
 

Energy-driven disorder in mean field QCD
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The impact of the finite-size effects on the vacuum free energy density of full QCD with Nf massless
flavors in the presence of a homogeneous (anti-)self-dual Abelian background gluon field is studied. The
zero-temperature free energy density of the four-dimensional spherical domain is computed as a function of
the background field strength B and domain radius R. The calculation is performed in the one-loop
approximation improved by accounting for mixing of the quark and gluon quasizero modes with normal
modes, with the use of the ζ-function regularization. It is indicated that, under plausible assumptions on the
character of the mixing, the quantum correction to the free energy density has a minimum as a function
of B and R. Within the mean-field approach to the QCD vacuum based on the domain wall network
representation of the mean field, the existence of the minimum may prevent infinite growth of individual
domains, thus protecting the vacuum from the long-range ordering, and hence serving as the origin of
disorder in the statistical ensemble of domain wall networks, driven by the minimization of the overall free
energy of the dominant gauge field configurations.
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I. INTRODUCTION

It is generally accepted that the physical QCD vacuum
can be characterized by various gluon, quark, and mixed
condensates. The condensates have played an important
role in understanding the basic features of hadron physics.
In particular, the lowest-dimension condensates hg2F2i,
hðg2F̃FÞ2i, and hψ̄ψi are relevant to the anomalous break-
down of scale and UAð1Þ symmetries, and the spontaneous
breaking of chiral SULðNfÞ × SURðNfÞ symmetry.
In principle, the condensates could be described in

terms of the background (vacuum) gluon fields within
the self-consistent mean-field approach to the QCD vac-
uum. However, the necessity to express the condensates—
which are vacuum expectation values of the color-neutral
composite fields—in terms of the vector potential of the
background gauge field combined with the strong-coupling
regime complicates the actualization of the mean-field
approach to the QCD vacuum.
Depending on the assumptions about the structure of

the vacuum, the gauge mean-field configurations under-
lying the condensates have been taken in various forms,
ranging from a superposition of quasiclassical gluon

configurations like the instanton gas or liquid [1,2]
to the fields with a constant field strength squared,
g2F2 ¼ const, representing the global minimum of the
quantum effective action of QCD. Properties of the
quantum effective action for homogeneous gluon fields
were studied in various approaches [3–13]. In particular,
Leutwyler has demonstrated that the covariantly constant
Abelian (anti-)self-dual field

B̂μ ¼ −
1

2
n̂Bμνxν; B̃μν ¼ �BμνBμρ ¼ B2δνρ;

n̂ ¼ t3 cos ξþ t8 sin ξ ð1Þ

is singled out from other gluon fields as the only gauge-
field configuration with constant strength that is stable
against small gluon and quark fluctuations and, hence,
could be considered as a likely contender for the global
minimum of the effective action [8]. The stability was
understood as the absence of the tachyonic modes in the
spectrum of small quantum fluctuations in a given back-
ground gluon field. An obvious shortcoming of the purely
homogeneous gauge field as a candidate for the mean
vacuum field is that it would describe a globally ordered
vacuum state and thus break all of the symmetries of QCD.
However, this argument does not apply to the more
complicated relevant case when the gluon fields minimiz-
ing the quantum effective action—the vacuum fields—are
arranged in domains of a homogeneous Abelian (anti-)self-
dual gluon field; the sizes and shapes of the domains in R4

randomly vary around certain mean values [14]. As a
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whole, such a set can be characterized as the statistical
ensemble of gauge fields that are homogeneous Abelian
(anti-)self-dual almost everywhere in R4 besides the boun-
daries between domains where the field appears to be
neither homogeneous nor Abelian (anti-)self-dual. It has to
be noted that the topological charge density distribution in
the typical gauge-field configurations was studied within
lattice QCD with dynamical quarks, with the results
supporting the picture of entangled space-time regions of
sign-alternating topological charge [15–17].
An instance of disordered lumpy configurations is seen

within the Ginzburg-Landau (GL) model of the quantum
effective action of QCD [14,18,19]. In this approach, an
almost-everywhere homogeneous Abelian (anti-)self-dual
gluon field can be represented by the domain wall net-
works, arising straightforwardly as soon as the existence of
the nonzero scalar gluon condensate hg2F2i is assumed.
Domain wall networks come out of the structure of the
degenerate discrete global minima of the GL effective
potential, related to each other via discrete symmetry
transformations, i.e., CP and Weyl reflections in the root
space of the color suð3Þ algebra.
The condensates are the key notion of the Wilson

operator product expansion formalism applied to the
phenomenology of QCD and hadron physics. However,
there are potential inconsistencies in the definition of
condensates attributed to infrared renormalons (see, e.g.,
Refs. [20,21] and references therein for discussion and
technical details). The major point is that operator product
expansion coefficients are not determined exclusively by
perturbation theory, and the infrared behavior of correlation
functions should be considered properly [22] which can be
achieved by explicit separation of infrared and ultraviolet
regions at the normalization scale μ. The region with
momenta larger than μ is treated perturbatively. Without
this explicit separation, the pole of the free gluon propa-
gator at zero momentum would lead to infrared renorma-
lons in QCD. In contrast, explicit propagators in the
background field (1) are regular at zero momentum but
still reproduce an ultraviolet regime of free propagators.
The simplest example is the scalar field propagator in a
homogeneous Abelian (anti-)self-dual gluon field [7],

1 − expð−p2=BÞ
p2

;

which manifestly demonstrates the character of modifica-
tions at low momenta. Moreover, the above propagator is
an entirely analytical function in the complex momentum
plane. The quark propagator is analytical as well, which can
be interpreted as the confinement of dynamical quarks in
the presence of an Abelian (anti-)self-dual gauge field.
Almost-everywhere homogeneous Abelian (anti-)self-

dual gluon fields have been incorporated into the hadro-
nization scheme within the domain model of the QCD

vacuum [23–28]. The Abelian (anti-)self-dual nature ensures
the confinement of both dynamical and static quarks
(absence of poles in the propagators of color-charged fields
as well as fulfillment of the area law for the Wilson loop),
the resolution of the UAð1Þ problem, and the spontaneous
breakdown of chiral symmetry. With a minimal set of
parameters, the domain model provided a universal and
rather accurate description of the masses and various decay
constants of light and heavy-light mesons and heavy
quarkonia, including their excited states, as well as some
form factors. The picture of the QCD vacuum based on the
Abelian (anti-)self-dual mean field turned out to be conven-
ient for exposing a catalyzing impact of a strong electro-
magnetic field on quark deconfinement [14,18,29–31].
On the whole, these rather satisfactory phenomenologi-

cal applications inspire the task of clearing up the mecha-
nism behind the balance between the competitive
tendencies for a long-range order in the ground state and
disorder that may originate from two complementary
origins: the topologically stable defects in the background
field and the existence of a minimum of the effective action
with respect to the size of the regions of homogeneity
(domain size). Topologically nontrivial gluon field con-
figurations are expected to emerge through the division of
the arbitrary gauge field into Abelian and non-Abelian
parts, and may be seen in the domain wall network as
frustrations of the color and space-time orientation of the
background field at the domain wall junctions. We shortly
comment on this mechanism below but do not discuss it in
detail here. A discussion of relevant physics can be found in
the review [32] and references therein.
The existence of a minimum of the effective action with

respect to the domain size can be called the energy-driven
origin of disorder, which is the main subject of the present
paper. The quark and gluon quasizero modes characteristic
of the covariantly constant Abelian (anti-)self-dual back-
ground field in a finite region may play a peculiar role in
the formation of domains. An infinite number of quasizero
modes become degenerate zero modes in the limit of
infinite domain size, and thus potentially lead to an infrared
singular behavior of the effective potential. In the plain one-
loop approximation, the contributions of the quark and
gluon quasizero modes to the effective potential have
opposite signs, and their strong concurrent impact on the
potentially IR singular behavior of the effective potential
becomes manifest in the infinite-volume limit.
In the present paper, the effective potential for the

Abelian (anti-)self-dual field (1) in a four-dimensional
spherical domain with radius R is calculated for SUð3Þ
chromodynamics with Nf massless quarks using the zeta
function regularization, which completes the previously
reported results for pure gluodynamics [33]. The quark and
gluon fields are subject to the bag-like boundary conditions
[14,25]. It is important that the interaction of gluon and
quark quasizero modes (zero modes in the limit R → ∞)
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with the normal modes is treated beyond one loop, as has
been put forward by Leutwyler [8]. This interaction leads to
the contribution of the quasizero modes to the effective
potential being regular in the limit of infinite domain size.
This is crucial for the overall existence of the thermodynamic
limit and, as underlined in Ref. [8], the consistency of the
strong-field limit of the effective action with asymptotic
freedom. In fact, a mixing of quasizero and normal modes
has to be taken into account in all-loop orders as there is no
good small parameter, which presents a barely solvable task,
especially in the finite region. However, as it was demon-
strated in Ref. [8], the most significant consequence of the
mixing is the emergence of the effective “mass” for the
quasizero modes. This observation enables sensible model-
ing of the plausible form of the dependence of the “effective
mass” on the domain size R, and the identification of
conditions for the existence of the minimum of the effective
potential with respect to the radius of the domain R and field
strength B inside the domain.
It is shown that formation of the domains with finite size

