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We present a data-driven analysis of the resonant S-wave ππ → ππ and πK → πK reactions using the
partial-wave dispersion relation. The contributions from the left-hand cuts are accounted for using the
Taylor expansion in a suitably constructed conformal variable. The fits are performed to experimental and
lattice data as well as Roy analyses. For the ππ scattering we present both a single- and a coupled-channel
analysis by including additionally the KK̄ channel. For the latter the central result is the Omnès matrix,
which is consistent with the most recent Roy and Roy-Steiner results on ππ → ππ and ππ → KK̄,
respectively. By the analytic continuation to the complex plane, we found poles associated with the lightest
scalar resonances σ=f0ð500Þ, f0ð980Þ, and κ=K�

0ð700Þ for the physical pion mass value and in the case of
σ=f0ð500Þ, κ=K�

0ð700Þ also for unphysical pion mass values.

DOI: 10.1103/PhysRevD.103.114023

I. INTRODUCTION

There is a renewed interest in the hadron spectroscopy,
motivated by recent discoveries of unexpected exotic
hadron resonances [1–3]. Currently, LHCb, BESIII, and
COMPASS collected data with unprecedented statistics,
BELLE-II and GlueX just started to operate, and more
facilities are planned in the near future, such as PANDA
and EIC. Besides, lattice QCD has been applied to a broad
range of hadron processes, and recently the lowest exci-
tation spectrum with the masses of the light quarks near
their physical values was calculated [4].
To correctly identify resonance parameters one has to

search for poles in the complex plane. This is particularly
important when there is an interplay between several
inelastic channels or when the pole is lying very deep in
the complex plane. In these cases, the structure of the
resonance is quite different from a typical Breit-Wigner
behavior. In order to determine the pole position of the
resonance, one has to analytically continue the amplitude to
the unphysical Riemann sheets. At this stage, the right
theoretical framework has to be applied. The latter should
satisfy the main principles of the S-matrix theory, namely
unitarity, analyticity, and crossing symmetry. These con-
straints were successfully incorporated in the set of Roy or
Roy-Steiner equations [5]. In a practical application,
however, the rigorous implementation of these equations

is almost impossible, since it requires experimental knowl-
edge of all partial waves in the direct channel and all
channels related by crossing. Therefore, the current pre-
cision studies of ππ [6–9] and πK [10,11] scattering are
based on a finite truncation, which in turn limits the results
to a given kinematic region, and require a large exper-
imental data basis. Furthermore, applying Roy-like equa-
tions for coupled-channel cases is quite complicated and
has not been achieved in the literature so far. Because of the
above-mentioned difficulties, in the experimental analyses,
it is a common practice to ignore the S-matrix constraints
and rely on simple parametrizations. The most used ones
are a superposition of Breit-Wigner resonances or the K-
matrix approach. The latter implements unitarity, but
ignores the existence of the left-hand cut and often leads
to spurious poles in the complex plane.
A good alternative to the K-matrix approach and a

complementary method to Roy analysis is the so-called
N=D technique [12], which is based on the partial-wave
dispersion relations. In this method, the dominant con-
straints of resonance scattering, such as unitarity and
analyticity are implemented exactly. Since the time it
was introduced by Chew and Mandelstam [12], the N=D
method has been extensively studied for different processes
[13–16]. The required inputs to solve the N=D equation are
the discontinuities along the left-hand cut, which are
typically approximated one way or another using chiral
perturbation theory (χPT). In the present paper, we extend
the ideas of [15], where the left-hand cut contributions were
approximated using an expansion in powers of a suitably
chosen conformal variable. In contrast to [16], however, we
follow here a data-driven approach and adjust the unknown
coefficients in the expansion scheme to empirical data

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 103, 114023 (2021)

2470-0010=2021=103(11)=114023(17) 114023-1 Published by the American Physical Society

https://orcid.org/0000-0002-4493-9883
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.114023&domain=pdf&date_stamp=2021-06-22
https://doi.org/10.1103/PhysRevD.103.114023
https://doi.org/10.1103/PhysRevD.103.114023
https://doi.org/10.1103/PhysRevD.103.114023
https://doi.org/10.1103/PhysRevD.103.114023
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


directly. In this way, the model dependence is avoided, and
the method can also be applied to the reactions that do not
include Goldstone bosons, as, for instance, the J=ψJ=ψ
scattering [1].
In this paper, we apply the N=D method to the resonant

ππ and πK scattering in the S-wave. There are three main
reasons for this choice:

(i) The system of two pions (or pion and kaon) shows
up very often as a part of the final state of many
hadronic interactions and therefore serves as input in
various theoretical or experimental data analyses,
such as η → 3π [17–19], η0 → ππη [20–22], γγ →
ππ [23–25], eþe− → J=ψðψ 0Þππ [26–28], or D →
Kππ [29].

(ii) Even though the ππ → ππ (and to a lesser extent
πK → πK and ππ → KK̄) amplitudes are known
very well from the Roy (Roy-Steiner) analyses
[7–11,30], in the practical dispersive applications
the final state interactions (FSI) are implemented
with the help of the so-called Omnès function, which
does not have left-hand cuts. Indeed, the left-hand
cuts are different for each production/decay mecha-
nism, while the unitarity makes a connection be-
tween the production/decay and the scattering
amplitudes only on the right-hand cut. In the
N=D ansatz, the Omnès functions come out natu-
rally, as the inverse of the D functions.

(iii) Recently, it has become possible to calculate ππ and
πK scattering using lattice QCD with almost physi-
cal masses [31–37]. Since, both the σ=f0ð500Þ and
the κ=K�

0ð700Þ states lie deep in the complex plane,
the reliable extraction of their properties requires the
use of the formalism that goes beyond the simple K-
matrix parametrization and incorporates in addition
the analyticity constraint.

The paper is organized as follows. In the next section, we
focus on the formalism that we adopt in this paper. We start
with the review of the N=D method in Sec II A. We then
discuss the left-hand cut contributions in Sec. II B. In Sec II
C we make the connection to the Omnès functions. The
numerical results are presented in Sec. III. We start with
I ¼ 0, ππ single-channel analysis of both experimental and
lattice data, which is followed by the coupled-channel
fππ; KK̄g analysis of the experimental data. These results
are then used to determine the two-photon coupling of
σ=f0ð500Þ and f0ð980Þ. At the very end, we focus on πK,
I ¼ 1=2 scattering of both experimental and lattice data. A
summary and outlook is presented in Sec. IV.

II. FORMALISM

A. N/D method

The s-channel partial-wave decomposition for the 2 → 2
process is given by

Tabðs; tÞ ¼ N ab

X∞
J¼0

ð2J þ 1ÞtðJÞab ðsÞPJðcos θÞ; ð1Þ

where θ is the c.m. scattering angle and ab are the coupled-
channel indices with a and b standing for the initial and
final states, respectively. For the following discussion, we
focus only on the S-wave (J ¼ 0) and therefore will
suppress the label (J). The different normalization factors
(N ππππ ¼ 2, N ππKK̄ ¼ ffiffiffi

2
p

, and N KK̄KK̄ ¼ N πKπK ¼ 1)
are needed to ensure that the unitarity condition for
identical and nonidentical two-particle states are the same
and can be written in the matrix form as

Disc tabðsÞ≡ 1

2i
ðtabðsþ iϵÞ − tabðs − iϵÞÞ

¼
X
c

tacðsÞρcðsÞt�cbðsÞ; ð2Þ

where the sum goes over all intermediate states. The phase
space factor ρcðsÞ in Eq. (2) is given by

