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The BABAR Collaboration data of the D0 → K0
SK

þK− process are analyzed within a quasi-two-body
factorization framework. Starting from the weak effective Hamiltonian, one has to evaluate matrix elements
of D0 transitions to two kaons for the tree amplitudes and the transitions between one kaon and two kaons
for the annihilation ones (W-exchange). In earlier studies, assuming these transitions to proceed through the
dominant intermediate resonances, we approximated them as being proportional to the kaon form factors.
Here, to obtain a good fit, one has to multiply the scalar-kaon form factors, derived from unitary relativistic
coupled-channel models or in a dispersion relation approach, by phenomenological energy-dependent
functions. The final state kaon-kaon interactions in the S-, P-, and D- waves are taken into account. All
S-wave channels are treated in a unitary way. In other respects, it is shown in a model-independent manner
that the KþK− and K̄0Kþ S-wave effective mass squared distributions, corrected for phase space, are
significantly different. At variance with the BABAR analysis, it means that the f0ð980Þ resonance must be
included in the phenomenological analysis of the D0 → K0

SK
þK− data. The best fit described in the main

text has 19 free parameters and indicates (i) the dominance of annihilation amplitudes, (ii) a large
dominance of the f0ð980Þmeson in the near threshold KþK− invariant mass distribution, and (iii) a sizable
branching fraction to the ½ρð770Þþ þ ρð1450Þþ þ ρð1700Þþ�K0

S final states. A first Appendix provides an
update of the determination of the isoscalar-scalar meson-meson amplitudes based on an enlarged set
of data embodying new precise low energy ππ data. A second Appendix proposes two alternative fits using
the scalar-kaon form factors calculated from the Muskhelishvili-Omnès dispersion relation approach.
These fits have χ2 quite close to that of the best fit but they show important contributions from both the f0
and a00 mesons and a weaker role of the ρþ mesons.

DOI: 10.1103/PhysRevD.103.114028

I. INTRODUCTION

Measurements of the D0-D̄0 mixing parameters, through
Dalitz-plot time dependent amplitude analyses of the weak
process D0 → K0

SK
þK−, have been performed by the

Belle [1] and BABAR collaborations [2]. Such studies
could help in the understanding of the origin of mixing
and may indicate the presence of new physics contribution.
As predicted by the standard model in the charm sector, the
violation of the CP symmetry should be small for these D0

decays. In Refs. [1,2] the description of the D0→K0
SK

þK−

decay amplitude has been performed using the isobar
model developed in [3], extended in [4] and [2,5]. The

isobar model has also been applied in the experimental
analysis based on the data taken from the BESIII
experiment [6,7].
The Cabibbo-Kobayashi-Maskawa (CKM) angle γ

(or ϕ3) has been evaluated from the analyses of the
B� → D0K�, with D0 → K0

Sπ
þπ− and D0 → K0

SK
þK−

decays [8–11]. This angle can be also measured using
some knowledge on the strong-phase difference between
D0 and D̄0 → K0

SK
þK− decay amplitudes obtained by the

CLEO Collaboration [12]. This method has been used by
the Belle [13], LHCb [14], and BESIII [15] collaborations.
A good knowledge of the final state meson interactions

in the D0 → K0
SK

þK− decays is important to reduce the
uncertainties in the determination of the D0-D̄0 mixing
parameters and of the CKM angle γ. The structures seen in
the Dalitz plot spectra point out to the complexity of these
final state strong interactions. Their studies can provide a
better understanding of the strange meson interactions and
of the D0 decay mechanism into K0

SK
þK−.
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The experimental analyses like that of Ref. [2] rely
mainly upon the use of the isobar model. For a given
reaction, this model has basically two fitted parameters for
each part of the decay amplitude. In this approach one can
take into account many existing resonances coupled to the
interacting pairs of mesons. In Refs. [2,5], the authors
introduce explicitly eight resonances a0ð980Þ0, a0ð980Þþ,
a0ð980Þ−, ϕð1020Þ, f2ð1270Þ, f0ð1370Þ, a0ð1450Þ0,
a0ð1450Þþ. Their analysis rely on 17 free parameters.
However, the decay amplitudes are not unitary and unitarity
is not preserved in the three-body decay channels; it is also
violated in the two-body subchannels. Furthermore, it is
difficult to differentiate the S-wave amplitudes from the
nonresonant background terms. Their interferences are
noteworthy and then some two-body branching fractions,
extracted from the data, could be unreliable. One of the
difficulty in the experimental analyses based on the isobar
model is the choice of the resonances needed to reach a
good agreement with the Dalitz plot data. In Ref. [4]
the BABAR collaboration authors have added the scalar
a0ð1450Þ to their model developed in 2005 [3]. In the
recent BESIII analysis [7] the Dalitz plot is described with
six resonances: a0ð980Þ0, a0ð980Þþ, ϕð1020Þ, a2ð1320Þþ,
a2ð1320Þ−, a0ð1450Þ−.
Extending our previous work on the D0 → K0

Sπ
þπ−

decays [16], we analyze, in the quasi-two-body factoriza-
tion framework, the D0 → K0

SK
þK− data provided by the

BABAR collaboration [2]. As in our earlier studies, we
assume that two of the three final-state mesons form a
single state which originates from a quark-antiquark, qq̄,
pair and then apply the factorization procedure to these
quasi-two-body final states. Starting from the weak effec-
tive Hamiltonian, we derive tree and annihilation
(W-meson exchange) amplitudes both being either
Cabibbo favored (CF) with c → sd̄u transition or doubly
Cabibbo suppressed (DCS) with c → dus̄ transition.
In the factorization approach, the CF and DCS ampli-

tudes are expressed as superpositions of appropriate effec-
tive coefficients and two products of two transition matrix
elements. The kaon form factors do not appear explicitly
except the isovector ones that enter in only one term of the
CF tree amplitude.1 In all other terms of our amplitudes,
one has to evaluate either, for the tree ones, the matrix
elements of D0 transitions to two-kaon states or, for the
annihilation ones, the transitions between one kaon and two
kaon-states. Similarly to previous studies [17], assuming
these transitions to proceed through the dominant inter-
mediate resonances, we have approximated them as being
proportional to the isoscalar or isovector kaon form factors.
Taking advantage of the coupling between the ππ and the

KK̄ channels and extending the derivation of the unitary
isoscalar-scalar pion form factor [18] to that of the kaon

one, two of the present authors (L. L. and R. K.) together
with two collaborators, have recently studied, in the
quasi-two-body QCD factorization approach, the B� →
KþK−K� decays [19,20]. These S-wave form factors are
derived using a unitary relativistic three coupled-channel
model including ππ, KK̄, and effective ð2πÞð2πÞ inter-
actions together with chiral symmetry constraints. They
include the contributions of the f0ð980Þ and f0ð1400Þ
resonances and require the knowledge of the isoscalar-
scalar meson-meson amplitudes from the two kaon thresh-
old to energies above the D0 mass. The parameters of
these amplitudes derived in the late nineties by three of us
(R. K., L. L., and B. L.) [21,22] have been updated using
new precise low energy ππ data together with an enlarged
set of data as is shown in Appendix A.
The calculation requires also the knowledge of a con-

tribution proportional to the isovector-scalar form factor; it
is represented by a function calculated from a unitary
model with relativistic two-coupled channel πη and KK̄
equations based on the two-channel model of the a0ð980Þ
and a0ð1450Þ resonances built in [23,24].
The vector form factors have been calculated using

vector dominance, quark model assumptions and isospin
symmetry in Ref. [25]. They receive contributions from
the vector mesons: ρð770Þ, ρð1450Þ, ρð1700Þ, ωð782Þ,
ωð1420Þ, ωð1850Þ, ϕð1020Þ, and ϕð1680Þ. The isoscalar-
tensor amplitude, saturated by the f2ð1270Þ, is described
by a relativistic Breit-Wigner term. The isovector-tensor
resonance a2ð1320Þ has a mass close to that of the
f2ð1270Þ. If the contribution of these tensor mesons are
described by relativistic Breit-Wigner components, it is
difficult to disentangle them because of the degeneracy in
their masses, widths and partial decay widths into KK̄ [26].
Consequently, as in Ref. [2], we consider only the f2ð1270Þ
to represent theDwave. It is an “effective” f2ð1270Þwhich
takes into account both tensor mesons.
In the present approach, a best fit is achieved in which

the data are reproduced with amplitudes that are optimized
notably by adjusting the isoscalar- and isovector-scalar
form factors. It is interesting then to see what could be the
outcome of a model based, for instance, on the scalar
form factors calculated from the Muskhelishvili-Omnès
dispersion relation approach [27–30]. As in our best fit
model (χ2=ndf ¼ 1.25), we have to introduce energy
dependent phenomenological functions multiplying the
scalar form factors to obtain two fits with almost as good
χ2=ndf. Branching fractions of these two alternative models
are compared to those of our best fit model.
The paper is organized as follows. A full derivation of

the D0 → K0
SK

þK− decay amplitude, in the framework
of the quasi-two-body factorization approach is given in
Sec. II. Based only on the experimental data of the BABAR
Collaboration [2] and without any model assumptions, we
show in Sec. III that the f0ð980Þ contribution, at variance
with the BABAR analysis, has to be included in the decay1See the a1ðmcÞ term of Eq. (6).
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amplitude. Section IV presents the result of our best fit to
the Dalitz plot data sample of Ref. [2]. Some discussion and
concluding remarks can be found in Sec. V. Appendix A
presents the update of the description of the ππ, K̄K and
effective ð2πÞð2πÞ S-wave isospin zero scattering ampli-
tudes. Two alternative models for the D0 → K0

SK
þK−

decay amplitude, using kaon scalar-form factors derived
from the dispersion relation approach, are presented in
Appendix B.

II. THE D0 → K0
SK

+K − DECAY AMPLITUDES IN A
FACTORIZATION FRAMEWORK

The decay amplitudes for the D0 → K0
SK

þK− process
can be evaluated as matrix elements of the effective weak
Hamiltonian [31]

Heff ¼
GFffiffiffi
2

p VCKM½C1ðμÞO1ðμÞ þ C2ðμÞO2ðμÞ� þ H:c:; ð1Þ

where the coefficients VCKM are given in terms of Cabibbo-
Kobayashi-Maskawa quark-mixing matrix elements and
GF denotes the Fermi coupling constant. The CiðμÞ are the
Wilson coefficients of the four-quark operators OiðμÞ at a
renormalization scale μ, chosen to be equal to the c-quark
massmc. The left-handed current-current operatorsO1;2ðμÞ
arise from W-boson exchange.
The transition matrix elements that occur in the present

work require two specific values of the VCKM coupling
matrix elements [16]:

Λ1 ≡ V�
csVud ¼ 1 − λ2 and Λ2 ≡ V�

cdVus ¼ −λ2; ð2Þ

where λ is the sine of the Cabibbo angle and where Λ1 is
associated to Cabibbo favored (CF) transitions while Λ2 is
associated to doubly Cabibbo suppressed (DCS) ampli-
tudes. The amplitudes are functions of the Mandelstam
invariants

s� ¼ m2
� ¼ ðp0 þ p�Þ2; s0 ¼ m2

0 ¼ ðpþ þ p−Þ2; ð3Þ

where p0, pþ, and p− are the four-momenta of the K0
S, K

þ,
and K− mesons, respectively. Energy-momentum conser-
vation implies

pD0 ¼ p0 þ pþ þ p− and

s0 þ sþ þ s− ¼ m2
D0 þm2

K0 þ 2m2
K; ð4Þ

where pD0 is the D0 four-momentum and mD0 ¼
1864.83 MeV, mK0 ¼ 497.611 MeV, and mK ¼
493.677 MeV denote the D0, K0 and charged kaon masses
(Ref. [26]).

A. Tree and annihilation CF and DCS amplitudes

The full amplitude is the superposition of two tree CF
and DCS amplitudes, TCFðs0; s−; sþÞ and TDCSðs0; s−; sþÞ
and of two annihilation (i.e., exchange of W meson
between the c and ū quarks of the D0) CF and DCS
amplitudes, ACFðs0; s−; sþÞ and ADCSðs0; s−; sþÞ. Thus,
one writes the full amplitude as

Mðs0; s−; sþÞ ¼ hK0
Sðp0ÞKþðpþÞK−ðp−ÞjHeff jD0ðpD0Þi

¼ TCFðs0; s−; sþÞ þ TDCSðs0; s−; sþÞ þ ACFðs0; s−; sþÞ þ ADCSðs0; s−; sþÞ: ð5Þ

Although the three variables s0, s−, sþ appear as arguments
of the amplitudes, all amplitudes depend only on two of
them because of the relation (4).

W
+

u

K

K−
D0

c s

_
d

s

u
_

K0
_

_
u

s
_

FIG. 1. Tree diagrams for Cabibbo favored amplitudes propor-
tional to Λ1a1 with K−½K̄0Kþ� final states.

W
+

c

u

D0

s

u

u

s

s

K

K

_ _

_

_ +

0

K−

d
_

FIG. 2. Tree diagram for Cabibbo favored amplitudes propor-
tional to Λ1a2 with K̄0½KþK−�I¼0;1

u final states.
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Assuming that the factorization approach [31–34] holds, the diagram illustrated in Fig. 1 is proportional to Λ1a1ðmcÞ
with quasi-two-body K−½K̄0Kþ�I¼1

L final states and the diagram in Fig. 2, proportional to Λ1a2ðmcÞ with quasi-two-body
K̄0½KþK−�IL with angular momentum L ¼ S, P, D and isospin I ¼ 0, 1 states, yield the tree CF amplitude TCFðs0; s−; sþÞ
which reads, with j0i denoting the vacuum state,

TCFðs0; s−; sþÞ ≃
GF

2
Λ1

X
L¼S;P;D

�
a1ðmcÞh½K̄0ðp0ÞKþðpþÞ�I¼1

L jðūdÞV−Aj0ihK−ðp−Þjðs̄cÞV−AjD0ðpD0Þi

þ a2ðmcÞ
X
I¼0;1

hK̄0ðp0Þjðs̄dÞV−Aj0ih½KþðpþÞK−ðp−Þ�IL;ujðūcÞV−AjD0ðpD0Þi
�

¼
X

L¼S;P;D

½TCF
½K̄0Kþ�1LK−ðs0; s−; sþÞ þ TCF

K̄0½KþK−�0L;u
ðs0; s−; sþÞ þ TCF

K̄0½KþK−�1L;u
ðs0; s−; sþÞ�

¼ TCF
½K̄0Kþ�1K−ðs0; s−; sþÞ þ

X
I¼0;1

TCF
K̄0½KþK−�Iuðs0; s−; sþÞ: ð6Þ

The short hand notation of the last line of Eq. (6) implies
the L summation.2 It will be used wherever necessary.
In the case of the creation of a KþK− pair we indicate by a
subscript q the qq̄ pair from which it originates (here a uū
one, as seen in Fig. 2). We shall therefore use the notation
½KþK−�IL;q and/or ½KþK−�Iq whenever necessary. We have
also introduced the short-hand notation

ðq̄qÞV−A ¼ q̄γð1 − γ5Þq ð7Þ

which will be used throughout the text (γ and γ5 are Dirac’s
matrices). In deriving Eq. (6) small CP violation effects in
K0

S decays are neglected and we use

jK0
Si ≈

1ffiffiffi
2

p ðjK0i þ jK̄0iÞ: ð8Þ

At leading order in the strong coupling constant αS, the
effective QCD factorization coefficients a1ðmcÞ and
a2ðmcÞ are expressed as

a1ðmcÞ ¼ C1ðmcÞ þ
C2ðmcÞ
NC

;

a2ðmcÞ ¼ C2ðmcÞ þ
C1ðmcÞ
NC

; ð9Þ

where NC ¼ 3 is the number of colors. Higher order vertex
and hard scattering corrections are not discussed in the
present work and we introduce effective values for these
coefficients. From now on, the simplified notation

a1 ≡ a1ðmcÞ and a2 ≡ a2ðmcÞwill be used. As in Ref. [16],
we take a1 ¼ 1.1 and a2 ¼ −0.5.
Similarly, the DCS tree amplitudes illustrated in Figs. 3

and 4, yield the amplitude TDCSðs0; s−; sþÞ

_
s

D0

s

K

K
_
u

−

0

d

u
_

K

W
+

_
s

u

c

FIG. 3. Tree diagram for doubly Cabibbo suppressed ampli-
tudes for Kþ½K0K−�I¼1 final states.

