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We make a detailed study of theDs-meson leading-twist light-cone distribution amplitude ϕ2;Ds
by using

the QCD sum rules within the framework of the background field theory. To improve the precision, its
moments hξni2;Ds

are calculated up to dimension-six condensates. At the scale μ ¼ 2 GeV, we obtain

hξ1i2;Ds
¼ −0.261þ0.020

−0.020 , hξ2i2;Ds
¼ 0.184þ0.012

−0.012 , hξ3i2;Ds
¼ −0.111þ0.007

−0.012 , and hξ4i2;Ds
¼ 0.075þ0.005

−0.005 . Us-
ing those moments, the ϕ2;Ds

is then constructed by using the light-cone harmonic oscillator model. As an

application, we calculate the transition form factor fBs→Dsþ ðq2Þ within the light-cone sum rules (LCSR)
approach by using a right-handed chiral current, in which the terms involving ϕ2;Ds

dominate the LCSR. It

is noted that the extrapolated fBs→Dsþ ðq2Þ agrees with the lattice QCD prediction. After extrapolating the
transition form factor to the physically allowable q2 region, we calculate the branching ratio and the CKM
matrix element, which give BðB̄0

s → Dþ
s lνlÞ ¼ ð2.03þ0.35

−0.49 Þ × 10−2 and jVcbj ¼ ð40.00þ4.93
−4.08 Þ × 10−3.

DOI: 10.1103/PhysRevD.103.114024

I. INTRODUCTION

Since the first measurement of the ratio RðDð�ÞÞ of the
branching fractions BðB → Dð�ÞτντÞ and BðB → Dð�ÞlνlÞ
(where l stands for the light lepton e or μ) was reported by
the BABAR Collaboration, the B → Dð�Þ semileptonic
decays have attracted great attention due to large
differences between the experimental measurements
[1–4] and the standard model predictions [5–14]. Such
differences have been considered as evidence of new
physics. Comparing with the B0;þ decays, because its
background contamination from the partial reconstruction
decay could be less serious, the Bs → Dslνl decay is
experimentally attractive. A natural question is whether
there is also evidence of new physics in the semileptonic

decay Bs → Dslνl. This decay could also be an important
channel for determining the Cabibbo-Kobayashi-Maskawa
(CKM) matrix element jVcbj.
The LHCb Collaboration reported the measurement of

jVcbj by using B0
s → D−

s μ
þνμ and B0

s → D�−
s μþνμ decays

[15], in which the data of proton-proton collisions at the
center-of-mass energies of 7 and 8 TeV with an integrated
luminosity about 3 fb−1 was used in the analysis. By using
the Caprini-Lellouch-Neubert (CLN) and Boyd-Grinstein-
Lebed (BGL) parametrizations [16–19] for the Bs → Ds
transition form factor (TFF), the determined jVcbj are
ð41.4� 0.6� 0.9� 1.2Þ × 10−3 and ð42.3� 0.8� 0.9�
1.2Þ × 10−3, respectively. The LHCb Collaboration also
measured the ratio of the branching fractions BðB0

s→
D−

s μ
þνμÞ and BðB0→D−μþνμÞ, i.e., R ¼ 1.09� 0.05�

0.06� 0.05, which then gives BðB0
s → D−

s μ
þνμÞ ¼

ð2.49� 0.12� 0.14� 0.16Þ × 10−2.
The accuracy of theoretical predictions on the

branching fraction BðBs → DslνlÞ depends heavily on
the TFF fBs→Dsþ ðq2Þ. It has been calculated within several
approaches, such as the quarkmodels [20–22], the light-front
quark models [23,24], the QCD light-cone sum rules
(LCSR) [25,26], and lattice QCD (LQCD) [27–29].
Similar to the B → π TFFs [30], the LQCD prediction is
reliable in the large-q2 region, the QCD factorization or
quark model predictions are reliable in the large-recoil
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region q2 ∼ 0, and LCSR is reliable in the low- and
intermediate-q2 regions. Predictions under various methods
are complementary to each other. Because the LCSR pre-
diction is applicable in awider region and couldbeadapted for
all q2 regions via proper extrapolations, and in this paper we
adopt the LCSR approach to calculate fBs→Dsþ ðq2Þ.
Generally, contributions from the light-cone distribution

amplitude (LCDA) suffer from power-counting rules based
on the twists, i.e., the high-twist LCDAs are usually
powered suppressed to the lower twist ones in large-Q2

region. The high-twist LCDAs may have sizable contribu-
tions to LCSR, and how to “design” a proper correlator is a
tricky problem for the LCSR approach. By choosing a
proper correlator, one can not only study the properties of
the hadrons but also simplify the theoretical uncertainties
effectively. As the usual treatment, the correlator is con-
structed by using the currents with definite quantum
numbers, such as those with definite JP, where J is the
total angular momentum and P is the parity of the bound
state. Such a construction of the correlator is not the only
choice suggested in the literature, e.g., the chiral correlator
with a chiral current in between the matrix element has also
been suggested to suppress the hazy contributions from the
uncertain LCDAs [31–36]. In this paper, we adopt a chiral
correlator to do the LCSR calculation, and we find that the
leading-twist LCDA ϕ2;Ds

provides dominant contribu-
tions. Therefore, if an accurate ϕ2;Ds

has been achieved,
we shall obtain an accurate prediction of fBs→Dsþ ðq2Þ.
Until now, there have been few calculations on the Ds-

meson leading-twist LCDA ϕ2;Ds
; recently, it has been

studied by using the light-front quark model [37]. We first
construct a light-cone harmonic oscillator model for ϕ2;Ds

based on the well-known Brodsky-Huang-Lepage (BHL)
description [38–40], as we have done for π, ρ,D, and heavy
meson LCDAs [41–48]. Then, its input parameters are fixed
by using reasonable constraints, such as the probability of
finding the leading Fock state in the Ds-meson Fock-state
expansion, the normalization condition, and the calculated
LCDA moments hξni2;Ds

or the Gegenbauer moments aDs
n .

