 −

1

N2

��
2 −

3

N2

�
πμν þOðaÞ;

ð20Þ

κ ¼ −
N2

2

�
1 −

1

N2

��
6Z0 − 1

12

�
; ð21Þ

where geff ¼ g
jqj is the effective coupling, and πμν ¼ δμν −

qμqν
q2 the transverse projector. It can be seen that ĈμνðqÞ has
a leading N2q behavior; an overall q is expected from
ĈμνðqÞ being a dimension one correlator, where at LO
(i.e., one loop) there is no coupling constant dependence,

and at NLO (i.e., two loops) we encounter the first order
expansion in the effective coupling geff . In both terms, the
planar diagram contributes to the leading N2 factor,
whereas nonplanar diagrams can be seen as 1

N2 corrections
to the leading planar diagram. The fact that the finite piece
of ĈμνðqÞ is proportional to the transverse projector is a
consequence of the WI.

C. Wilson flow

From above, we see that the correlator C0
μνðqÞ contains

divergent contributions in terms of g
a c3 from the operator

mixing, as well as κ
a due to the contact term. In order to

nonperturbatively renormalize the EMT operator, we need
to isolate the contact term from the operator mixing, and we
will utilize the method of the Wilson flow [28] to achieve
this. For our scalar field ϕðxÞ, define a flowed field ρðt; xÞ
governed by the flow equations,

∂tρðt; xÞ ¼ ∂2ρðt; xÞ; ρðt; xÞjt¼0 ¼ ϕðxÞ; ð22Þ

where ∂2 ¼ P
μ ∂2

μ is the Laplacian, and t is the flow time, a
new parameter introduced into the theory. Solving by
means of Fourier transformation, one finds

ρ̃ðt; kÞ ¼ e−k
2tϕ̃ðkÞ; ð23Þ

where ρ̃ðt; kÞ is the Fourier transform of ρðt; xÞ; the flow
effectively smears the field with radius

ffiffiffiffi
4t

p
.

The Wilson flow suppresses high-momentum modes
exponentially, and thereby regulates the divergent contact
term present in the EMT correlatorC0

μνðqÞ. We are therefore
able to isolate the divergent mixing c3 from the divergent
contact term. There have been extensive discussions of
various implementations of the Wilson flow for renormal-
izing the EMT, which can be found in [12,14,23–25,35].
In our case, we are interested in determining the flowed

correlator

Cμνðt; qÞ ¼
N
g
a3
X
x∈Λ

e−iq·xhTR
μνðxÞTrρ2ðt; 0Þi; ð24Þ

at finite flow time. Here we replaced the operator
Trϕ2ðx ¼ 0Þ with the operator Trρ2ðt; x ¼ 0Þ at finite flow
time t, and kept the renormalized EMT operator TR

μνðxÞ at
flow time t ¼ 0. By definition, Cμνð0; qÞ ¼ CμνðqÞ. Since
the operator mixing c3 is local to the EMToperator TμνðxÞ,
it is not affected by replacing the probe Trϕ2ðx ¼ 0Þ with
the one at finite flow time Trρ2ðt; x ¼ 0Þ. On the other
hand, the divergent contact term Cμνðt; q ¼ 0Þ is sup-
pressed. More explicitly we similarly define

Ĉμνðt; qÞ ¼ Cμνðt; qÞ − Cμνðt; 0Þ; ð25Þ
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Cμνðt; 0Þ ¼ δμνKðtÞ: ð26Þ

As recorded in Eqs. (18) and (21), at vanishing flow time,
Kðt ¼ 0Þ ¼ κ

a. However, as calculated in Eq. (A33), at
small finite flow time,

KðtÞ ¼ ωffiffi
t

p þOð ffiffi
t

p Þ; ð27Þ

where at leading order in perturbation theory,

ω ¼ −
N2

2

�
1 −

1

N2

�� ffiffiffi
2

p

24π3=2

�
: ð28Þ

We utilize this small t expansion to remove the contact
term contribution in our correlation function in order to
obtain the value of c3. The strategy will be explained in
further detail in Sec. IV.
In analogy to Eqs. (14)–(16) we have the relations

Cμνðt; qÞ ¼ C0
μνðt; qÞ −

g
a
c3δμνC2ðt; qÞ; ð29Þ

where

C0
μνðt; qÞ ¼

N
g
a3
X
x∈Λ

e−iq·xhT0
μνðxÞTrρ2ðt; 0Þi; ð30Þ

C2ðt; qÞ ¼
�
N
g

�
2

a3
X
x∈Λ

e−iq·xhTrϕ2ðxÞTrρ2ðt; 0Þi: ð31Þ

Having defined the above correlation functions, we can
now nonperturbatively renormalize the EMT on the lattice.
The renormalization scheme is defined by first imposing
the Ward identity

q̄μĈμνðt; qÞ ¼ 0 ð32Þ

on all lattice ensembles. Here q̄ ¼ 1
a sin ðaqÞ is the lattice

momentum. This condition is imposed on specific values of
momentum aq�. This gives a value of c3 for each choice of
momentum, mass, volume, and ’t Hooft coupling. We then
extrapolate the value c3 towards the massless and infinite

volume limit to obtain c̄3. This defines a massless renorm-
alization scheme, which is independent of the volume. We
will also investigate the dependence of c3 on the value of
the ’t Hooft coupling ag. The implementation of the
scheme and the numerical fits results will be explained
in Sec. IV.