W
+

c

u

D0

u

u

s

s

K

K

K
_ _

_

_ +

−

0

s

d

FIG. 4. Tree diagram for doubly Cabibbo suppressed ampli-
tudes for K0½KþK−�I¼0;1

u final states.

2e.g.,

TCF
½K̄0Kþ�1K−ðs0; s−; sþÞ ¼

X
L¼S;P;D

TCF
½K̄0Kþ�1LK−ðs0; s−; sþÞ; etc:
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TDCSðs0; s−; sþÞ ≃
GF

2
Λ2

X
L¼S;P;D

fa1hKþðpþÞjðūsÞV−Aj0ih½K0ðp0ÞK−ðp−Þ�1Ljðd̄cÞV−AjD0ðpD0Þi

þ a2
X
I¼0;1

hK0ðp0Þjðd̄sÞV−Aj0ih½KþðpþÞK−ðp−Þ�IL;ujðūcÞV−AjD0ðpD0Þig

¼
X

L¼S;P;D

½TDCS
Kþ½K0K−�1L

ðs0; s−; sþÞ þ TDCS
K0½KþK−�0L;u

ðs0; s−; sþÞ þ TDCS
K0½KþK−�1L;u

ðs0; s−; sþÞ�

¼ TDCS
Kþ½K0K−�1ðs0; s−; sþÞ þ

X
I¼0;1

TDCS
K0½KþK−�Iuðs0; s−; sþÞ: ð10Þ

A similar derivation goes for the CF annihilation amplitudes illustrated by the diagram of Fig. 5, ACFðs0; s−; sþÞ, so that
one has3

ACFðs0; s−; sþÞ ≃
GF

2
Λ1a2

X
L¼S;P;D

�X
I¼0;1

hK̄0ðp0Þ½K−ðp−ÞKþðpþÞ�IL;sjðs̄dÞV−Aj0i

þ hK−ðpþÞ½K̄0ðp0ÞKþðp−Þ�1Ljðs̄dÞV−Aj0i
�
h0jðc̄uÞV−AjD0ðpD0Þi

¼
X

L¼S;P;D

½ACF
K−½K̄0Kþ�1L

ðs0; s−; sþÞ þ ACF
K̄0½KþK−�0L;s

ðs0; s−; sþÞ�

¼ ACF
K−½K̄0Kþ�1ðs0; s−; sþÞ þ ACF

K̄0½KþK−�0s ðs0; s−; sþÞ: ð11Þ

The corresponding DCS annihilation amplitudes, ADCSðs0; s−; sþÞ, (see Fig. 6), are easily obtained from the CF
amplitudes in Eq. (11)

ADCSðs0; s−; sþÞ ≈
GF

2
Λ2a2

X
L¼S;P;D

X
I¼0;1

½h½K−ðp−ÞKþðpþÞ�IL;sK0ðp0Þjðd̄sÞV−Aj0i

þ hKþðpþÞ½K0ðp0ÞK−ðp−Þ�1Ljðd̄sÞV−Aj0i�h0jðc̄uÞV−AjD0ðpD0Þi
¼

X
L¼S;P;D

½ADCS
Kþ½K0K−�1L

ðs0; s−; sþÞ þ ADCS
K0½KþK−�0L;s

ðs0; s−; sþÞ�

¼ ADCS
Kþ½K0K−�1ðs0; s−; sþÞ þ ADCS

K0½KþK−�0s ðs0; s−; sþÞ: ð12Þ

Let us now review in detail all the amplitudes that will have to be evaluated. We will follow closely the construction detailed
in Ref. [16].

B. Explicit tree amplitudes

In the following, starting from the expressions given in Eqs. (6) for the CF amplitudes and in (10) for the DCS ones, we
will express the different three-body matrix elements entering in the amplitudes in terms of vertex functions noted
GRS;P;D½K̄0Kþ�1ðsÞ in the case of a ½K̄0Kþ�1 final state, GRS;P;D½K0K−�1ðsÞ in the case of a ½K0K−�1 final state, and

GRS;P;D½KþK−�0;1q
ðsÞ in the case of a ½KþK−�0;1q final state. The vertex functions describe the decays into KK̄ of the possibly

present intermediate resonances RS;P;D which contribute to the process.
Further on, we will need to introduce transition form factors for which, as in Ref. [16], we will assume isospin and charge

conjugation symmetry so that the following equations arise:

3In the amplitudes (11) and (12) we neglect the terms with the quasi-two-body KþðpþÞ½K̄0ðp0ÞK−ðp−Þ�1L and
K−ðp−Þ½KþðpþÞK0ðp0Þ�1L final states. One expects a small contribution of these terms because there exist no strangeness −2
(½K̄0K−�1L� state) and þ2 (½KþK0�1L� state) resonances.
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F
D0a−

0

0 ðsÞ ¼
ffiffiffi
2

p
F
D0a0

0

0 ðsÞ;
F½K̄0Kþ�1
0 ðsÞ ¼ F½K0K−�1

0 ðsÞ;
FK̄0Kþ
1 ðsÞ ¼ −FK0K−

1 ðsÞ;
F
K−aþ

0

0 ðm2
D0Þ ¼

ffiffiffi
2

p
F
K0a0

0

0 ðm2
D0Þ;

AD0ρ−

0 ðsÞ ¼
ffiffiffi
2

p
AD0ρ0

0 ðsÞ;
AK̄0ϕ
0 ðm2

D0Þ ¼ AK0ϕ
0 ðm2

D0Þ: ð13Þ

In the above equations F0 and F1 denote scalar and vector
transition form factors of two pseudoscalar mesons while
A0’s are transition form factors of pseudoscalar and vector
mesons.

1. Scalar amplitudes

Following a derivation similar to that developed in
Ref. [16], the isoscalar-scalar CF amplitude associated to
the K̄0½KþK−�IS;u final states can be described by (see
Fig. 2)

TCF
K̄0½KþK−�0S;u

ðs0; s−; sþÞ

¼ −
GF

2
Λ1a2

fK0ffiffiffi
2

p ðm2
D0 − s0Þ

X
RS

FD0RS½KþK−�0u
0 ðm2

K0Þ

× GRS½KþK−�0uðs0ÞhRS½KþK−�0ujuūi; ð14Þ

where fK0 is the K0 decay constant and the sum over RS
runs over the possibly contributing resonances in the
isoscalar-scalar channel. It can be seen here that we
have approximated the three-body matrix element
h½KþðpþÞK−ðp−Þ�0S;ujðūcÞV−AjD0ðpD0Þi entering Eq. (6)
by the above sum over RS. It thus includes the contributions
of the f0ð500Þ, f0ð980Þ and of the f0ð1370Þ and f0ð1500Þ
resonances. The D0 to RS transition form factor entering
Eq. (14) could have a different value for each resonance RS;
here we can assume that its variation from one resonance to
the other is small and we can choose for its value that of the
transition to f0ð980Þ. Unless otherwise specified, by f0 in

FD0f0
0 ðm2

K0Þ we mean f0ð980Þ. We may parametrize the
sum overRS by introducing the isoscalar-scalar form factor,
Γn�
2 ðs0Þ, where n denotes a nonstrange quark pair and

which can be built following the method discussed in
Ref. [18]. We then apply the following approximation

X
RS

FD0RS½KþK−�0u
0 ðm2

K0ÞGRS½KþK−�0uðs0ÞhRS½KþK−�0ujuūi

¼ χn
Γn�
2 ðs0Þffiffiffi

2
p FD0f0

0 ðm2
K0Þ; ð15Þ

where χn is a constant complex factor. Hence

TCF
K̄0½KþK−�0S;u

ðs0; s−; sþÞ ¼ −
GF

2
Λ1a2fK0ðm2

D0 − s0Þ

× FD0f0
0 ðm2

K0Þ χ
n

2
Γn�
2 ðs0Þ: ð16Þ

The real transition form factor, FD0f0
0 ðm2

K0Þ, can be
obtained from Ref. [35]. This amplitude has to be asso-
ciated with the corresponding isoscalar-scalarK0½KþK−�0S;u
DCS amplitude (see Fig. 4) approximated by

TDCS
K0½KþK−�0S;u

ðs0; s−; sþÞ ¼
Λ2

Λ1

TCF
K̄0½KþK−�0S;u

ðs0; s−; sþÞ: ð17Þ

Recombining the two amplitudes (16) and (17), we have

T1 ¼ TCF
K0½KþK−�0S;u

ðs0; s−; sþÞ þ TDCS
K0½KþK−�0S;u

ðs0; s−; sþÞ

¼ −
GF

2
ðΛ1 þ Λ2Þa2fK0ðm2

D0 − s0Þ

× FD0f0
0 ðm2

K0Þ χ
n

2
Γn�
2 ðs0Þ: ð18Þ

We now turn to the three isovector-scalar tree ampli-
tudes. The isovector-scalar Kþ½K0K−�S DCS amplitude,
associated to the a0ð980Þ− and a0ð1450Þ− resonances can
be written as (see Fig. 3)

c

D0
u

s

_

W
+

u
_

u
_

s
_

s

d

K0

K+

K−

_

FIG. 5. Diagram for CF annihilation (W-exchange) amplitudes
with K̄0½KþK−�I¼0

s or K−½KþK̄0�I¼1 final states.

c

D0

u

s

_

W
+

u
_

s

d

K0

K+

K−

u
_

s
_

FIG. 6. Diagram for DCS annihilation (W-exchange) ampli-
tudes with K0½KþK−�I¼0

s or Kþ½K0K−�I¼1 final states.
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TDCS
Kþ½K0K−�1S

ðs0; s−; sþÞ

¼ −
GF

2
Λ2a1fKþðm2

D0 − s−Þ
X
RS

FD0RS½K0K−�1
0 ðm2

KÞ

× GRS½K0K−�1ðs−ÞhRS½K0K−�1jdūi; ð19Þ

the a−0 resonances being built from ūd pairs and
hRS½K0K−�1jdūi ¼ 1. In Eq. (19) fKþ denotes the charged
kaon decay constant. Parametrizing, as above, the sum over
RS as

X
RS

FD0RS½K0K−�1u
0 ðm2

KÞGRS½K0K−�1ðs−ÞhRS½K0K−�1jdūi

¼ G1ðs−ÞFD0a−
0

0 ðm2
KÞ; ð20Þ

we get

T2 ¼ TDCS
Kþ½K0K−�1S

ðs0; s−; sþÞ

¼ −
GF

2
Λ2a1fKþðm2

D0 − s−ÞFD0a−
0

0 ðm2
KÞG1ðs−Þ: ð21Þ

The functionG1ðsÞ can be built using the isospin 1 coupled
KK̄ and πη channel description of the a0ð980Þ and
a0ð1450Þ performed in Ref. [23]. As previously for the
isoscalar-scalar case, we have assumed here that the
variation of the D0 → RS transition form factor from one
resonance to the other is small and we choose it to be that
of the lowest resonance, i.e., RS ≡ a0ð980Þ−, denoted
simply a−0 .
In the case of the isovector-scalar ½K̄0Kþ�1SK− CF

amplitude [a1 term of Eq. (6)], related to the a0ð980Þþ
and a0ð1450Þþ resonances, one has4

TCF
K−½K̄0Kþ�1S

ðs0; s−; sþÞ ¼ −
GF

2
Λ1a1ðm2

D0 −m2
KÞ

m2
K −m2

K0

sþ

× FD0K−

0 ðsþÞF½K̄0Kþ�1
0 ðsþÞ; ð22Þ

where F½K̄0Kþ�1
0 ðsþÞ is the kaon isovector-scalar form factor

and denoted also as F½K̄0Kþ�1
0 ðsÞ in the second relation of

the Eqs. (13). For the transition form factor FD0K−

0 ðsþÞ,
following Ref. [36], we use the parametrization:

FD0K−

0 ðsþÞ ¼
0.78

1 − 0.38sþ=M2
V þ 0.46s2þ=M4

V
; ð23Þ

where MV ¼ 2.11 GeV. We have then

T3 ¼ TCF
½K̄0Kþ�1SK−ðs0; s−; sþÞ

¼ −
GF

2
Λ1a1ðm2

D0 −m2
KÞ

m2
K −m2

K0

sþ

× F½K̄0Kþ�1
0 ðsþÞFD0K−

0 ðsþÞ: ð24Þ

We proceed similarly for the isovector-scalar CF
K̄0½KþK−�1S;u and DCS K0½KþK−�1S;u amplitudes (see
Figs. 2 and 4). It is given by

TCF
K̄0½KþK−�1S

ðs0; s−; sþÞ

¼ −
GF

2
Λ1a2fK0ðm2

D0 − s0Þ
X
RS

FD0RS½KþK−�1u
0 ðm2

K0Þ

× GRS½KþK−�1uðs0ÞhRS½KþK−�1ujuūi; ð25Þ
where the sum over RS runs over the contributing reso-
nances in that channel, i.e., a0ð980Þ0 and a0ð1450Þ0 for
which hRS½KþK−�1ujuūi ¼ 1ffiffi

2
p . Then, we get

X
RS

FD0RS½KþK−�1u
0 ðm2

K0ÞGRS½KþK−�I¼1
u
ðs0ÞhRS½KþK−�1ujuūi

¼ 1

2
G1ðs0ÞFD0a0

0

0 ðm2
K0Þ; ð26Þ

where we assume (isospin invariance) that, to describe the
uū transition to the isovector-scalar KþK− state, it is the
same function G1ðsÞ as that introduced in Eqs. (20) for
the dū transitions to the isovector-scalar K0K− state. In
Eq. (26) a00 means a0ð980Þ0. We may now rewrite

TCF
K̄0½KþK−�1S

ðs0; s−; sþÞ

¼ −
GF

2
Λ1a2fK0ðm2

D0 − s0Þ
1

2
G1ðs0ÞFD0a0

0

0 ðm2
K0Þ: ð27Þ

In a similar way, the related isovector-scalar DCS
amplitude reads

TDCS
K0½KþK−�1S

ðs0; s−; sþÞ ¼
Λ2

Λ1

TCF
K̄0½KþK−�1S

ðs0; s−; sþÞ: ð28Þ

Recombining Eqs. (27) and (28) we get

T4¼TCF
K̄0½KþK−�1S

ðs0;s−;sþÞþTDCS
K0½KþK−�1S

ðs0;s−;sþÞ

¼−
GF

2
ðΛ1þΛ2Þa2fK0ðm2

D0 −s0Þ
1

2
G1ðs0ÞFD0a0

0

0 ðm2
K0Þ:
ð29Þ

2. Vector amplitudes

Let us now study the vector tree amplitudes associated to
the K̄0½KþK−�IP;u channel. The isoscalar-vector CF ampli-
tude can be built from the ω and ϕ resonances (see Fig. 2).
It reads