ρcðsÞ ¼
1

8π

pcðsÞffiffiffi
s

p θðs − sthÞ; ð3Þ

withpcðsÞ and sth being the center-of-mass threemomentum
and threshold of the corresponding two-meson system.
Within the maximal analyticity assumption [38], the par-
tial-wave amplitudes satisfy the dispersive representation

tabðsÞ ¼
Z

sL

−∞

ds0

π

Disc tabðs0Þ
s0 − s

þ
Z

∞

sth

ds0

π

Disc tabðs0Þ
s0 − s

; ð4Þ

where sL is thepositionof the closest left-hand cut singularity
and the discontinuity along the right-hand cut is given by (2).
For unequal masses, as in πK scattering, the left-hand
singularities of the partial-wave amplitude do not all lie
on the real axis and the integration in the first term in Eq. (4)
goes partly along the circle. We note that the separation into
left- and right-hand cuts given in (4) is only possible for the
systems where no anomalous thresholds are present [39,40].
The unitarity condition (2) guarantees that the partial-

wave amplitudes at infinity approach at most constants. In
accordance with that, we can make one subtraction in
Eq. (4) to suppress the high-energy contribution under the
dispersive integrals. Thus we rewrite Eq. (4) as

tabðsÞ ¼ UabðsÞ þ
s − sM

π

Z
∞

sth

ds0

s0 − sM

Disc tabðs0Þ
s0 − s

; ð5Þ

where we combined the subtraction constant together with
the left-hand cut contributions into the function UabðsÞ.
The choice of the subtraction point sM will be discussed
later. The solution to (5) can be written using the N=D
ansatz [12]
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tabðsÞ ¼
X
c

D−1
ac ðsÞNcbðsÞ; ð6Þ

where the contributions of left- and right-hand cuts
are separated into NðsÞ and DðsÞ functions, respectively.
The discontinuity relation along the right-hand cut
DiscDabðsÞ ¼ −NabðsÞρbðsÞ allows us towrite a dispersive
representation for the D function, which up to a Castillejo-
Dalitz-Dyson (CDD) ambiguity [41]1 is given by

DabðsÞ ¼ δab −
s − sM

π

Z
∞

sth

ds0

s0 − sM

Nabðs0Þρbðs0Þ
s0 − s

: ð7Þ

Because of the nonuniqueness of the N=D ansatz, we
have normalized the D function in Eq. (7) such that
DabðsMÞ ¼ δab. Since DabðsÞ is a complex matrix above
the threshold, the position of sM has to be chosen such that all
of its elements are real at this point, i.e., sM ≤ sth. To arrive at
an integral equation for the NðsÞ function, one can write a
once-subtracted dispersion relation for

P
c DacðsÞðtðsÞ −

UðsÞÞcb and fix its subtraction constant by requiring that

tabðsMÞ ¼ UabðsMÞ; ð8Þ

which follows from Eq. (5). As a result, it yields [43]

NabðsÞ¼UabðsÞþ
s−sM
π

×
X
c

Z
∞

sth

ds0

s0−sM

Nacðs0Þρcðs0ÞðUcbðs0Þ−UcbðsÞÞ
s0−s

:

ð9Þ

The above integral equation can be solved numerically given
the input of UabðsÞ. Knowing the NabðsÞ function on the
right-hand cut, the DabðsÞ function is calculated by (7) and
finally the partial-wave amplitude is produced with Eq. (6).
In other words, if the discontinuities across all the left-hand
cuts were known,2 the exact solution can be obtained by the
N=D method. An important property of Eq. (9) is that the
input ofUðsÞ is only needed on the right-hand cut. In the case
of many channels, both the diagonal and the off-diagonal
t-matrix elements have a right-hand cut starting at the lowest
threshold sth. However, only the input of the off-diagonal
UabðsÞ is required outside the physical region, while in order
to solve (9), the input of the diagonalUaaðsÞ is needed in the
physical region due to the phase space factor. It has a direct
relevance for the fππ; KK̄g case, where in the KK̄ → KK̄
channel the overlap of left- and right-hand cuts happens, but
only in the nonphysical region, 4m2

π < s < 4ðm2
K −m2

πÞ,
and therefore does not require any modifications of the

dispersion integrals. We also emphasize that by means of
Eq. (6), the scattering amplitude can be rigorously continued
into the complex plane, where one can determine pole
parameters of the resonances. In our convention the scatter-
ing amplitude in the vicinity of the poles on the unphysical
Riemann sheets (or physical Riemann sheet in the case of the
bound state) is given by

N abtabðsÞ ≃
gpagpb
sp − s

; ð10Þ

where the normalization factorN ab comes from Eq. (1) and
gpi denotes the coupling of the pole at s ¼ sp to the channel
i ¼ a, b.
We wish to comment on the case when there is a bound

state in the system, since it happens for the relatively large
unphysical pion masses. To find the binding energy sB, one
searches for a zero of the determinant of the Dab matrix for
energies below threshold,

detðDabðsBÞÞ ¼ 0; sB < sth: ð11Þ

In this case, the solution obtained using the set of N=D
equations (6) with input from (13) satisfies the dispersion
relation (5) combined with the bound state term,

tabðsÞ ¼ UabðsÞ þ
s − sM
sB − sM

gBagBb
sB − s

þ s − sM
π

Z
∞

sth

ds0

s0 − sM

Disc tabðs0Þ
s0 − s

: ð12Þ

At the same time, it is straightforward to show that
including such a bound state term into the definition of
UabðsÞ does not change the solution of (6) or the integral
equation (9), provided that the residues gBagBb are dialed
properly using the detðDabðsBÞÞ ¼ 0 condition.

B. Left-hand cuts

In a general scattering problem, little is known about the
left-hand cuts, except their analytic structure in the complex
plane. The progress has been made in [15], by considering
an analytic continuation of UabðsÞ to the physical region,
which is needed as input to Eq. (9), by means of an
expansion in a suitably contracted conformal mapping
variable ξðsÞ,

UðsÞ ¼
X∞
n¼0

Cnξ
nðsÞ; ð13Þ

which is chosen such that it maps the left-hand cut plane
onto the unit circle [44]. The form of ξðsÞ depends on the
cut structure of the reaction (i.e., fabg) and specified by the
position of the closest left-hand cut branching point (sL)
and an expansion point (sE) around which the series is

1For detailed discussion of the CDD ambiguity in the N=D
context we refer the reader to [14,16,42].

2In that case the subtraction constant is probably unnecessary
to introduce.
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expanded, ξðsEÞ ¼ 0. Since for the fππ; KK̄g system all
the left-hand cuts lie on the real axis, −∞ < s < sL, one
can use a simple function

ξðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
s − sL

p − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sE − sL

pffiffiffiffiffiffiffiffiffiffiffiffi
s − sL

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sE − sL

p ; ð14Þ

where sLðππ→ππÞ¼sLðππ→KK̄Þ¼0 and sLðKK̄→KK̄Þ¼
4ðm2

K−m2
πÞ. For the case of πK → πK, the left-hand

cut structure is a bit more complicated (see Fig. 1). In
addition to the left-hand cut lying on the real axis
−∞ < s < ðmK −mπÞ2, there is a circular cut at
jsj ¼ m2

K −m2
π . The conformal map that meets these

requirements is defined as

ξðsÞ ¼ −
ð ffiffiffi

s
p

− ffiffiffiffiffi
sE

p Þð ffiffiffi
s

p ffiffiffiffiffi
sE

p þ sLÞ
ð ffiffiffi

s
p þ ffiffiffiffiffi

sE
p Þð ffiffiffi

s
p ffiffiffiffiffi

sE
p − sLÞ

; ð15Þ

where sLðπK → πKÞ ¼ m2
K −m2

π . We note that, given the
forms of ξðsÞ in Eqs. (14) and (15), the series (13) truncated
at any finite order is bounded asymptotically. This is
consistent with the assigned asymptotic behavior of
UðsÞ in the once-subtracted dispersion relation (5).
For reactions involving Goldstone bosons, in principle,

χPT allows one to calculate the amplitude over a finite
portion of the closest left-hand cut and can be used to
estimate Cn in (13) as it has been done for other processes
in [15,16]. However, it is not clear at which point χPT
calculated to a given order still represents a good approxi-
mation. In addition to that, in order to merge the conformal
expansion with the chiral expansion, the expansion point sE
should lie within the region where χPT can be computed
safely. For instance, for the elastic ππ → ππ scattering the
natural choice would be to identify sE with the two-pion
threshold. However, in that case, the last data point, which
can be described with the elastic unitarity, corresponds to

ξðs1=2max ¼ 0.7 GeVÞ ≃ 0.45. On the other side, the faster
convergence of the sum in Eq. (13) can be achieved for the
choice of sE in between the threshold and smax, i.e., in the
regions where χPT is at the limit of its applicability.
Besides, for the coupled-channel case, one needs to rely
on SU(3) χPT, which converges slower than the SU(2)
version of it.
In our paper, we determine the unknown Cn in Eq. (13)

and the optimal positions of sE directly from the data, and
we use χPT results only as constraints for the scattering
lengths, slope parameters, and Adler zero values. We note
that the latter brings a stringent constraint on the scattering
amplitude, since for both ππ and πK scattering the Adler
zero is located very close to the left-hand cut (see Fig. 1),
and cannot be determined precisely from the fit to the data.
However, once the Adler zero is imposed as a constraint, it
improves drastically the convergence of (13) in the thresh-
old region.