III. LATTICE SIMULATIONS

A. Simulation setup

The theory is simulated using the hybrid Monte Carlo
(HMC) algorithm [47], which was implemented using the
Grid library [48,49]. For this paper, we will focus on the
N ¼ 2 theory. The simulated volumes N3

L, ’t Hooft cou-
pling in lattice unit ag (or equivalently the dimensionless
lattice spacing), and bare masses ðamÞ2 are listed in Table I.
For each of the three ’t Hooft couplings, two bare masses in
the vicinity of the critical mass have been simulated (see
Table II).
Correlation function computations are performed using

the Hadrons library [50] and the data analysis is based on
the LatAnalyze library [51]. The data and analysis code are
available at [52–54]. Data analysis is performed using
bootstrap resampling [55], and only every 50th or 100th
trajectory is sampled in order to reduce autocorrelation. The
first 5000 trajectories are discarded to ensure the ensembles
are thermalized. A representative example of the value of
the observableM2 ¼ Trða3Px∈Λ3 ϕðxÞÞ2 across one HMC

TABLE I. For each ’t Hooft coupling ag, two bare masses are
simulated in three volumes.

ag ðamÞ2
0.1 −0.0305, −0.031
0.2 −0.061, −0.062
0.3 −0.092, −0.091

N3
L Trajectories Sample frequency

643 1,500,000 50
1283 500,000 50
2563 200,000 100

TABLE II. The critical masses ðamcÞ2 in the infinite volume
limit are calculated at NLO in lattice perturbation theory, as well
as nonperturbatively in [39], which are listed for each ’t Hooft
coupling ag. These are used in the later global fit to obtain c3 in
the massless limit.

ag One loop Two loops Nonperturbative

0.1 −0.03159 −0.03125 −0.0313408ð38Þ
0.2 −0.06318 −0.06194 −0.0622974ð98Þ
0.3 −0.09477 −0.09208 −0.092935ð16Þ

FIG. 1. Example of observable M2 ¼ Trða3 Px∈Λ3 ϕðxÞÞ2 for
ensemble with ag ¼ 0.1; NL ¼ 128; ðamÞ2 ¼ −0.031.
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simulation (ag ¼ 0.1; NL ¼ 128; ðamÞ2 ¼ −0.031) is
shown in Fig. 1.

B. Critical mass determination

To extrapolate to the massless point, the renormalized
masses of the ensembles have to be determined, which
requires the critical masses for each lattice spacing as input.
These have been determined in [39,56,57] at two loops in
lattice perturbation theory, as well as nonperturbatively by

analyzing the finite-size scaling of the Binder cumulant.
The relevant masses are summarized in Table II.

IV. RENORMALIZATION OF THE EMT

The renormalization condition Eq. (32) implies that
Ĉμνðt; qÞ is purely transverse, i.e.,

Ĉμνðt; qÞ ¼ Fðt; qÞπ̄μν ð33Þ

FIG. 2. Plots showing c3 against the inverse physical flow time 1
g
ffiffi
t

p using Eq. (40) for three ’t Hooft couplings and three volumes at
momentum ajq�l j ¼ 0.098. The red and blue data points are for the lighter and heavier mass simulations respectively, and the
corresponding error bands in the fit are from statistical uncertainty. The value of c3 is the y intercept on the fit.
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where π̄μν ¼ δμν −
q̄μq̄ν
q̄2 is the transverse projector with

lattice momentum q̄. In other words, Ĉμν vanishes in the
direction with purely longitudinal momentum. For exam-
ple, picking the momentum to be purely in the direction
ql ¼ ðq0; q1; q2Þ ¼ ð0; 0; q2Þ,

Ĉ22ðt; qlÞ ¼ 0: ð34Þ

Substituting the definition of Ĉμνðt; qlÞ from Eqs. (25)
and (29), we obtain

Ĉ22ðt; qlÞ ¼ C22ðt; qlÞ − C22ðt; 0Þ
¼ C0

22ðt; qlÞ −
g
a
c3C2ðt; qlÞ − KðtÞ ¼ 0 ð35Þ

→ c3 ¼
a
g
C0
22ðt; qlÞ

C2ðt; qlÞ
− fgðg

ffiffi
t

p
; qlÞ; ð36Þ

where

fgðg
ffiffi
t

p
; qlÞ ¼

a
g

KðtÞ
C2ðt; qlÞ

: ð37Þ

Using the one-loop perturbative expressions for KðtÞ and
C2ðt; qÞ from Eqs. (A27) and (A33), this gives