4Because of the presence of the very small mass squared
difference between the charged and neutral kaons the amplitude
(22) will give no constraint on the kaon isovector-scalar form
factor.
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TCF
K̄0½KþK−�0P

ðs0; s−; sþÞ

¼ GF

2
Λ1a2fK0ðs− − sþÞ

X
RP

AD0RP½KþK−�0u
0 ðm2

K0Þ

×mRP½KþK−�GRP½KþK−�0uðs0ÞhRP½KþK−�0ujuūi; ð30Þ

where mRP½KþK−� denotes the mass of the contributing
resonances. Now we introduce the following parametriza-

tion in terms of the kaon vector form factor F½KþK−�0u
1 ðs0Þ

and, for the same reasons as introduced in the scalar case
[Eqs. (14) and (21)]

X
RP

mRP½KþK−�A
D0RP½KþK−�0u
0 ðm2

K0ÞGRP½KþK−�0uðs0Þ

×hRP½KþK−�0ujuūi¼
1

fω
AD0ω
0 ðm2

K0ÞF½KþK−�0u
1 ðs0Þ: ð31Þ

This approximation relies on the fact that the mixing angle
of the vector meson nonet is very close to the ideal mixing
angle, θV ¼ 35.3°, so that the ϕ resonance amplitude gives
an almost null contribution. Note that fω denotes the decay
constant for the ωð782Þ meson. We have then

TCF
K̄0½KþK−�0P

ðs0; s−; sþÞ

¼ GF

2
Λ1a2ðs− − sþÞ

fK0

fω
AD0ω
0 ðm2

K0ÞF½KþK−�0u
1 ðs0Þ: ð32Þ

The associated isoscalar-vector K0½KþK−�0P;u DCS ampli-
tude is given by

TDCS
K0½KþK−�0P

ðs0; s−; sþÞ ¼
Λ2

Λ1

TCF
K̄0½KþK−�0P

ðs0; s−; sþÞ: ð33Þ

Thus, from Eqs. (32) and (33), the isoscalar-vector ampli-
tude reads

T5¼TCF
K̄0½KþK−�0P

ðs0;s−;sþÞþTDCS
K0½KþK−�0P

ðs0;s−;sþÞ

¼GF

2
ðΛ1þΛ2Þa2ðs−−sþÞ

fK0

fω
AD0ω
0 ðm2

K0ÞF½KþK−�0u
1 ðs0Þ:

ð34Þ

The isovector-vector TCF
K̄0½KþK−�1P

amplitude related to the

ρ0 resonances is given by a similar expression to Eq. (30)
(see Fig. 2)

TCF
K̄0½KþK−�1P

ðs0; s−; sþÞ ¼
GF

2
Λ1a2fK0ðs− − sþÞ

X
RP

AD0RP½KþK−�1u
0 ðm2

K0ÞmRP½KþK−�GRP½KþK−�1uðs0ÞhRP½KþK−�1juūi; ð35Þ

where hRP½KþK−�1juūi ¼ 1=
ffiffiffi
2

p
. Again, parametrizing the sum over the vertex functions by

X
RP

AD0RP½KþK−�1u
0 ðm2

K0ÞmRP½KþK−�fRP½KþK−�1GRP½KþK−�1uðs0ÞhRP½KþK−�1juūi ¼ 1

fρ
AD0ρ0

0 ðm2
K0ÞF½KþK−�1u

1 ðs0Þ; ð36Þ

where fρ is the charged ρð770Þ decay constant,

TCF
K̄0½KþK−�1P

ðs0; s−; sþÞ ¼
GF

2
Λ1a2ðs− − sþÞ

fK0

fρ
AD0ρ0

0 ðm2
K0ÞF½KþK−�1u

1 ðs0Þ: ð37Þ

Then comes the contribution of the isovector-vector K0½KþK−�1P DCS amplitude (see Fig. 4). It goes as

TDCS
K0½KþK−�1P

ðs0; s−; sþÞ ¼
Λ2

Λ1

TCF
K̄0½KþK−�1P

ðs0; s−; sþÞ; ð38Þ

so that the total isovector-vector amplitude is

T6 ¼ TCF
K̄0½KþK−�1P

ðs0; s−; sþÞ þ TDCS
K0½KþK−�1P

ðs0; s−; sþÞ

¼ GF

2
ðΛ1 þ Λ2Þa2ðs− − sþÞAD0ρ0

0 ðm2
K0Þ fK0

fρ
F½KþK−�1u
1 ðs0Þ: ð39Þ

The isovector-vector ½K̄0Kþ�1PK− CF amplitude has the expression (see Fig. 1)

TCF
½K̄0Kþ�1PK−ðs0; s−; sþÞ ¼ −

GF

2
Λ1a1

�
s0 − s− þ ðm2

D0 −m2
KÞ

m2
K0 −m2

K

sþ

�X
RP

FD0K−

1 ðsþÞGRP½K̄0Kþ�1ðsþÞhRP½K̄0Kþ�1jud̄i

ð40Þ
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where hRP½K̄0Kþ�1jud̄i ¼ 1 since it is associated to the ρð770Þþ, ρð1450Þþ, and ρð1700Þþ resonances. The sum over the
vertex functions GRP½K̄0Kþ�I¼1ðsþÞ is expressed in terms of the isovector-vector form factor FK̄0Kþ

1 ðsþÞX
RP

FD0K−

1 ðsþÞGRP½K̄0Kþ�1ðsþÞhRP½K̄0Kþ�1jud̄i ¼ FD0K−

1 ðsþÞFK̄0Kþ
1 ðsþÞ; ð41Þ

T7 ¼ TCF
½K̄0Kþ�1PK−ðs0; s−; sþÞ ¼ −

GF

2
Λ1a1

�
s0 − s− þ ðm2

D0 −m2
KÞ

m2
K0 −m2

K

sþ

�
FD0K−

1 ðsþÞF½K̄0Kþ�1
1 ðsþÞ: ð42Þ

As in Ref. [36] we parametrize FD0K−

1 ðsþÞ as follows

FD0K−

1 ðsþÞ ¼
0.78

ð1 − sþ=M2
VÞð1 − 0.24sþ=M2

VÞ
ð43Þ

with, as before in Eq. (23), MV ¼ 2.11 GeV.
The isovector-vector Kþ½K0K−�P DCS amplitude is given by (see Fig. 3)

TDCS
Kþ½K0K−�1P

ðs0; s−; sþÞ ¼
GF

2
Λ2a1

�
s0 − sþ þ ðm2

D0 −m2
KÞ

m2
K0 −m2

K

s−

�
fKþ

×
X
RP

AD0RP½K0K−�1
0 ðm2

KÞmRP
GRP½K0K−�1ðs−ÞhRP½K0K−�jdūi: ð44Þ

It is linked to the ρð770Þ−, ρð1450Þ−, and ρð1700Þ− resonances and can be reexpressed as

T8 ¼ TDCS
Kþ½K0K−�1P

ðs0; s−; sþÞ ¼
GF

2
Λ2a1

fKþ

fρ

�
s0 − sþ þ ðm2

D0 −m2
KÞ

m2
K0 −m2

K

s−

�
AD0ρ−

0 ðm2
KÞF½K0K−�1

1 ðs−Þ: ð45Þ

where we have introduced the isovector-vector form factor F½K0K−�1
1 ðs−Þ related to the sum over the vertex functions

GRP½K0K−�1ðs−Þ by
X
RP

AD0RP½K0K−�1
0 ðm2

KÞmRP
GRP½K0K−�1ðs−ÞhRP½K0K−�ujdūi ¼

1

fρ
FK0K−

1 ðs−ÞAD0ρ−

0 ðm2
KÞ ð46Þ

with hRP½K0K−�ujdūi ¼ 1, and ρ refers to ρð770Þ.

3. Tensor amplitudes

For the isoscalar-tensor amplitude K̄0½KþK−�0D;u amplitude, one can write (see Fig. 2)

TCF
K̄0½KþK−�0D

ðs0; s−; sþÞ ¼ −
GF

2
Λ1a2fK0

X
RD

FD0RD½KþK−�0uðm2
K0ÞGRD½KþK−�0uðs0; s−; sþÞhRD½KþK−�0ujuūi ð47Þ

but it will be dominated by the f2ð1270Þ resonance with mass mf2 ; it will be described by a Breit-Wigner representation.
Linking the vertex function to the form factor and using

hRD½KþK−�0ujuūi ≈ hf2ð1270Þjuūi ¼
1ffiffiffi
2

p ; ð48Þ

we have

TCF
K̄0½KþK−�0D

ðs0; s−; sþÞ ¼ −
GF

2
Λ1a2fK0

1ffiffiffi
2

p FD0f2ðm2
K0Þgf2KþK−

Dðp2;p0Þ
m2

f2
− s0 − imf2Γf2ðs0Þ

; ð49Þ
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where gf2KþK− is the coupling constant of the f2 → KþK−

transition and the function Dðp2;p0Þ is defined by

Dðp2;p0Þ ¼
1

3
ðjp2jjp0jÞ2 − ðp2 · p0Þ2: ð50Þ

The three-momenta p2;p0 are defined in the ½KþK−�
center-of-mass (c.m.) system. One has

p2 ¼ pþ ¼ −p−; jp2j ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 − 4m2

K

q
ð51Þ

and

jp0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

D0 − ð ffiffiffiffiffi
s0

p þmK0Þ2�½m2
D0 − ð ffiffiffiffiffi

s0
p −mK0Þ2�

q
2

ffiffiffiffiffi
s0

p :

ð52Þ

The scalar product p2 · p0 which enters the function
Dðp2;p0Þ is given by the relation

4p2 · p0 ¼ s− − sþ: ð53Þ

One has

gf2KþK− ¼ mf2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
60πΓf2KþK−

q5f2

s
; ð54Þ

where Γf2KþK− is the f2ð1270Þ decay constant into KþK−

and the momentum qf2 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

f2
− 4m2

K

q
. In Eq. (49),

because of the large width of the f2 meson, an energy
dependent total width Γf2ðs0Þ has been introduced (see
Eqs. (121) and (122) in Ref. [16]) such that

Γf2ðs0Þ ¼
�

q
qf2

�
5 mf2ffiffiffiffiffi

s0
p ðqf2rÞ4 þ 3ðqf2rÞ2 þ 9

ðqrÞ4 þ 3ðqrÞ2 þ 9
Γf2 ; ð55Þ

where r ¼ 4.0 GeV−1 and q≡ jp2j. In Eq. (49) the
D0 → f2 effective transition form factor FD0f2ðm2

K0Þ will
be treated as a free complex parameter.
To this amplitude one has to add the isoscalar-tensor

K0½KþK−�0D DCS amplitude given by (see Fig. 4)

TDCS
K0½KþK−�0D

ðs0; s−; sþÞ ¼
Λ2

Λ1

TCF
K̄0½KþK−�0D

ðs0; s−; sþÞ: ð56Þ

The total isoscalar-tensor amplitude then reads

T9 ¼ TCF
K̄0½KþK−�0D

ðs0; s−; sþÞ þ TDCS
K0½KþK−�0D

ðs0; s−; sþÞ

¼ −
GF

2
ðΛ1 þ Λ2Þa2fK0

1ffiffiffi
2

p FD0f2ðm2
K0Þgf2KþK−

Dðp2;p0Þ
m2

f2
− s0 − imf2Γf2ðs0Þ

: ð57Þ

C. Annihilation amplitudes

1. Scalar amplitudes

The isoscalar-scalar CF annihilation amplitude corresponding to K̄0½KþK−�0S;s final states (Fig. 5) is given by

ACF
K̄0½KþK−�0S

ðs0; s−; sþÞ ¼ −
GF

2
Λ1a2fD0ðm2

K0 − s0Þ
X
RS

FK̄0RS½KþK−�0s
0 ðm2

D0ÞGRS½KþK−�0s ðs0ÞhRS½KþK−�js̄si ð58Þ

while the isoscalar-scalar DCS amplitude corresponding to K0½KþK−�0S;s final states (Fig. 6) is

ADCS
K0½KþK−�0S

ðs0; s−; sþÞ ¼
Λ2

Λ1

ACF
K̄0½KþK−�0S

ðs0; s−; sþÞ; ð59Þ

where we have used the equality

FK0RS½KþK−�0s
0 ðm2

D0Þ ¼ FK̄0RS½KþK−�0s
0 ðm2

D0Þ: ð60Þ
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Thus the total isoscalar-scalar annihilation amplitude reads

A1 ¼ ACF
K̄0½KþK−�0S

ðs0; s−; sþÞ þ ADCS
K0½KþK−�0S

ðs0; s−; sþÞ

¼ −
GF

2
ðΛ1 þ Λ2Þa2fD0ðm2

K0 − s0Þ
X
RS

FK0RS½KþK−�0s
0 ðm2

D0ÞGRS½KþK−�ðs0ÞhRS½KþK−�js̄si: ð61Þ

Following the steps in Sec. II B it leads to

A1 ¼ −
GF

2
ðΛ1 þ Λ2Þa2fD0ðm2

K0 − s0ÞFK0f0
0 ðm2

D0Þ 1ffiffiffi
2

p χsΓs�
2 ðs0Þ; ð62Þ

where χs is a complex constant and Γs�
2 ðs0Þ is the kaon strange scalar form factor.

The isovector-scalar annihilation DCS amplitude, associated to the Kþ½K0K−�1S final states containing the a0ð980Þ− and
a0ð1450Þ−, is given by

A2 ¼ ADCS
Kþ½K0K−�1S

ðs0; s−; sþÞ ¼ −
GF

2
Λ2a2fD0ðm2

K − s−Þ
X
RS

FKþRS½K0K−�1
0 ðm2

D0ÞGRS½K0K−�1ðs−ÞhRS½K0K−�1jdūi ð63Þ

and hence with,

X
RS

FKþRS½K0K−�1
0 ðm2

D0ÞGRS½K0K−�1ðs−ÞhRS½K0K−�1jdūi ¼ F
Kþa−

0

0 ðm2
D0ÞG1ðs−Þ; ð64Þ

reads

A2 ¼ −
GF

2
Λ2a2fD0ðm2

K − s−ÞFKþa−
0

0 ðm2
D0ÞG1ðs−Þ: ð65Þ

The corresponding isovector-scalar annihilation CF amplitude associated to the K−½K̄0Kþ�1S reads

A3 ¼ ACF
K−½K̄0Kþ�1S

ðs0; s−; sþÞ ¼ −
GF

2
Λ1a2fD0ðm2

K − sþÞ
X
RS

FK−RS½K̄0Kþ�1
0 ðm2

D0ÞGRS½K̄0Kþ�1ðsþÞhRS½K̄0Kþ�1jd̄ui ð66Þ

and contains the a0ð980Þþ and a0ð1450Þþ. With the approximation

X
RS

FK−RS½K̄0Kþ�1
0 ðm2

D0ÞGRS½K̄0Kþ�1ðsþÞhRS½K̄0Kþ�1jd̄ui ¼ F
K−aþ

0

0 ðm2
D0ÞG1ðsþÞ ð67Þ

we reach

A3 ¼ −
GF

2
Λ1a2fD0ðm2

K − sþÞFK−aþ
0

0 ðm2
D0ÞG1ðsþÞ: ð68Þ

The ½KþK−�1S final states which would contain the a0ð980Þ0 and a0ð1450Þ0 mesons cannot be formed from a ss̄ pair and
thus the corresponding K0½KþK−�1S isovector-scalar DCS amplitude is zero.