C. Relation to the Omnès function

The unitarity connects the partial-wave amplitudes in
production (or decay) and scattering processes. Therefore,
the reactions such as γp → ππp, γγ → ππ, J=ψ → ππγ,
and η → 3π are very sensitive to the FSI. In a dispersive
formalism, FSI are typically implemented with the help of
the so-called Omnès function [45], ΩabðsÞ, that fulfills the
following unitarity relation on the right-hand cut:

DiscΩabðsÞ ¼
X
c

t�acðsÞρcðsÞΩcbðsÞ; ð16Þ

and is analytic everywhere else in the complex plane; i.e., it
satisfies a once-subtracted dispersion relation

ΩabðsÞ ¼ δab þ
s − sM

π

Z
∞

sth

ds0

s0 − sM

DiscΩabðs0Þ
s0 − s

: ð17Þ

Therefore, for the case of no bound states or CDD poles, the
DabðsÞ function obtained in (7) can easily be related to the
Omnès function as

ΩabðsÞ ¼ D−1
abðsÞ: ð18Þ

For the single-channel case, the Omnès function can be
expressed in the analytic form in terms of the phase
shift δðsÞ,

ΩðsÞ ¼ D−1ðsÞ ¼ exp

�
s − sM

π

Z
∞

sth

ds0

s0 − sM

δðs0Þ
s0 − s

�
; ð19Þ

with the convention that δðsthÞ ¼ 0. Therefore, in single-
channel approximations, the Omnès function is frequently
computed directly from the existing parametrizations of the
phase-shift data and various assumptions about its asymp-
totic behavior at infinity. The latter constrains the asymptotic

FIG. 1. Left-hand cut singularities (solid black curves) in the
complex s-plane for the (a) ππ → ππ and (b) πK → πK scatter-
ing. In the plot we schematically show the position of the closest
left-hand cut singularity (sL), Adler zero (sA), threshold (sth), and
expansion point (sE). Dashed lines determine the specific form of
the conformal map and subsequently the domain of convergence
of the conformal expansion in Eq. (13).
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behavior of the Omnès function: for δð∞Þ → απ one obtains
Ωð∞Þ → 1=sα. In our approach, the phase shift curves are
obtained from fits to the data using the N=D method. The
high-energy asymptotic of the phase shift is coming from the
approximation of the left-hand cut by conformal expansion
and subsequent solution of the once-subtracted dispersion
relation. As a result, in this scheme, the obtained Omnès
function (or its inverse) is always asymptotically bounded, if
there is no bound state or CDD pole in the system. When
there is a bound state in the system, the relation between the
Omnès function and the DðsÞ function given in Eq. (19)
changes,

ΩðsÞ ¼
�

s − sB
sM − sB

�
D−1ðsÞ

¼ exp

�
s − sM

π

Z
∞

sth

ds0

s0 − sM

δðs0Þ
s0 − s

�
; ð20Þ

where the extra factor ðs − sBÞ=ðsM − sBÞ removes the zero
of DðsÞ. Because of this extra factor, the obtained Omnès
function grows linearly at infinity and satisfies the twice-
subtracted versionof the dispersion relationgiven inEq. (17).
This can also be seen fromLevinson’s theorem,which relates
the contribution from the number of bound states nB to the
phase shift at infinity as δð∞Þ → −nBπ [using the conven-
tion δðsthÞ ¼ 0].
For the multichannel case, the Muskhelishvili-Omnès

equations (17) do not have analytic solutions [46,47], and
one needs to find a numerical solution, by employing, for
instance, a Gauss-Legendre procedure [47]. In order to
achieve that, however, one needs to know the off-diagonal
scattering amplitude in the unphysical region and again
make the assumption about the high-energy asymptotics.
On the other side, with theN=Dmethod, both the scattering
amplitude and the Omnès function are obtained simulta-
neously from the fit to the available data. Additional
information about the off-diagonal scattering amplitude
in the unphysical region can be used as a constraint and not
as a necessary requirement to obtain the Omnès matrix.
Also, as discussed above, in most of the cases the obtained
Omnès function (or its inverse) is asymptotically bounded.
Therefore, this approach is useful in many practical
applications.
As a check of our numerical calculations, we verified that

the Omnès functions obtained using Eqs. (7) and (18)
satisfy Eq. (17).

III. NUMERICAL RESULTS

In this paper, we study the resonant ππ and πK scattering
in the S-wave. These are the channels where σ=f0ð500Þ,
f0ð980Þ, and κ=K�

0ð700Þ resonances reside. Both ππ and
πK channels have been measured experimentally [48–52].
However, throughout the whole energy range there are

large differences between different datasets and a careful
choice of the data is required to achieve a controllable data-
driven description of the phase shifts and inelasticity. For
the ππ scattering, the situation is a bit better than for πK
scattering, since there is very precise low-energy data
coming from Kl4 decays [50] and, in general, SU(2)
χPT is a much more accurate theory than the SU(3) version
of it. In order to be consistent with χPT in the threshold
region, we employ the effective range expansion

2ffiffiffi
s

p Re

�
tðsÞ
16π

�
≃ aþ bp2ðsÞ þ � � � ; ð21Þ

where a is the scattering length and b is the slope parameter.
For the ππ and πK scattering both a and b have been
calculated at NNLO in χPT [9,53]. As expected, for the πK
scattering, the chiral convergence is a bit worse than for the
ππ scattering [53]; however, the results for the scattering
length and slope parameter do not show large discrepancies
with the Roy-Steiner results [10,11]. As for the Adler zero,
we have checked that its position does not acquire large
higher order corrections, and for simplicity one can take the
LO result. In all numerical fits, however, we take the NLO
result [54] as a central value, with the uncertainties from the
omitted higher orders as jNLO − LOj, which should provide
a conservative estimate. The NLO values for the low-energy
constants are taken from [55]. For the case of nonphysical
pion masses with mπ ¼ 236 MeV and mπ ¼ 239 MeV, we
only use Adler zero positions as a constraint, while for
mπ ¼ 391 MeV, where σ=f0ð500Þ shows up as a bound
state, no constraints are imposed.
The free parameters in our approach are the conformal

coefficients in (13), which determine the form of the left-
hand cut contribution UabðsÞ in Eq. (5). Apart from the
standard χ2 criteria, the number of parameters is chosen in a
way to ensure that the series (13) converges. The uncer-
tainties are propagated using a bootstrap approach. In
several cases, however, we will be fitting Roy (Roy-
Steiner) solutions, which are smooth functions, and their
errors are fully correlated from one point to another. In
these cases, χ2=d:o:f loses its statistical meaning and can be
<1. In our fits, this scenario will simply indicate that we
obtained theN=D solution which is consistent with the Roy
(Roy-Steiner) solutions, and we just make sure that the
obtained uncertainty is consistent with that from Roy
analyses.
Before entering the discussion of the results of the fits,

we would like to briefly comment on the freedom of the
choice of the subtraction point sM in the dispersion relation
(4). The common choice in the application of the Omnès
functions is sM ¼ 0, due to its relation to scalar form factors
and matching to χPT. On the other side, one can fix sM at
the threshold, sM ¼ sth, and then relate