All of these moments are computed by using the QCD sum
rules [49] within the framework of background field theory
(BFT) [50] up to dimension-six operators.
The remainder of the paper is organized as follows. The

LCSR for the Bs → Ds TFF, the QCD sum rules of the
moments of ϕ2;Ds

, and the light-cone harmonic oscillator
model for ϕ2;Ds

are given in Sec. II. Numerical results and
discussions are presented in Sec. III. Section IV is reserved
for a summary. Useful functions for calculating the ϕ2;Ds

moments are listed in the Appendix.

II. CALCULATION TECHNOLOGY

A. LCSR for the Bs → Ds TFF

The Bs → Ds TFF fBs→Dsþ ðq2Þ and f̃Bs→Dsðq2Þ are
usually defined as

hDsðpÞjc̄γμbjBsðpþ qÞi
¼ 2pμf

Bs→Dsþ ðq2Þ þ qμf̃
Bs→Dsðq2Þ; ð1Þ

where p is the momentum of the Ds meson and q is the
momentum transfer. In this paper, we focus on the semi-
leptonic decay Bs → Dslν̄l, with l ¼ ðe; μÞ. The masses
of light leptons are negligible, and due to chiral suppression
only fBs→Dsþ ðq2Þ is relevant for our present analysis.
To derive the LCSR of fBs→Dsþ ðq2Þ, we adopt the

following chiral correlation function (correlator):

Πμðp; qÞ ¼ i
Z

d4xeip·xhDsðpÞjTfc̄ðxÞγμð1þ γ5ÞbðxÞ;

b̄ð0Þið1þ γ5Þsð0Þgj0i
¼ Π½q2; ðpþ qÞ2�pμ þ Π̃½q2; ðpþ qÞ2�qμ: ð2Þ

The correlator is analytic in whole q2 region. In the
timelike region, by inserting a complete series of the
intermediate hadronic states into the correlator, one can
obtain its hadronic representation by isolating the pole term
of the lowest state of the Bs meson. By further using the
TFF definition (1) and the Bs-meson decay constant fBs

,

hBsjb̄iγ5sj0i ¼ m2
Bs
fBs

=mb; ð3Þ

wheremBs
is theBs-mesonmass andmb is the b-quarkmass,

the hadronic representation for the correlator (2) reads

Πhad½q2; ðpþ qÞ2� ¼ 2fBs→Dsþ ðq2Þm2
Bs
fBs

mb½m2
Bs
− ðpþ qÞ2�

þ
Z

∞

sBs
0

ρQCDðsÞ
s − ðpþ qÞ2 ds; ð4Þ

where sBs
0 is a threshold parameter, ρQCDðsÞ is the spectral

density, andwe have implicitly used the conventional quark-
hadron duality ansatz. On the other hand, in the spacelike
region, the correlator can be calculated by using the operator
production expansion (OPE) approach. It is done by using
the b-quark propagator

h0jTbðxÞb̄ð0Þj0i ¼
Z

d4k
ð2πÞ4 e

−ik·x =kþmb

k2 −m2
b

þ � � � : ð5Þ

Bymatching the hadronic representation (4) and the OPE of
the correlator (2) with the help of the dispersion relation, the
LCSR of fBs→Dsþ ðq2Þ can be obtained,

fBs→Dsþ ðq2Þ ¼ em
2
Bs
=M2

m2
Bs
fBs

�
F0ðq2;M2; sBs

0 Þ

þ αsCF

4π
F1ðq2;M2; sBs

0 Þ
�
; ð6Þ
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where CF ¼ 4=3,M is the Borel parameter. Here the Borel
transformation has been adopted to suppress continuum
contributions. The leading-order contribution of fBs→Dsþ ðq2Þ
takes the form

F0ðq2;M2; sBs
0 Þ ¼ m2

bfDs

m2
Bs
fBs

em
2
Bs
=M2

Z
1

Δ

du
u
ϕ2;Ds

ðuÞ

× exp

�
−
m2

b − ūðq2 − um2
Ds
Þ

uM2

�
; ð7Þ

with the Ds-meson decay constant fDs
and

Δ ¼ 1

2m2
Ds

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsBs

0 − q2 −m2
Ds
Þ2 þ 4m2

Ds
ðm2

b − q2Þ
q

− ðsBs
0 − q2 −m2

Ds
Þ
�
:

The next-to-leading-order contribution of fBs→Dsþ ðq2Þ reads

F1ðq2;M2;sBs
0 Þ

¼ fDs

π

Z
sBs
0

m2
b

dse−s=M
2

Z
1

0

duImsT1ðq2;s;uÞϕ2;Ds
ðuÞ: ð8Þ

The imaginary part of the next-to-leading-order amplitude
T1 can be found in Ref. [51]. Due to the present choice of the
chiral correlator (2), contributions from the twist-3 Ds-
meson LCDA exactly vanish in the LCSR. Thus, the terms
from the omitted gluonic field in the b-quark propagator (5)
and hence contributions from even higher-twist terms are
negligibly small and can be safely neglected. Our remaining
task is then to achieve a precise ϕ2;Ds

.