fgðg
ffiffi
t

p
; qlÞ ¼

ω0ðqlÞ
g

ffiffi
t

p þOðql
ffiffi
t

p Þ; ð38Þ

where ω0ðqÞ ¼
ffiffi
2

p ðaqÞ
3π3=2

. (Details can be found in Sec. A 4).
The strategy to obtain the value of c3 is to first flow the
correlators to a range of small finite flow times, at a fixed
momentum aq�l . Then, utilizing Eq. (36), we fit the ratio on
the left-hand side of

a
g
C0
22ðt; q�l Þ

C2ðt; q�l Þ
¼ c3 þ fgðg

ffiffi
t

p
; q�l Þ; ð39Þ

as a function of the physical flow time g
ffiffi
t

p
. We have tested

a range of fit functions for fg, and have found that the fit
ansatz

a
g
C0
22ðt; q�l Þ

C2ðt; q�l Þ
¼ c3 þ

Ω
g

ffiffi
t

p ð40Þ

provides a very good fit to the data. Here we keep the first
term linear in the inverse physical flow time 1

g
ffiffi
t

p from

Eq. (38), and leave Ω and c3 as fit parameters. From the fit
we can extrapolate c3 from the y intercept.

A. Numerical results

Picking the fit ranges for the physical flow time g
ffiffi
t

p
requires special attention. They must first be sufficiently

small to justify the small flow time expansion of Eq. (38).
This also ensures the smearing radius is sufficiently smaller
than the length of the lattice (gL ¼ gaNL) such that there
will be small finite volume contributions from the boun-
daries. The physical flow time must also be larger than the
lattice spacing (ag) such that actual smearing occurs across
lattice points. We therefore impose the range to be between
ag < g

ffiffi
t

p
< 1. We performed the analysis for four values

of momenta ajq�l j ¼ 0.049, 0.098, 0.147, 0.196.
The fits with respect to the inverse flow time for one of

the momenta ajq�l j ¼ 0.098 are shown in Fig. 2, and the fit
values of c3 for each ensemble are summarized in Table III.
In order to include the mass, volume, and lattice-spacing

dependence of the value of c3, we perform global fits using

c3ðm2
R; gL; agÞ ¼ c3 þ p0m2

R þ p1

gL
þ p2ðagÞ; ð41Þ

where m2
R ¼ ðm2 −m2

cÞ=g2 is the dimensionless renormal-
ized mass (The values of m2

c are summarized in Table II),
gL is the dimensionless length of the lattice, and ag the
dimensionless lattice spacing. As we have chosen our
simulation to have large volume, small lattice spacing,
and close to the critical mass, we believe that the linear
corrections are appropriate. In particular, since the diver-
gent mixing is a UV effect, we expect there to be small
volume dependence coming from the IR.
For the global fits, the three parameters p0, p1, p2 are

switched on individually, resulting in 2 × 2 × 2 ¼ 8 fit
models for each of the four momenta, which gives a total of

TABLE III. For each simulation, we perform the fit for the
value of c3 using Eq. (40). This table shows the fits for
momentum ajq�l j ¼ 0.098, and the flow time fit range is bounded
by ag < g

ffiffi
t

p
< 1.

ag NL ðamÞ2 ajq�l j dof χ2=dof p value c3

0.1 64 −0.0305 0.098 4 1.60 0.17 0.0531(35)
0.1 64 −0.031 0.098 3 0.15 0.93 0.0467(39)
0.1 128 −0.0305 0.098 5 0.06 1.00 0.0334(90)
0.1 128 −0.031 0.098 5 1.00 0.42 0.0445(85)
0.1 256 −0.0305 0.098 3 0.18 0.91 0.015(25)
0.1 256 −0.031 0.098 3 1.26 0.28 0.033(23)

0.2 64 −0.061 0.098 5 1.14 0.34 0.0466(23)
0.2 64 −0.062 0.098 5 1.64 0.15 0.0519(24)
0.2 128 −0.061 0.098 5 0.70 0.62 0.0464(53)
0.2 128 −0.062 0.098 5 0.67 0.65 0.0402(41)
0.2 256 −0.061 0.098 2 0.27 0.77 0.050(14)
0.2 256 −0.062 0.098 2 0.04 0.96 0.059(12)

0.3 64 −0.091 0.098 5 0.56 0.73 0.0478(19)
0.3 64 −0.092 0.098 5 0.85 0.51 0.0488(15)
0.3 128 −0.091 0.098 6 0.52 0.79 0.0484(29)
0.3 128 −0.092 0.098 5 0.85 0.52 0.0430(39)
0.3 256 −0.091 0.098 3 0.14 0.94 0.0643(97)
0.3 256 −0.092 0.098 3 0.52 0.67 0.0645(89)
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32 fit results for the value of c3. The fit values for c3 using
different models are summarized in Table IV. Figures 3 and
4 show examples of the global fits for models 1–4 for
momentum ajq�l j ¼ 0.098.