2. Vector amplitudes

We now turn to the vector-annihilation amplitudes. The isoscalar-vector CF amplitude corresponding to K̄0½KþK−�0P;s
final states read (see Fig. 5)

ACF
K̄0½KþK−�0P

ðs0; s−; sþÞ ¼
GF

2
Λ1a2fD0ðs− − sþÞ

X
RP

AK̄0RP½KþK−�0s
0 ðm2

D0ÞmRP
GRP½KþK−�0s ðs0ÞhRP½KþK−�js̄si; ð69Þ
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and is associated to the ϕ mesons. It may be reexpressed as

ACF
K̄0½KþK−�0P

ðs0; s−; sþÞ ¼
GF

2
Λ1a2

fD0

fϕ
ðs− − sþÞAK̄0ϕ

0 ðm2
D0ÞF½KþK−�0s

1 ðs0Þ: ð70Þ

One has to add the associated DCS amplitude corresponding to K0½KþK−�0P;s final states (see Fig. 6); since AK̄0ϕ
0 ðm2

D0Þ ¼
AK0ϕ
0 ðm2

D0Þ we have

A4 ¼
GF

2
ðΛ1 þ Λ2Þa2

fD0

fϕ
ðs− − sþÞAK0ϕ

0 ðm2
D0ÞF½KþK−�0s

1 ðs0Þ: ð71Þ

The isovector amplitude corresponding to K−½K̄0Kþ�1P final states, which contains the ρð770Þþ, ρð1450Þþ and ρð1700Þþ
mesons,

A5 ¼ −
GF

2
Λ1a2

fD0

fρ

�
s0 − s− þ ðm2

D0 −m2
KÞðm2

K0 −m2
KÞ

sþ

�X
RP

AK−RP½K̄0Kþ�1
0 ðm2

D0ÞmRP
GRP½K̄0Kþ�1ðsþÞhRP½K̄0Kþ�jd̄ui ð72Þ

may be written as

A5 ¼ −
GF

2
Λ1a2

fD0

fρ

�
s0 − s− þ ðm2

D0 −m2
KÞðm2

K0 −m2
KÞ

sþ

�
AK−ρþ
0 ðm2

D0ÞF½K̄0Kþ�1
1 ðsþÞ: ð73Þ

Similarly, the isovector-DCS amplitude corresponding to Kþ½K0K−�1P final states reads

A6 ¼ −
GF

2
Λ2a2

fD0

fρ

�
s0 − sþ þ ðm2

D0 −m2
KÞðm2

K0 −m2
KÞ

s−

�
AKþρ−
0 ðm2

D0ÞF½K0K−�1
1 ðs−Þ: ð74Þ

It contains the ρð770Þ−, ρð1450Þ−, and ρð1700Þ− mesons.

3. Tensor amplitudes

Finally we present the tensor amplitudes. The two isoscalar CF and DCS amplitudes associated to the K̄0½KþK−�0D;s and
K0½KþK−�0D;s final states read respectively

ACF
K̄0½KþK−�0D

ðs0; s−; sþÞ ¼
GF

2
Λ1a2fD0Dðp2;p0Þ

X
RD

FK̄0RD½KþK−�0s ðm2
D0ÞGRD½KþK−�0s ðs0ÞhRD½KþK−�js̄si ð75Þ

and

ADCS
K0½KþK−�0D

ðs0; s−; sþÞ ¼
Λ2

Λ1

ACF
K̄0½KþK−�0D

ðs0; s−; sþÞ: ð76Þ

They contain the f2ð1270Þ meson. In the last equation we have used the relation

FK̄0RD½KþK−�0s ðm2
D0Þ ¼ FK0RD½KþK−�0s ðm2

D0Þ: ð77Þ

Hence the total isoscalar-tensor amplitude reads

A7 ¼ ACF
K̄0½KþK−�0D

ðs0; s−; sþÞ þ ADCS
K0½KþK−�0D

ðs0; s−; sþÞ

¼ GF

2
ðΛ1 þ Λ2Þa2fD0

1ffiffiffi
2

p FK0f2ðm2
D0Þgf2KþK−

Dðp2;p0Þ
m2

f2
− s0 − imf2Γf2ðs0Þ

: ð78Þ
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D. Combination of amplitudes

The full scalar amplitude M1ðs0Þ is built up by the isoscalar and isovector amplitudes associated to the channel
½KþK−�SK0

S with the f0 and a00 resonances [Eqs. (18), (29), and (62)]

M1ðs0Þ ¼ T1 þ A1 þ T4 ¼ Mn;I¼0
1 ðs0Þ þMs;I¼0

1 ðs0Þ þMI¼1
1 ðs0Þ; ð79Þ

In Eq. (79) the Mn;I¼0
1 ðs0Þ and Ms;I¼0

1 ðs0Þ amplitudes are associated with the isoscalars f0,

Mn;I¼0
1 ðs0Þ ¼ −

GF

2
ðΛ1 þ Λ2Þa2fK0ðm2

D0 − s0ÞFD0f0
0 ðm2

K0Þ χ
n

2
Γn�
2 ðs0Þ; ð80Þ

Ms;I¼0
1 ðs0Þ ¼ −

GF

2
ðΛ1 þ Λ2Þa2fD0ðm2

K0 − s0ÞFK0f0
0 ðm2

D0Þ χsffiffiffi
2

p Γs�
2 ðs0Þ; ð81Þ

while the MI¼1
1 ðs0Þ amplitude is associated with the isovectors a00

MI¼1
1 ðs0Þ ¼ −

GF

2
ðΛ1 þ Λ2Þa2fK0ðm2

D0 − s0ÞFD0a0
0

0 ðm2
K0Þ 1

2
G1ðs0Þ: ð82Þ

The isoscalar amplitudes corresponding to the ω mesons [Eqs. (34) and (71)] can be recombined with the isovector
amplitudes [Eq. (39)] related to the ρ0 mesons

M2 ¼ T5 þ T6 þ A4

¼ GF

2
ðΛ1 þ Λ2Þa2ðs− − sþÞ

�
fK0

fρ
AD0ρ
0 ðm2

K0ÞF½KþK−�
u ðs0Þ þ

fD0

fϕ
AK0ϕ
0 ðm2

D0ÞF½KþK−�0s
1 ðs0Þ

�
: ð83Þ

Here we have used AD0ω
0 ðm2

K0Þ=fω ≈ AD0ρ
0 ðm2

K0Þ=fρ and defined

FKþK−
u ðs0Þ ¼ F½KþK−�0u

1 þ F½KþK−�1u
1 : ð84Þ

The form factors F½KþK−�0s
1 ðs0Þ≡ FKþK−

s ðsþÞ [in Eq. (83)] and FKþK−
u ðs0Þ have been written in the forms given by Eqs. (23)

and (25) of Ref. [19], respectively. The first form factor takes contributions from the ϕð1020Þ and ϕð1680Þ resonances while
the second one from eight vector meson resonances ρð770Þ, ρð1450Þ, ρð1700Þ for the isovector part and ωð782Þ, ωð1420Þ,
ωð1680Þ for the isoscalar part, as determined in Ref. [25] for the constrained fit to kaon form factors.

Since the isovector-scalar form factor F½K̄0Kþ�1
0 ðsþÞ is related to the function G1ðsþÞ by the relation

F½K̄0Kþ�1
0 ðsþÞ ¼

G1ðsþÞ
G1ð0Þ

; ð85Þ

the isovector amplitude associated to the aþ0 resonances in the channel ½K0
SK

þ�SK− [Eqs. (24) and (68)] can be expressed as

M3ðsþÞ ¼ T3 þ A3 ¼
GF

2
Λ1

�
a1ðm2

D0 −m2
KÞ

m2
K −m2

K0

sþ
FD0K−

0 ðsþÞ
1

G1ð0Þ
þ a2fD0ðm2

K − sþÞFK−aþ
0

0 ðm2
D0Þ

�
G1ðsþÞ: ð86Þ

The amplitude associated to the ρþ resonances [Eqs. (42) and (72)] reads

M4 ¼ T7 þ A5 ¼ −
GF

2
Λ1

�
s0 − s− þ ðm2

D0 −m2
KÞ

ðm2
K0 −m2

KÞ
sþ

��
a1FD0K−

1 ðsþÞ þ a2
fD0

fρ
AK−ρþ
0 ðm2

D0Þ
�
F½K̄0Kþ�1
1 ðsþÞ:

ð87Þ

The form factor F½K̄0Kþ�1
1 ðsþÞ ¼ 2F½KþK−�1u

1 ðsþÞ gets contributions from the three ρ resonances as explained below Eq. (84).
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The isovector amplitude associated to the a−0 resonances in the channel ½K0
SK

−�SKþ [Eqs. (21) and (65)] is

M5ðs−Þ ¼ T2 þ A2 ¼ −
GF

2
Λ2½a1fKþðm2

D0 − s−ÞFD0a−
0

0 ðm2
KÞ þ a2fD0ðm2

K − s−ÞFKþa−
0

0 ðm2
D0Þ�G1ðs−Þ: ð88Þ

The isovector amplitude associated to the ρ− resonances is given by Eqs. (45) and (74)

M6 ¼ T8 þ A6 ¼
GF

2
Λ2

�
s0 − sþ þ ðm2

D0 −m2
KÞ

ðm2
K0 −m2

K

s−

���
a1

fKþ

fρ
AD0ρ−

0 ðm2
KÞ − a2

fD0

fρ
AKþρ−
0 ðm2

D0Þ
�
F½K̄0Kþ�1
1 ðs−Þ;

ð89Þ

where we have applied the relation F½K0K−�1
1 ðs−Þ ¼

F½K̄0Kþ�1
1 ðs−Þ.
Finally, the isoscalar-tensor amplitudes related to the f2

[Eqs. (57) and (78)] can be recombined to give

M7 ¼ T9 þ A7

¼ −
GF

2
ðΛ1 þ Λ2Þa2

1ffiffiffi
2

p fK0PDgf2KþK−

×
Dðp2;p0Þ

m2
f2
− s0 − imf2Γf2ðs0Þ

; ð90Þ

where

PD ¼ FD0f2ðm2
K0Þ − fD0

fK0

FK0f2ðm2
D0Þ ð91Þ

can be treated as a complex constant parameter fitted
to data.

III. NEAR THRESHOLD COMPARISON OF THE
S-WAVE K +K − AND K0

SK
+ EFFECTIVE MASS

PROJECTIONS

Our study can provide information on the S-wave
content of the K̄K effective mass densities. In the region
of low effective masses, near the K̄K thresholds, one
expects dominant contributions of the S- and P-wave
amplitudes which simplifies the partial wave analysis of
the experimental Dalitz plot distribution. This analysis
has been performed by the BABAR Collaboration for
the following three decay reactions: D0 → K̄0KþK− [3],
D0 → K−Kþπ0 [37], and Dþ

s → KþK−πþ [38]. In the
KþK− S-wave effective mass distributions both scalar
resonances f0ð980Þ and a0ð980Þ contribute while in the
K̄0Kþ case only the a0ð980Þþ resonance is present.
In the analyses of Refs. [2,3] the f0ð980Þ contribution

has not been introduced. A possible argument in favor of
this choice has been formulated in Ref. [3], namely the
authors have expected that the presence of the f0ð980Þ
resonance would lead to an excess in the KþK− mass

spectrum with respect to K̄0Kþ. However, based on the
limited statistics of 12540 events they have observed that
both K̄K spectra are approximately equal. Below, using a
much larger sample of about 80000 signal events [2], we
show that the KþK− and K̄K spectra in D0 decays into
K0

SK
þK− are significantly different for low K̄K effective

masses. Thus, the contribution of the f0ð980Þ resonance is
required to obtain a good description of the data of Ref. [2].
To proceed further, the definitions of the K̄K effective

S-wave mass distributions corrected for phase space are
needed. If we denote by Nðs0; sþÞ the number of events of
the D0 → K̄0KþK− reaction, the corresponding Dalitz-plot
density distribution is given by d2Nðs0; sþÞ=ds0dsþ. The
K0

SK
þ effective mass squared distribution corrected for

phase space can be then defined as

dnK0
SK

þðsþÞ
dsþ

¼ 1

s0max−s0min

Z
s0max

s0min

d2Nðs0;sþÞ
ds0dsþ

ds0; ð92Þ

where s0max and s0min are the maximum and minimum s0
values at fixed sþ. If we limit ourselves to the low sþ values
(for example, up to about 1.05 GeV2) then to a good
accuracy the above distribution corresponds to the S-wave
part of the total decay amplitude related to the isovector-
scalar a0ð980Þþ resonance. The reason is that the dominant
P-wave contribution, related to the ϕð1020Þ resonance, is
only present in the KþK− decay channel. Moreover, the
low-mass K0

SK
þ and KþK− distributions are very well

separated on the Dalitz plot [2].
For the low effective KþK− masses one has to subtract

the P-wave contribution. Following Ref. [3], this can be
done by calculating the spherical harmonic moments

ffiffiffiffiffiffi
4π

p
hY0

0ðs0Þi ¼
Z

sþmax

sþmin

d2N
ds0dsþ

dsþ ð93Þ

and

ffiffiffiffiffiffi
4π

p
hY2

0ðs0Þi ¼
ffiffiffi
5

p Z
sþmax

sþmin

P2ðcos θÞ
d2N

ds0dsþ
dsþ; ð94Þ
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with

P2ðcos θÞ ¼
1

2
ð3 cos2 θ − 1Þ; ð95Þ

and where θ is the helicity angle of the K0
S meson defined

with respect to the Kþ direction in the KþK− center-of-
mass frame, sþmax and sþmin being the maximum and
minimum sþ values at fixed s0. The S-wave KþK−

effective mass squared distribution corrected for phase
space is then defined as

dnKþK−ðs0Þ
ds0

¼
ffiffiffiffiffiffi
4π

p

sþmax − sþmin

�
hY0

0ðs0Þi −
ffiffiffi
5

p

2
hY2

0ðs0Þi
�
:

ð96Þ

For completeness we give below the kinematical relation
for the cosine of the helicity angle

cos θ ¼ s− − sþ
sþmax − sþmin

; where

sþmax − sþmin ¼ 4jpþjjp0j; ð97Þ

with jpþj and jp0j defined by Eqs. (51) and (52),
respectively.

We have performed a simplified partial wave analysis
of the BABAR data published in Ref. [2]. As described
above, only the S- and P-waves have been included and
the effective K0

SK
þ and KþK− masses were smaller than

1.05 GeV2. The number of signal events of the D0 →
K̄0KþK− decays was 79900� 300. Based on the Dalitz
plot density distributions corrected for reconstruction
efficiency and background, the S-wave K0

SK
þ and

KþK− effective mass distribution corrected for phase space
are calculated using Eqs. (92) and (96).
The comparison of the calculated S-wave KþK− and

K̄0Kþ distributions is shown in Fig. 7. In the left panel (a) a
clear surplus of the K̄0Kþ distribution over the KþK− one
is seen below 1.02 GeV. AbovemKK ¼ 1.02 GeV the open
circles corresponding to K̄0Kþ spectrum are in majority
located below the closed circles (KþK− events), so we
observe a crossing of the two distributions. This effect is
statistically significant. It was not so clear in 2005 when the
first set of the BABAR data was published. But even then,
in Fig. 8 of Ref. [3], one can see the same cross-over
tendency as in Fig. 7 although the statistics was lower by a
factor larger than 6. In the right panel (b), one sees that
unrenormalized K̄0Kþ distribution is lower than the KþK−

distribution by a factor of about 4. The lines show the
corresponding theoretical distributions based on the best fit
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FIG. 7. Comparison of KþK− and K̄0Kþ S-wave effective mass squared distributions corrected for phase space as functions of the
variablemKK in bins of 2 MeV [see Eqs. (92) and (96)]. The variablemKK is equal to mK0

SK
þ for the K̄0Kþ data points (open red circles)

or equal to m0 for the KþK− data points (filled black circles). In the left panel (a) the K̄0Kþ distribution is normalized to the number of
events of the KþK− distribution when integrated over mKK from the KþK− threshold up to 1.05 GeV. In the right panel (b) the K̄0Kþ
distribution has not been renormalized. The curves correspond to the theoretical model calculations (see Sec. IV).
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to the Dalitz plot density distributions described in the
next section.5

In conclusion, the shape of theKþK− and K̄0Kþ S-wave
effective mass squared distributions, corrected for phase
space, is significantly different, so in the phenomenological
analysis of the D0 → K̄0KþK− data one cannot neglect the
f0ð980Þ contribution in the decay amplitude.