B. Sum rules for the moments of the Ds-meson
leading-twist LCDA ϕ2;Ds

The Ds-meson leading-twist LCDA ϕ2;Ds
is defined as

h0jc̄ðzÞ=zγ5sð−zÞjDsðqÞi

¼ iðz · qÞfDs

Z
1

0

dxeið2x−1Þðz·qÞϕ2;Ds
ðxÞ; ð9Þ

where fDs
is the Ds-meson decay constant. The moments

of ϕ2;Ds
ðxÞ can be derived by expanding the left-hand side

of Eq. (9) around z ¼ 0 and the exponent on the right-hand
side of Eq. (9) as a power series, e.g.,

h0jc̄ð0Þ=zγ5ðz ·D
↔Þnsð0ÞjDsðqÞi ¼ ifDs

ðz · qÞnþ1hξni2;Ds
;

ð10Þ

where the nth moment is defined as

hξni2;Ds
¼

Z
1

0

dxð2x − 1Þnϕ2;Ds
ðxÞ: ð11Þ

The zeroth moment satisfies the normalization condition

hξ0i2;Ds
¼ 1: ð12Þ

The sum rules of these moments can be derived by using
the following correlator:

Πðn;0Þ
2;Ds

ðz; qÞ ¼ i
Z

d4xeiq·xh0jTfJnðxÞJ†0ð0Þgj0i

¼ ðz · qÞnþ2Iðn;0Þ2;Ds
ðq2Þ; ð13Þ

where n ¼ ð0; 1; 2;…Þ, and the currents

JnðxÞ ¼ c̄ðxÞ=zγ5ðiz ·D
↔ÞnsðxÞ; ð14Þ

J†0ð0Þ ¼ s̄ð0Þ=zγ5cð0Þ: ð15Þ

By applying the OPE for the correlator (13) in the deep
Euclidean region based on BFT [50], we obtain

Πðn;0Þ
2;Ds

ðz; qÞ ¼ i
Z

d4xeiq·x

× f−Trh0jScFð0; xÞ=zγ5ðiz ·D
↔ÞnSsFðx; 0Þ=zγ5j0i

þ Trh0jScFð0; xÞ=zγ5ðiz ·D
↔Þns̄ð0ÞsðxÞ=zγ5j0ig

þ � � � ; ð16Þ

where ScFð0; xÞ and SsFðx; 0Þ are the c- and s-quark

propagators in the BFT, ðiz ·D↔Þn stands for the vertex
operators, and “� � �” indicates even higher-order terms.
There are in total 40 Feynman diagrams for the present

considered accuracy, e.g., up to dimension-six operators,
the first and second terms in Eq. (16) contain 35 and 5
Feynman diagrams, respectively. Typical Feynman dia-
grams are shown in Figs. 1 and 2, and other diagrams can
be obtained by permutation. In these two figures, the left
and right big dots stand for the vertex operators =zγ5ðz ·D

↔Þn
and =zγ5 in the currents JnðxÞ and J†0ð0Þ, respectively; the
cross symbol indicates the gluonic background field.
There are also cases in which the cross symbol stands
for the s-quark background field. In deriving the QCD
sum rules for the moments, we need to know the
propagators and vertex operators under BFT up to
dimension-six operators, and tedious expressions for them
can be found in Ref. [41]. Here, different from the case
of the D meson, the mass effect in the denominator of the
s-quark propagator cannot be ignored. However, consid-
ering that the s-quark mass is not large, we expand the
s-quark propagator as a power series over ms and keep
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only the first power of ms. In this way, we can use the
corresponding calculation technology described in detail
in Ref. [44] to do the calculation.

Following the standard procedures of QCD sum rules
[52,53], we obtain the sum rules for the moments of theDs-
meson leading-twist LCDA, i.e.,

hξni2;Ds
f2Ds

M2
e−m

2
Ds

=M2 ¼ 1

π

1

M2

Z
sDs
0

tmin

dse−
s

M2ImIpertðsÞþ B̂M2Ihs̄sið−q2Þþ B̂M2IhG2ið−q2Þþ B̂M2Ihs̄Gsið−q2Þþ B̂M2Ihs̄si2ð−q2Þ

þ B̂M2IhG3ið−q2Þ: ð17Þ

The analytical expressions of the perturbative and nonperturbative terms are

ImIpertðsÞ ¼
3

8π2M2ðnþ 1Þðnþ 3Þ
��

1

v

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
sv2

s

r �
− 1

�
nþ1

�
1 −

nþ 1

2v

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
sv2

s

r �

×
�
1

v

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
sv2

s

r �
− 2

��
−
�
1

v

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
sv2

s

r �
− 1

�
nþ1

×

�
1 −

nþ 1

2v

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
sv2

s

r ��
1

v

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
sv2

s

r �
− 2

���
; ð18Þ

FIG. 2. Typical Feynman diagrams for the second term of Eq. (16). The left and right big dots stand for the vertex operators =zγ5ðz ·D
↔Þn

and =zγ5 in the currents JnðxÞ and J†0ð0Þ, respectively. The cross symbol attached to the gluon line indicates the tensor of the local gluon
background field, “n” indicates the nth-order covariant derivative, and the cross symbol attached to the quark line stands for the quark
background field.

FIG. 1. Typical Feynman diagrams for the first term of Eq. (16). The left and right big dots stand for the vertex operators =zγ5ðz ·D
↔Þn

and =zγ5 in the currents JnðxÞ and J†0ð0Þ, respectively. The cross symbol is the gluonic background field.“n” indicates the nth-order
covariant derivative.
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B̂M2Ihs̄si2;Ds
ð−q2Þ ¼ ð−1Þne−m2