Pnmax
n¼0 Cnξ

nðsthÞ
to the scattering length. Similarly, one can fix sM at
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the Adler zero,3 sM ¼ sA, which would imply thatPnmax
n¼0 Cnξ

nðsAÞ ¼ 0. The last two choices can therefore
reduce the number of fitted parameters by one. Eventually
different choices of sM redefine the fitted coefficients Cn in
the UabðsÞ function and the results of the N=D method are
immune to that (after computing the D function, it can be
renormalized to any other point below threshold). Since not
in all the fits we impose threshold or Adler zero constraints,
we decided to make the choice

sM ¼ 0 ð22Þ

in all the cases for simplicity. As for the expansion point sE,
we choose it in the middle between the threshold and the
energy of the last data point that is fitted,

ffiffiffiffiffi
sE

p ¼ 1

2
ð ffiffiffiffiffiffi

sth
p þ ffiffiffiffiffiffiffiffiffi

smax
p Þ: ð23Þ

Note that in the coupled channel case, sth in Eq. (23)
denotes the physical threshold for the diagonal terms
UabðsÞ, while for the off-diagonal terms it is the lowest
threshold. We emphasize that this particular choice guar-
antees a fast convergence of the conformal expansion (13)
in the region where the scattering amplitude is fitted to the
data and also where it is needed as input to Eq. (9).
Unlike the physical region, where the reaction models

are typically fitted to data, the pole extraction may carry
significant systematic uncertainties, especially if the pole
lies deep in the complex plane [58,59]. To assess these, we
vary the parameter sE around its central value fixed to (23).
We allow for a conservative variation by 25% of the
difference

ffiffiffiffiffiffiffiffiffi
smax

p − ffiffiffiffiffiffi
sth

p
, in order to have a compromise

between
ffiffiffiffiffiffi
sth

p
and

ffiffiffiffiffiffiffiffiffi
smax

p
. Note that the extreme choice of

50% would correspond to sE ¼ sth or sE ¼ smax, which we
clearly want to avoid, since it would bias the fit toward one
or the other region. In the following results, the first error
will indicate the statistical uncertainty (i.e., reflect the
errors of the data and χPT input), while the second one
will be associated with a variation of sE.
All results presented below have been checked to fulfill

the partial-wave (p.w.) dispersion relation given in Eq. (5)
or Eq. (12) in the case when there is a physical bound state
in the system. In addition, we checked that there are no
spurious poles or bound states in the considered cases.4

A. Single channel ππ → ππ analysis
of the experimental and lattice data

As a first step, we consider only the elastic ππ scattering,
which should be enough to get a realistic estimate of the
resonance position of σ=f0ð500Þ, which is known to be
connected almost exclusively to the pion sector. The reason
for that is twofold. In many practical applications it is
convenient to remove the KK̄ [or f0ð980Þ] effects, which
do not influence much the σ=f0ð500Þ pole parameters, but
at the same time require a proper coupled-channel treat-
ment. Additionally, the current lattice QCD result for mπ ¼
236 MeV covers only the elastic region [32]. Therefore, as
a necessary prerequisite of a meaningful σ=f0ð500Þ pole
extraction for unphysical pion masses, one has to test the
N=D formalism first for physical quark mass values, where
the position of σ=f0ð500Þ has already been obtained from
the sophisticated Roy analyses [6–9]. The inclusion of the
KK̄ channel [or f0ð980Þ resonance] will allow for a slightly
more precise evaluation of σ=f0ð500Þ parameters and will
be given in the next subsection.
Relying only on the available data up to

ffiffiffiffiffiffiffiffiffi
smax

p ¼
0.7 GeV, where a strong influence of the KK̄ threshold is
not yet expected, we obtain a decent fit even without
imposing chiral constraints. The pole occurs atffiffiffiffiffi
sσ

p ¼ 463ð8Þþ6
−7 − i217ð6Þþ8

−9 MeV. The scattering length
and slope parameters turn out to be compatible with those of
χPT due to the presence ofKl4 data. As we discussed above,
this is not the case for the Adler zero, which is located too
close to the left-hand cut,

sAðχPTLOÞ ¼ m2
π=2; ð24Þ

i.e., where the series (13) simply converges too slow.
With the additional constraints for the scattering length,
slope parameter, and Adler zero, the best fit result
contains four parameters and leads to

ffiffiffiffiffi
sσ

p ¼ 435ð7Þþ6
−8−

i250ð5Þþ6
−8 MeV. This result is compatible with the valueffiffiffiffiffi

sσ
p ¼ 446ð5Þþ6

−9 − i230ð5Þþ7
−9 MeV, obtained by replacing

the experimental data with the pseudodata from the Roy-like
analysis [7]. As it is shown in Fig. 2, both N=D fits are
consistent within the error. This provides a proof for our
expectation that even in the case where there is no available
Roy analyses (such as lattice QCD data), we can rely on the
N=D approximation. For our final result of the single-
channel Omnès function with physical pion mass, we opt
for fitting the result of the Roy analysis [7], as the best
representation of the data. The values of the fitted parameters
are collected in Table I, which result in the fast convergence
of the conformal expansion (13) as shown in the left panel of
Fig. 2. Note that in order to use these fit parameters as the
starting values of the more complicated coupled-channel fit,
we have chosen sE here to be the same as for the coupled-
channel case, where we aim to describe the data up toffiffiffiffiffiffiffiffiffi
smax

p ¼ 1.2 GeV. Also, this choice slightly improves the

3On the technical level, it may look that the Adler zero could
be accounted for as a CDD pole in the D function [56,57].
However, every CDD pole physically corresponds to the genuine
QCD state, while the existence of the Adler zero is the property of
the chiral symmetry. Therefore we encode it as a zero in the N
function and not as a pole in the D function.

4In principle, it is possible to expect the situation when
detðDabðsÞÞ has an unphysical zero far away from the threshold
on the first Riemann sheet. To avoid this spurious bound state,
one has to impose in the fit the fulfillment of the p.w. dispersion
relation which does not contain the bound state.
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obtained σ=f0ð500Þ pole positions, since it pushes sE farther
away from the threshold region, which is constrained
accurately from χPT. In Table II we compare threshold
parameters and Adler zeros to χPT values, while in Table III
poles and couplings are collected. Overall we achieve a good
description of the Roy analyses results. In Fig. 2 we also
show phase shift and Omnès function. Note that a similar
result for the Omnès function can be obtained by using the
phase shift from the single-channel modified inverse ampli-
tude method (mIAM) [57,60–62] and Eq. (19). In this
method, the dispersion relation is written for the inverse

amplitude, while the left-hand cut and subtraction constants
are approximated by the chiral expansion. The result closest
to the Roy analysis for the σ=f0ð500Þ pole is achieved by
performing a two-loop mIAM fit [63]. In elastic N=D and
mIAM approaches the KK̄ channel is separated naturally
from the ππ channel, which is beneficial for the practical
applications.
Apart from the experimental data, the recent lattice

analysis [32] provided the results for the energy levels for
pion mass values of mπ ¼ 236 MeV and mπ ¼ 391 MeV.
While the former case is much closer to the physical pion

Grayer et al. [49] Sol. B
Kaminski et al. [49]

[7]