IV. RESULTS AND DISCUSSION

The differential branching fraction or the Dalitz plot
density distribution is defined as

d2Br
dsþds0

¼ jMj2
32ð2πÞ3m3

D0ΓD0

; ð98Þ

where M ¼ P
7
i¼1 Mi is the decay amplitude for the

process studied and ΓD0 is the D0 width. The decay
amplitudes Mi have been derived in Sec. II. In Table I
one can find some constant parameters which appear in
these amplitudes.
To make a comparison of experimental data with model

predictions the Dalitz diagram has been divided into five
regions as shown in Fig. 8. The dimensions in different
regions have been adjusted to the density of experimental
events. This has been done in two steps. In the first step the
units u0¼8.94×10−4GeV2 and uþ ¼ 8.97 × 10−4 GeV2

corresponding to the one thousand of the full kinematic
range of the variables s0 and sþ have been chosen. A small
difference between u0 and uþ comes form the difference
between theK0

S andK
þ masses. The cells in the ranges I, III

and IV have the dimensions 11u0 × 11uþ while in the
range II the cells are larger having the dimensions
41u0 × 41uþ. Because of the high density of experimental
events around the position of the ϕð1020Þ resonance,
the cells in the narrow range V have the dimensions
1u0 × 35uþ. In the second step we have checked whether
the experimental number of events in a given cell was
higher than ten. When this was not the case the adjacent

cells have been combined together to group a sufficient
number of events in an enlarged cell. Altogether the total
number of cells was equal to Ncells ¼ 1196 (including 164
enlarged cells). The cell numbers in the regions I, II, III, IV,
and V were equal to 135, 282, 242, 187, and 350,
respectively.
The fit of the model parameters to the experimental data

has been performed using the χ2tot function defined as a sum
of two components:

χ2tot ¼
XNcells

i¼1

χ2i þ χ2Br: ð99Þ

The value of χ2i for each cell i has been defined as in
Ref. [40]:

χ2i ¼ 2

�
Nexp

i − Nth
i þ Nth

i ln

�
Nth

i

Nexp
i

��
; ð100Þ

where Nexp
i is a number of experimental signal events in the

cell i corrected for the reconstruction efficiency and Nth
i is

the theoretical number of events in the same cell.6 Including
the above corrections one gets the total number of exper-
imental events equal to Nexp ¼ 80379. The total number of
theoretical events is then taken equal to Nexp.

TABLE I. Values of coupling constants (in GeV) and the fixed
form factors.

Parameter Value Reference

fK0 ¼ fKþ 0.1561 [16]
fρ 0.209 [34]
fϕ 0.22 [39]
fD0 0.2067 [16]

FD0f0
0 ðm2

K0Þ ¼ F
D0a0

0

0 ðm2
K0Þ 0.18 [35]

AD0ρ0

0 ðm2
K0Þ 0.7 [16]
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FIG. 8. Partition of the Dalitz contour into five regions.
Different sizes of the (sþ; s0) cells are shown.

5These distributions are also relatively well described by the
two alternative models given in the Appendix B except for the
two first data point of the mKK distribution.

6The efficiency and the signal distributions on the Dalitz
diagram have been provided to us by Fernando Martinez-Vidal
[2]. The samples of the D0 and D̄0 decays into K0

SK
þK− have

been combined.
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The second component of the χ2 function is given by

χ2Br ¼ w

�
Brexp − Brth

ΔBrexp

�
2

: ð101Þ

In our fit the experimental branching ratio for the
decay D0 → K0

SK
þK− has been taken equal to Brexp ¼

4.45 × 10−3 and its error ΔBrexp ¼ 0.34 × 10−3. These
values agree well with recent values of the Particle Data
Group [26]. The theoretical branching fraction Brth is
obtained from Eq. (98) after integrations of d2Br

dsþds0
over

the variables sþ and s0. The weight factor w in our fit has
been set to 100 in order to obtain a good agreement of the
theoretical branching fraction with its experimental value.
We have performed many fits with our model using

different parameter sets. The best fit χ2 ¼ 1474.4 has been
obtained with the nineteen free parameters which are
displayed in Table II. Since the number of degrees of
freedom is ndf ¼ 1196–19 ¼ 1177, the χ2 per degree of
freedom is χ2=ndf ¼ 1.25.
The value of the constant jχnj has been estimated using a

relation derived similarly as Eq. (18) in Ref. [41] in which
the coupling constants of the f0ð980Þ resonance to the
KþK− pair are taken into account instead of the f0ð980Þ
coupling to the ππ system. However, in the present case
one has to include two close f0ð980Þ poles sitting on the
sheets (−þ −) and (−þþ) (for their complex energy
positions, ER1

and ER2
, see Table IX in Appendix A). One

can generalize Eq. (18) from Ref. [41], valid for the pole
position of a single resonance, to the case of two close
resonances:

jχnj ≈ 1

jΓn
2ðs0Þj

				 gR1KþK−

E2
R1

− s0
þ gR2KþK−

E2
R2

− s0

				; ð102Þ

where gR1KþK− and gR2KþK− are the coupling constants of
the two f0 resonances to KþK−. If one takes the effective
KþK− mass in the range between 960 MeV and 990 MeV
then using Eq. (102) the averaged value of jχnj calculated in
this range is 22.5 GeV−1.
The magnitude of the χs parameter is taken equal to that

of jχnj and its phase is set to zero. The reason for this choice
is the presence of the undetermined complex value of the

form factor FK0f0
0 ðm2

D0Þ which is multiplied by χs in the

M1 amplitude. The FK0f0
0 ðm2

D0Þ value results from the fit
to data.
The form factors Γn

2ðs0Þ and Γs
2ðs0Þ have been calculated

in a three-channel model of meson-meson interactions
(ππ, KK̄ and an effective 2π2π), introduced in Ref. [18].
These form factors depend not only on the values of the
meson-meson parameters listed in Table VIII in
Appendix A but also on two other parameters κ and c
defined by Eqs. (28) and (39) in Ref. [18], respectively.
Their values κ ¼ 2807.3 MeV and c ¼ 0.109 GeV−4 have
been fitted to the B� → K�KþK− decay data analyzed
in Ref. [20].
In Fig. 9 we show the effective energy dependence E of

moduli and phases of the KK̄ isoscalar-scalar nonstrange
Γn
2ðEÞ and strange Γs

2ðEÞ form factors. The energy E is
equal to the square root of s.
In the above model the kaon threshold energy was set

equal to the sum of the charged and neutral kaon masses.
However, the M1 amplitude corresponds to the isoscalar
KþK− S-wave state with a threshold lower by about
3.9 MeV in comparison with the KþK0

S threshold energy.
In order to take this effect into account in an approximate
way, we introduce the variable

s̄0 ¼ s0
sav
sth

with sth ¼ 4m2
K and the correction factor is sav=sth ¼

1.008172. The kaon form factors have to be evaluated at
this argument, i.e., Γn

2ðs̄0Þ and Γs
2ðs̄0Þ. To improve the

quality of the data fit the form factors Γn
2ðs̄0Þ and Γs

2ðs̄0Þ
have been multiplied by the function

Pðs0Þ ¼
1 − s0−sth

s0−sth
1þ bs30

; ð103Þ

where s0 is a new parameter which is fitted to the data (see
Table II). It corresponds to a zero of Pðs0Þ. The third order
polynomial in the denominator, with the constant b fixed to
0.0154 GeV−6, is introduced in order to control asymp-
totically the high energy behavior of the M1 amplitude.
This denominator replaces the denominator ð1þ cE4Þ with

TABLE II. Parameters of our model amplitudes and their errors.
Phases are given in radians.

Parameter Modulus Phase

χn 22.5 GeV−1 fixed 2.22þ0.82
−0.98

FK0f0
0 ðm2

D0Þ 2.22þ0.26
−0.17 2.21� 0.10

r2 ð5634þ509
−560 Þ GeV3=2

r1=r2 0.88� 0.01
s0 ð1.558þ0.016

−0.014 Þ GeV2

p1 ð−1.84� 0.01Þ GeV−2

p2 ð1.09� 0.01Þ GeV−4

p3 −ð0.212� 0.004Þ GeV−6

F
K−aþ

0

0 ðm2
D0Þ 0.25þ0.02

−0.03 5.33þ0.12
−0.08

AK0ϕ
0 ðm2

D0Þ 0.985� 0.007 3.67þ0.12
−0.09

Mϕ ð1019.58� 0.02Þ MeV
Γϕ ð4.72� 0.04Þ MeV

AK−ρþ
0 ðm2

D0Þ 9.38þ0.63
−0.58 5.01þ0.06

−0.05

PD 5.52þ1.25
−1.24 3.97þ0.23

−0.25
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E ¼ ffiffiffiffiffi
s0

p
in Eq. (39) of [18]. A plot of the function (103)

used in our fit is shown as the continuous black line denoted
RBF in Fig. 16(a) where it is compared to the corresponding
functions used in the two alternative fits MOP1ðP2Þ
described in Appendix B. This function reduces the moduli
of the amplitudes which depend on the isoscalar-scalar
form factors.
The masses and widths of the isovector-scalar resonan-

ces a0ð980Þ and a0ð1450Þ are presented in Table III. They
have been fixed during the minimization of the χ2 function.
The parameters of the a0ð1450Þ on sheet (−−) were taken
from Ref. [26]. However, we have studied the influence of
the position of the a0ð980Þ pole on sheet (−þ) in the
complex energy domain on the χ2 minimum curve. In this
way the a0ð980Þ mass and width on sheet (−þ) have been
determined together with an estimation of their errors. The
masses and widths of other two associated a0 poles are also
given in Table III.
The coupled channel model of the a0ð980Þ and a0ð1450Þ

resonances described in Ref. [23] has been implemented.
There, the separable πη and KK̄ interactions have been
used in the calculation of the S-wave isospin one scattering
amplitudes. Altogether the model has five parameters: two
range parameters β1 and β2, two channel coupling con-
stants λ1 and λ2, and the interchannel coupling constant λ12
(here the channel πη is labeled by 1 and the channel KK̄
by 2). The potential parameters are given in Table IV.

There exist direct numerical relations between the four
parameters describing the positions of the a0ð980Þ and
a0ð1450Þ resonances in the complex energy plane
(Table III) and the four potential parameters β1, λ1, λ2
and λ12 at fixed value of the fifth parameter β2. These
relations are given in Ref. [42].
The function G1ðsÞ is introduced to describe a transition

from the uū pair to the KK̄ spin zero isospin one state. Two
isovector-scalar resonances a0ð980Þ and a0ð1450Þ can be
formed during that transition. Both resonances are also
coupled to the πη state. Therefore it is natural to consider
three cases for the transition from the uū pair to theKK̄ state.
In the first case the KK̄ pair is directly formed from the uū
pair. In the second case the KK̄ pair undergoes the elastic
rescattering in the final state. In the third case the intermediate
πη pair is formed and then the inelastic transition to the KK̄
state takes place. The interaction between the meson-meson
pairs is treated in the framework of the separable potential
model fully described in Ref. [42] and used to study the
properties of the a0 resonances (Refs. [23,24]).
Below we briefly derive the dependence of the G1ðsÞ

function on the meson-meson transition amplitudes.
Labelling by 1 the πη channel and by 2 the KK̄ channel,
one can express G1ðsÞ as a superposition of three terms:

G1ðsÞ ¼ R2ðsÞ þ I22ðsÞ þ I12ðsÞ; ð104Þ

TABLE III. Parameters of resonances a0ð980Þ and a0ð1450Þ.
Mass (MeV) Width (MeV) Riemann sheet

a0ð980Þ 979þ3
−2 25þ8

−6 −þ
a0ð980Þ 959 34 −−
a0ð1450Þ 1474 132 −−
a0ð1450Þ 1470 91 −þ
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FIG. 9. (a) moduli of the isoscalar-scalar kaon nonstrange Γn
2ðEÞ (solid line) and strange Γs

2ðEÞ (dashed line) form factors; (b) the
corresponding phases.

TABLE IV. Potential parameters of the KK̄ S-wave isospin one
interaction.

β1 21.662 GeV
β2 21.831 GeV
λ1 −2.9850 × 10−2

λ2 −6.7977 × 10−2

λ212 2.2142 × 10−7
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where

R2ðsÞ ¼ r2WðsÞg2ðk2Þ; ð105Þ

I22ðsÞ ¼ r2WðsÞT22ðsÞ
g2ðk2Þ

C2ðsÞ; ð106Þ

I12ðsÞ ¼ r1WðsÞT12ðsÞ
g1ðk1Þ

C1ðsÞ: ð107Þ

Here r1 and r2 are the coupling constants corresponding to
the uū transitions to the πη andKK̄ states, respectively. The
function WðsÞ is the third-degree polynomial

WðsÞ ¼ 1þ p1sþ p2s2 þ p3s3: ð108Þ

where p1, p2 and p3 are the real parameters included in the
list of the model free parameters (see Table II). We keep the
samepj; j ¼ 1, 2, 3, parameters for both channels. The fitted
polynomial Wðs0Þ is plotted as the continuous black line in
Fig. 16(b) where it is compared to the polynomial PFðs0Þ
defined by Eq. (B1) and used in the alternative MOP1ðP2Þ fits
discussed in Appendix B. The introduction of these poly-
nomials improves the quality of the χ2 fit, in particular in the
region II where the density of events is small. The functions
giðkiÞ; i ¼ 1, 2, are the vertex functions

giðkiÞ ¼
ffiffiffiffiffiffi
2π

mi

s
1

k2i þ β2i
; ð109Þ

wheremi are the channel reduced masses, ki are the channel
momenta and βi are the range parameters. In the πη channel
m1 ¼ mπmη=ðmπ þmηÞ, in the KK̄ channel m2 ¼ mK=2.
We take the neutral π mass mπ ¼ 134.977 MeV and
mη ¼ 547.862 MeV. The function T22ðsÞ in Eq. (106) is
the elastic KK̄ scattering amplitude and T12ðsÞ in Eq. (107)

denotes the transition amplitude from the πη channel to the
KK̄ channel. In Eq. (106) one finds the integral

C2ðsÞ ¼
Z

d3p
ð2πÞ3

g22ðpÞ
Eþ iϵ − 2EKðpÞ

ð110Þ

and in Eq. (107) we have

C1ðsÞ ¼
Z

d3p
ð2πÞ3

g21ðpÞ
Eþ iϵ − EπðpÞ − EηðpÞ

; ð111Þ

where the energies are defined as E ¼ ffiffiffi
s

p
, EKðpÞ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2þm2
K

p
, EπðpÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

π

p
, and EηðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

η

q
.