R can be energetically preferable if the effective “mass”
falls from asymptotic nonzero value at R → ∞, fixed by the
asymptotic freedom and correct strong field limit, to zero at
R → 0 as it follows from the dependence of normal modes
on the domain size. The final result for the free energy
density of full QCD is shown in the last figure in Sec. III.C.
The minimum in field strength and domain size is clearly
present for a wide class of functional dependence of the
zero mode effective “mass” on the domain size.
The finite mean size of the domains in the network is

determined by the minimum of the effective action density
inside individual domains. The existence of the mean
domain size that minimizes the action density can be seen
as a condition for the sustainability of a domain wall
network. In general, there is an infinite set of networks with
degenerate values of the quantum effective action that
constitutes a statistical ensemble of dominant vacuum
gluon field configurations. In accordance with the character
of the free energy dependence on domain size, the degree of
disorder in the ensemble may vary from a highly disordered
distribution of entangled domains with variable size and
shape, to the almost periodic distribution of identically
sized and shaped domains, reminiscent of spin liquid and
(anti)ferromagnetic states, respectively.
In the next section we update the formal framework

underlying the domain wall network representation of the
background gluon fields in order to adjust it to the
formulation of the particular problem studied in this paper.
The ghost, gluon, and quark contributions to the free
energy density of a spherical domain with Abelian self-
dual gauge field are discussed in detail in the third section.
The Appendices contain quite involved technical details of
calculations. The main difficulty is combination of finite
size and background field, and their simultaneous treatment
is the result by itself.

II. EFFECTIVE ACTION OF QCD AND THE
DOMAIN WALL NETWORKS

The initial, gauge-unfixed, Euclidean functional integral
representation for the QCD partition function

Z½Bvac� ¼ N
Z
F
DA

Z
Ψ
Dψ̄Dψ expf−S½A; ψ̄ ;ψ �g

assumes a certain choice of the functional spaces of
integration over gluon and quark fields. If one allows
nonzero gluon condensates, then the functional space F
has to be subjected to an appropriate condition, such as

F ¼
�
A∶ lim

V→∞

1

V

Z
V
d4xg2Fa

μνðxÞFa
μνðxÞ ¼ B2

vac

�
: ð2Þ

This definition is reminiscent of the Schrödinger functional
representation (see, for instance, Refs. [8,34,35]). The
difference is that the condition (2) is imposed on the
gauge-invariant combination of the gauge fields and has an
integral (functional) form.
In order to define the above partition function in the

mean-field approach, one has to identify field configura-
tions B that are potentially relevant to the description of the
QCD vacuum with nonzero condensates. Instanton liquid
configurations, a center-vortex ensemble, gauge fields with
constant field strength, or domain wall networks are all
examples of B.
The division of the general gauge fields Aa

μ ∈ F into the
given background fields Ba

μ ∈ B with an extensive classical
action specified by Eq. (2) and the fluctuations Qa

μ in this
sample background Ba

μ supplemented by the background
gauge conditionDðBÞQ ¼ 0 lead to the representation [36]

Z½Bvac� ¼ N0
Z
B
DB exp f−SVeff ½B�g

¼ N00
Z
B
DB

Z
Q
DQ

×
Z
Ψ

Dψ̄Dψ det½DðBÞDðBþQÞ�δ½DðBÞQ�

× expf−SV ½BþQ; ψ̄ ;ψ �g: ð3Þ

At this step, the functional spacesQ andΨ are restricted by
the condition

lim
V→∞

ðSV ½BþQ; ψ̄ ;ψ � − SV ½B�Þ < ∞; ð4Þ

which excludes long-range fields from the set Q of
fluctuations. The integral over the quark ψ and gluon Q
fluctuations defines the effective action SVeff ½B� for a given
background field B. Whether the constant Bvac is nonzero
has to be determined by the minima of the quantum
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effective action. Due to the dimensional transmutation in
gauge theories, the condensates have to be expressed in
terms of the internal scale ΛQCD, that is, Bvac ∝ Λ2

QCD. The
dimensional transmutation in gauge theories and its con-
nection to gauge field condensates was discussed in
Ref. [37]. In the infinite-volume limit V → ∞, the global
minima of SVeff ½B� dominate the integral over background
fields B and thus determine the specific class of gluon field
configurations relevant to the self-consistent mean-field
description of the QCD vacuum.
The properties of the effective action are crucial for the

practical implementation of the described scheme. Detailed
discussions of the very existence of a nontrivial minimum
of the quantum effective action for homogeneous fields can
be found in Refs. [3–12]. Some basic properties have been
estimated and can be used for the identification of the likely
features of the mean field.
Fields with a constant field strength have to be verified

for the role of the vacuum mean field Ba
μ first. Such a

verification has been going on since the late 1970s, when a
chromomagnetic covariantly constant Abelian gauge
field was suggested for the role of the QCD vacuum [4].
As has already been mentioned, a covariantly constant
Abelian (anti-)self-dual gauge field has appeared to be
more preferable in many respects, in particular due to the
direct relation to the confinement of dynamical color-
charged fields, and chiral symmetry breaking seen also
in terms of meson properties through hadronization.
It should be stressed that the condition (2) in no way

restricts the background field functional space B to con-
figurations with constant strength. The representation (3)
assumes the division of the arbitrary gauge field A into two
parts: the background B and fluctuation Q fields, with
simultaneous gauge fixing for the fluctuation part. If one is
going to study the Abelian background B, then a specific
parametrization of the gauge field has to be implemented
[32,38–42]. Both the color and space orientations of the
background field may appear to be frustrated at some
space-time locations, thus making manifest topological
singularities in the vector potential which, in general,
cover the whole range of defects of various dimensions:
domain wall, vortex, monopole, and zero-dimensional
instanton-like defects.
More importantly, as has been stressed, in particular

according to Faddeev, quantum equations

δSVeff ½B�
δB

¼ 0

“could have soliton solutions, which are absent in the
classical limit. In particular, it is not completely crazy idea
that quantum Yang-Mills equations have soliton-like sol-
utions due to the dimensional transmutation” [43].
In general, fields that dominate the functional integral in

the infinite-volume (thermodynamic) limit belong to the

functional subspace B̃ ⊂ B. Given this, in the infinite-
volume limit one may reduce the integration over back-
ground fields B in Eq. (3) to the subspace of dominant
(vacuum) fields and arrive at the mean-field representation
of the QCD partition function,

Z½Bvac� ¼ N00 lim
V→∞

Z
B̃
DσB

Z
Q
DQ

×
Z
Ψ
Dψ̄Dψ det½DðBÞDðBþQÞ�δ½DðBÞQ�

× expf−SV ½BþQ; ψ̄ ;ψ �g; ð5Þ

whereDσB is a measure of the integration over the space of
vacuum gauge fields. A treatment of these possibly soliton-
like vacuum fields B ∈ B̃ in the functional integral (3) must
be nonperturbative, while a perturbative expansion over
fluctuations is likely to be applicable for the calculation of
various physical quantities [27,28]. It has to be noted that
according to the condition (3) the normalization constant
N00 should contain a factor that cancels a trivial extensive
contribution of the background field to the classical action
S½B� in the infinite-volume limit. Certain prescriptions for
the regularization and renormalization of UV divergences
are assumed.
The Ginzburg-Landau approach to the quantum effective

action of QCD with the effective Lagrangian [14,18,19,25]

Leff ¼ −
1

4Λ2
ðDab

ν Fb
ρμDac

ν Fc
ρμ þDab

μ Fb
μνDac

ρ Fc
ρνÞ −Ueff ;

Ueff ¼
Λ4

12
Tr

�
C1f̆

2 þ 4

3
C2f̆

4 −
16

9
C3f̆

6

�
ð6Þ

indicated an intrinsic possibility for a disordered ground
state of QCD. Here, Λ is a scale, Fa

μν is the standard
strength tensor for the SUcð3Þ color gauge field,
f̆μν ¼ TaFa

μν=Λ2, and Dab
μ ¼ δab∂μ − iĂab

μ . The effective
Lagrangian respects all symmetries of QCD besides scale
invariance, and the real constants Ci have to be positive to
provide a minimum of the effective potential at nonzero
gauge field. Given this, one can check that there is a
discrete set of global minima corresponding to the cova-
riantly constant Abelian (anti-)self-dual fields,

Ăk
μ ¼ −

1

2
n̆kFμνxν; F̃μν ¼ �Fμν;