FIG. 2. Results for the ππ → ππ scattering with J ¼ 0, I ¼ 0 in the single-channel case. Top, central, and bottom panels correspond to
mπ ¼ physical, 236, 391 MeV, respectively. Left panels show the convergence of the conformal expansion in Eq. (13), central panels
show the comparison with the data, and right panels show the corresponding Omnès functions. In the phase shift plot for the physical
pion mass two curves are shown: fit to the experimental data [49,50] (dashed curve) and fit to the pseudodata from Roy analysis [6,7]
(thick curve). Note that for the sake of comparison with the coupled-channel case (see Fig. 4), we adopted for this case sE based onffiffiffiffiffiffiffiffiffi
smax

p ¼ 1.2 GeV, as discussed in the text.
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TABLE II. Fit results for the threshold parameters a and b defined in Eq. (21) and the Adler zeros sA compared to χPT values. SC and
CC stand for single-channel and coupled-channel analyses, respectively. The uncertainties on NLOAdler zero positions we estimated as
jNLO − LOj, as explained in the text.ffiffiffiffiffi

sA
p

[MeV] mπa m3
πb

ffiffiffiffiffi
sA

p
(χPTNLO) [MeV] mπa (χPTNNLO) m3

πb (χPTNNLO)

ππ → ππ
Exp., SC 90(9) 0.220(5) 0.276(6) 90(9) 0.220(5) [9] 0.276(6) [9]
Exp., CC 90(15) 0.218(9) 0.278(11) � � � � � � � � �
Lattice, mπ ¼ 236 MeV 187(35) 0.98(19) 0.89(43) 150(18) 0.75–0.87 [9] � � �
Lattice, mπ ¼ 391 MeV � � � −4.07ð36Þ 67.0(19.0) � � � � � � � � �
πK → πK

Exp., SC 480(6) 0.219(10) 0.113(10) 480(6) 0.220 [53] 0.130 [53]
Lattice, mπ ¼ 239 MeV 472(8) 0.426(71) 0.277(68) 472(9) � � � � � �

TABLE I. Fit parameters entering Eq. (13) which were adjusted to reproduce available experimental (whenever possible replaced by
the most recent Roy-like results) (Exp.) or lattice data. SC and CC stand for single-channel and coupled-channel analyses, respectively.
See text for more details. ffiffiffiffiffi

sE
p

[MeV] C0 C1 C2 C3 χ2=d:o:f

ππ → ππ
Exp., SC 740 15.9(7) 51.8(1.7) 58.2(1.4) 24.4(3.0) 0.5
Exp., CC U11ðsÞ 740 17.1(9) 52.1(2.0) 51.1(2.2) 17.2(3.6) t11: 3.4

U12ðsÞ 740 11.2(1.2) 12.6(2.5) � � � � � � jt12j: 2.4
U22ðsÞ 1095 70.0(6.5) −216.2ð58.0Þ 321.0(53.9) � � � δ12: 1.8

Lattice, mπ ¼ 236 MeV 646 13.3(2.9) 64.4(1.6) 64.5(5.6) � � � 1.2
Lattice, mπ ¼ 391 MeV 896 65.5(14.5) −293.7ð47.8Þ 409.2(35.7) � � � 1.2

πK → πK

Exp., SC 833 16.1(8) −37.8ð3.5Þ 32.9(2.7) −18.6ð6.0Þ 1.2
Lattice, mπ ¼ 239 MeV 884 16.8(3.6) −49.1ð2.5Þ 28.2(7.5) � � � 0.2

TABLE III. Poles and couplings of the σ=f0ð500Þ, f0ð980Þ, and κ=K�
0ð700Þ resonances calculated in the data-driven N=D approach

compared with the results of Roy-like analyses. SC and CC stand for single-channel and coupled-channel analyses, respectively. For the
f0ð980Þ or κ=K�

0ð700Þ poles we take a conservative dispersive average between [7,64] or [10,11], similar as it was done for σ=f0ð500Þ in
[6]. In our results, the first error is the statistical one, while the second one comes from a variation of sE and has a systematic nature.

Our results Roy-like analysesffiffiffiffiffispp [MeV] jgpaj=
ffiffiffiffiffiffiffiffiffi
N aa

p
[GeV]

ffiffiffiffiffispp [MeV] jgpaj=
ffiffiffiffiffiffiffiffiffi
N aa

p
[GeV]

σ=f0ð500Þ
Exp., SC 458ð7Þþ4

−10 − i245ð6Þþ7
−10 γγ∶5.6ð1Þð0Þ · 10−3

ππ∶3.15ð5Þþ0.11
−0.20

449þ22
−16 − i275ð15Þ [6] γγ∶6.1ð7Þ · 10−3½24�

ππ∶3.45þ0.25
−0.29 ½6�

KK̄∶−
Exp., CC 458ð10Þþ7

−15 − i256ð9Þþ5
−8 γγ∶5.6ð2Þþ0.1

−0.1 · 10
−3

ππ∶3.33ð8Þþ0.12
−0.20

KK̄∶2.11ð17Þþ0.27
−0.11

Lattice mπ ¼ 236 MeV 498ð21Þþ12
−19 − i138ð13Þþ5

−10 γγ∶10.7ð9Þþ0.7
−0.3 · 10

−3

ππ∶2.96ð5Þþ0.05
−0.06

Lattice mπ ¼ 391 MeV 758(5)(0) ππ∶3.91ð26Þð0Þ
(Table continued)
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mass, the lattice result for the larger mass deserves special
attention, since in that case σ=f0ð500Þ shows up as a bound
state. In the lattice QCD analysis, the discrete energy
spectrum in a finite volume is related to the infinite-volume
scattering amplitude through the Lüscher formalism [65],
which was extended in [66] to the case of moving frames. In
the case of elastic scattering at low energies it gives a one-to-
one relation to p cot δ. The lattice results for p cot δ with
mπ ¼ 236 MeVandmπ ¼ 391 MeVwere shown in [32]. To
fit these data, we analytically continue p cot δ below thresh-
old, such that it does not produce any cusp behavior at the
threshold,

pðsÞ cot δðsÞ ¼
ffiffiffi
s

p
2

�
1

tðsÞ þ iρ0ðsÞ
�
16π; ð25Þ

whereρ0 is the same as ρ in Eq. (3), butwithout theHeaviside
step function.
For both mπ ¼ 236 MeV and mπ ¼ 391 MeV, we find

that the three-parameter fit covers the data quite well (see
central and bottom panels of Fig. 2). Similar to the K-
matrix fits performed in [32], we found σ=f0ð500Þ as a
deep pole on the second Riemann sheet formπ ¼ 236 MeV
and as a bound state for mπ ¼ 391 MeV. In our approach,
however, the obtained scattering amplitudes satisfy p.w.
dispersion relations, which is a stringent constraint on the
real part of the inverse of the amplitude. As a result, the
pole position is determined much more precisely; see
Table III. We also checked that the obtained scattering
length mπa ¼ 0.98ð19Þ for mπ ¼ 236 MeV is consistent
with the chiral extrapolation result mπaNNLO ¼ 0.75–0.87
of [9], and therefore including such additional constraint in
the fit barely affects the results of the σ=f0ð500Þ pole and
coupling.
It is instructive to compare the obtained pole positions of

σ=f0ð500Þ for nonphysical pion masses with the predic-
tions of unitarized chiral perturbation theory (UχPT). The
most popular are two approaches: mIAM [63] and Bethe-
Salpeter equation (BSE) [67]. Both observe the same

qualitative behavior of the σ=f0ð500Þ pole. With increasing
pion mass values the imaginary part of the pole decreases,
then σ=f0ð500Þ becomes a virtual bound state, and as mπ

increases further, one of the virtual states moves toward
threshold and jumps onto the first Riemann sheet and
becomes a real bound state. For mπ ¼ 236 MeV, the
extracted value from lattice data is consistent with UχPT
predictions for the real part, but somewhat lower for the
width,

ffiffiffiffiffi
sσ

p ¼ 498ð21Þþ12
−19 − i138ð13Þþ5

−10 ðlatticeþ N=DÞ;ffiffiffiffiffi
sσ

p ¼ 510 − i175 ðmIAMNNLO; fit DÞ;ffiffiffiffiffi
sσ

p ¼ 490ð15Þ − i180ð10Þ ðBSENLOÞ; ð26Þ

all in units of MeV. For mπ ¼ 391 MeV the situation is a
bit different. Since it is on the edge of the applicability of
χPT, the results of UχPT are very sensitive to the chiral
order. Both mIAM [61] and BSE [67] at one loop found
σ=f0ð500Þ as a virtual bound state for mπ ¼ 391 MeV.
However, including the higher-order corrections (two loop)
in mIAM [63] predicted the conventional bound state very
close to the lattice results

ffiffiffiffiffi
sσ

p ¼ 758ð5Þð0Þ MeV ðlatticeþ N=DÞ;ffiffiffiffiffi
sσ

p ¼ 765 MeV ðmIAMNNLO; fitDÞ; ð27Þ

confirming the proposed trajectory. However, as pointed
out in [32], it would be useful to perform lattice calculation
between 236 and 391 MeV, to see what really happens in
the transition region between a resonance lying deep in the
second Riemann sheet and the bound state.