c=M2hs̄si
�
ms

M4
þm2

cm3
s

3M4
þ ð2nþ 1Þm3

s

3M6

�
; ð19Þ

B̂M2IhG
2i

2;Ds
ð−q2Þ ¼ hαsG2i

12πM4
½2nðn − 1ÞHðn − 2; 1; 3; 2Þ þHðn; 0; 2; 2Þ − 2m2

cHðn; 1; 1; 3Þ�; ð20Þ

B̂M2Ihs̄Gsið−q2Þ ¼ ð−1Þne−m2
c=M2 mshgss̄σTGsi

M6

�
−
8nþ 1

18
−
2m2

c

9M2

�
; ð21Þ

B̂M2IhG3ið−q2Þ ¼
hg3sfG3i
120π2

½−10ðn − 1Þnðnþ 1ÞHðn − 2; 1; 4; 3Þ − 30m2
cnðn − 1ÞHðn − 2; 1; 4; 4Þ − 15m2

c

×Hðn; 1; 1; 4Þ − 5m2
cHðn; 0; 2; 4Þ þ 5nm2

cHðn − 1; 1; 2; 4Þ þ 36m4
cHðn; 1; 1; 5Þ�; ð22Þ

B̂M2Ihs̄si2ð−q2Þ ¼
hgss̄si2
2430π2

½−80nðnþ 1ÞHðn − 2; 0; 5; 3Þ þ 120m2
cnHðn − 1; 0; 4; 4Þ − 60m2

cHðn; 0; 2; 4Þ
þ 180m2

cHðn; 0; 3; 4Þ þ 60ðnþ 1ÞHðn; 0; 3; 3Þ þ 25Hðn; 0; 2; 3Þ − 80nðnþ 1ÞHðn − 2; 2; 3; 3Þ
þ 40nHðn − 2; 1; 2; 3Þ − 120nm2

cHðn − 1; 1; 3; 4Þ − 50nHðn − 1; 1; 2; 3Þ þ 60nm2
cHðn − 1; 1; 2; 4Þ

þ 120nðn − 1Þm2
cHðn − 2; 1; 4; 4Þ þ 40nðn − 1Þðnþ 1ÞHðn − 2; 1; 4; 3Þ − 255Hðn; 1; 1; 3Þ

þ 45m2
cHðn; 1; 1; 4Þ − 144m4

cHðn; 1; 1; 5Þ�

þ hgss̄si2
5832π2M6

e−m
2
c=M2

�
−153½F 1ðn; 5; 3; 2;∞Þ − G2ðn; 5Þ þ θðn − 2ÞG1ðn; 5Þ þ 3θðn − 1ÞG2ðn; 5Þ�

þ 30nF 2ðn − 1; 5; 3; 1;∞Þ þ 24nF 2ðn − 2; 5; 3; 1;∞Þ þ 2mcmsF 2ðn; 4; 4; 1;∞Þ
− 18½F 2ðn; 3; 3; 1;∞Þ þ G2ðn; 3Þ� þ 15½F 2ðn; 4; 3; 1;∞Þ þ G2ðn; 4Þ�ð15þ 2mcmsÞ

þ
�
ln
M2

μ2
− γE þ 3

2

�
½−153ðnþ 2Þθðn − 1Þ − 3ÞÞ − 30ð−4δ0n − ð−1Þnð2nð−1Þnθðn − 1Þ þ 24n

þ θðn − 2Þð−1Þn − 3ð−1Þn� þ
�
ln
M2

μ2
− γE þ 11

6

�
½153ð−1Þn þ 2mcmsð−1Þn�

�
; ð23Þ

with v¼ s=ðs−m2
cþm2

sÞ. The functions F 1;2ðn; a; b;
lmin; lmaxÞ;G1;2ðn; aÞ;Hðn; a; b; cÞ, and Borel transforma-
tions are collected in the Appendix.

C. Light-cone harmonic oscillator model for
the Ds-meson leading-twist LCDA ϕ2;Ds

Based on the BHL description [38–40], similar to
the case of the D-meson leading-twist LCDA [44], we
construct a light-cone harmonic oscillator model of the
Ds-meson leading-twist wave function Ψ2;Ds

ðx;k⊥Þ as

Ψ2;Ds
ðx;k⊥Þ ¼ χ2;Ds

ðx;k⊥ÞΨR
2;Ds

ðx;k⊥Þ; ð24Þ

where k⊥ is the transverse momentum, χ2;Ds
ðx;k⊥Þ is

the spin-space wave function, and ΨR
2;Ds

ðx;k⊥Þ indicates
the spatial wave function. The spin-space wave function
χ2;Ds

ðx;k⊥Þ reads [54]

χ2;Ds
ðx;k⊥Þ ¼

m̂cxþ m̂sð1 − xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ ½m̂cxþ m̂sð1 − xÞ�2

p ; ð25Þ

where m̂c and m̂s are constituent quark masses of Ds, and
we adopt m̂c ¼ 1.5 GeV and m̂s ¼ 0.5 GeV. The spatial
wave function takes the form

ΨR
2;Ds

ðx;k⊥Þ ¼ ADs
φ2;Ds

ðxÞ

× exp

�
−

1

β2Ds

�
k2⊥ þ m̂2

c

1 − x
þ k2⊥ þ m̂2

s

x

��
;

ð26Þ

where ADs
is the normalization constant, βDs

is the
harmonious parameter that dominates the wave function’s
transverse distribution, and the function φ2;Ds

ðxÞ dominates
the wave function’s longitudinal distribution. φ2;Ds

ðxÞ can
be taken as the first few terms of the Gegenbauer series;
here, we take
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φ2;Ds
ðxÞ ¼ 1þ

X4
n¼1

BDs
n C3=2

n ð2x − 1Þ: ð27Þ

By using the relationship between the Ds-meson leading-
twist wave function and its LCDA at the scale μ0,

ϕ2;Ds
ðx; μ0Þ ¼

2
ffiffiffi
6

p

fDs

Z
jk⊥j2≤μ20

d2k⊥
16π3

Ψ2;Ds
ðx;k⊥Þ; ð28Þ

which, after integrating over the transverse momentum k⊥,
becomes

ϕ2;Ds
ðx; μ0Þ ¼

ffiffiffi
6

p
ADs

β2Ds

π2fDs

xð1 − xÞφ2;Ds
ðxÞ

× exp

�
−
m̂2

cxþ m̂2
sð1 − xÞ

8β2Ds
xð1 − xÞ

�

×

�
1 − exp

�
−

μ20
8β2Ds

xð1 − xÞ
��

; ð29Þ

where μ0 ∼ ΛQCD is the factorization scale. Because
m̂c ≫ ΛQCD, the spin-space wave function χDs