FμνFμν ¼ b2Λ4; b2vac ¼
−C2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
2 þ 3C1C3

p
3C3

;

where the matrix n̆k belongs to the Cartan subalgebra of
suð3Þ,
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n̆k¼T3cosðξkÞþT8 sinðξkÞ; ξk¼
2kþ1

6
π; k¼0;1;…;5:

ð7Þ

These minima are connected with each other by discrete
parity and Weyl symmetry transformations.
One concludes that the domain wall solutions of the

quantum equations of motion emerge as soon as the
effective action has a global minimum corresponding to
nonzero gluon condensate hg2F2i. For instance, if all
parameters of the field besides the angle ω between
chromoelectric and chromomagnetic fields are set to the
vacuum values, then the initial GL Lagrangian describes a
sine-Gordon field ω,

Leff ¼ −
1

2
Λ2b2vac∂μω∂μω − b4vacΛ4ðC2 þ 3C3b2vacÞ sin2 ω:

The available standard kink solution describes a planar
domain wall between the regions with homogeneous
Abelian self-dual and anti-self-dual gluon fields.
Topological charge density vanishes on the wall where
the chromomagnetic and chromoelectric fields are orthogo-
nal to each other.
More general domain wall configuration emerges if ω, ξ

and b varying simultaneously. In this case, the equations of
motion read

−6b0ω0 þ b3 sin 2ωðC3b2ðcos 6ξþ 10Þ þ 3C2Þ − 3bω00 ¼ 0;

−15b00 þ 3bð−4C1 þ 2ω02 þ 5ξ02Þ − 12C2b3ðcos 2ω − 3Þ − 2C3b5ð3 cos 2ω − 5Þðcos 6ξþ 10Þ ¼ 0;

2C3b6ð3 cos 2ω − 5Þ sin 6ξ − 15bð2b0ξ0 þ bξ00Þ ¼ 0: ð8Þ

The plain domain wall solution of these equations is shown
in Fig. 1. It corresponds to a gauge field that interpolates
between two different vacuum configurations. In general,
the initial GL Lagrangian may produce more nontrivial
soliton-like solutions in both Euclidean and Minkowski
spaces. A combination of the additive and multiplicative
superpositions of the domain walls allows one to generate
various domain walls and domain wall networks in R4

[14,44], like the samples shown in Fig. 2.
The Lagrangian (6) has the simplest form, but its

symmetry properties and the emergence of the periodic
discrete minima as a consequence of the scale invariance
breakdown seem to be a general property, qualitatively
insensitive to the detailed form of the effective potential.
Another form of the strong-field behavior of the GL
effective Lagrangian can affect the particulars of the kink
solution, but can hardly influence its very existence and
general properties. It has to be noted that the role of Weyl
reflections in the topology of the QCD ground state has

 0

π/6

π/3

π/2

π

−4 −3 −2 −1  0  1  2  3  4

bvac

 0

 1

 2

 3

x

b
ω
ξ

 0

π/6

π/3

π/2

π

−4 −3 −2 −1  0  1  2  3  4

bvac

 0

 1

 2

 3

FIG. 1. Domain wall solution of Eq. (8): the gauge field
interpolates between two vacuum states, namely, self-dual and
anti-self-dual configurations, ξ goes from one boundary of the
Weyl chamber to another, and the field strength b has a dip
on the wall.

FIG. 2. Two-dimensional slices of topological charge density for various superpositions of domain wall solutions for Eq. (8). Red and
blue correspond to Abelian self-dual and anti-self-dual fields.
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been intensively discussed in recent years in the context of
the dual superconductor picture of confinement [32,45].
The functional space B̃ in the integral (5) is assumed to

include infinitely many networks with equal values of the
free energy. Though an implicit implementation of this
prescription within the domain model of the QCD vacuum
demonstrated high phenomenological performance [27,28],
the conceptual problem of the network stability remains:
since domain wall configurations in four-dimensional
Euclidean space are not topologically protected and the
presence of a kink configuration usually increases the
action, any network should evolve to a single infinitely
large domain. In the next section, we study a particular
effect which may prevent the infinite growth of a single
domain.

III. FREE ENERGY DENSITY

The Lagrangian (6) does not account for possible finite-
size effects. Available evaluations of the effective potential
for a homogeneous gauge field were performed in an
infinite space-time [3–12] and thus, as a matter of fact,
implicitly assumed that the free energy density in the region
with a homogeneous field does not depend on the size of
the region. Meanwhile, finite-size effects are not excluded
and may prevent infinite growth of an individual domain,
thus protecting the overall stability of the domain wall
network configurations.
The present section is devoted to the study of the

dependence of the renormalized free energy density
FðB;RÞ of a finite spherical domain of the Abelian
(anti-)self-dual homogeneous field on its radius R and the
strength B of the field in full QCD with massless quarks,
defined by the finite-volume partition function

expð−VRFðB;RÞÞ

¼ RenN
Z
Q
DQ

Z
Ψ
Dψ̄Dψ

×
Z
C
Dc̄Dc exp f−SVR

½Q; ψ̄ ;ψ ; c̄; c;B�g; ð9Þ

where VR is the volume of a four-dimensional ball with
radiusR, which is an idealization of the domain shown in the
leftmost picture in Fig. 2, and SVR

is the gauge-fixed action
of QCD in the presence of the background gluon field
defined by Eq. (1). The Feynman background gauge is
used below. The normalization constant N is fixed by the
condition

Fð0; RÞ ¼ 0: ð10Þ

The renormalization prescription is specified below. The
functional spacesQ, Ψ, and C contain the quark, gauge, and
ghost fields subject to the bag-like boundary conditions

ði=ηeiαγ5 − 1ÞψðxÞjx∈∂VR
¼ 0; ð11Þ

n̆QμðxÞjx∈∂VR
¼ 0; ð12Þ

n̆cðxÞjx∈∂VR
¼ 0: ð13Þ

These boundary conditions were discussed in Refs. [14,25].
The choice assumes that there is a physical boundary of the
spherical domain, given by the domain wall illustrated in
Fig. 1. Bag-like boundary conditions are required by the
qualitatively different character of field fluctuations in the
bulk of the domain (confining self-dual background field)
and on the boundary (chromomagnetic field) [14].
The functional integral (9) is defined through the

decomposition of the quark, gauge, and ghost fields,

QðxÞ ¼
X
n

qnQðnÞðxÞ; cðxÞ ¼
X
n

cnCnðxÞ;

ψðxÞ ¼
X
n

θnΨnðxÞ;

over an orthogonal normalized complete set of functions in
Ψ, Q, and C. It is convenient to diagonalize the quadratic
part of the action, using the eigenfunctions of the corre-
sponding differential operators,

=̂DΨn ¼ λqnΨn; ð14Þ

−D̆2Cn ¼ λghn Cn; ð15Þ

½−D̆2δμν þ 2iB̆μν�QðnÞ
ν ¼ λgln Q

ðnÞ
μ ; ð16Þ

subject to the boundary conditions (11), (12), and (13). The
index n denotes all relevant quantum numbers as described
below. The quark, gluon, and ghost spectra are purely
discrete for any R if the field strength B is nonzero. At finite
R, all eigenvalues are nonzero for quark fields, and positive
for gauge and ghost fields. The one-loop correction δU to
the classical action

Ucl ¼
Z
VR

d4x
1

4g2
ðBa

μνÞ2 ¼
π2B2R4

2g2

is given by the determinants

exp ð−δUÞ ¼ N½det ð−D̆2δμν þ 2iB̆μνÞ�−1
2

× det ð−D̆2Þ½det i=D�Nf ; ð17Þ

where Nf is the number of massless quark flavors.
Renormalized functional determinants are calculated below
by means of analytical regularization,
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Tr logΔ ¼ −
d
ds

X
n

λ−sn

���
s¼0

¼ −
d
ds

ζðsÞ
���
s¼0

;

where λn are eigenvalues of the operator Δ. The compu-
tation of ζðsÞ is based on the method summarized in
Refs. [46,47]. The contributions of ghosts and gluons were
calculated in Ref. [33], and we provide them below for
completeness.