The modulus and the phase of the resulting G1ðsÞ function
are plotted in Figs. 10(a) and 10(b), respectively.
The importance of the annihilation diagrams in the

description of the experimental data should be here under-
lined. The annihilation terms, proportional to fD0 , are
present in all the decay amplitudes Mi and their magni-
tudes strongly dominate over other amplitudes which
contribute to the total decay amplitude. The annihilation
amplitudes depend on the appropriate form factors calcu-
lated for the momentum transfer squared m2

D0 . These fitted
form factors are given in the second, ninth, tenth, and
thirteenth rows of Table II.
The mass and the width of the ϕð1020Þ resonance seen in

Table II are in agreement with the corresponding BABAR
values of ð1019.55� 0.02Þ MeV and ð4.60� 0.04Þ MeV,
respectively [2]. The obtained width is higher, by about
0.5 MeV, than the averaged value of ð4.249� 0.013Þ MeV
given by the Particle Data Group in Ref. [26]. This can be
explained by a finite experimental energy resolution.

The branching fraction distributions d2Bri
dsþds0

corresponding

to the amplitudes Mi, i ¼ 1;…; 7 are obtained if in
Eq. (98) the amplitude M is replaced by Mi. One can

also define the off-diagonal elements d2Brij
dsþds0

, i ≠ j,
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FIG. 10. (a) modulus of the G1ðsÞ function normalized to 1 at the KþK− threshold; (b) phase of the G1ðsÞ function (E ¼ ffiffiffi
s

p
). At

threshold G1ðsthÞ ¼ 304.69 GeV−1.
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d2Brij
dsþds0

¼ Re½M�
iMj�

32ð2πÞ3m3
D0ΓD0

: ð112Þ

If we integrate over sþ and s0 the differential branching

fractions d2Br
dsþds0

, d2Bri
dsþds0

, and d2Brij
dsþds0

then we get the corre-

sponding branching fractions Br, Bri, i ¼ 1 to 7 or the off-
diagonal elements Brij, where i ≠ j. The matrix Brij is
symmetric: Brij ¼ Brji.
In Table V we give uncertainties of the branching

fractions. They have been obtained by choosing 10 000
different combinations of the 19 model parameters. The
parameters values have been generated from the Gaussian
distributions taking into account the parameter uncertain-
ties written in Table II and some correlations between
the parameters in the amplitudes M1 and M3. Then the
branching fraction uncertainties have been obtained from
the distributions of the 10 000 values of each branching
fraction and of their sum.
Let us notice the particularly large uncertainties of the

branching fraction Br1 ¼ 60.9þ24.4
−10.6%. This is due to the fact

that the amplitude M1 consists of three components and
contains 9 free parameters.
As seen in Table V the largest contribution (near 61%) to

the summed branching fraction Br ¼ P
7
i¼1 Bri comes from

the first amplitude M1. It corresponds to the quasi-two-
body channel consisting of K0

S and the KþK− pair in the
S-wave. The second contribution (near 46%) to the inte-
grated branching fraction Br is due to the amplitudeM2. In
this case the KþK− pair is in the P-wave and its major part
is related to the ϕð1020Þ resonance. This resonance largely
dominates in the region V of the Dalitz diagram.
There are two almost equal contributions of about 21%

from the channels ½K0
SK

þ�SK− and ½K0
SK

þ�PK− (ampli-
tudes M3 and M4, respectively). The M3 amplitude
can be related to a presence of the two isovector-scalar
resonances a0ð980Þ and a0ð1450Þ. As seen in Table III the
mass of the resonance a0ð980Þ equal to 979þ3

−2 on sheet −þ
is lower than the K0

SK
þ threshold mass of about

991.3 MeV. However, due its finite width of 25þ8
−6 MeV,

this resonance, together with the second a0ð980Þ resonance
on sheet −− at ð959 − i34Þ MeV, can strongly influence
the near threshold sþ range of the Dalitz plot density
distribution. On the other hand, the mass of the a0ð1450Þ
resonance lies above the upper range of the K0

SK
þ effective

mass close to 1371 MeV. However, the a0ð1450Þ reso-
nances are wide and they can also affect the distribution of
the D0 → KþK−K0

S events on the Dalitz plot.
The contribution of the quasi-two body channel

½K0
SK

þ�PK− is related to nonzero couplings of the P-wave
resonances ρð770Þþ, ρð1450Þþ and ρð1700Þþ to K0

SK
þ.

Although the ρð770Þþ mass lies below the K0
SK

þ threshold
its width is sufficiently large to influence the differential
density distribution of the Dalitz plot for sþ values above
the threshold. The ρð1450Þþ width is even larger than that
of ρð770Þþ, so the whole sþ range on the Dalitz plot is
sensitive to the strength of its coupling toK0

SK
þ. The above

three ρ resonances, being wide, cannot create a clear
structure or a well distinguished band on the Dalitz plot.
This could be a reason why they have not been included in
the isobar model analyses [2,3].
These results can be compared to the results of the

experimental analysis which finds a summed branching
fraction of 163.4%, mainly with 71.1% coming from the
a0ð980Þ0 and a0ð1450Þ0, 44.1% from the ϕð1020Þ reso-
nance and 45.1% from the a0ð980Þþ and a0ð1450Þþ.
In Table VI the diagonal branching fraction terms

already shown in Table V are given together with the
off-diagonal terms Brij. The sum of the off-diagonal terms
equals to −49.53%. One should remark here that some off-
diagonal terms are exactly equal to zero. This is due to the
orthogonality of certain wave functions. For example, the
interference term Br12 vanishes since the wave functions of
the S- and P-states of the KþK− system are orthogonal.
Due to the matrix symmetry the elements of the branching
fractions below the diagonal are not written.
The amplitude M1 is a sum of three terms [see

Eqs. (79)–(82)]. The first isoscalar term is proportional
to the conjugated kaon nonstrange scalar form factor
Γ�n
2 ðs0Þ and the second one to the conjugated kaon strange

scalar form factor Γ�s
2 ðs0Þ. The third term is proportional to

TABLE V. Branching fractions (Br) for different quasi-two-
body channels in the best fit to the BABAR data [2].

Amplitude Channel Bri (%)

M1 ½KþK−�SK0
S 60.9þ24.4

−10.6
M2 ½KþK−�PK0

S 45.5� 0.7
M3 ½K0

SK
þ�SK− 20.7þ9.4

−6.0
M4 ½K0

SK
þ�PK− 21.5þ3.1

−2.8
M5 ½K0

SK
−�SKþ 0.76þ0.18

−0.15
M6 ½K0

SK
−�PKþ 0.08� 0.01

M7 ½KþK−�DK0
S 0.05� 0.02P

i¼1;7 Bri 149.5þ26.9
−12.3

TABLE VI. Matrix of the branching fractions components Brij
[Eq. (112)] for the best fit to the BABAR data [2]. All numbers are
in per cent.

M1 M2 M3 M4 M5 M6 M7

M1 60.92 0.00 2.99 −20.76 −2.49 −0.69 0.00
M2 45.52 −3.37 −1.29 −0.66 −0.06 0.00
M3 20.73 0.00 −0.21 0.52 0.13
M4 21.47 0.61 0.58 −0.06
M5 0.76 0.00 0.01
M6 0.08 0.00
M7 0.05

DEDONDER, KAMIŃSKI, LEŚNIAK, and LOISEAU PHYS. REV. D 103, 114028 (2021)

114028-20



the function G1ðs0Þ describing the transition from the uū
pair of quarks into the KþK− pair of mesons in the isospin
one and spin zero state.
In Table VII the diagonal and the off-diagonal compo-

nents of the branching fraction related to theM1 amplitude
are given. They are defined in a similar way as the Brij
components in Eq. (112). From this Table we see that
the major contribution close to 60% is related to the
strange scalar isospin zero component of the annihilation
(W-exchange) amplitude Ms;I¼0

1 . Here the isoscalar-
scalar resonances like f0ð980Þ are formed from the
strange-antistrange pair of quarks. Following the result

of the fit shown in the above Table the formation of the
isoscalar-scalar resonances from the uū quarks is sup-
pressed (the diagonal Mn;I¼0

1 branching fraction is equal
only to 1.19%). Also the branching fraction equal to 4.48%,
corresponding to the isovector-scalar amplitude MI¼1

1 , is
much smaller than that related to the Ms;I¼0

1 amplitude.
The sum of all the off-diagonal components equals to
−4.57%. A comparison of the results for this best fit model
with those for the alternative MOP1ðP2Þ ones can be found in
the Appendix B.
Dalitz plot projections or one-dimensional effective

mass squared distributions of events are calculated by a
proper integration of the two-dimensional density distri-
butions. They are shown in Fig. 11. The errors of the
experimental signal weighted event number distributions
are the statistical ones. The histograms correspond to the
theoretical distributions normalized to the same total
number of events.
The distribution in Fig. 11 a is strongly dominated by

the maximum corresponding to the ϕð1020Þ resonance
decaying to theKþK− pair. This decay is in the P-wave and
leads to a characteristic two-maximum shape of the Dalitz
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FIG. 11. Dalitz plot projections for D0 → K0
SK

þK−. The points indicate the BABAR data [2] together with their statistical errors.
Histograms represent the best fit theoretical distributions.

TABLE VII. Matrix of the branching fraction components Br
of the M1 amplitude calculated for the best fit to the BABAR
data [2]. All numbers are in per cent.

Mn;I¼0
1 Ms;I¼0

1
MI¼1

1

Mn;I¼0
1

1.19 −7.32 −0.36
Ms;I¼0

1
59.82 5.40

MI¼1
1

4.48
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plot distribution as a function of sþ—the square of the
KþK− effective mass. Since the branching fraction for the
channel ½KþK−�PK0

S is large (45.5%) the two Dalitz
projections in Figs. 11(b) and 11(c) have a two-maximum
character. There are also two other important contributions
related to the amplitudes M1 and M3. However, they do
not produce any pronounced structures on the Dalitz plot
since both are due to the S-wave in the KþK− or in the
K0

SK
þ configuration.

Finally let us discuss the low effective mass parts of the
KþK− and K0

SK
þ distributions (mKK < 1.06 GeV). Since

the differential branching fraction [Eq. (98)] is proportional
to the Dalitz plot density distribution of events d2N

dsþds0
, one

can calculate the theoretical one-dimensional distributions
of the event numbers using Eqs. (92)–(94) of Sec. III. They
are displayed in Fig. 11 as solid histograms. One can see
that the BABAR data agree well with the corresponding
lines. This agreement enforces the statement about the
significant difference between the KþK− and K0

SK
þ

effective mass distributions which is due to the dominant
f0ð980Þ resonance contribution to the KK̄ final state
interaction amplitude.

V. CONCLUSIONS

A theoretical model of the D0 → K0
SK

þK− decay
amplitude has been constructed within a quasi-two-body
QCD factorization approach introducing scalar kaon form
factors to describe the S-wave kaon-kaon final state
interaction. In doing so, the contribution of isoscalar-scalar
f0 resonance family, viz. f0ð980Þ, f0ð1370Þ and that of the
isovector-scalar a0 one, viz. a00ð980Þ; a�0 ð980Þ; a00ð1450Þ;
a�0 ð1450Þ are taken into account. The isospin zero and one
kaon-kaon S-wave interactions have been treated in a
unitary way using either coupled channel relativistic
equations, or a dispersion relation framework. The P-
and D- waves of the final state kaon-kaon interactions
have also been taken into account.
Independently of any model assumptions, we have

shown that the KþK− and K̄0Kþ S-wave effective mass
squared distributions, corrected for phase space, are sig-
nificantly different. This means that, in the analyses of the
D0 → K̄0KþK− data, one cannot neglect the contribution
of the f0ð980Þ resonance and retain only the a0ð980Þ
contribution.
In Appendix A, we have updated the meson-meson

S-wave isospin zero scattering amplitudes. These include
the three coupled, ππ, K̄K and an effective 2π2π channels.
Using the above amplitudes the new kaon nonstrange and
strange form factors Γn

2ðs0Þ and Γs
2ðs0Þ have been calcu-

lated following Ref. [20] and introduced in the data
analysis. As seen Fig. 14, these form factors are quite
similar to those derived using the Muskhelishvili-Omnès
dispersion relation approach [28,29].

In the factorization framework, for the D0 → K0
SK

þK−

process one has to evaluate the matrix elements of the D0

transitions to two-kaons or the transitions between one
kaon and two kaons. The knowledge of these transitions
requires that of the three-body strong interaction between
the D0; K0

S and K� mesons and that between the K0
S; K

þ

and K− mesons. Here, to describe these transitions with
the two final kaons in S-wave state, we had to go beyond
the simple multiplication of the scalar kaon form factors
by a complex constant. And to obtain good fits we have
multiplied the isoscalar-scalar kaon form factor by a
one free parameter energy-dependent function and intro-
duced into the isovector-scalar function an energy-
dependent phenomenological polynomial involving three
free parameters.
The undetermined free parameters of our seven D0 →

K0
SK

þK− amplitudes are then related to the strength of the
isoscalar-scalar kaon form factor, to the function propor-
tional to the isovector-scalar kaon form factor and to the
unknown meson to meson transition form factors. They are
obtained through a χ2 minimization to the BABAR Dalitz
plot distribution [2]. It should be pointed out that the low
density of events in the central region of this Dalitz plot
distributions (see Fig. 8) is difficult to reproduce. Using
unitary relativistic equations to built the isoscalar-scalar
form factor and a function proportional to the isovector-
scalar one, we obtain a best fit (denoted RBF), with a χ2=ndf
of 1.25 with 19 free parameters to be compared to that of
1.28 for Ref. [2] which uses 17 free parameters.
In Appendix B, we have studied two alternative fits with

scalar-kaon form factors derived in the Muskhelishvili-
Omnès dispersion relation framework. All other amplitudes
are parametrized as in the best fit model. If the scalar
form factors are multiplied by energy dependent phenom-
enological functions, we obtain two good fits, one, denoted
MOP1 with a χ2=ndf of 1.32 and 16 free parameters
and another one, MOP2, with a χ2=ndf of 1.31 and 16
free parameters.
Our fits indicate the dominance of the annihilation

amplitudes and for the best fit a large dominance of the
½KþK−�S isospin 0 S-wave contribution and a sizable
branching fraction to the ½K0

SK
þ�PK− final state with the

½K0
SK

þ� pair coupled to ρð770Þþ, ρð1450Þþ, and ρð1700Þþ.
The alternative fits show important contributions from both
the f0 and a00 mesons and a weaker ρþ mesons role. For all
our models, the one-dimensional distributions agree well
with that of the BABAR data.
One can estimate the strength of the contributions of the

different amplitudes by looking at their branching ratio
compared to the sum of their branching ratios. As can be
seen in Table XII for the best fit model this sum7 is 149.5

7The numbers in brackets are the corresponding values of the
MOP1 and MOP2 fits, respectively.
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[126.3, 164.1] % (163.4% in Ref. [2]), which points to
sizable interference contributions. The kaon-kaon S-wave
interactions, related to the f0 and a00 resonances, gives a
large branching of ∼61 [45, 63] % with a large value (for
BF, MOP1 and MOP2, see Table XIII) of ∼60 [23, 46] %,
for the amplitude proportional to the strange isoscalar-
scalar form factor (f0 contributions) and smaller branching
∼5 [16,16] % for the amplitude proportional to the isovector-
scalar form factor (a00 contributions). Corresponding figures
in the isobar BABAR analysis [2] are ∼71%, dominated
by the a0ð980Þ0 and a0ð1450Þ0 with no f0ð980Þ and
a f0ð1370Þ ∼ 2%.
The branching fraction of the isospin 0P-wave ∼46 [45,