In order to estimate the final statistical and systematic
errors, we adopt the following procedure inspired by [58].
We construct the distribution of values for c3 from
global fits which does not include any parameter with
a fit value 0.5σ compatible with 0. From the 17 results
within the distribution, the central value of c3 is defined
to be the mean of the distribution, the statistical error
to be the statistical error of the mean as measured
with the bootstrap samples, and the systematic error to
be the symmetrized central 68.3% confidence interval
of the distribution. A summary of the values of c3 and
a histogram of the distribution are shown in Figures 5
and 6 respectively, along with the one-loop value c1 loop

3

from Eq. (10). This procedure yields the final result
c3 ¼ 0.0440ð16Þstatð51Þsys.
It is worth noting again that the finiteness of this

value in the infinite volume limit is a nonperturbative
feature of the theory. In perturbation theory, all terms of
Oðg2Þ are IR divergent and depend on the IR regulator;

FIG. 3. c3 global fit using model 1 for ajq�l j ¼ 0.098. The value
of c3 is plotted against 1

gL.

TABLE IV. Each global fit model is defined by including a combination of the parameters ðp0; p1; p2Þ from Eq. (41) along with the
value of c3. For reference, the one-loop perturbative value, Eq. (10), gives c1 loop

3 ≈ 0.05379.

ajq�l j Model Fit parameters c3 p0 p1 p2 χ2=dof p value

0.049 1 c3 0.0489(15) 0.49 0.18
0.049 2 c3; p0 0.0514(24) −0.129ð93Þ 0.35 0.06
0.049 3 c3; p1 0.0499(36) −0.029ð96Þ 0.53 0.26
0.049 4 c3; p2 0.0456(58) 0.014(24) 0.5 0.22
0.049 5 c3; p0; p1 0.0498(36) −0.17ð11Þ 0.07(12) 0.35 0.08
0.049 6 c3; p1; p2 0.040(16) 0.07(18) 0.031(44) 0.55 0.32
0.049 7 c3; p0; p2 0.0522(78) −0.13ð11Þ −0.003ð27Þ 0.39 0.11
0.049 8 c3; p0; p1; p2 0.041(16) −0.17ð11Þ 0.16(19) 0.026(44) 0.35 0.11

0.098 1 c3 0.04828(81) 1.4 0.25
0.098 2 c3; p0 0.0481(12) 0.009(44) 1.49 0.19
0.098 3 c3; p1 0.0469(17) 0.022(23) 1.43 0.23
0.098 4 c3; p2 0.0481(30) 0.000(12) 1.49 0.19
0.098 5 c3; p0; p1 0.0468(17) −0.038ð60Þ 0.036(32) 1.5 0.19
0.098 6 c3; p1; p2 0.0363(74) 0.072(41) 0.030(20) 1.38 0.3
0.098 7 c3; p0; p2 0.0471(48) 0.017(58) 0.003(15) 1.58 0.14
0.098 8 c3; p0; p1; p2 0.0368(76) −0.018ð62Þ 0.076(43) 0.029(21) 1.47 0.22

0.147 1 c3 0.0418(23) 0.98 0.93
0.147 2 c3; p0 0.0445(41) −0.14ð18Þ 1.01 0.86
0.147 3 c3; p1 0.0496(60) −0.25ð18Þ 0.88 0.9
0.147 4 c3; p2 0.029(10) 0.051(39) 0.91 0.95
0.147 5 c3; p0; p1 0.0497(61) −0.04ð20Þ −0.24ð20Þ 0.97 0.92
0.147 6 c3; p1; p2 0.042(25) −0.18ð30Þ 0.020(65) 0.97 0.93
0.147 7 c3; p0; p2 0.031(13) −0.04ð20Þ 0.046(44) 1 0.88
0.147 8 c3; p0; p1; p2 0.043(25) −0.03ð20Þ −0.17ð31Þ 0.018(66) 1.09 0.74

0.196 1 c3 0.0414(24) 0.33 0.08
0.196 2 c3; p0 0.0476(50) −0.36ð26Þ 0.09 0.002
0.196 3 c3; p1 0.0452(57) −0.067ð91Þ 0.29 0.09
0.196 4 c3; p2 0.034(11) 0.028(42) 0.31 0.1
0.196 5 c3; p0; p1 0.0485(63) −0.34ð28Þ −0.024ð97Þ 0.1 0.01
0.196 6 c3; p1; p2 0.042(24) −0.05ð14Þ 0.009(65) 0.34 0.17
0.196 7 c3; p0; p2 0.046(15) −0.35ð28Þ 0.007(45) 0.11 0.01
0.196 8 c3; p0; p1; p2 0.050(24) −0.34ð28Þ −0.03ð14Þ −0.004ð65Þ 0.12 0.02
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but as shown in [39] the theory is in fact nonperturba-
tively IR finite, where the dimensionful coupling effec-
tively acts as the IR regulator in the infinite volume

limit. Comparing the nonperturbative result for c3 with
the one-loop perturbative value, the nonperturbative
value is approximately 20% smaller than the one-loop

FIG. 4. c3 global fits using model 2, 3, 4 for ajq�l j ¼ 0.098. Each plot is plotted against the respective free fitting parameter for each

model, i.e., m2
R, gL, and ag; the value for c3 is the y-intercept of the fit line.