A. Ghost contribution to the free energy density

The evaluation of the ghost contribution to the free
energy density is rather straightforward. Details of the
solution of the eigenvalue problem [Eqs. (15) and (13)], are
given in Ref. [25]. Ghost eigenfunctions are expressed in
terms of the confluent hypergeometric function Mða; b; zÞ.
The eigenvalues are defined by Eq. (15), which can be
written in the form

M

�
k
2
þ 1 −m −

λ2

2vaB
; kþ 2;

vaBR2

2

�
¼ 0;

k ¼ 0; 1; 2;…; m ¼ −
k
2
; −

k
2
þ 1;…;

k
2
; ð18Þ

where va is the absolute value of the ath nonzero
eigenvalue of the matrix n̆ ¼ naTa, and Ta are generators
in the adjoint representation. The eigenmodes correspond-
ing to the zero eigenvalues of n̆ do not contribute to the
free energy density FðB; RÞ due to the normalization
condition (10). Eigenvalues with a given k, m, radial
number r, and color index a are (kþ 1) degenerate. The
ghost contribution takes the form

δUgh ¼ −
X
kmr

Tr ln
λ2kmrðvB; RÞ
λ2kmrð0; RÞ

¼ d
ds

ζghðsÞ
����
s¼0

; ð19Þ

where Tr denotes summation over va. The dimensionless
quantities

λ ¼ λ=μ; B ¼ B=μ2; R ¼ Rμ ð20Þ

have been introduced using the auxiliary renormalization
scale μ. The zeta function in Eq. (19) can be found via
analytical continuation to s → 0 in the complex plane, and
the final expression for δUgh is (see Ref. [33])

δUghðB; RÞ ¼ −4
X∞
k¼1

k

" Xk−12
m¼−k−1

2

Ψgh

�
k;m; 0;

ffiffiffi
3

p
B

2
; R

�
−
3

4
B2R4

1

48

�
1 −

1

k
þ 1

k2

�#

þ B2R4

48
ð2 − 3γ þ 3 log 2 − 3 logRÞ − 3B4R8

10240
;

Ψghðk;m; t; B̆; RÞ ¼ log
exp ð− B̆R2

4
ÞMðkþ1

2
−mþ t2

2B̆
; kþ 1; B̆R

2

2
Þ

k!ðtR
2
Þ−kIkðtRÞ

: ð21Þ

The sums in Eq. (21) converge and can be computed
numerically.
The ghost contribution FghðB;RÞ ¼ δUghðB; RÞ=VR to

the free energy density defined by Eq. (21) is shown
in Fig. 3. It demonstrates expected behavior in both the
field strength B and domain size R. In the infinite-
volume limit it approaches the expected one-loop ghost
contribution.

B. Gauge-field fluctuations

Eigenvalues of the relevant gluon operator

−D̆2δμν þ 2iB̆μν ð22Þ

differ from the ghost eigenvalues by an overall shift due to
the term 2iB̆μν. Though in the infinite space-time this shift
leads to the presence of infinitely many exact gluon zero
modes, for R < ∞ the degeneracy of these modes disap-
pears, and all corresponding eigenvalues become positive.
This subset of modes will be referred to below as

quasizero modes. Since exact zero modes are absent for
R < ∞, one may naively expect that plain one-loop
calculation should suffice for moderate values of the
domain size R. The calculation proceeds completely
analogously to the computation in the previous subsection,
and one finds the following result for δUgl (see Ref. [33] for
details):
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δUglðB;RÞ ¼ 4
X∞
k¼1

k

" Xk−12
m¼−k−1

2

Ψgl

�
k;m; 0;

ffiffiffi
3

p
B

2
; R

�
−
3

4
B2R4

1

24

�
1 −

1

k
−

5

k2

�#

−
B2R4

48
ð31þ 30γ − 30 log 2þ 30 logRÞ þ 3B4R8

5120
;

Ψglðk;m; t; B; RÞ ¼ log
exp ð− BR2

2
ÞMðkþ1

2
−mþ 1þ t2

2B ; kþ 1; BR
2

2
ÞMðkþ1

2
−m − 1þ t2

2B ; kþ 1; BR
2

2
Þ

ðk!ðtR
2
Þ−kIkðtRÞÞ2

: ð23Þ

The free energy density, as given by Eq. (23), is shown in
Fig. 4. One would expect that the character of the strong-
field limit should be insensitive to the presence of the
boundary, since it corresponds to short distances.
Meanwhile, the free energy density decreases without
bound at large B and fixed R, which does not comply
with known results [5,8] and, more generally, with asymp-
totic freedom. It also does not approach a constant at large

R and fixed B, which implies the absence of a sensible
thermodynamic limit in the system. This behavior is due to
the manifestation of infinitely many quasizero eigenvalues
that tend to zero as the dimensionless quantity BR2

increases (see Fig. 5), which occurs both in the strong-
field and thermodynamic limits.
If all eigenvalues are sufficiently large to provide

Gaussian damping in the functional integral (at small

FIG. 3. Contribution of the Faddeev-Popov determinant to the free energy density. The domain size R and field strength B are given in
units of the renormalization scale μ [Eq. (20)]. If R is sufficiently large, then a minimum exists at nonzero field strength B. For any B the
ghost contribution is minimal in the infinite-volume limit R → ∞.

FIG. 4. Dependence of the one-loop gluon contribution to the free energy density on B and R [in units of the renormalization scale μ;
see Eq. (20)]. The strong-field and large-volume limits are incorrect due to the presence of infinitely many gluon quasizero modes.
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BR2), then Eq. (17) can be considered as justified. The
smaller the eigenvalues, the worse the one-loop approxi-
mation becomes, and finally it results in a strong-field limit
that is upside down. It becomes clear that one has to take
into account the mixing between normal and quasizero
modes, which means going beyond the one-loop approxi-
mation of the free energy at large BR2. The calculation of
the effective potential for an Abelian self-dual field in
infinite space-time gives a guiding prescription [8], based
on the observation that if one evaluates the functional
integral over normal (nonzero) modes first and accounts
for their interaction with zero modes, then the obtained
effective action has a finite quadratic-in-zero-modes part. In
other words, due to the interactions, zero modes gain an
effective “mass” μ20 ¼ ϰ̄B, which provides an appropriate
Gaussian measure. Here ϰ̄ is a constant. Schematically,
the contribution to effective “mass” is shown in Fig. 6. The
filled circles denote all possible diagrams which include the
propagators of normal gluon and quark modes. For SUð2Þ
gluodynamics the lowest-order value of the zero mode
“effective mass” takes the value [8]

μ20 ¼ ϰ̄B; ϰ̄ ¼ g2

24π2
:

The final result for the free energy density in the infinite-
volume limit agrees completely with the renormalization
group estimate [5] and, as it should be, with asymptotic
freedom [8].

For the finite-volume case, this observation suggests
that, in particular, the interaction of normal modes with
quasizero modes generates a shift

λ̄2effðB;RÞ ¼ λ̄2ðB;RÞ þ ϰðBR2ÞB;
lim
R→∞

λ̄2ðB;RÞ ¼ 0; lim
z→∞

ϰðzÞ ¼ ϰ̄ > 0; ð24Þ

where λ̄2ðB;RÞ are quasizero eigenvalues of the operator
(22), and the function ϰðBR2Þ should approach ϰ̄ in both
the infinite-volume and strong-field limits.
The normal mode propagators that are incorporated into

the diagrams in Fig. 6 can be represented at most as an
infinite series over quantum numbers of the modes.
Truncation of these series is unreliable since, in general,
diagrams are UV divergent. Given that, the calculation
of the dependence of ϰ on the dimensionless quantity
z ¼ BR2 appears to be an extremely complicated task, even
at the lowest perturbation order. Moreover, in the absence
of a small expansion parameter, the perturbative expansion
cannot lead to a decisive result anyway.
Meanwhile, it seems to be possible to identify the general

form of ϰðzÞ suitable for a qualitative estimate of the
available fundamentally different dependencies of the free
energy density on the domain size. Two restrictions for the
function ϰðzÞ can be identified. The first one is given by
Eq. (24). As has already been noted, it follows from the
existence of the thermodynamic limit and agreement with
asymptotic freedom and the strong-field limit. Another
restriction,

lim
z→0

ϰðzÞ ¼ 0; ð25Þ

follows from the scaling of all eigenvalues at small R,

lim
R→0

λ2ðzÞ ∝ lim
R→0

1=R2 ¼ 0;

which means that corrections to the effective action of
quasizero modes coming from the diagrams (Fig. 6) are
expected to vanish, in analogy with decoupling of the
infinitely heavy particles.
A trial function ϰðzÞ can be taken in the form

ϰðzÞ ¼ 2

π

�
arctan exp

�
z − z0
a

�
þ arctan exp

�
z0 − z
a

�

− 2 arctan exp
�
−
z0
a

�	
; ð26Þ

which, in addition to the above restrictions at z → 0 and
z → ∞, also reflects a change in the behavior of eigen-
values at a certain value of z, when all normal eigenvalues
start to increase as R decreases; see Fig. 5. The function ϰ is
plotted in Fig. 7.

FIG. 5. Dependence of gluon eigenvalues [see Eq. (A1)] on
BR2. In the limit BR2 → ∞, an infinite number of zero modes
emerge.