45] %, dominated by the ϕð1020Þ resonance, is similar to
that found, ∼44%, in Ref. [2]. The branching of the
isovector amplitude associated to the aþ0 resonances is
∼21 [26, 40] % to be compared to ∼45% in Ref. [2].
The branching fraction of the amplitude related to the
½ρð770Þþ þ ρð1450Þþ þ ρð1700Þþ�K0

S final state, not intro-
duced in Ref. [2], has a value of ∼22 [8, 13] %. One could
say that, this contribution with no bumps in the Dalitz plot
distribution, is in Ref. [2] taken into account by a part of
that of the aþ0 .
The charmless hadronic B0 → KþK−K0

S studied by the
Belle [43] and BABAR [44] Collaborations has the same
meson final states as the D0 decay we have been studied
here. A quasi-two-body QCD factorization analysis of this
B0 decay process should allow, to constrain, not only the
weak interaction observables but also the scalar kaon form
factors, the transitions between one kaon and two kaons
and to learn about the B0 transition to two kaons.
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APPENDIX A: UPDATED ππ, K̄K AND
EFFECTIVE 2π2π S-WAVE AMPLITUDES

Here we present updated results for the meson-meson
S-wave isospin zero scattering amplitudes. They include
the following three coupled channels: ππ, channel 1, K̄K,
channel 2 and effective 2π2π channel 3. Our previous fits to

the meson-meson scattering data were obtained in the late
nineties [21,22]. Since, new precise low energy ππ data
have appeared [45]. Moreover, as noticed by Bachir
Moussallam [46], we used an assumption valid only below
the opening of the third channel, namely the phase of the
ππ → K̄K transition amplitude was set equal to the sum of
the elastic ππ and K̄K phaseshifts. The derivation of the
kaon isoscalar-scalar form factors Γn

2ðs0Þ and Γs
2ðs0Þ,

used in the present analysis for s0min ¼ 0.98 GeV2 ≤ s0 ≤
s0max ¼ 1.87 GeV2, requires the knowledge of the meson-
meson amplitudes at energies above s0max.
Thus, dropping the above mentioned assumption, we

have performed a new analysis based on an enlarged set of
data. Using the same three coupled-channel separable
potential model as developed in Refs. [21,22], we fit the
following data:
(a) for the effective ππ mass E between 286 and 390MeV,

the 10 values of the elastic ππ phase shifts from the
NA48 data [45],

(b) for 610 MeV ≤ E ≤ 1580 MeV, the 50 values of the
ππ phase shifts δππ and for 1010 MeV ≤ E ≤
1580 MeV the 30 values of the ππ inelasticities ηππ ,
both quantities obtained in the experimental analysis
of Ref. [47],

(c) for 995 MeV ≤ E ≤ 1580 MeV, the 23 values of the
moduli of the transition ππ → K̄K amplitude T12

extracted from Fig. 27 of Ref. [48],
(d) for the δππ→KK̄ phases of the T12 amplitude, the 21

values extracted in the analysis of Ref. [48]
for 1016 MeV ≤ E ≤ 1530 MeV,

(e) plus the 6 data points for these phases between 1538
and 1741 MeV determined in Ref. [49].

The total number of fitted data is then equal to 140. As in
Ref. [21], the fitting method is based on the χ2 function
being a sum of five components related to the five data sets
enumerated above. The resulting χ2 is equal to 135.04
which, for 14 free model parameters, gives the value
χ2=ndf ¼ 1.07 when divided by ndf ¼ 140 − 14 ¼ 126
degrees of freedom.
The quality of our fit for the ππ phase shifts and

inelasticities is illustrated in Fig. 12. As seen in Fig. 13
a good fit is achieved for the moduli and the phases of the
T12 amplitude. All experimental data sets are well repro-
duced by our phenomenological model. The resulting
separable interaction parameters are listed in Table VIII,
their notation being identical to that of Ref. [21].
Positions of the S-matrix poles in the complex energy E

plane are given in Table IX. The signs of the imaginary
parts of the channel complex momenta ki, i ¼ 1, 2, 3 are
indicated in order to mark the corresponding pole position
on different Riemann sheets. The total width Γ of a given
pole equals to twice jImEj.
As in the case of solution A (see Table 3 of Ref. [22]) one

finds 18 poles. The first four (I to IV), lying on the real axis
below the ππ threshold, are related to the S-matrix poles in
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the absence of inter-channel couplings. The next four
(V to VIII), located on different sheets, correspond to
the wide resonance f0ð500Þ. There are two close poles
(IX and X) related to the narrow resonance f0ð980Þ and
four poles (XI to XIV) attributed to the wider resonance
f0ð1400Þ. The four poles (XV to XVIII) located between
1553 and 1584 MeVare responsible for the structure in the
phase of the transition ππ → KK̄ amplitude as can be seen
in the right panel of Fig. 13 and in Fig. 6 of Ref. [49]; there
is a maximum near 1500 MeV, close to the opening of the
third channel, followed by a dip at about 1600 MeV. These
latter poles could be related to the f0ð1370Þ and f0ð1500Þ
resonances.
In Table X we present values of the moduli of the

channel coupling constants calculated for five typical S
matrix poles (for their definitions see Eq. (34) of Ref. [22]).
The f0ð500Þ poles like that with n° VII are mainly coupled
to the ππ channel (i ¼ 1). Also the four poles close to Re
E ¼ 1450 MeV have a strong coupling only to the ππ
channel. The f0ð980Þ poles n∘s IX and X are preferentially
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FIG. 13. Comparison to the data [48] of our fit (solid line): (a) Modulus of the ππ → K̄K transition amplitude T12ðEÞ normalized as in
Ref. [48], (b) T12ðEÞ phase.
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FIG. 12. Comparison to the data of our fit (solid line): (a) the ππ elastic phase shifts versus the ππ center-of-mass energy E, (b) the ππ
inelasticities and for energies E higher than the K̄K mass threshold. The data below E ¼ 400 MeV are taken from Ref. [45] and those
above 600 MeV from Ref. [47] for the “down-flat” solution.

TABLE VIII. Model parameters fitted to data.

Parameter Value

Λ11;1 −0.14434 × 10−3

Λ11;2 −0.21102
Λ22 −0.62730
Λ33 −0.81318 × 10−3

Λ12;1 0.25184 × 10−4

Λ12;2 0.033294
Λ13;1 0.25063 × 10−4

Λ13;2 −0.34913
Λ23 −5.4206
β1;1 3.0366 × 103 GeV
β1;2 1.1019 GeV
β2 0.98412 GeV
β3 0.047940 GeV
m3 0.75200 GeV
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coupled to the K̄K channel (i ¼ 2) like the four other poles
n∘s XV to XVIII. This last group of poles has also a
substantial coupling to the ð2πÞð2πÞ channel (i ¼ 3) in
addition to the strong coupling to the K̄K (i ¼ 3) one. All
these poles lie above the opening of the third channel taking
place at 2m3 ¼ 1504 MeV.

APPENDIX B: FITS USING KAON
SCALAR FORM FACTORS DERIVED FROM

DISPERSION RELATION APPROACH

In this Appendix we complete our study by describing
the results of two fits of the BABAR Collaboration Dalitz-
plot distribution [2] taking, in the amplitudes with final
kaon-kaon states in S wave and isospin 0, the scalar KK̄
form factors derived from the Muskhelishvili-Omnès (MO)
approach [27]. The same parametrizations as those
described in Sec. II are used for all other amplitudes.
In the MO dispersion-relation framework the isoscalar-
scalar Γn;s

2 ðsÞ form factors have been calculated by B.
Moussallam [28,29] from the MO equation using the
updated ππ − T matrix of the ππ, KK̄ and effective
ð2πÞð2πÞ coupled-channel model of Ref. [22] (see
Appendix A). In Fig. 14 the moduli of these MO form
factors are compared to those derived in Sec. IV from a
relativistic coupled-channel model. In Sec. II one has
introduced for the form factors Γn;s

2 ðsÞ complex phenom-
enological coefficients of proportionality χn;s and in
Sec. IV, to achieve good fits, notably to reproduce the
low density of events in the central region of the Dalitz
distribution (see Fig. 8, region II), we have been led to
multiply them by the energy-dependent phenomenological
functions Piðs0Þ defined below in Eqs. (B2) and (B3).

TABLE IX. Positions of S matrix poles (E in MeV).

Sign of

Re E Im E Im k1 Im k2 Im k3 n°

227 0 − − − I
230 0 − − þ II
230 0 þ − − III
232 0 þ − þ IV
485 −233 − þ − V
485 −233 − þ þ VI
506 −262 − − − VII
507 −265 − − þ VIII
967 −10 − þ − IX
982 −8 − þ þ X
1442 −100 − þ − XI
1444 −93 − þ þ XII
1448 −97 − − þ XIII
1465 −98 − − − XIV
1553 −211 þ − − XV
1559 −213 − − − XVI
1581 −138 − − þ XVII
1584 −134 þ − þ XVIII

TABLE X. Coupling constants gi in GeV for a few represen-
tative S-matrix poles (E in MeV).

Re E Im E jg1j2=4π jg2j2=4π jg3j2=4πj n°

506 −262 0.86 0.03 0.00 VII
967 −10 0.08 1.68 0.05 IX
982 −8 0.07 1.27 0.04 X
1448 −97 1.02 0.08 0.16 XIII
1559 −213 0.07 2.24 0.77 XVI

FIG. 14. Moduli, (a) for 0 GeV ≤ E ≤ 2 GeV and (b) for 0.9 GeV ≤ E ≤ 1.4 GeV, of the isoscalar-scalar kaon form factors
calculated using the Muskhelishvili-Omnès dispersion relation approach [29]. They are compared to those (continuous black lines)
derived in the best fit in Sec. IV from a unitary relativistic three coupled-channel model. Both approaches use the updated Tππ matrix
derived in Appendix A. The physical E region, 0.987 GeV≲ E≲ 1.367 GeV, is delimited by the two vertical dashed lines.
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The isovector-scalar F½K̄0Kþ�1
0 ðsÞ form factor has been

calculated in Ref. [30] from coupled MO equations for πη
and KK̄ channels. Its modulus, for the parameters
δ12 ¼ 100°, 150° and 200° which are equal to the sum
of the ηπ → ηπ and KK̄ → KK̄ phase shifts atffiffiffi
s

p ¼ ma0ð1450Þ, is plotted in Fig. 15. The isovector ampli-
tudes associated to the isospin-1 a00 and aþ0 resonances can
be expressed in terms of this form factor by using, in the
Eqs. (82) and (86), the relation (85) with G1ð0Þ ¼ χ1. The
strength χ1 is real and to obtain good fits, it was necessary
to multiply it by the phenomenological polynomial

PFðsþÞ≡ 1þ c1ðsþ − s00Þ þ c2ðsþ − s00Þ2 þ c3ðsþ − s00Þ3;
ðB1Þ

where the free parameters ci; i ¼ 1, 2, 3, and s00 are real.
An estimation of the phenomenological strength

parameters χn;s using Eq. (102) with jΓn;s
2 ðm2

f0
Þj ≃ 19

(see Fig. 14) leads to jχn;sj ≃ 26 GeV−1. For the kaon

isovector-scalar form factor with χ1jF½K̄0Kþ�1
0 ðm2

a0Þj ¼
ga0KþK−=½ma0Γtotða0Þ� ¼ 89.66 GeV−1, using (see
Ref. [23]), Γtotða0Þ ¼ 71� 14 MeV, jga0KþK− j2=ð4πÞ ¼
0.275 GeV2, ma0 ¼ 980 MeV and for δ12 ¼
150°jF½K̄0Kþ�1

0 ðm2
a0Þj ≃ 10.89 (see Fig. 15), one obtains

χ1 ≃ 8.2 GeV−1. As expected, from our study in Sec. III
of the near threshold comparison between the KþK− S-
wave effective mass projection with that of the K̄0Kþ,
a good fit without the contribution associated with the
isospin 0 f0 resonances (χn;s ≡ 0) cannot be obtained.

We also find that improved χ2 are obtained with the δ12
parameter of the isovector-scalar F½K̄0Kþ�1

0 form factor equal
to 150° (see Fig. 15). With the Np ¼ 16 free parameters
displayed in Table XI, we obtain a fit, denoted as MOP1,
with a total χ2 of 1559.7 which corresponds to a
χ2=ndf ¼ 1.32, not as good as that found in the best fit
model of Sec. IV. In this fit, the phenomenological function

multiplying the ΓnðsÞ
2 ðs0Þ is chosen to be

P1ðs0Þ≡ Pðs0Þ; ðB2Þ

with the zero s0 of the function Pðs0Þ [Eq. (103)] at 0 GeV2.
Fixing jχnj to 35 ðGeV−1Þ, χ1 to 15 ðGeV−1Þ a slightly
better fit, denoted MOP2, with Np ¼ 16 and a total χ2 of
1546.9 (χ2=ndf ¼ 1.31) is obtained with

P2ðs0Þ ¼ 1 − s0ðs0 − sthÞ: ðB3Þ

FIG. 15. Moduli of the isovector-scalar kaon form factors
calculated from MO equations in Ref. [30] for different δ12
parameters which correspond to the sum of the ηπ → ηπ and
KK̄ → KK̄ phase shifts at

ffiffiffi
s

p ¼ ma0ð1450Þ. The two vertical
dashed lines delimit the physical s0 region, 0.975 GeV2 ≲ s≲
1.87 GeV2.

TABLE XI. Comparison between the MOP1, MOP2 parameters
from the two fits using kaon scalar-form factors derived from
dispersion relations (see the text) and the corresponding RBF
ones, from the best fit with kaon scalar-form factors calculated
from unitary relativistic equation (see Table II). The number of
free parameters is denoted by Np. Parameters without uncertain-
ties are kept fixed during the minimization procedure. Phases φ
are in radians and detailed definitions of all parameters are given
in the text.