FIG. 5. The values of c3 from Table IV for models with no fit parameters which are 0.5σ compatible with 0. The red line shows the
final central result, the red and gray bands represent the statistical and systematic errors respectively. The brown dashed line shows the
one-loop perturbation theory value from Eq. (10). The fact that the nonperturbative result is close to the one-loop perturbative value is
expected due to the super-renormalizability of the theory.
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result. This is qualitatively expected, as the higher order
terms in perturbation theory (with the IR regulator
replaced by the coupling) changes sign at every order,
and the two-loop result is a correction of the opposite
sign to the one-loop value.

V. CONCLUSION AND OUTLOOK

We have presented a procedure to nonperturbatively
renormalize the EMT on the lattice for a three-dimensional
scalar QFTwith a φ4 interaction and field φ in the adjoint of
SUðNÞ. We have also presented numerical results of the
EMT operator mixing for the theory with N ¼ 2. The
method utilizes the Wilson flow to define a probe at
positive flow time, which can eliminate the divergent
contact term present in the EMT correlator. This allows
us to determine the mixing coefficient with the lower-
dimensional operator δμν

N
g Trϕ

2. This ensures that the Ward
identity can be restored in the continuum limit, up to cutoff
effects.
The context of our investigation is to predict the CMB

power spectrum for holographic cosmological models, and
to test them against observational data. The next step of the
investigation is to determine the renormalized EMT two-
point function, CμνρσðqÞ ¼ hTμνðqÞTρσð−qÞi, for this class
of scalar theories. This two-point function can be used to
compute the primordial CMB power spectra in the holo-
graphic cosmology framework. On the lattice, this corre-
lator contains a large contact term of order Oða−3Þ. This
large contact term presents significant statistical noise to
the signal of the renormalized two-point function. We are
currently exploring using the Wilson flow to eliminate the
presence of such a contact term, which will allow us to
make a fully nonperturbative prediction for the CMB power
spectra with the SUðNÞ scalar theory as the dual theory.
We are also working towards simulating and performing

the renormalization of the EMT for three-dimensional
QFTs with adjoint SUðNÞ scalars coupled to gauge fields.

This is the class of theories preferred by the fit of the
perturbative predictions to Planck data [6], and has been
extensively studied in the literature [41,59–63]. In these
theories, the lattice EMT contains more counterterms
which need to be determined. Much work has been
performed in studying the EMT on the lattice for gauge
theories [64] and gauge theories with fermions [8]. The
implementation of the Wilson flow for renormalizing
the EMT has also been studied for gauge theories
[14–21,24,35]. We are exploring related methods to
perform renormalization of the EMT for theories with
scalar fields coupled to gauge fields. This will take us
closer to fully testing the viability of holographic cosmo-
logical models as a description of the very early Universe.

The supporting data for this article are openly available
from [52–54].
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APPENDIX: LATTICE PERTURBATION
THEORY CALCULATIONS

In this appendix we present the details of the lattice
perturbation theory (LPT) calculations in Sec. II. We will

FIG. 6. Histogram of the distribution in Fig. 5. The red line
shows the final central result, the red and gray bands represent the
statistical and systematic errors respectively. The brown dashed
line shows the one-loop perturbation theory value from Eq. (10).
The fact that the nonperturbative result is close to the one-loop
perturbative value is expected due to the super-renormalizability
of the theory.

LUIGI DEL DEBBIO et al. PHYS. REV. D 103, 114501 (2021)

114501-10



first evaluate two lattice scalar integrals in Sec. A 1, which
are necessary to calculate the EMT c3 coefficient mixing in
Sec. A 2, the correlators C2ðqÞ, CμνðqÞ at vanishing flow
time in Sec. A 3, and the correlators C2ðt; qÞ, Cμνðt; qÞ at
finite flow time in Sec. A 4.

1. Massless lattice integrals: VðqÞ and IμνðqÞ
To evaluate the relevant massless lattice integrals, we

generalize the method used in [66] to three dimensions.
Using a set of recursion relations, any massless, one-loop
lattice scalar integrals in three dimensions of the form

Bεðp; nÞ ¼ lim
δ→0

Z
π=a

−π=a

d3k
ð2πÞ3

k̂2n00 k̂2n11 k̂2n22

ðk̂2 þ ε2Þpþδ
with ε ≪ 1; p ∈ Z; n ∈ Z3þ ðA1Þ

can be reduced to a linear combination of two constants,

Z0 ¼ B0ð1; f0; 0; 0gÞ ≈ 0.252731009858663 and Z1 ¼
B0ð1; f1; 1; 0gÞ

3
≈ 0.181058342883210: ðA2Þ

Here, k̂ ¼ 2
a sinðka=2Þ is the lattice momentum. These two constants have been determined to high precision using the