→ 1. The
above model [Eqs. (24) and (29)] is for the D−

s meson. The
leading-twist wave function and the LCDA for the Dþ

s
meson can be obtained by replacing x with (1 − x) in
Eqs. (24) and (29).
The model parameters ADs

, BDs
n , and βDs

are scale
dependent, their values at an initial scale μ0 can be
determined by reasonable constraints, and their values at
any other scale μ can be derived via the evolution equation
[55]. More explicitly, we adopt the following constraints to
fix the parameters:

1. The normalization condition,

Z
1

0

dxϕ2;Ds
ðx; μ0Þ ¼ 1: ð30Þ

2. The probability of finding the leading Fock state jc̄si
in the Ds-meson Fock-state expansion,

PDs
¼ A2

Ds
β2Ds

4π2
xð1 − xÞφ2

Ds
ðxÞ

× exp

�
−
m2

cxþm2
sð1 − xÞ

4β2Ds
xð1 − xÞ

�
: ð31Þ

We take PDs
≃ 0.8 [56] in subsequent calculations.

3. The Gegenbauer moments of ϕ2;Ds
ðx; μ0Þ can be

derived via the formula

aDs
n ðμ0Þ ¼

R
1
0 dxϕ2;Ds

ðx; μ0ÞC3=2
n ð2x − 1ÞR

1
0 dx6xð1 − xÞ½C3=2

n ð2x − 1Þ�2
; ð32Þ

and the ϕ2;Ds
ðx; μ0Þ moments are defined as

hξni2;Ds
jμ0 ¼

Z
1

0

dxð2x − 1Þnϕ2;Ds
ðx; μ0Þ: ð33Þ

The values of the moments hξni2;Ds
and the Gegen-

bauer moments aDs
n at the scale 2 GeV are given in

the next subsection.

III. NUMERICAL ANALYSIS

A. Input parameters

To do the numerical analysis of the moments of the Ds-
meson leading-twist LCDA, we take the Ds-meson mass
mDs

¼ 1.968� 0.00007 GeV, the c-quark current-quark
mass m̄cðm̄cÞ ¼ 1.275� 0.02 GeV, the s-quark mass
msð2 GeVÞ ¼ 0.093þ0.011

−0.005 GeV, and the decay constant
of the Ds meson fDs

¼ 0.256�0.0042MeV [57]. For the
gluon condensates, we take hαsG2i ¼ 0.038� 0.011 GeV4

and hg3sfG3i ¼ 0.045 GeV6 [58]. For the remaining vac-
uum condensates, we adopt hs̄si ¼ κhq̄qi, hgss̄σTGsi ¼
κhgsq̄σTGqi, and hgss̄si2¼κ2hgsq̄qi2, where κ ¼ 0.74�
0.03 [59], hq̄qi¼ð−2.417þ0.227

−0.114Þ×10−2GeV2, hgsq̄σTGqi¼
ð−1.934þ0.188

−0.103Þ×10−2GeV5, and hgsq̄qi2¼ð2.082þ0.743
−0.697Þ×

10−3 GeV6 at μ ¼ 2 GeV [52]. The scale evolution equa-
tions of these inputs are [52,60,61]

m̄cðμÞ¼ m̄cðm̄cÞ
�
αsðμÞ
αsðm̄cÞ

�
4=β0

;

m̄sðμÞ¼ m̄sð2GeVÞ
�

αsðμÞ
αsð2GeVÞ

�
4=β0

;

hq̄qiðμÞ¼ hq̄qið2GeVÞ
�

αsðμÞ
αsð2GeVÞ

�
−4=β0

;

hgsq̄σTGqiðμÞ¼ hgsq̄σTGqið2GeVÞ
�

αsðμÞ
αsð2GeVÞ

�
−2=ð3β0Þ

;

hgsq̄qi2ðμÞ¼ hgsq̄qi2
�

αsðμÞ
αsð2GeVÞ

�
−4=β0

;

hαsG2iðμÞ¼ hαsG2iðμ0Þ;
hg3sfG3iðμÞ¼ hg3sfG3iðμ0Þ; ð34Þ

where β0 ¼ 11 − 2nf=3, with nf being the active quark
flavors. In the following numerical calculation of the
moments hξni2;Ds

jμ, the scale μ will be set as the Borel
parameter, as usual, i.e., μ ¼ M. The continuous threshold
sDs
0 is usually taken as the squared mass of the Ds-meson’s
first excited state, and we take sDs

0 ≃ 6.5 GeV2.

B. Moments hξni2;Ds
from QCD sum rules

To get the numerical value of the moments hξni2;Ds
of

ϕ2;Ds
ðx; μÞ, one needs to fix the Borel windowM2 which is
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introduced to depress the contributions from both the
continuum states and the highest-dimensional condensates.
Usually, the continuum contribution and the dimension-six
condensate contribution are taken to be less than 30% and
10%, respectively, while the value of hξni2;Ds

is required to
be as stable as possible in the allowed Borel window. In this
paper, the continuum state contribution for hξni2;Ds

jμ with
n ¼ ð1; 2; 3; 4Þ is required to be less than 20%, 25%, 10%,
and 30%, respectively, and each of the dimension-six
condensate contributions is no more than 1%. The deter-
mined Borel windows and the corresponding Ds-meson
leading-twist LCDA moments hξni2;Ds

at the scale μ ¼
2 GeV with n ¼ ð1;…; 4Þ are presented in Table I, where
all input parameters are taken set to their central values. We
present the Ds-meson leading-twist LCDA moments
hξni2;Ds