FIG. 6. The wavy line corresponds to gluon quasizero modes,
while the dashed line corresponds to quark quasizero modes. The
filled circles denote all possible diagrams with a normal quark
and gluon modes.
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Incorporation of the effective “mass” ϰðBR2Þ leads to the following gluon contribution to the effective action (the
procedure described in Ref. [33] is refined in Appendix A):

δUgl
ϰ ðB; RÞ ¼ 4

X∞
k¼1

k

" Xk−12
m¼−k−1

2

Ψgl

�
k;m; 0;

ffiffiffi
3

p
B

2
; R

�
−
3

4
B2R4

1

24

�
1 −

1

k
−

5

k2

�#

−
B2R4

48
ð31þ 30γ − 30 log 2þ 30 logRÞ þ 3B4R8

5120

þ 4
X∞
k¼0

"
ðkþ 1Þ log

λ2
↑kk

2
0
ðB;RÞ þ ϰðBR2ÞB
λ2
↑kk

2
0
ðB;RÞ þ ðkþ 1Þ log

λ2
↓k−k

2
0
ðB;RÞ − ϰðBR2ÞB
λ2
↓k−k

2
0
ðB;RÞ

#
: ð27Þ

The corresponding free energy density is plotted in
Fig. 8. The correct behavior of the free energy density
for BR2 → ∞, consistent with asymptotic freedom and the
existence of the thermodynamic limit, is restored. It is seen
that the free energy density acquires a minimum at
intermediate values of field strength and domain size.

The free energy density for pure SUð3Þ gluodynamics
for a finite domain of Abelian (anti-)self-dual gluon fields
is given by the sum of Eqs. (21) and (27). The result is
iillustrated on the last figure in Sec. III.C. The existence of
the minimum of the free energy density as a function of two
variables is clearly seen.

C. Quark contribution

To complete the calculation for full QCD with massless
quarks, we have to study the quark contribution to the
effective potential

δUqðB; RÞ ¼ −NfTr ln
i=D

i=DjB¼0

¼ −Nf

X
k;j;n

Tr ln
iλkjnðB;RÞ
iλkjnð0; RÞ

¼ Nf
d
ds

ζqðsÞ
����
s¼0

;

where Nf is the number of quark flavors, and λðB;RÞ are
eigenvalues of the Dirac operator in a spherical domain of
radius R with a homogeneous Abelian (anti-)self-dual field
and bag boundary condition (see Appendix B).

FIG. 7. Profile of the function ϰðzÞ used in Fig. 8.

FIG. 8. Improved gluon contribution to the free energy with the effective “mass” ϰ given by Eq. (26). The parameters of ϰ are
taken such that the minimum is well pronounced: z0 ¼ 100 and a ¼ 10. All quantities are measured in units of the renormalization
scale μ [Eq. (20)].
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The zeta function ζqðsÞ can be split into two parts [48],

ζqðsÞ ¼ cosðπsÞζ=D2

�
s
2

�
− i sinðπsÞηðsÞ;

d
ds

ζqðsÞ
���
s¼0

¼ 1

2
ζ0=D2

ð0Þ − iπηð0Þ: ð28Þ

For the purpose of the present study we only need ζ=D2 . The parity-odd term ηðsÞ contributes to the imaginary part of the

effective potential and can be related to theUAð1Þ anomalous breakdown [26]. The parity-even part ζ=D2 can be written in the

following form:

ζ=D2ðsÞ ¼ Tr
sin πs
π

X∞
k¼0

Xkþ1
2

j3¼−kþ1
2

ðkþ 1Þ
Z

∞

0

dt
t2s

d
dt

Ψqðkþ 1; j3; t; B̂; RÞ;

Ψqðkþ 1; j; t; B̂; RÞ ¼ log
Að−it; k; j3; B̂; RÞAðit; k; j3; B̂; RÞ
Að−it; k; j3; 0; RÞAðit; k; j3; 0; RÞ

; ð29Þ

where Aðλ; k; j; B; RÞ ¼ 0 is the equation for eigenvalues. Proceeding in the same manner as in the previous section (see
Appendix C for details), we arrive at the expression

δUqðB;RÞ ¼ Nf

(
−
1

2
Tr

X∞
k¼1

ðkþ 1Þ
" Xk−12
j¼−k−1

2

Ψqðk; j; 0; B̂; RÞ − B̂2R4
1

12

�
1 −

2

k2

�#

þ B2R4

144
ð5þ 6γ − 6 log 2þ π2 þ 6 logRÞ − B4R8

1

30720

)
: ð30Þ

Due to the quark quasizero modes (see Fig. 9), the quark contribution to the free energy density given by Eq. (30) and shown
in Fig. 10 exhibits the inconsistency with the correct strong-field and thermodynamic limits, similar to inconsistencies in the
gluon effective potential given by Eq. (23) and illustrated in Fig. 4.
Following reasoning analogous to the case of gluons in the previous subsection, the improved calculation of the quark

contribution has to take into account the generation of the effective “mass” for quasizero eigenmodes of quarks due to the
interaction of quark quasizero modes with normal gluon and normal quark modes (see the right-hand side diagram in
Fig. 6). The improved quark contribution reads

δUq
ϰðB;RÞ ¼ Nf

(
−
1

2
Tr

X∞
k¼1

ðkþ 1Þ
" Xk−12
j3¼−k−1

2

Ψqðk; j; 0; B̂; RÞ − B̂2R4
1

12

�
1 −

2

k2

�#

þ B2R4

144
ð5þ 6γ − 6 log 2þ π2 þ 6 logRÞ − B4R8

1

30720

)

−
Nf

2
Tr

X∞
k¼0

"
ðkþ 1Þ log

λ2
kk
2
0
ðB;RÞ þ ϰðBR2ÞB

λ2
kk
2
0
ðB; RÞ þ ðkþ 1Þ log

λ2
k−k

2
0
ðB;RÞ − ϰðBR2ÞB
λ2
k−k

2
0
ðB;RÞ

#
; ð31Þ

similarly to Eq. (27). The effective potential is shown in Fig. 11.
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Combining the ghost, improved gluon, and quark contributions, one finds

δUϰðB;RÞ ¼ δUgl
ϰ ðB;RÞ þ δUghðB;RÞ þ δUq

ϰðB;RÞ

¼ 4
X∞
k¼1

k

" Xk−12
m¼−k−1

2

Ψgl

�
k;m; 0;

ffiffiffi
3

p
B

2
; R

�
−
3

4
B2R4

1

24

�
1 −

1

k
−

5

k2

�#

þ 4
X∞
k¼0

"
ðkþ 1Þ log

λ2
gl;kk

2
0
ðB;RÞ þ ϰðBR2ÞB
λ2
gl;kk

2
0
ðB;RÞ þ ðkþ 1Þ log

λ2
gl;k−k

2
0
ðB;RÞ − ϰðBR2ÞB
λ2
gl;k−k

2
0
ðB;RÞ

#

− 4
X∞
k¼1

k

" Xk−12
m¼−k−1

2

Ψgh

�
k;m; 0;

ffiffiffi
3

p
B

2
; R

�
−
3

4
B2R4

1

48

�
1 −

1

k
þ 1

k2

�#

−
Nf

2
Tr

X∞
k¼1

ðkþ 1Þ
" Xk−12
j3¼−k−1

2

Ψqðk; j; 0; B̂; RÞ − B̂2R4
1

12

�
1 −

2

k2

�#

−
Nf

2
Tr

X∞
k¼0

"
ðkþ 1Þ log

λ2
q;kk

2
0
ðB;RÞ þ ϰðBR2ÞB
λ2
q;kk

2
0
ðB;RÞ þ ðkþ 1Þ log

λ2
q;k−k

2
0
ðB;RÞ − ϰðBR2ÞB
λ2
q;k−k

2
0
ðB;RÞ

#

−
B2R4

48
ð29þ 33γ − 33 log 2þ 33 logRÞ þ 3B4R8

10120
þ Nf

�
B2R4

144
ð5þ 6γ − 6 log 2þ π2 þ 6 logRÞ − B4R8

30720

�
:

ð32Þ

The corresponding free energy density is shown on the
right-hand side of Fig. 12. The total free energy density
demonstrates a well-pronounced minimum as a function of
field strength and domain size. The quark contribution does
not change the result of pure gluodynamics qualitatively,
though the field strength at the minimum is considerably
reduced.

D. One-loop beta function

The effective action U ¼ Ucl þ δUϰ should not depend
on the renormalization scale μ [49,50], that is,

μ
d
dμ

U ¼ 0; ð33Þ

with the classical action (VR is a four-dimensional ball of
radius R)

Ucl ¼
Z
VR

d4x
1

4g2
ðBa

μνÞ2 ¼
π2B2R4

2g2
;

and δUϰ is given by Eq. (32). Since only terms containing
logR contribute to Eq. (33), one obtains

μ
d
dμ

�
π2B2R4

2g2
þ B2R4

16

�
−11þ 2

3
Nf

�
logR

	
¼ 0;

which is equivalent to the equation

μ
d
dμ

g ¼ −
g3

16π2

�
11 −

2

3
Nf

�
;

exposing the correct one-loop β function of QCD with Nf

quark flavors.