Lüscher-Weisz coordinate-space method [67].
The two momentum-dependent scalar lattice integrals required for the following LPT calculations are

VðqÞ ¼
Z

π=a

−π=a

d3k
ð2πÞ3

1

ðk̂2 þm2Þð dq − k2 þm2Þ
; ðA3Þ

IμνðqÞ ¼
Z

π=a

−π=a

d3k
ð2πÞ3

k̄μðq − kÞν
ðk̂2 þm2Þð dq − k2 þm2Þ

; ðA4Þ

where k̄ ¼ 1
a sinðkaÞ. By expanding the expressions in powers of the external momenta [68,69] and using the recursion

relations, in the massless limit, these evaluate to

lim
m→0

VðqÞ ¼ 1

8q
þ a

�
14Z0 þ 9Z1 − 4

96

�
þ a3q2

�
34Z0 − 9Z1 þ 4

27648

�
þOða5q4Þ; ðA5Þ

lim
m→0

IμνðqÞ ¼
δμν
a

�
1 − 6Z0

12

�
þ q
64

ð2δμν − πμνÞ þ a
�
Z0

16
δμνq2μ þ q2ð2πμν − 3δμνÞ

�
10Z0 − 9Z1 þ 4

1152

��

þ a3

552960
½4ðδμνðq41 þ q42 þ q43Þ þ 6q2q2μδμν þ 4qμqνðq2μ þ q2νÞÞð52 − 86Z0 − 117Z1Þ

þ 360δμνq4μð6Z0 þ 9Z1 − 4Þ þ q4ð4πμν − 5δμνÞð236 − 298Z0 − 531Z1Þ� þOða5q6Þ: ðA6Þ

2. EMT operator mixing: c3
Here we calculate the perturbative renormalization of Tμν on the lattice. The naïve discretization of the EMT is

T0
μν ¼

N
g
Tr

�
2ðδ̄μϕÞðδ̄νϕÞ − δμν

�X
ρ

ðδ̄ρϕÞ2 þ ðm2 −m2
cÞϕ2 þ ϕ4

�
þ ξ

�
δμν

X
ρ

ðδ̄ρϕÞ2 − ðδ̄μϕÞðδ̄νϕÞ
��

: ðA7Þ

Here the term multiplying ξ is the improvement term. Since
the improvement term is identically conserved and satisfies
the Ward identities, ξ has been taken to be 0 in the main
text. The calculations here retrace the steps taken for the 4d
case in [7].
By considering operators which have a lower dimension

than Tμν, the only operator capable of producing divergent

mixing is δμνTrϕ2. We therefore defined the renormalized
EMT in Eq. (8) as

TR
μν ¼ T0

μν − C3δμν
N
g
Trϕ2; ðA8Þ

withC3 being the divergent mixing coefficient. To calculate
the mixing coefficient perturbatively, consider the insertion
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of Tμν in the two-point correlator, i.e., hϕaðx1Þϕbðx2Þ×
Tμνðx3Þi. The one-loop diagrams are shown in Fig. 7. Both
in the continuum and on the lattice, diagram (a) in Fig. 7 is
finite, and contributes to the WI. However, for diagram (b),
as a result of the breaking of translational invariance, the
LPT result diverges, even though in the continuum the PT
result is finite (this could be calculated by replacing the
lattice momenta q̂ with the continuum momenta q, and the
integration limit by

R
∞
−∞).

Using LPT, diagram (b) in Fig. 7 evaluates to

BμνðqÞ ¼ −δab
�
2N −

3

N

��
−2IμνðqÞ þ δμν

�X
ρ

IρρðqÞ þm2VðqÞ
�
þ ξ

�
IμνðqÞ − δμν

X
ρ

IρρðqÞ
��

: ðA9Þ

Using [68], the divergent term of BμνðqÞ can be isolated
with Bμνð0Þ, while the remaining terms are finite or vanish
in the continuum limit. For ξ ¼ 0, this evaluates to

Bμνð0Þ ¼
δμν
a

�
2N −

3

N

��
6Z0 − 1

12

�

¼ C1 loop
3 N
g

δμν: ðA10Þ

Using the definition from Eq. (9),

C1 loop
3 ¼ g

a
c1 loop
3 ; ðA11Þ

to absorb the leading 1
a behavior, we obtain

c1 loop
3 ¼

�
2 −

3

N2

��
6Z0 − 1

12

�
: ðA12Þ

This gives the result in Eq. (10).