with n ¼ ð1;…; 4Þ at μ ¼ 2 GeV versus M2 in
Fig. 3. To be consistent with Table I, these moments are
stable over the allowable Borel windows.
If we set μ ¼ 2 GeV, by taking all uncertainty sources

into consideration, we obtain

hξ1i2;Ds
jμ¼2 GeV ¼ −0.261þ0.020

−0.020 ; ð35Þ

hξ2i2;Ds
jμ¼2 GeV ¼ þ0.184þ0.012

−0.012 ; ð36Þ

hξ3i2;Ds
jμ¼2 GeV ¼ −0.111þ0.007

−0.012 ; ð37Þ

hξ4i2;Ds
jμ¼2 GeV ¼ þ0.075þ0.005

−0.005 ; ð38Þ

where the errors are squared averages of all of the
mentioned error sources.

C. Determination of the model parameters of ϕ2;Ds

According to the constraints of the Ds-meson leading-
twist LCDA ϕ2;Ds

ðx; μÞ, i.e., Eqs. (30)–(32), we need to

know the Gegenbauer moments aDs
n ðμÞ to fix the param-

eters ADs
, BDs

n , and βDs
. The Gegenbauer moments aDs

n ðμÞ,
using their relations to the LCDA moments hξni2;Ds

jμ [42],
are

aDs
1 ð2 GeVÞ ¼ −0.436þ0.033−0.033 ; ð39Þ

aDs
2 ð2 GeVÞ ¼ −0.047þ0.035−0.035 ; ð40Þ

aDs
3 ð2 GeVÞ ¼ þ0.004þ0.010−0.020 ; ð41Þ

aDs
4 ð2 GeVÞ ¼ −0.004þ0.025−0.026 ; ð42Þ

We present all of the determined input parameters at the
scale μ ¼ 2 GeV in Table II. The accuracy of ϕ2;Ds

ðx; μÞ is
dominated by the magnitudes of the Gegenbauer moments
aDs
n ðμÞ. As we have pointed out in Refs. [44,45], the

Gegenbauer moments aDs
n ðμÞ are correlated to each other

and cannot be changed independently within their own
error regions. Then, Table II associates the uncertainty of
ϕ2;Ds

ðx; μÞ with the error of the Gegenbauer moments

aDs
n ðμÞ, which facilitates our further discussion on the

impact of ϕ2;Ds
ðx; μÞ as an input parameter to the Bs →

Ds decay.
Figure 4 shows the Ds-meson leading-twist LCDA

ϕ2;Ds
ðx; μÞ with typical values of the input parameters

listed in Table II. The solid, dash-dotted, and dashed
lines are for the parameters listed in the second, third,
and forth lines of Table II. Our model of ϕ2;Ds

ðx; μÞ prefers
a broader behavior in the low-x region. It has a peak around
x ∼ 0.35. Figure 5 shows the Ds-meson leading-twist
LCDA ϕ2;Ds

ðx; μÞ at different scales, where the solid,
dashed, dotted, and dash-dotted lines are for the scales
μ ¼ 2, 3, 10, 100 GeV, respectively. It shows that with the
increment of μ, ϕ2;Ds

ðx; μÞ becomes broader and broader
and becomes more symmetric, e.g., the peak moves closer
to x ¼ 0.5. When μ → ∞, ϕ2;Ds

ðx; μÞ tends to the known
asymptotic form, i.e., ϕ2;Ds

ðx; μ → ∞Þ ¼ 6xð1 − xÞ.

FIG. 3. Ds-meson leading-twist LCDA moments hξni2;Ds
at the

scale μ ¼ M with n ¼ ð1;…; 4Þ versus the Borel parameter M2,
where all input parameters are set to their central values.

TABLE I. Determined Borel windows and the corresponding
Ds-meson leading-twist LCDA moments hξni2;Ds

with
n ¼ ð1; 2; 3; 4Þ. All input parameters are set to their central
values. μ ¼ M.

n M2 hξni2;Ds

1 [1.517, 5.840] ½−0.304;−0.263�
2 [1.265, 4.164] ½þ0.168;þ0.193�
3 [2.162, 7.185] ½−0.107;−0.104�
4 [1.928, 5.524] ½þ0.069;þ0.077�
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D. Numerical results for the Bs → Ds TFF and its
applications

Our inputs for the Bs → Ds TFF fBs→Dsþ ðq2Þ are [57]

mB̄0
s
¼ 5.36688� 0.00017 GeV;

m̄bðm̄bÞ ¼ 4.18þ0.04
−0.03 GeV;

fBs
¼ 266� 19 MeV:

There are still two parameters to be fixed: the continuum
threshold sBs

0 and the Borel window M2. We set sBs
0 ¼

38� 1 GeV2 and M2 ¼ ð20–30Þ GeV2 with the scale

μ ≃ 3 GeV, which is close to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Bs
−m2

b

q
. Such a choice

makes the TFF fBs→Dsþ ðq2Þ stable within the allowable
Borel window, as can be seen in Fig. 6. At the large-recoil
point q2 ¼ 0, we obtain

fB→Dþ ð0Þ ¼ 0.639þ0.056
−0.009 jϕ2;Ds

þ0.005
−0.013 jM2

þ0.014
−0.015 jsBs

0

þ0.043
−0.049 jfBs � 0.010jfDs

þ0.018
−0.012 jmb

; ð43Þ

and in the zero-recoil region q2 ¼ q2max, we obtain

fB→Dþ ðq2maxÞ ¼ 1.189� 0.125; ð44Þ

where all of the uncertainties have been added in quad-
rature, and the errors from ϕ2;Ds

ðx; μÞ and fBs
dominate

the uncertainties. It agrees with the lattice QCD predictions
within errors: fBs→Dsþ ð0Þ¼0.656ð31Þ [28] and fBs→Dsþ ð0Þ ¼
0.666ð12Þ [29].
Figure 6 also shows that for larger q2 values, the TFF

will show a sizable dependence on M2, which agrees with
the convention that the LCSR approach cannot be applied
for very large q2 values. We adopt the TFF fBs→Dsþ ðq2Þ
within the region ½0; 9 GeV2� as a basis to extrapolate it to

FIG. 4. Ds-meson leading-twist LCDA ϕ2;Ds
ðx; μÞ with the

parameter values listed in Table II.