FIG. 9. Dependence of quark eigenvalues on BR2. At
BR2 → ∞, an infinite number of zero modes emerge. Normal
modes come in positive-negative pairs λ�. Note that λþ¼ − λ− for
finite BR2, but the equality is restored in the limit BR2 → ∞. An
infinite number of quasizero modes are not chiral for finite R and
become chiral zero modes for asymptotically large BR2.
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FIG. 10. Dependence of the one-loop quark contribution to the free energy density on R and B, Nf ¼ 1. All quantities are given in
units of the renormalization scale μ [Eq. (20)]. The strong-field and large-size regimes are incorrect.
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FIG. 11. Improved quark contribution to the free energy density R and B, Nf ¼ 1, in units of the renormalization scale μ [Eq. (20)].
The function ϰ is given by Eq. (26) (z0 ¼ 100; a ¼ 10). The correct strong-field and large-size limits are restored.

FIG. 12. Total quantum correction to the free energy density FϰðB;RÞ given by Eq. (32) with ϰ given by Eq. (26) (z0 ¼ 30; a ¼ 5).
The left plot is for pure gluodynamics (Nf ¼ 0), while the right plot is for full QCD with two massless quark flavors (Nf ¼ 2), in units
of the renormalization scale μ.
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IV. DISCUSSION

We have studied, as far as it has been possible with
analytical methods, the influence of finite-size effects on
the vacuum free energy density of full QCD with Nf

massless flavors in the presence of a homogeneous (anti-)
self-dual Abelian background gluon field. The most essen-
tial result is illustrated on the right-hand side Fig. 12, where
the quantum correction to the zero-temperature free energy
density of the four-dimensional spherical domain is plotted
as a function of the background field strengthB and domain
radius R. It indicates that the quantum correction to the free
energy density may have a minimum at finite values of B
and R. In the domain wall network representation of the
vacuum mean field, the existence of this minimum means
that in the statistically dominant networks the individual
domains should have a finite size varying near the mean
value, and infinite growth of individual domains is pro-
hibited by the minimization of the overall free energy of the
configuration. This suggests that the domain wall ensemble
should include an infinite number of configurations with
degenerate energy.
The character of this energy-driven disorder strongly

depends on the details of the behavior of the free energy
density in the vicinity of the minimum. One may expect
that a shallow and flat profile near the minimum may lead
to strong variations of the geometrical shape as well as
deviations of the field strength from the mean value, which
will allow the presence of highly irregular networks among
the dominant configurations, characterized by the strong
entanglement of domains, etc. A deep and steep profile
would assume that spatially periodic networks should
dominate, bringing the long-range (periodic) order into
the mean-field configurations.
The result of the present paper, Fig. 12, certainly has the

status of a preliminary rough estimate, since thevalidity of the
one-loop approximation is indeterminate, especially due to
the indefiniteness of the treatment of the interaction between
quasizero and normal modes. Though domain surface effects
are not expected to overcome the bulk properties of the free
energy density, a complete analysis requires also accounting
for the surface free energy. A straightforward numerical
calculation, within the lattice approximation, for instance,
could be useful. A difficulty for lattice calculations can be
caused by the nonstandard boundary conditions, which have
to represent the physical boundary of a domain.However, this
possibility does not look hopeless in view of the recent lattice

QCD calculations for rotating strongly interacting matter,
where Dirichlet and Neumann boundary conditions have
been implemented [51,52].

ACKNOWLEDGMENTS

We acknowledge useful discussions with Michael
Bordag, Irina Pirozhenko, Victor Braguta, and Artem
Roenko.

APPENDIX A: GLUON QUASIZERO MODES

1. Contribution of gluon quasizero modes
to the effective potential

In this section, we calculate the contribution of gluon
quasizero modes λ↑kk

2
0 to the effective potential. These

modes correspond to the smallest-magnitude solutions to
the equations

M

�
−

λ2

2jB̆j ; kþ 2;
jB̆jR2

2

�
¼ 0; k ¼ 0; 1; 2;…; ðA1Þ

which reduce to�
λR
2

�
−k−1

Jkþ1ðλRÞ ¼ 0; k ¼ 0; 1;…

at B → 0. The contribution of gluon quasizero modes to the
effective potential can be expressed as

δUglð0ÞðB;RÞ ¼ 1

2
Tr log

λ2
↑kk

2
0
ðB;RÞ

λ2k0ð0;RÞ
¼ −

1

2

d
ds

ζglð0ÞðsÞ
����
s¼0

;

ζglð0ÞðsÞ ¼ 2Tr
X∞
k¼0

ðkþ 1Þ


λ−2s
↑kk

2
0
ðB;RÞ− λ−2sk0 ð0;RÞ

�
;

ðA2Þ

where the factor of 2 in the definition of ζglð0ÞðsÞ originates
from the two polarizations of quasizero gluon modes, and
the color trace yields a factor of 4. For the sake of brevity,
we omit the color eigenvalue va ¼

ffiffiffi
3

p
=2 and restore it in

the final answer (B → vaB).
To continue ζglð0ÞðsÞ to s → 0, we add and subtract

several terms of the asymptotic expansion in k found with
the help of Eq. (D5),

ζglð0ÞðsÞ ¼ 8
X∞
k¼0

h
ðkþ 1Þ



λ−2s
↑kk

2
0
ðB;RÞ − λ−2sk0 ð0; RÞ

�

− ðkþ 1Þ−2sR2sðBR2s − 2αBR2sð1þ sÞðkþ 1Þ−2=3 þ BR2
s
4
ð4þ BR2ð1þ 2sÞÞðkþ 1Þ−1Þ

i

þ 8
X∞
k¼0

ðkþ 1Þ−2sR2sðBR2s − 2αBR2sð1þ sÞðkþ 1Þ−2=3 þ BR2
s
4
ð4þ BR2ð1þ 2sÞÞðkþ 1Þ−1Þ:
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The first sum is an analytic function for Rs > 0. The second sum is evaluated for Rs > 1=2 and analytically continued
to s → 0:

X∞
k¼0

ðkþ 1Þ−2sR2sðBR2s − 2αBR2sð1þ sÞðkþ 1Þ−2=3 þ BR2
s
4
ð4þ BR2ð1þ 2sÞÞðkþ 1Þ−1Þ

¼ BR2þ2ssðζð2sÞ − 2αð1þ sÞζð2=3þ 2sÞ þ ζð1þ 2sÞÞ þ B2R4þ2s s
4
ð1þ 2sÞζð1þ 2sÞ:

Finally, we obtain

δUglð0ÞðB;RÞ ¼ −
1

2

d
ds

ζglð0ÞðsÞ
���
s¼0

¼ −4
X∞
k¼0

�
−ðkþ 1Þ log

λ2
↑kk

2
0
ðB;RÞ

λ2k0ð0; RÞ
− BR2ð1 − 2αðkþ 1Þ−2=3 þ ðkþ 1Þ−1Þ − B2R4

4ðkþ 1Þ
	

− 2BR2

�
−1þ 2γ þ 2 logR − 4αζ

�
2

3

�	
− B2R4ð1þ γ þ logRÞ:

2. Contribution of quasizero modes with the effective “mass”

If one includes the effective “mass” ϰ for quasizero modes in the considerations of the previous section, the formulas
become

δUglð0Þ
ϰ ðB; RÞ ¼ 1

2
Tr log

λ2
↑kk

2
0
ðB;RÞ þ ϰðBR2ÞB

λ2k0ð0; RÞ
¼ −

1

2

d
ds

ζglð0ÞðsÞ
���
s¼0

;

ζglð0Þϰ ðsÞ ¼ 2Tr
X∞
k¼0

ðkþ 1Þ




λ2
↑kk

2
0
ðB;RÞ þ ϰðBR2ÞB

�
−s

− λ−2sk0 ð0; RÞ
�
: ðA3Þ

In analogy to the previous section,

ζglð0Þϰ ðsÞ ¼ 8
X∞
k¼0

h
ðkþ 1Þ




λ2
↑kk

2
0
ðB;RÞ þ ϰðBR2ÞB

�
−s

− λ−2sk0 ð0; RÞ
�

− ðkþ 1Þ−2sR2sðBR2s − 2αBR2sð1þ sÞðkþ 1Þ−2=3 þ BR2
s
4
ð4þ BR2ð1þ 2sÞ − 4ϰðBR2ÞÞðkþ 1Þ−1Þ

i

þ 8
X∞
k¼0

ðkþ 1Þ−2sR2sðBR2s − 2αBR2sð1þ sÞðkþ 1Þ−2=3 þ BR2
s
4
ð4þ BR2ð1þ 2sÞ − 4ϰðBR2ÞÞðkþ 1Þ−1Þ:

The first sum is an analytic function for Rs > 0. The second sum is evaluated for Rs > 1=2 and analytically continued
to s → 0:

X∞
k¼0

ðkþ 1Þ−2sR2sðBR2s − 2αBR2sð1þ sÞðkþ 1Þ−2=3 þ BR2
s
4
ð4þ BR2ð1þ 2sÞ − 4ϰðBR2ÞÞðkþ 1Þ−1Þ

¼ BR2þ2ssðζð2sÞ − 2αð1þ sÞζð2=3þ 2sÞ þ ð1 − ϰðBR2ÞÞζð1þ 2sÞÞ þ B2R4þ2s s
4
ð1þ 2sÞζð1þ 2sÞ:

Finally,
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δUglð0Þ
ϰ ðB;RÞ ¼ −

1

2

d
ds

ζglð0Þϰ ðsÞ
���
s¼0

¼ −4
X∞
k¼0

�
−ðkþ 1Þ log

λ2
↑kk

2
0
ðB;RÞ þ ϰðBR2ÞB

λ2k0ð0; RÞ
− BR2ð1 − 2αðkþ 1Þ−2=3 þ ð1 − ϰðBR2ÞÞðkþ 1Þ−1Þ

−
B2R4

4ðkþ 1Þ
	
− 2BR2

�
−1þ 2ðγ þ logRÞð1 − ϰðBR2ÞÞ − 4αζ

�
2

3

�	
− B2R4ð1þ γ þ logRÞ:

3. Contribution of all eigenmodes with the effective “mass” for quasizero modes

The desired zeta function corresponding to the one-loop correction with the effective “mass” for quasizero modes is
written as

ζglϰ ðsÞ ¼ ζglðsÞ − ζglð0ÞðsÞ þ ζglð0Þϰ ðsÞ:
The improvement due to the effective “mass” is accumulated in the last two terms given by Eqs. (A2) and (A3). The
corresponding effective potential is given by (the color factor of

ffiffiffi
3

p
=2 is restored)

δUgl
ϰ ðB;RÞ ¼ −

1

2

d
ds

ζglϰ ðsÞ
���
s¼0

¼ 4
X∞
k¼1

k

" Xk−12
m¼−k−1

2

Ψgl

�
k;m; 0;

ffiffiffi
3

p
B

2
; R

�
−
3

4
B2R4

1

24

�
1 −

1

k
−

5

k2

�#

−
B2R4

48
ð31þ 30γ − 30 log 2þ 30 logRÞ þ 3B4R8

5120

þ 4
X∞
k¼0

"
ðkþ 1Þ log

λ2
↑kk

2
0
ðB; RÞ þ ϰðBR2ÞB
λ2
kk
2
0
ðB;RÞ þ

ffiffiffi
3

p

2
BR2ϰðBR2Þðkþ 1Þ−1

#
þ 2

ffiffiffi
3

p
BR2ϰðBR2Þðγ þ logRÞ:

Thus, the obtained effective potential is not an even
function of B. To restore invariance under B → −B, one
adds the term ϰ to the contribution of modes λ2

↓k;−k
2
;0
ðB;RÞ

(these modes become quasizero when the field B changes
to the opposite direction). The function ϰðzÞ should also be
an even function (possibly constant). After these steps, one
obtains Eq. (27) for the effective potential.

APPENDIX B: QUARK EIGENMODES

The equation for the eigenvalues of quark fields in
the presence of a homogeneous (anti-)self-dual gluon field
reads

=Dψ ¼ λψ : ðB1Þ

Here,

Dμ ¼ ∂μ − iB̂μ; B̂μ ¼ n̂Bμ; Bμ ¼ −
1

2
Bμνxν;

Bμν ¼ � 1

2
εμναβBαβ;

n̂ ¼ cos ξt3 þ sin ξt8; ξ ¼ π

6
þ π

3
k; k ¼ 0; 1;…; 5;

and ti are generators of SUð3Þ in the fundamental
representation. The field-strength tensor Bμν may be
parametrized as

Bij ¼ εijkBk; Bi4 ¼ �Bi; B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1 þ B2

2 þ B2
3

q
;

where “þ” stands for a self-dual field and “−” for an
anti-self-dual field. We choose the anti-Hermitian chiral
representation of gamma matrices,

fγμ; γνg ¼ −2δμν; γi ¼
�

0 σi

−σi 0

�
;

γ4 ¼ i

�
0 1

1 0

�
; γ5 ¼ γ1γ2γ3γ4 ¼

�
1 0

0 −1

�
:

It is convenient to introduce the projectors

Σ� ¼ 1

2

�
1� ΣiBi

B

�
; P� ¼ 1

2
ð1� γ5Þ;

where
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Σi ¼
1

2
εijkσjk; σμν ¼ −

1

2
εμναβσαβγ5;

σij ¼ εijkΣk; σi4 ¼ −γ5Σi:

For a self-dual or anti-self-dual field Bμν, one obtains the
identities

σμνBμν ¼ 4BP∓ðΣþ − Σ−Þ;
γμBμνxνP∓ ¼ −i=xBP∓ðΣþ − Σ−Þ;

where the upper sign corresponds to a self-dual field and the
lower sign corresponds to an anti-self-dual field. The color
matrix n̂ is diagonal, and for the sake of simplicity we keep
the notation n̂ for its diagonal elements.
Acting on Eq. (B1) with the projectors P� ¼ ð1� γ5Þ=2,

one rewrites it as

=DPþψ ¼ λP−ψ ;

=DP−ψ ¼ λPþψ ;

or

=Dψþ ¼ λψ−;

=Dψ− ¼ λψþ;

where ψ� ¼ P�ψ . Substituting one equation into the other
(this is valid if λ ≠ 0), one finds

=D2ψ∓ ¼ λ2ψ∓; ðB2Þ

λψ� ¼ =Dψ∓; ðB3Þ

ψ ¼ ψþ þ ψ− ¼
�
=D
λ
þ 1

�
ψ∓: ðB4Þ

Only one chiral component is independent, and the other
one is found via Eq. (B3). The expression for γμBμνxνP�
(γμBμνxν originates from =D) is more complex than
γμBμνxνP∓, so we find ψ− from Eq. (B2) in the case of
a self-dual field and ψþ in the case of an anti-self-dual field.
Here and below, if � or ∓ appears alongside the Dirac
operator =D or its eigenmode ψ , the upper sign should be
taken for a self-dual field and the lower sign for an anti-self-
dual field. η is the normal to the surface of a sphere, η2 ¼ 1.
The analogue of the total angular momentum in

Euclidean space is [53]

Jμν ¼ Kμν þ Sμν;

Kμν ¼ −iðxμ∂ν − xν∂μÞ; Sμν ¼
i
4
½γμ; γν�;

J�i ¼ 1

2

�
1

2
εijkJjk � Ji4

�
¼ 1

2

�
1

2
εijkKjk � Ki4

�
þ 1

2

�
1

2
εijkSjk � Si4

�
¼ K�

i þ 1

2
P∓Σi:

The algebra of operators Kμν; Sμν; Jμν splits into two soð3Þ
algebras,

½Kþ
i ; K

þ
j � ¼ iεijkK

þ
k ; ½K−

i ; K
−
j � ¼ iεijkK−

k ; ½Kþ
i ; K

−
j � ¼ 0;

and analogous relations for J�. One introduces lowering
and raising operators,

Σð�Þ ¼ 1

2
ðΣ1 � iΣ2Þ; Kð�Þ ¼ K1 � iK2;

½K3; Kð�Þ� ¼ �Kð�Þ; ½KðþÞ; Kð−Þ� ¼ 2K3:

We choose a reference frame such that the direction of
the field coincides with the z axis,

Bi ¼ f0; 0; Bg:

Thus, Eq. (B2) can be cast into the form

�
−
�
1

r3
∂rr3∂r −

4

r2
K2∓ þ 2B̂Kz

2;1 −
1

4
B̂2r2

	
− 2B̂

�
ψ∓þ ¼ λ2ψ∓þ;�

−
�
1

r3
∂rr3∂r −

4

r2
K2∓ þ 2B̂Kz

2;1 −
1

4
B̂2r2

	
þ 2B̂

�
ψ∓− ¼ λ2ψ∓−;

where c in ψcs stands for chirality, and s stands for spin. It is convenient to introduce basis spinors ucs,
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P�u�s ¼ u�s; P�u∓s ¼ 0; Σ�uc� ¼ uc�; Σ�uc∓ ¼ 0; u†csuc0s0 ¼ δcc0δss0 ; Σð∓Þuc� ¼ uc∓;Σð�Þuc� ¼ 0:

The solutions are

ψkm1m2∓þ ¼
�
B̂r2

2

�k=2

e−B̂r
2=4M

�
k
2
þ 1 −m2;1 þ

−2B̂ − λ2

2B̂
; kþ 2;

B̂r2

2

�
Yk

2
m1m2

ðφ; χ; ηÞu∓þ; ðB5Þ

ψkm1m2∓− ¼
�
B̂r2

2

�k=2

e−B̂r
2=4M

�
k
2
þ 1 −m2;1 þ

2B̂ − λ2

2B̂
; kþ 2;

B̂r2

2

�
Yk

2
m1m2

ðφ; χ; ηÞu∓−; ðB6Þ

where Yk
2
m1m2

are spherical harmonics in four-dimensional
Euclidean space [53].
The solutions of Eq. (B1) may be characterized by

eigenvalues of independent operators J∓2; J∓3 ; J�3 ; L (see
Refs [54–56]). Here,

L ¼ iγμγ5BμνDν;

and upper and lower signs should be taken for a self-dual
field and an anti-self-dual field, respectively. The solutions
to the eigenvalue problem (B1),�

=D
λ
þ 1

�
ψkm1m2
cs ;

where ψkm1m2
cs (c ¼∓; s ¼ �) are solutions of Eq. (B2) given

by Eqs. (B5) and (B6), diagonalize all of these operators.
Now, we impose the bag boundary condition (11).