B. Coupled-channel fππ;KK̄g analysis of the
experimental data

While the single-channel analysis allows us to reproduce
the low-energy behavior of the phase shifts and gives very
reasonable values of the σ=f0ð500Þ pole parameters, a

TABLE III. (Continued)

Our results Roy-like analysesffiffiffiffiffispp [MeV] jgpaj=
ffiffiffiffiffiffiffiffiffi
N aa

p
[GeV]

ffiffiffiffiffispp [MeV] jgpaj=
ffiffiffiffiffiffiffiffiffi
N aa

p
[GeV]

f0ð980Þ
Exp., CC 993ð2Þþ2

−1 − i21ð3Þþ2
−4 γγ∶4.0ð8Þþ0.3

−1.1 · 10
−3

ππ∶1.93ð15Þþ0.07
−0.12

KK̄∶5.31ð24Þþ0.04
−0.24

996þ7
−14 − i25þ11

−6 [7,64] γγ∶3.8ð1.4Þ · 10−3½56�
ππ∶2.3ð2Þ½7�

KK̄∶−

κ=K�
0ð700Þ

Exp., SC 702ð12Þþ4
−5 − i285ð16Þþ8

−13 πK∶4.12ð14Þþ0.13
−0.18 653þ18

−12 − i280ð16Þ [10,11] πK∶3.81ð9Þ [11]
Lattice mπ ¼ 239 MeV 747ð39Þþ2

−0 − i265ð16Þþ7
−6 πK∶4.19ð18Þþ0.07

−0.06
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comprehensive study of the region up to
ffiffiffi
s

p ¼ 1.2 GeV
should account for the interplay between ππ and KK̄
channels. In our normalization [see Eqs. (1)–(3)], the
two-dimensional t-matrix, with channels denoted by 1 ¼
ππ and 2 ¼ KK̄, is given by

tðsÞ ¼
 ηðsÞe2iδ1ðsÞ−1

2iρ1ðsÞ jt12ðsÞjeδ12ðsÞ

jt12ðsÞjeδ12ðsÞ ηðsÞe2iδ2ðsÞ−1
2iρ2ðsÞ

!
: ð28Þ

Under assumption of two-channel unitarity, the inelasticity
is related to jt12ðsÞj as

ηðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ρ1ðsÞρ2ðsÞjt12ðsÞj2

q
; ð29Þ

and due to Watson’s theorem,

δ12ðsÞ ¼ δ1ðsÞ þ δ2ðsÞθðs > 4m2
KÞ: ð30Þ

In the physical region the t-matrix is fully described by
experimental information on the ππ phase shift δ1ðsÞ [48–
50], the inelasticity ηðsÞ (or jt12ðsÞj for s > 4m2

K [68–70]),
and the ππ → KK̄ phase δ12ðsÞ [68,69,71].
Similar to the single-channel analysis, we first fit the

available experimental data supplemented with constraints
for scattering length, slope parameter, and Adler zero from
χPT in the ππ → ππ channel. As for the ππ → KK̄ channel,
the complication stems from two facts. First, the exper-
imental data exist only in the physical region above KK̄
threshold. Therefore, in order to stabilize the fits, we make
sure that the obtained jt12ðsÞj stays small around5 s ¼ 0 as a
manifestation of χPT. Second, the existing experimental
data for both jt12ðsÞj and δ12ðsÞ contain incompatible
datasets and require one to make some choice. Since the
phase δ12ðsÞ is fully defined below KK̄ threshold by means
of Watson’s theorem, we discard the data from [69] as it
suggests that ππ → KK̄ phase goes much lower than it is
forced by the presence of f0ð980Þ resonance. Therefore, we
fit the data from [68,71] which are consistent due to the
large error bars of the latter set. As for jt12ðsÞj, the two
datasets from [70] and [68,69] should in principle be treated
separately. However, only the data from [70] are compatible
with the ππ inelasticity around the KK̄ threshold. In order
to describe the data from [68,69], most likely one has to
include the four-pion channel, which is beyond the scope of
the present paper. The best fit with (4,4,3) parameters in
(11,12,22) channels [70] provides σ=f0ð500Þ and f0ð980Þ
poles at

ffiffiffiffiffi
sσ

p ¼ 454ð12Þþ6
−7 −262ð12Þþ8

−12iMeV and ffiffiffiffiffiffisf0
p ¼

990ð7Þþ2
−4 − 17ð7Þþ4

−1 i MeV. These results are remarkably
close to the Roy (for ππ → ππ) and Roy-Steiner solutions
for (ππ → KK̄) as shown in Figs. 3 and 4. The large error

bars arise from scarce experimental data around KK̄
threshold and almost unconstrained jt12j in the unphysical
region.
On the other side, we have at our disposal very precise

ππ → ππ Roy-like analyses from [7] and ππ → KK̄ Roy-
Steiner analyses from [10,11,30]. Unfortunately, they do
not come from the coupled-channel Roy-Steiner analyses
and may display some inconsistencies between each other.
In particularly, the Roy results on the real and imaginary
parts of the t11ðsÞ amplitude can constrain δ1ðsÞ and ηðsÞ.
The latter, in the two-channel approximation, is related to
jt12ðsÞj by Eq. (29) and turns out to be inconsistent with any
available Roy-Steiner solution on ππ → KK̄ [10,11,30].
Therefore in order to avoid possible conflict in fitting two
independent analyses, we impose ππ → KK̄ Roy-Steiner
solution only as a constraint on jt12ðsÞj in the unphysical
region 4m2

π < s < 4mK . Currently, there are three compet-
ing solutions: one from Buettiker et al. [10] and two (CFDc
and CFDb) from Pelaez et al. [11]. We let the fit decide
which solution to choose. As for the δ12, we take advantage
of the experimental data of Cohen et al. [68] in the fit,
which are quite precise. The good description of the data
can be achieved with as low as (4,2,3) parameters in
(11,12,22) channels, respectively. The results of the fit
are collected in Tables I, II, and III and shown in Fig. 4. As
expected, the values for the fit parameters in the 11 channel
do not deviate much from the single-channel analysis in
Sec. III A. In the coupled-channel analysis the σ=f0ð500Þ
pole position comes a bit closer to the Roy analysis value
than in the single-channel study. Moreover, we are now in a
position to calculate its coupling to the KK̄ channel, which
we include in Table III. By inspecting Table I, one can also
see the striking similarity between the fit parameters in the
22 channel and the fit to lattice ππ → ππ data with

Peláez et al. [7]
Peláez et al. [7]

/1
6π

FIG. 3. Comparison between the coupled-channel N=D fits and
the Roy-like solution from [7]. The dashed curves are the fit
solely to the experimental data, while the solid curves take
advantage of both the experimental data and the results of Roy
(Roy-Steiner) analyses on ππ → ππ (ππ → KK̄).