3. Correlators at vanishing flow time:
C2ðqÞ and CμνðqÞ

The first two-point correlation function to calculate is
defined in Eq. (16):

C2ðqÞ ¼
�
N
g

�
2

a3
X
x∈Λ

e−iq·xhTrϕ2ðxÞTrϕ2ð0Þi: ðA13Þ

The one- and two-loop diagrams are shown in Figs. 8(a)
and 8(b), respectively.
Note that the two-loop diagram is simply the square of

the one-loop diagram up to an overall color factor. These
diagrams evaluate to

C1 loop
2 ðqÞ ¼ trðTaTbÞtrðTcTdÞðδacδbd þ δadδbcÞVðqÞ ¼

N2

2

�
1 −

1

N2

�
VðqÞ; ðA14Þ

C2 loop
2 ðqÞ ¼ −2

�
g
N

�
trðTaTbÞtrðTcTdTeTfÞtrðTgThÞðδacð16δbdδeg þ 8δbeδdgÞδfhÞVðqÞ2

¼ −N2g

�
2 −

5

N2
þ 3

N4

�
VðqÞ2: ðA15Þ

In the massless limit, using Eq. (A5), these yield

FIG. 8. Perturbative expansion of C2ðqÞ at one and two loops.

FIG. 7. The insertion of Tμν in a two-point correlator, i.e.,
hϕaðx1Þϕbðx2ÞTμνðx3Þi, up to one loop. The black dot represents
the insertion of Tμν.
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C1 loop
2 ðqÞ ¼ N2

16g

�
1 −

1

N2

��
ðg=qÞ þ ðagÞ 14Z0 þ 9Z1 − 4

12
þ ðagÞ3ðq=gÞ2 34Z0 − 9Z1 þ 4

3456
þOððagÞ5Þ

�
; ðA16Þ

C2 loop
2 ðqÞ ¼ −

N2

64g

�
2 −

5

N2
þ 3

N4

��
ðg=qÞ2 þ ðagÞðg=qÞ

�
14Z0 þ 9Z1 − 4

6

�

þ ðagÞ2 ð14Z0 þ 9Z1 − 4Þ2
144

þ ðagÞ3ðq=gÞ
�
34Z0 − 9Z1 þ 4

1728

�
þOððagÞ4Þ

�
: ðA17Þ

Now we evaluate the correlation function in Eq. (13):

CμνðqÞ ¼
N
g
a3
X
x∈Λ

e−iq·xhTR
μνðxÞTrϕ2ð0Þi ¼ C0

μνðqÞ −
gc3
a

δμνC2ðqÞ; ðA18Þ

where

C0
μνðqÞ ¼

N
g
a3
X
x∈Λ

e−iq·xhT0
μνðxÞTrϕ2ð0Þi; ðA19Þ

C2ðqÞ ¼
�
N
g

�
2

a3
X
x∈Λ

e−iq·xhTrϕ2ðxÞTrϕ2ð0Þi: ðA20Þ

The relevant one- and two-loop diagrams for the correlator C0
μνðqÞ are shown in Figs. 9(a) and 9(b) respectively, and they

evaluate to

C0 1 loop
μν ðqÞ ¼ N2

2

�
1 −

1

N2

��
−2IμνðqÞ þ δμν

X
ρ

IρρðqÞ þ δμνm2C1 loop
2 ðqÞ

þ ξ

�
IμνðqÞ − δμν

X
ρ

IρρðqÞ
��

; ðA21Þ

C0 2 loop
μν ðqÞ ¼ −N2g

�
1 −

5

2N2
−

3

2N4

���
−2IμνðqÞ þ δμν

X
ρ

IρρðqÞ
�
VðqÞ þ δμνm2C2 loop

2 ðqÞ

þ ξ

�
IμνðqÞ − δμν

X
ρ

IρρðqÞ
�
VðqÞ

�
: ðA22Þ

At one loop, Eq. (A21), C0
μν contains only the tree-level EMT, so C1 loop

μν ¼ C0 1 loop
μν . There is no contribution coming from

the operator mixing c3, which comes with another order OðgÞ. However, the term δμν
P

ρ IρρðqÞ − 2IμνðqÞ presents a

divergent contact term at C0 1 loop
μν ð0Þ,

C0 1 loop
μν ð0Þ ¼ −

N2

2a

�
1 −

1

N2

��
6Z0 − 1

12

�
δμν

¼ κ

a
δμν: ðA23Þ

FIG. 9. Perturbative expansion of C0
μνðqÞ at one and two loops.
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The integral producing this contact term is similar to that in
c1 loop
3 in Eq. (A10), with the only difference being the color
factor. This contact term has to be subtracted before the
continuum limit of the correlator is taken.
For the two-loop expression, it can be shown that after

subtracting the correlator gc3
a δμνC

1 loop
2 ðqÞ to renormalize

the EMT from Eq. (A18), the correlator is UV finite; no
extra divergences other than the one coming from the
operator expansion appear.