Fit MOP1 MOP2 RBF

χ2ðNp; χ2=ndfÞ 1559.7(16,
1.32)

1546.9(16,
1.31)

1474.4(19,
1.25)

jχnjðGeV−1Þ 26. 35. 22.5
φχn 1.63þ0.20

−0.18 4.19� 0.10 2.22þ0.82
−0.98

χsðGeV−1Þ 26. 26. 22.5

jFK0f0
0 ðm2

D0Þj 0.42þ0.03
−0.04 0.35� 0.03 2.22þ0.26

−0.17

φ
F
K0f0
0

2.40þ0.05
−0.04 1.94� 0.05 2.21� 0.10

s0ðGeV−2Þ 0. −3. 1.56þ0.02
−0.01

s00ðGeV2Þ 1.5 1.5
χ1ðGeV−1Þ 8.2 15
c1ðGeV2Þ −15.38þ0.41

−0.45 −7.53� 0.14
c2ðGeV−2Þ 8.16þ0.66

−0.65 2.88þ0.35
−0.34

c3ðGeV−4Þ 37.20þ1.99
−1.94 18.24þ0.91

−0.89
jFK−aþ

0 ðm2
D0Þj 0.23� 0.01 0.28� 0.01 0.25þ0.02

−0.03
φFK−aþ

0

5.82� 0.05 5.61þ0.05
−0.04 5.33þ0.12

−0.08

jAK0ϕ
0 ðm2

D0Þj 0.99� 0.01 0.99� 0.01 0.99� 0.01

φ
AK0ϕ
0

−0.89� 0.02 −0.97� 0.02 3.67þ0.12
−0.09

MϕðMeVÞ 1019.55�0.02 1019.56�0.02 1019.58�0.02
ΓϕðMeVÞ 4.69� 0.04 4.70� 0.04 4.72� 0.04

jAK−ρþ
0 ðm2

D0Þj 5.78þ0.22
−0.25 7.94þ0.34

−0.37 9.38þ0.63
−0.58

φ
AK−ρþ
0

1.18� 0.03 1.06� 0.02 5.01þ0.06
−0.05

jPDj 15.71þ0.78
−0.80 14.16þ0.69

−0.70 5.52þ1.25
−1.24

φPD
1.13� 0.09 0.97þ0.10

−0.09 3.97þ0.23
−0.25
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Table XI gives then a comparison of all parameter
values with their uncertainties (when these parameters
are fitted) for the MOP1, MOP2 models together with
the corresponding parameters of the best fit RBF
presented in Sec. IV. The variations, in the s0 physical
region, of the different functions Piðs0Þ for the MOP1

(i ¼ 1; s0 ¼ 0 GeV2), MOP2 (i ¼ 2, s0 ¼ −3 GeV2), and
RBF (i ¼ 1; s0 ¼ 1.56 GeV−2) fits are displayed in
Fig. 16(a). As already indicated in Sec. IV [see second

sentence below Eq. (108)] Fig. 16(b) compares the fitted
polynomial Wðs0Þ to the phenomenological polynomials
PFðs0Þ [see Eq. (B1)] multiplying the isovector-scalar form

factor F½K̄0Kþ�1
0 ðs0Þ for the two solutions MOP1ðP2Þ.

The different branching fractions Bri; i ¼ 1 to 7, of these
two fits are compared to those of the best fit model in
Table XII. Following Eq. (98) their given uncertainties
ΔBri are calculated as

ΔBri¼
1

32ð2πÞ3m3
D0ΓD0

�X
k;l¼1;Np

∂fi
∂rk

∂fi
∂rl ρklΔrkΔrl

�
1=2

ðB4Þ

where,

∂fi
∂rk ¼

Z Z
dsþds02

�
Ri

∂Ri

∂rk þ Ii
∂Ii
∂rk

�
with

fi ¼
Z Z

dsþds0jMiðs0; sþÞj2; ðB5Þ

and Mi ¼ Ri þ iIi. In Eqs. (B4) and (B5) rkðlÞ are the
free parameters entering the amplitude Mi. In Eq. (B4),
ΔrkðlÞ are the rkðlÞ average uncertainties and ρkl are the kl
correlation coefficients of the MINUIT program. These
quantities are given in the minimization output with ρkl ¼
ρlk and ρkl ¼ 1 if k ¼ l. The uncertainty ΔBr of the sum of
the Bri is calculated as8

FIG. 16. Comparison of: (a) the functions Piðs0Þ multiplying, for the three models MOP1, MOP2 and RBF, the isoscalar-scalar form

factors ΓnðsÞ
2 ðs0Þ; (b) the polynomials PFðs0Þmultiplying, for the two models MOP1ðP2Þ, the isovector-scalar form factor F½K̄0Kþ�1

0 ðs0Þ and
Wðs0Þ introduced in Eq. (108) for the G1ðs0Þ function of the best fit RBF. Vertical dashed lines as in Fig. 15.

TABLE XII. As in Table XI but for the branching fractions in
percent of the amplitudes Mi, i ¼ 1 to 7. For each branching
fraction we indicate the dominant resonances (see text) of the
quasi-two-body channels of the different amplitudes (see Ta-
ble V). For the MO fits, the given uncertainties, ΔBri; i ¼ 1, 7
and of their sum are calculated from Eqs. (B4) to (B6) using the
average positive and negative uncertainties of the free parameters
displayed in Table XI. See Sec. IV for the calculation of the ΔBri
of the RBF model. The uncertainties of the sum of the Bri are
obtained through the formula given in Eq. (B6).

Fit MOP1 MOP2 RBF

χ2ðNp; χ2=ndfÞ 1559.7(16,
1.32)

1546.9(16,
1.31)

1474.4(19,
1.25)

Br1½f0’s; a00’s� 44.9� 8.3 63.0� 15.8 60.9þ24.4
−10.6

Br2½ϕ� 44.9� 0.5 44.8� 0.5 45.5� 0.7
Br3½aþ0 ’s� 25.9� 0.8 40.1� 1.9 20.7þ9.4

−6.0
Br4½ρþ’s� 7.7� 0.6 13.1� 1.2 21.5þ3.1

−2.8
Br5½a−0 ’s� 2.6� 0.1 2.7� 0.1 0.76þ0.18

−0.15
Br6½ρ−’s� 0.03� 0.002 0.06� 0.005 0.08� 0.01
Br7½f2ð1270Þ� 0.37� 0.04 0.30� 0.03 0.05� 0.02P

i¼1;7 Bri 126.3� 7.6 164.1� 13.7 149.5þ26.9
−12.3 8This, with i ¼ j, reduces to ΔBr ¼ ½Pi¼1;7ðΔBriÞ2�1=2.
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ΔBr ¼ 1

32ð2πÞ3m3
D0ΓD0

�X
i;j¼1;7

�X
k;l¼1;Np

∂fi
∂rk

×
∂fj
∂rl ρklΔrkΔrl

��
1=2

: ðB6Þ

The branching fractions of the three components of
the M1 amplitude, viz., Mn;I¼0

1 , Ms;I¼0
1 , MI¼1

1 [see
Eqs. (79)–(82)], given in Table XIII show that the isoscalar
f0 and isovector a00 resonance contributions can be quite
different. However, taking into account the large uncer-
tainties in the Br1 values of the MOP1, MOP2, and RBF fits
(see Table XII) the total scalar-resonance contribution in
theM1 amplitude is similar. The corresponding results can
be qualitatively interpreted from, the expressions of the
amplitudes given in Sec. II D, the values of the different
parameters given in Tables II, XI and those of the kaon
scalar-form factors in use. For the three terms of the M1

amplitude [see Eqs. (79)–(82)] one can define the renor-
malized amplitudes,

M̄n;I¼0
1 ðs0Þ ¼

Mn;I¼0
1 ðs0Þ
FW

; M̄s;I¼0
1 ðs0Þ ¼

Ms;I¼0
1 ðs0Þ
FW

and M̄I¼1
1 ðs0Þ ¼

MI¼1
1 ðs0Þ
FW

; ðB7Þ

where FW ¼ −GFðΛ1 þ Λ2Þa2=2. In the case of the
amplitude M3ðsþÞ [see Eq. (86)], with F0

W ¼GFΛ1a2=2,
one define the renormalized amplitude

M̃3ðsþÞ ¼
M3ðsþÞ

F0
W

: ðB8Þ

The coupling Λ2 (¼ −0.05) is small and Λ1 þ Λ2 (¼ 0.90)
is close to Λ1 (¼ 0.95) [see Eq. (2)], consequently F0

W is

close toFW . One can then compare the amplitudes (B7) and
(B8) because the contribution of the a1 term in M3ðsþÞ is
negligible since the factor m2

K −m2
K0 ¼ −0.0039 GeV2 is

very small. The moduli of these amplitudes are plotted, for
the best fit as the black continuous lines denoted by RBF, the
red dashed curve for the MOP1 model and the blue dotted
one for the MOP2 one, in Figs. 17(a), (b), (c), and (d).
The comparison, shown in Fig. 17, of the resulting s0

behavior of the moduli jM̄n;I¼0
1 ðs0Þj, jM̄s;I¼0

1 ðs0Þj and
jM̄I¼1

1 ðs0Þj allows furthermore to understand qualitatively
the different branching fractions displayed in Table XIII.
The branching fractions can also be partly compared to the
fit fractions9 of the BABAR isobar-model experimental
analysis [5].
The dominance of the branching fraction associated to

the isoscalar-scalar amplitudeMs;I¼0
1 for the best fit and to

a less extent for the MOP1 one, can be understood as their
moduli jM̄s;I¼0

1 ðs0Þj [Fig. 17(b)] are larger than the moduli
jM̄n;I¼0

1 ðs0Þj [Fig. 17(a)] and jM̄I¼1
1 ðs0Þj [Fig. 17(c)].

Comparison of Fig. 17(a) and Fig. 17(c) can also explain
qualitatively, for the best fit, the difference between the
Mn;I¼0

1 (1.19%) and MI¼1
1 (4.48%) branching fractions.

For the S-wave KK̄ contributions there are important
differences between the models MOP1, MOP2 and RBF. The
kaon isoscalar-scalar form factors are similar (see Figs. 9
and 14) but multiplication by the function Piðs0Þ [see
Eqs. (103), (B2) and (B3)] implies different modifications.
For the MO fits, the kaon isovector-scalar form factor

F½K̄0Kþ�1
0 ðs0Þ is multiplied by different phenomenological

polynomials PFðs0Þ [Eq. (B1)] compared, in the Fig. 16(b),

TABLE XIII. As in Table XI but for the branching fractions in percent of the amplitudes Mn;I¼0
1 , Ms;I¼0

1 and
MI¼1

1 [see Eqs. (79)–(82)]. Lines 8 to 10 give the contribution of the interferences between these amplitudes.

Fit MOP1 MOP2 RBF

χ2ðNp; χ2=ndfÞ 1559.7(16, 1.32) 1546.9(16, 1.31) 1474.4(19, 1.25)

Br1½f0; a00� 44.88 63.01 60.93

Br½Mn;I¼0
1 : f0 in ΓnðsÞ] 4.75 20.66 1.19

Br½Ms;I¼0
1 : f0 in FK0f0

0 ðm2
D0ÞΓsðsÞ] 22.69 45.91 59.82

Br½MI¼1
1 : a00 in χ1PFðsÞ F½K̄0Kþ�1

0 ðsÞ or G1ðsÞ] 16.47 16.47 4.48

BrðMn;I¼0
1 Þ þ BrðMs;I¼0

1 Þ þ BrðMI¼1
1 Þ 43.90 83.04 65.49

2 Br1112 −12.95 −37.98 −14.6
2 Br1113 1.86 16.44 −0.72
2 Br1213 12.03 0.43 10.8Pi≠j

i;j¼1;3 Br1i1j 0.94 −20.02 −4.57

9Br½f0ð1370Þ�¼1.7%, Br½a0ð980Þ0�þBr½a0ð1450Þ0�¼71.1%,
Br½ϕð1020Þ�¼44.1%, Br½a0ð980Þþ� þ Br½a0ð1450Þþ� ¼ 45.1%,
Br½a0ð980Þ−� ¼ 0.7%, and Br½f2ð1270Þ� ¼ 0.7%.
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to the fitted polynomial Wðs0Þ [Eq. (108)] entering the
G1ðs0Þ function of the best fit.
In the MOP2 fit (BrðMn;I¼0

1 Þ ¼ 20.66%) the f0 con-
tribution in Γn

2ðsÞ is enhanced by a larger jχnj (35 GeV−1)
and by the function P1ðs0Þ while it is more suppressed in
the best fit (1.19%) than in the MOP1 one (4.75%).
A striking difference arises for the modulus of the

phenomenological transition form factor FK0f0
0 ðm2

D0Þ:
it is quite large, 2.22, for the best fit solution RBF as
compared to its magnitude for the two other fits where it
is smaller than 0.43. This leads to large value of the
branching fraction (59.82%) for theMs;I¼0

1 ðs0Þ amplitude
arising from D0 annihilation via W exchange in the
RBF best fit solution (see Table XIII). The jχsj being
the same (26 GeV−1), the difference between the
MOP1 (22.69%) and MOP2 (45.91%) branching fractions
arises from smaller P1ðs0Þ enhancement (for
s0 ≳ 1.3 GeV2) than that of P2ðs0Þ, as can be seen in
Figs. 16(a) and 17(b).

The values of the BrðMI¼1
1 Þ in the fifth line of Table XIII

indicate the isospin-1 a00 resonances content in

χ1PFðsÞF½K̄0Kþ�1
0 or G1ðsÞ. This branching fraction small

(4.48%) in the RBF fit (some suppression because ofWðs0Þ)
is the same (16.47%) in the MOP1 and MOP2, the larger
PFðs0Þ [Fig. 16(b)] is compensated by a smaller χ1 (8.2
versus 15).
The branching fraction Br3, which indicates the iso-

vector aþ0 resonances contribution, has values of 25.9, 40.1
and 20.7% for the MOP1, MOP2 and RBF fits, respectively
(see Table XII). The modulus of the transition form factor

F
K−aþ

0

0 ðm2
D0Þ, entering in Eq. (86) is equal to 0.23, 0.28, and

0.25 for the MOP1, MOP2, and best fits, respectively. The
branching fractions depend on the χ1 values and PFðsþÞ
behavior for the MO fits and on the role of G1ðsþÞ in
the RBF solution and their values are in qualitative agree-
ment with the corresponding jM̃3ðsþÞj curves shown in
Fig. 17(d).

FIG. 17. The black continuous line, denoted by RBF represents in a) jM̄n;I¼0
1 ðs0Þj, in b) jM̄s;I¼0

1 ðs0Þj, and in c) jM̄I¼1
1 ðs0Þj [see

Eqs. (B7)] and in d) jM̃3ðsþÞj [see Eq. (B8)]. The red dashed curve, the blue dotted one represent the corresponding moduli for the
alternative MOP1, MOP2 fits, respectively. As in Fig. 15 for the two vertical dashed lines (the sþ limits are very close to the s0 ones)
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The role of the ½ρð770Þþ þ ρð1450Þþ þ ρð1700Þþ�
resonances is different in our models: the Br4 of the
MOP1, MOP2, and RBF fits are equal to 7.7, 13.1 and
21.5%, respectively (see Table XII). The large contribu-
tion in the RBF solution is partly due to the magnitude,
9.38, of the modulus of the transition form factor
jAK−ρþ

0 ðm2
D0Þj to be compared to 5.78 and 7.94 for

the MOP1 and MOP2 fits, respectively. The Br4 ratio
between that of the RBF and those of the MOP1 and MOP2
fits is close to the square of the corresponding
jAK−ρþ

0 ðm2
D0Þj ratios. It can be seen that, to improve the

χ2 of the fits, it seems necessary to increase the ρþ
resonances contributions.
The small isospin-1 a−0 and ρ− resonances contents in

Br5ð6Þ come from the fact that the M5ð6Þ amplitudes [see
Eqs. (88) and (89)] are proportional to the VCKM coupling
Λ2 with jΛ2=Λ1j ≃ 5 × 10−2, while all other amplitudes are

proportional either to Λ1 þ Λ2 [M1, Eq. (79) with
Eqs. (80), (81), (82), M2, Eq. (83) and M7, Eq. (91)]
or to Λ1 [M3 Eq. (86) and M4, Eq. (87)].
The f2ð1270Þ resonance contributions in Br7 for our

three fits follow the evolution of the square of the jPDj
parameter in each fit. They are very small and even smaller
than in the BABAR analysis [5].
The negative total interference contributions are equal to

−26.3%, −64.1%, and −49.5%, for the MOP1, MOP2, and
RBF fits, respectively, compared to that of the isobar
BABAR model of −63.4% [5].
The comparison of the off-diagonal elements Brij, i ≠ j

shows large interferences between the amplitudes giving
large or sizable branching fractions (see for instance
Table VI of the best fit). This is in particular the case
between M1ðs0Þ and M4ðsþÞ. These values can be
qualitatively expected by inspecting the different branching
fractions given in Table XII.
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