5Specifically, at s ¼ m2
π=2 we impose NLO χPT with a

conservative error that covers the LO χPT result.
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mπ ¼ 391 MeV, for which there is a bound state. Similarly,
f0ð980Þ will be a bound state in the 22 channel, if we
eliminate its connection to the 11 channel, i.e., by putting
U12 ¼ 0. This feature is not new and has already been
observed in UχPT calculations; see, for instance, [72]. As
for the 12 channel, the fit clearly favors the CFDc solution
of [11]. This is also consistent with our previous “free” fit
to the experimental data, as shown by the dashed curves in
Fig. 4. On the right panels of Fig. 4 we show the elements
of the Omnès matrix calculated using Eq. (18). The
previous version of them, with the fit to [10,30] has already
been successfully applied for the dispersive coupled-chan-
nel study of γð�Þγ� → ππðKK̄Þ [73] and eþe− →
J=ψππðKK̄Þ [28].

We leave the coupled-channel study of the existing
lattice data on fππ; KK̄g [74] with mπ ¼ 391 MeV for a
future work. In our opinion, this channel has to be analyzed
together with fπη; KK̄g lattice data [75], to shed more light
onto the differences between the light scalar resonances
f0ð980Þ and a0ð980Þ.

C. Two-photon couplings of σ=f 0ð500Þ and f 0ð980Þ
As an application of the obtained Omnès functions in the

N=D approach, we would like to extract the two-photon
couplings of σ=f0ð500Þ and f0ð980Þ. In principle, the
coupling to the external currents has the potential to infer
the scalar meson composition. Furthermore, it characterizes
the interaction strength of σ=f0ð500Þ and f0ð980Þ in the

Grayer et al. [49] Sol. B
Kaminski et al. [49]
Garcís–Martín et al. [7]

Cohen et al. [68]
Etkin et al. [69]
Longacre et al [70]
Peláez et al. [7] CFDb
Peláez et al. [7] CFDc

Peláez et al.[7]
Cohen et al. [68]

[10]
/1

6π

FIG. 4. Results for the ππ → ππ; KK̄ scattering with J ¼ 0, I ¼ 0 in the coupled-channel case. Top, central, and bottom panels
correspond to 11,12, and 22 matrix elements, respectively, with 1 ¼ ππ and 2 ¼ KK̄. Left panels show the convergence of the conformal
expansion in Eq. (13), central panels show the comparison with the data, and right panels show the elements of the Omnès matrix. In the
central plots two curves are shown: fit to the experimental data [49,50] (dashed curve) and fit to the pseudodata from Roy analyses [6,7]
(thick curve).
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two-photon channel. The latter is important for the
light-by-light sum rule applications [76–79] and serves
as a key input to estimate the isoscalar two-pion (kaon)
contribution to the hadronic light-by-light scattering for
(g − 2) of the muon [80]. The central result in this section
will be obtained using a coupled-channel dispersive rep-
resentation; however, for σ=f0ð500Þwewill employ as well
the single-channel representation for both physical and
nonphysical pion masses.
The photon-fusion partial-wave amplitude γγ → ππ,

which we denote by hðJÞI;λ1;λ2
, is the off-diagonal element

of the γγ; ππ; KK̄ channels. Since the intermediate states
with two photons are proportional to e4, they are sup-
pressed, and one can reduce the ð3 × 3Þ matrix dispersion
relation down to the ð2 × 1Þ form, which requires the
hadronic rescattering part, ΩðsÞ, and the left-hand cuts as
input [23–25,81–83]. For the low energies around σ=f0ð500Þ
[and to lesser extent around f0ð980Þ] the contribution from
the left-hand cuts is dominated by the pion-pole contribution
(Born term), which is exactly calculable. Therefore, in this
approximation there is no need of modeling left-hand cuts in
one way or another or introducing any subtractions. The
photon-fusion p.w. amplitudes are readily obtained using the
Muskhelishvili-Omnès representation. For more details, we
refer to Ref. [73]. The two-photon couplings are extracted by

calculating the residue of hð0Þ0;þþðsÞ at the pole positions, sp.
Following [83,84], in our convention it is given by

g2pγγ
g2pππ

¼ −ðρ0ðspÞhð0Þ0;þþðspÞÞ2; ð31Þ

where hð0Þ0;þþðsÞ is evaluated on the first Riemann sheet for
p ¼ σ=f0ð500Þ; f0ð980Þ. An intuitive way of reexpressing

the two-photon couplings, shown in Table III, is by using the
formal definition of the corresponding two-photon decay
widths

Γp→γγ ¼
jgpγγj2

16πRe ffiffiffiffiffispp : ð32Þ

Converted to (32), our results read

Γσ→γγ ¼ 1.37ð13Þþ0.09
−0.06 ½1.38ð9Þþ0.01

−0.01 � keV;
Γf0ð980Þ→γγ ¼ 0.33ð16Þþ0.04

−0.16 keV;

Γmπ¼236 MeV
σ→γγ ¼ 4.64ð1.01Þþ0.88

−0.35 keV; ð33Þ

where in square brackets the single-channel approximation is
shown. As expected, its Γσ→γγ is almost indistinguishable
from the coupled-channel case. In Fig. 5 we compare our
results with the recent dispersive estimates [24,64,81,85,86].
While the two-photon decay width of f0ð980Þ is consistent
with the coupled-channel amplitude analysis of [86] and the
oversubtracted coupled-channel Muskhelishvili-Omnès
analysis [64], the two-photon width of σ=f0ð500Þ is about
25% smaller than their values. On the other hand, the
obtained two-photon width of σ=f0ð500Þ is consistent with
the sophisticated Roy-Steiner analysis [24] and other dis-
persive analyses from [81,85]. Finally, we also predicted
σ=f0ð500Þ two-photon coupling/width for the unphysical
mπ ¼ 236 MeV, which would be interesting to confront
with the direct lattice calculations.
We note that the errors quoted in Eq. (33) correspond

solely to the uncertainties in the Omnès matrix. In prin-
ciple, one can perform a more comprehensive study of the
theoretical uncertainties, by the inclusion of more distant
left-hand cuts in γγ → ππðKK̄Þ. This would require

Hoferichter  et al. [24]

Oller et al. [81]

Bernabeu  et al [85]

Dai and Pennington [86]

Moussallam [64]

Uehara et al [87]
Marsiske et al [87]

FIG. 5. Left panel: two-photon decay width of σ=f0ð500Þ and f0ð980Þ compared to the recent dispersive estimations from
[24,64,81,85,86]. Right panel: total cross section of γγ → π0π0 ðj cos θj < 0.8Þ from [73] with updated I ¼ 0, J ¼ 0 contribution. The
data for the cross section are taken from [87].
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introducing subtraction constants which can be either fixed
from the pion dipole polarizabilities or fitted directly to the
cross-section data. Doing so would likely enlarge the error,
but we do not expect a significant change of the central
values, since the current parameter-free description of the
cross-section data (see Fig. 5) is quite impressive. The
advantage of the approach that accounts only for pion pole
left-hand contribution is that in the absence of any single-
virtual data one can predict the behavior of the p.w. helicity
amplitudes for finite virtualities [73,88], which are needed
as input for ðg − 2Þμ [80].