FIG. 5. Ds-meson leading-twist LCDA ϕ2;Ds
ðx; μÞ at different

scales, where the solid, dashed, dotted and dash-dotted lines are
for μ ¼ 2, 3, 10, 100 GeV, respectively.

TABLE II. Typical Ds-meson leading-twist LCDA model parameters at the scale μ ¼ 2 GeV. The first line contains the central value,
and the second/third line contains the upper/lower limit for the LCDA.

aDs
1 ðμÞ aDs

2 ðμÞ aDs
3 ðμÞ aDs

4 ðμÞ ADs
ðGeV−1Þ BDs

1 BDs
2 BDs

3 BDs
4

βDs
ðGeVÞ

Central value −0.436 −0.047 0.004 −0.004 2.760 −0.313 −0.185 0.083 0.008 4.521
Upper −0.436þ0.033 −0.047−0.035 0.004þ0.010 −0.004−0.026 2.802 −0.290 −0.198 0.079 0.001 4.484
Lower −0.436−0.033 −0.047þ0.035 0.004−0.020 −0.004þ0.025 2.717 −0.334 −0.173 0.081 0.014 4.567

FIG. 6. TFF fBs→Dsþ ðq2Þ for some typical q2 values versus the
Borel parameter M2.
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all physical q2 values. For this purpose, we adopt the
double-pole-extrapolation method [62] to do the extrapo-
lation, i.e.,

fBs→Dsþ ðq2Þ ¼ fBs→Dsþ ð0Þ
1 − aðq2=m2

Bs
Þ þ bðq2=m2

Bs
Þ2 : ð45Þ

The fitted parameters are listed in Table III.
The extrapolated results are presented in Fig. 7, where

the solid line is the central value of fBs→Dsþ ðq2Þ and the
lighter shaded band shows its theoretical uncertainty, in
which the uncertainties from all of the mentioned error
sources, such as ϕ2;Ds

ðx; μÞ, sBs
0 , fBs

, fDs
, mb, etc., have

been added in quadrature. As a comparison, the lattice
QCD predictions for the large-q2 points and its extrapo-
lation to the entire q2 region have are also shown, and the
thicker shaded band represents the errors [28]. Our results
agree well with the lattice QCD predictions, especially the
arising trends over the changes of q2 are close to each other.
As applications, we adopt the LCSR prediction for the

TFF to make a prediction of the CKMmatrix element jVcbj
and the branching ratio BðBs → Dslν̄lÞ.

The TFF at the zero-recoil point, fBs→Dsþ ðq2maxÞ, is often
quoted as

Gð1Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffimBs

mDs

p
mBs

þmDs

× fBs→Dsþ ðq2maxÞ: ð46Þ

Using the averaged value given by theBABARCollaboration
via the measurements on the semileptonic decay B̄ → Dlν̄l
[63,64], ηewGð1ÞjVcbj ¼ ð42.65� 1.53Þ × 10−3, we obtain
jVcbj ¼ ð40.003þ4.929

−4.075Þ × 10−3. In Table IV we present a
comparison of jVcbj with the LHCb measured values under
the CLN and BGL approaches [15], the HPQCD prediction
[12], the ParticleDataGroup (PDG) averaged value [57], the
BABAR measured value [65], the BELLE measured values
under the CLNþ LQCD and BGLþ LQCD approaches
[66], and the lattice QCD prediction [67].
We adopt the extrapolated TFF fBs→Dsþ ðq2Þ to calculate

the branching ratio BðBs → Dslν̄lÞ, which can be derived
by using the following formula:

BðBs → Dslν̄lÞ ¼ τBs

Z ðmBs−mDs Þ2

0

dq2
dΓðBs → Dslν̄lÞ

dq2
;

ð47Þ

where the differential decay width is

dΓðBs → Dslν̄lÞ
dq2

¼ G2
FjVcbj2

192π3m3
Bs

λ3=2ðq2ÞjfBs→Dsþ ðq2Þj2;

ð48Þ

where GF ¼ 1.1663787ð6Þ × 10−5 GeV−2 and the phase-
space factor λðq2Þ ¼ ðm2

Bs
þm2

Ds
− q2Þ2 − 4m2

Bs
m2

Ds
. We

present the differential decay width 1=jVcbj2 × dΓ=dq2 in
Fig. 8. After considering the Bs-meson lifetime τBs

¼
ð1.510� 0.004Þ × 10−12 s [57], we obtain

BðB̄0
s → Dþ

s lνlÞ ¼ ð2.033þ0.350
−0.488Þ × 10−2: ð49Þ

FIG. 7. Extrapolated LCSR prediction for the TFF fBs→Dsþ ðq2Þ,
where the lighter shaded band is the squared average from all of
the mentioned error sources. The lattice QCD prediction and its
extrapolated results given in 2017 [28] are also presented as a
comparison, and the thicker shaded band shows its uncertainty.

TABLE III. Parameters a and b for the TFF extrapolation. The
lowest, middle, and highest TFFs are adopted for such a
determination.

fBs→Dsþ ð0Þ a b

0.639 1.350 0.479
0.583 1.345 0.531
0.714 1.320 0.443

TABLE IV. Comparison of jVcbj under various approaches and
the experimentally measured values.