4. Correlators at finite flow time: C2ðt; qÞ, Cμνðt; qÞ
At finite flow time, the lattice integrals are regulated by

the flow time t. In perturbation theory, the kernel for each

propagator has an extra exponential factor, e−tq
2

, where q is
the momentum of the propagator. We first evaluate the
correlator

C2ðt; qÞ ¼
�
N
g

�
2

a3
X
x∈Λ

e−iq·xhTrϕ2ðxÞTrρ2ðt; 0Þi ðA24Þ

at finite flow time. This correlator is obtained by replacing
Trϕ2ðxÞ with Trρ2ðt; 0Þ in C2ðqÞ. Since the regulated
correlators are finite, we look at the continuum limit
(a → 0) of the correlator in perturbation theory. At one
loop, this evaluates to

C1 loop
2 ðt; qÞ ¼ N2

16

�
1 −

1

N2

�Z
d3k
ð2πÞ3

e−tq
2

e−tðq−kÞ2

ðk2 þm2Þððq − kÞ2 þm2Þ : ðA25Þ

In the massless limit,

C1 loop
2 ðt; qÞ ¼ N2

16g

�
1 −

1

N2

��
1 −

2

π

Z
σ

0

ds
e−2s

2

ErfiðsÞ
s

��
g
q

�
; ðA26Þ

where σ ¼
ffiffiffiffiffiffiffiffiffiffiffi
tq2=2

p
, and ErfiðzÞ ¼ −iErfðizÞ is the imaginary error function, which has the series expansion ErfiðzÞ ¼

π−1=2ð2zþ 2
3
z3 þ � � �Þ about z ¼ 0. Expanding in σ, this evaluates to

C1 loop
2 ðt; qÞ ≈ N2

16g

�
1 −

1

N2

��
1þ

�
32q2t
π3

�
1=2

�
5q2t
18

− 1

���
g
q

�
þOðσ5Þ: ðA27Þ

Similarly, we look at the continuum limit of

C0
μνðt; qÞ ¼

N
g
a3
X
x∈Λ

e−iq·xhT0
μνðxÞTrρ2ðt; 0Þi ðA28Þ

at finite flow time. In the continuum limit, the EMT does not require renormalization; we can therefore drop the
0 superscript. At one loop,

C1 loop
μν ðt; qÞ ¼ N2

2

�
1 −

1

N2

�Z
d3k
ð2πÞ3

δμνk · ðq − kÞ − 2kμðq − kÞν þ ξðqμqν − δμνq2Þ
ðk2 þm2Þððq − kÞ2 þm2Þ e−tq

2

e−tðq−kÞ2 : ðA29Þ

In the massless limit, this evaluates to

C1 loop
μν ðt; qÞ ¼ −

N2

2

�
1 −

1

N2

�
q

64π3=2

� ffiffiffi
π

p
ErfiðσÞðπμνð3þ 2σ2Þ − 2δμνÞσ−4e−2σ2

þ 8
ffiffiffi
π

p ð1 − 4ξÞπμν
Z

σ

0

e−2s
2

ErfiðsÞ
s

ds

− 2ð1 − 4ξÞπ3=2πμν þ e−σ
2ð4δμν − 6πμνÞσ−3

�
ðA30Þ

where πμν ¼ δμν −
qμqν
q2 is the transverse projector. To obtain the ‘flowed contact term’ KðtÞ from Eq. (25), we utilize the fact

that the contact term is the longitudinal part of the correlator Cμνðt; qÞ. We separate the above expression for Cμνðt; qÞ into a
transverse part, Cμνðt; qÞtransverse (which is proportional to the πμν), and the remaining longitudinal part Cμνðt; qÞlongitudinal.
The transverse part
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Cμνðt; qÞtransverse ¼ −πμν
N2

2

�
1 −

1

N2

�
q

64π3=2

� ffiffiffi
π

p
ErfiðσÞð3þ 2σ2Þσ−4e−2σ2

þ 8
ffiffiffi
π

p ð1 − 4ξÞ
Z

σ

0

e−2s
2

ErfiðsÞ
s

ds

− 2ð1 − 4ξÞπ3=2 þ 6e−σ
2

σ−3
�

ðA31Þ

is finite, as ensured by the WI. The remaining longitudinal part gives

Cμνðt; qÞlongitudinal ¼ −δμν
N2

2

�
1 −

1

N2

�
q

64π3=2
½ ffiffiffi

π
p

ErfiðσÞð−2Þσ−4e−2σ2 þ 4e−σ
2

σ−3�: ðA32Þ

When expanded about σ ¼ 0, the leading-order term contributing to the contact term Cμνðt; qÞlongitudinal is

Cμνðt; qÞlongitudinal ≈ −δμν
N2

2

�
1 −

1

N2

�
q

64π3=2
8

3σ
þOðσÞ

¼ −δμν
N2

2

�
1 −

1

N2

� ffiffiffi
2

p

24π3=2
ffiffi
t

p þOðσÞ

¼ δμνKðtÞ; ðA33Þ

which gives us the result in Eq. (27).
Using Eqs. (A27) and (A32), the perturbative expression for the ratio in Eq. (37) can be calculated,

fgðg
ffiffi
t

p
; qlÞ ¼

a
g

KðtÞ
C2ðt; qlÞ

¼ −
ffiffiffi
2

p

3π3=2
aql
g

ffiffi
t

p þOðσÞ; ðA34Þ

giving the result in Eq. (38).
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