D. I = 1=2 single-channel: Data and lattice

For the πK → πK single channel analysis we begin by
fitting the experimental data and imposing constraints from
χPT for the scattering length, slope parameter, and Adler
zero. The latter at LO is given by a simple relation,

sAðχPTLOÞ ¼
1

5
ðm2

π þm2
K þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m4

π − 7m2
πm2

K þ 4m4
K

q
Þ:
ð34Þ

The most precise calculation of the scattering length and
slope parameter in χPT has been performed at NNLO in

[53]. While the result for the scattering length mπa ¼ 0.22
is consistent with the recent Roy-Steiner predictions
mπa ¼ 0.223ð9Þ [11], it seems that there is a small tension
in the slope parameter value m3

πb ¼ 0.13 compared to
m3

πb ¼ 0.108ð8Þ from [11]. The calculation of uncertainties
is a bit cumbersome at NNLO and has not been presented in
[53]. Therefore in our fits we take NNLO χPT values as
central results, but include the conservative error bar, such
that it covers the recent Roy-Steiner results [11]. As for the
Adler zero, we take the NLO value, as explained at the
beginning of Sec. III. The available experimental data for
this process are scarce in the region close to the πK
threshold and often contain the discrepancies even within
one dataset [51]. Since we consider only the single-channel
approximation, we perform the fit till ηK threshold of the
data from [51,52]. In this way we also exclude the influence
of the K�

0ð1430Þ resonance. The results are shown on
Fig. 6. We observe a similar situation as for the ππ → ππ
single-channel analysis, that fitting the experimental
data [51,52] or Roy-Steiner analysis of [11] provides
equivalent four parameter fits with κ=K�

0ð700Þ pole posi-
tions at 689ð24Þþ3

−2 − i263ð33Þþ5
−8 MeV and 702ð12Þþ4

−5−
i285ð16Þþ8

−13 MeV, respectively. In general, these
results compare well with the Roy-Steiner pole position

Estabrooks, et al [51]

Wilson et al. [36]

Aston et al [52]
Peláez et al [11]

FIG. 6. Results for the πK → πK scattering with J ¼ 0; I ¼ 1=2 in the single-channel approximation. Top and bottom panels
correspond to mπ ¼ physical; 239 MeV, respectively. Left panels show the convergence of the conformal expansion in Eq. (13), central
panels show the comparison with the data, and right panels show the corresponding Omnès functions. In the phase shift plot for the
physical pion mass two curves are shown: fit to the experimental data [51,52] (dashed curve) and fit to the pseudodata from Roy-Steiner
analysis [11] (thick curve).
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653þ18
−12 − i280ð16Þ MeV which we take as a conservative

average between [10,11]. The one-sigma difference in the
resonance mass can be attributed to the fact that we are
fitting Roy-Steiner solution only in the elastic region. We
also look forward to the results of the KLF Collaboration,
which plans to study πK scattering using a secondary KL
beam at Jefferson Lab [89]. It will further improve the
position of the κ=K�

0ð700Þ resonance.
For the unphysical pion mass, we again use recent lattice

data from the Hadron Spectrum Collaboration [36]. We
analyze the data for mπ ¼ 239 MeV, where an evidence of
κ=K�

0ð700Þ was observed in the p cot δ distribution. Due to
large uncertainties, the pole position was not determined by
the lattice collaboration, calling for more sophisticated
approaches that include in addition to unitarity also the
analyticity constraint. By employing the data-driven N=D
approach, the present data can easily be described with the
two-parameter fit, leading to χ2=d:o:f: ¼ 0.4. In this case,
however, the Adler zero of the amplitude is located relatively
far from the χPT value, since the lattice data in the low p2

region suffers from the large uncertainties. Also, as we
discussed before, in the Adler zero region the conformal
expansion (13) does not converge well by construction, and
one has to impose Adler zero as a constraint, which
effectively calls for one additional parameter. In this way,
the impact of two points with prominently small errors at
p2 ∼ 0.09 and ∼0.11 GeV2 is balanced out. The results of
the fit are collected in Tables I, II, and III.
Again we would like to compare our results for the pole

position and coupling with predictions of mIAM. According
to [53], at mπ ¼ 239 MeV, the imaginary part of the pole
decreases by ∼17%, while the real part and coupling slowly
increase by ∼4% and ∼8%, respectively. Our values
extracted from the lattice data show a similar behavior, with
the decrease in the imaginary part of 7.0(7.7)%, increase in
the real part and coupling of 6.4(5.8)% and 1.6(6.4)%,
respectively.

E. Systematic uncertainties

In the end, we wish to comment on the size of systematic
uncertainties of our results. As it can be seen in Table III,
under the change of

ffiffiffiffiffi
sE

p
by 25% of the difference

ffiffiffiffiffiffiffiffiffi
smax

p −ffiffiffiffiffiffi
sth

p
around the central value (23), the σ=f0ð500Þ and

κ=K�
0ð700Þ poles acquire noticeable systematic errors

which are of the size of statistical ones. We admit that
sE variation only accounts for the dominant part of the
systematic uncertainty and therefore only provides a lower
bound on the systematic error. However, even if we go to
the extreme case of 50%, which corresponds to either sE ¼
sth or sE ¼ smax, the statistical error will grow only by a
factor of 2, compared to the case of 25%. This is different
from the K-matrix fits (see, for instance, [58]), which
cannot extract accurately the pole parameters. We remind
the reader that in our approach, as opposed to K-matrix
models, the obtained amplitudes satisfy p.w. dispersion

relations, which is an additional constraint on the amplitude
both on the real axis and in the complex plane.

IV. CONCLUSION AND OUTLOOK

In this work, we presented a data-driven analysis of the
resonant S-wave ππ → ππ and πK → πK reactions using
the p.w. dispersion relation. In this approach unitarity and
analyticity constraints are implemented exactly. We
accounted for the contributions from the left-hand cuts
using the Taylor expansion in a conformal variable, which
maps the left-hand cut plane onto the unit circle. Then, the
once subtracted p.w. dispersion relation was solved numeri-
cally by means of the N=D method.
Using existing experimental information and threshold

constraints from χPT we tested the single-channel N=D
formalism for the physical pion mass, where the positions
of σ=f0ð500Þ and κ=K�

0ð700Þ have already been obtained
from the sophisticated Roy and Roy-Steiner analyses. We
demonstrated that the results for the pole parameters are
stable and almost do not change if we replace the existing
experimental data with the very precise pseudodata gen-
erated by Roy and Roy-Steiner solutions in the physical
region. As a next step, we performed the fits to the lattice
data of the Hadron Spectrum Collaboration for mπ ¼ 236,
391 MeV in the case of ππ → ππ and for mπ ¼ 239 MeV
in the case of πK → πK. We provided an improved
determination of the σ=f0ð500Þ and κ=K�

0ð700Þ pole
parameters compared to the simplistic K-matrix approach
and also compared them with UχPT predictions.
An important feature of the N=D method is that the

Omnès function comes out naturally, as the inverse of the
D-function. The knowledge of the Omnès function, in turn,
allows employing the Muskhelishvili-Omnès representa-
tion for the vast majority of production/decay reactions
involving two pions (or pion and kaon) in the final state.
While for the single-channel case, the Omnès function can
be obtained analytically from the parametrization of the
phase shift, this is not the case for the coupled-channel case.
In order to cover the f0ð980Þ region we extended our
analysis for the coupled-channel fππ; KK̄g case and
extracted the corresponding Omnès matrix. In our con-
struction it is asymptotically bounded (i.e., it satisfies a
once-subtracted dispersion relation) and therefore useful in
many dispersive applications. The unknown coefficients
from the conformal expansion were adjusted to reproduce
existing Roy and Roy-Steiner analyses. As a straightfor-
ward application of the Muskhelishvili-Omnès representa-
tion, we estimated the two-photon decay widths of the
σ=f0ð500Þ and f0ð980Þ resonances, which turned out to be
consistent with the previous dispersive results. The
obtained Omnès matrix serves as an important building
block, which allows for the dispersive calculation of the
isoscalar two pion/kaon contribution to the hadronic light-
by-light part [88,90,91] of the anomalous magnetic
moment of the muon ðg − 2Þμ [80]. In particular, with
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the input from γ�γ� → ππ; KK [73] one can estimate
dispersively the contribution from the f0ð980Þ resonance
and compare it with narrow resonance results [78].
The proposedmethod is not only limited to the ππ and πK

scattering.We considered these reactions in the present paper
because they show up as building blocks in many hadronic
reactions/decays and have been calculated recently using
lattice QCD. In principle, the N=D method combined with
the conformal expansion for the left-hand cuts can be applied
to any hadronic reaction where there are data (experimental
or lattice) which possess a broad (or coupled-channel)
resonance that does not have a genuine QCD nature. For
the latter (for instance, ρ or K� resonances) one needs to
extend the formalism to allow for CDD poles. Also, it has to
be modified in the presence of anomalous thresholds.
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