References jVcbj × 10−3

This work 40.003þ4.929
−4.075

LHCb (CLN) [15] 41.4� 0.6� 0.9� 1.2
LHCb (BGL) [15] 42.3� 0.8� 0.9� 1.2
HPQCD [12] 39.6� 1.7� 0.2
PDG [57] 41.0� 1.4
BABAR [65] 38.36� 0.9
BELLE (CLNþ LQCD) [66] 38.4� 0.2� 0.6� 0.6
BELLE (BGLþ LQCD) [66] 38.3� 0.3� 0.7� 0.6
LQCD [67] 41.3� 2.2
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IV. SUMMARY

In this work, we have made a detailed study of the Ds-
meson leading-twist LCDA ϕ2;Ds

. Its moments have been
calculated using the QCD sum rules within the framework
of BFT, and its first four moments have been given in
Eqs. (35)–(38), which then result in the Gegenbauer
moments aDs

1 ð2 GeVÞ ¼ −0.436þ0.033
−0.033 , aDs

2 ð2 GeVÞ ¼
−0.047þ0.035

−0.035 , a
Ds
3 ð2GeVÞ¼0.004þ0.01

−0.02 , and aDs
4 ð2 GeVÞ ¼

−0.004−0.026þ0.025. Based on the BHL prescription, we have
constructed a new model for ϕ2;Ds

, whose behavior is
constrained by the normalization condition, the probability
of finding the leading Fock state jc̄si in the Ds-meson
Fock-state expansion, and the known Gegenbauer
moments. As the key input for studying the high-energy

processes involving theDs meson, our suggested ϕ2;Ds
will

be of great importance.
Using the present model of ϕ2;Ds

, we calculated the Bs →
Ds TFF fBs→Dsþ ðq2Þ within the QCD LCSR approach by
adopting a chiral current correlator, in which the leading-
twist terms dominant over the LCSR. In the large-recoil
region, we obtained fBs→Dsþ ð0Þ ¼ 0.639þ0.075

−0.056 . By using the
extrapolated TFF with the double-pole-extrapolation
method, we obtained BðB̄0

s → Ds
þlνlÞ ¼ ð2.033þ0.350

−0.488Þ ×
10−2 and the CKM element jVcbj ¼ ð40.00þ4.929

−4.075Þ × 10−3,
which is consistent with the various measurements within
reasonable errors.
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APPENDIX: USEFUL FUNCTIONS FOR
CALCULATING THE MOMENTS OF ϕ2;Ds

The functions F 1;2ðn; a; b; lmin; lmaxÞ, G1;2ðn; aÞ, and
Hðn; a; b; cÞ used in the sum rules (18)–(23) are

F 1ðn; a; b; lmin; lmaxÞ ¼
Xn
k¼0

ð−1Þkn!Γðkþ aÞ
k!ðn − kÞ!

Xlmax

l¼lmin

Γðlþ bÞΓðn − 1 − kþ lÞ
Γðn − 1þ lþ aÞ

×
Xl

i¼0

1

i!ðl − iÞ!ðl − 1 − iþ bÞ!
�
−
m2

c

M2

�
l−i
; ðA1Þ

F 2ðn;a;b;lmin; lmaxÞ¼
Xn
k¼0

ð−1Þkn!ΓðkþaÞ
k!ðn−kÞ!

Xlmax

l¼lmin

ΓðlþbÞΓðn−kþ lÞ
Γðnþ lþaÞ

Xl

i¼0

1

i!ðl− iÞ!ðl−1− iþbÞ!
�
−
m2

c

M2

�
l−i
; ðA2Þ

G1ðn; aÞ ¼
Xn−2
k¼0

ð−1Þkn!Γðkþ aÞΓðn − 1 − kÞ
k!ðn − kÞ!Γðn − 1þ aÞ ; ðA3Þ

G2ðn; aÞ ¼
Xn−1
k¼0

ð−1Þkn!Γðkþ aÞΓðn − kÞ
k!ðn − kÞ!Γðnþ aÞ ; ðA4Þ

FIG. 8. Differential decay width 1=jVcbj2 × dΓ=dq2, with
l ¼ ðe; μÞ. As a comparison, we also present the lattice QCD
predictions at the large-q2 points [28].
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Hðn; a; b; cÞ ¼
Z

1

0

dxð2x − 1Þnxað1 − xÞb exp
�
−

m2
c

M2ð1 − xÞ
�

¼ 1

ðc − 1Þ!
1

ðM2Þc
Z

1

0

dxð2x − 1Þnxað1 − xÞb exp
�
−

m2
c

M2ð1 − xÞ
�
: ðA5Þ

The Borel transformation formulas are

B̂M2

1

ð−q2 þm2
cÞk

ln
−q2 þm2

c

μ2
¼ 1

ðk − 1Þ!
1

M2k e
−m2

c=M2

�
ln
M2

μ2
þ ψðkÞ

�
ðk ≥ 1Þ;

B̂M2ð−q2 þm2
cÞk ln

−q2 þm2
c

μ2
¼ ð−1Þkþ1k!M2ke−m

2
c=M2 ðk ≥ 0Þ;

B̂M2

ð−q2Þl
ð−q2 þm2

cÞlþτ ¼

8>>>>>>>><
>>>>>>>>:

0; τ ¼ 0; l ¼ 0;

Xl−1
i¼0

l!
i!ðl − iÞ!ðl − i − 1Þ!

�
−
m2

c

M2

�
l−i
e−m

2
c=M2

; τ ¼ 0; l > 0;

Xl

i¼0

l!
i!ðl − iÞ!ðlþ τ − i − 1Þ!

�
−
m2

c

M2

�
l−i 1

M2τ e
−m2

c=M2

; τ > 0; l ≥ 0:

ðA6Þ
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