Substituting Eq. (B4) into Eq. (11) and acting on it with
the operators P�, we find that the boundary condition
reduces to

ie−iαγ5=η
=D
λ
ψ∓ðxÞ ¼ ψ∓ðxÞ; x2 ¼ R2;

where ψ∓ are solutions of Eq. (B2). The boundary
condition breaks the symmetry associated with the gen-
erator L. In order to satisfy the boundary condition, we have
to mix the eigenstates of the operator L.
Let us consider the case of a self-dual field (the case of an

anti-self-dual field is obtained via m2 → m1; α → −α). To
satisfy the boundary condition, a linear combination of
solutions with equal projection of total angular momenta j3
is constructed. At a given k, there is one solution for
the maximal value j3 ¼ k

2
þ 1

2
, one solution for the minimal

value j3 ¼ − k
2
− 1

2
, and two solutions for each intermediate

j3 ¼ − k
2
þ 1

2
;…; k

2
− 1

2
(for k > 0). Below we consider

these three cases.

1. Intermediate values of j3
As described above, we consider the linear combination

ψ− ¼ C1fðk;m2 þ 1; rÞYk
2
;m1;m2

u−þ þ C2fðk;m2; rÞYk
2
;m1;m2þ1ðφ; χ; ηÞu−−

for

m2 ¼ j3 −
1

2
¼ −

k
2
;−

k
2
þ 1;…;

k
2
− 1; k ¼ 1; 2;…;

where we introduced the notation

fðk;m; rÞ ¼
�
B̂r2

2

�k=2

e−B̂r
2=4M

�
k
2
þ 1 −mþ −λ2

2B̂
; kþ 2;

B̂r2

2

�
:

The boundary condition reads

1

λ

�
C1

�
−∂r −

B̂R
2

þ 2

R
m2

	
fðk;m2 þ 1; RÞ þC2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
2

�
k
2
þ 1

�
−m2ðm2 þ 1Þ

s
2

R
fðk;m2; RÞ

�
¼ −ie−iαC1fðk;m2 þ 1; RÞ;

1

λ

�
C2

�
−∂r þ

B̂R
2

−
2

R
ðm2 þ 1Þ

	
fðk;m2; RÞ þC1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
2

�
k
2
þ 1

�
−m2ðm2 þ 1Þ

s
2

R
fðk;m2 þ 1; RÞ

�
¼ −ie−iαC2fðk;m2; RÞ:
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Using the identities (see Eqs. 13.4.10 and 13.4.11 of Ref. [57])

aMðaþ 1; b; zÞ ¼ aMða; b; zÞ þ zM0ða; b; zÞ;
ðb − aÞMða − 1; b; zÞ ¼ ðb − a − zÞMða; b; zÞ þ zM0ða; b; zÞ;

we bring these equations to the form

C1

λ

��
−
λ2

2B̂
þ ie−iα

λR
2

�
M

�
k
2
−m2 þ

−λ2

2B̂
; kþ 2;

B̂R2

2

�
−
�
k
2
−m2 þ

−λ2

2B̂

�
M

�
k
2
þ 1 −m2 þ

−λ2

2B̂
; kþ 2;

B̂R2

2

�	

þ C2

λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
2

�
k
2
þ 1

�
−m2ðm2 þ 1Þ

s
M

�
k
2
þ 1 −m2 þ

−λ2

2B̂
; kþ 2;

B̂R2

2

�
¼ 0; ðB7Þ

C2

λ

��
λ2

2B̂
þ ie−iα

λR
2

�
M

�
k
2
þ 1 −m2 þ

−λ2

2B̂
; kþ 2;

B̂R2

2

�
−
�
k
2
þ 1þm2 þ

λ2

2B̂

�
M

�
k
2
−m2 þ

−λ2

2B̂
; kþ 2;

B̂R2

2

�	

þ C1

λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
2

�
k
2
þ 1

�
−m2ðm2 þ 1Þ

s
M

�
k
2
−m2 þ

−λ2

2B̂
; kþ 2;

B̂R2

2

�
¼ 0: ðB8Þ

This system is uniform with respect toC1,C2 and has a nontrivial solution if the determinant of the system is zero. The latter
requirement leads to the equation for eigenvalues:

1

λ2

��
−
λ2

2B̂
þ ie−iα

λR
2

�
M

�
k
2
þ 1

2
− j3 þ

−λ2

2B̂
; kþ 2;

B̂R2

2

�
−
�
k
2
þ 1

2
− j3 þ

−λ2

2B̂

�
M

�
k
2
þ 3

2
− j3 þ

−λ2

2B̂
; kþ 2;

B̂R2

2

�	

×
��

λ2

2B̂
þ ie−iα

λR
2

�
M
�
k
2
þ 3

2
− j3 þ

−λ2

2B̂
; kþ 2;

B̂R2

2

�
−
�
k
2
þ 1

2
þ j3 þ

λ2

2B̂

�
M
�
k
2
þ 1

2
− j3 þ

−λ2

2B̂
; kþ 2;

B̂R2

2

�	

−
1

λ2

�
k
2

�
k
2
þ 1

�
− j23 þ

1

4

	
M

�
k
2
þ 1

2
− j3 þ

−λ2

2B̂
; kþ 2;

B̂R2

2

�
M

�
k
2
þ 3

2
− j3 þ

−λ2

2B̂
; kþ 2;

B̂R2

2

�
¼ 0;

where the substitution m2 → j3 − 1
2
was made.

2. Maximal value of j3
In this case, there is only one function with j3 ¼ k

2
þ 1

2
at a given k ¼ 0; 1; 2;…,

ψ− ¼ C1fðk;m2 þ 1; rÞYk
2
;m1;m2

u−þ; m2 ¼ j3 −
1

2
¼ k

2
:

The boundary condition in this case can be obtained from Eq. (B7) with C2 ¼ 0. After simplification, we find

M

�
−
λ2

2B̂
; kþ 2;

B̂R2

2

�
− ieiα

λR
2ðkþ 2ÞM

�
1 −

λ2

2B̂
; kþ 3;

B̂R2

2

�
¼ 0:

3. Minimal value of j3
There is also only one function with j3 ¼ − k

2
− 1

2
at a given k ¼ 0; 1; 2;…,

ψ− ¼ C2fðk;m2; rÞYk
2
;m1;m2þ1ðφ; χ; ηÞu−−; m2 ¼ j3 −

1

2
¼ −

k
2
− 1:

The boundary condition can be obtained from Eq. (B8) with C1 ¼ 0. After simplification and Kummer transformation (see
Eq. 13.1.27 of Ref. [57]),
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Mða; b; zÞ ¼ ezMðb − a; b;−zÞ;

we obtain

M

�
λ2

2B̂
; kþ 2;−

B̂R2

2

�
− ieiα

λR
2ðkþ 2ÞM

�
1þ λ2

2B̂
; kþ 3;−

B̂R2

2

�
¼ 0:

APPENDIX C: ZETA FUNCTION FOR QUARK FIELDS

We put the chiral angle α ¼ π=2, so the Dirac operator is Hermitian and eigenvalues are real. The zeta function ζðsÞ of
fermions is split into two parts:

ζqðsÞ ¼ cosðπsÞζ=D2

�
s
2

�
− i sinðπsÞηðsÞ;

ζ=D2ðsÞ ¼ Tr
X
k;j3;n

ðkþ 1Þ
�

1

jλkj3nðB̂; RÞj2s
−

1

jλkj3nð0; RÞj2s
�
;

ηðsÞ ¼ Tr
X
k;j3;n

ðkþ 1Þ
�
signλkj3nðB̂; RÞ
jλkj3nðB̂; RÞjs

−
signλkj3nð0; RÞ
jλkj3nð0; RÞjs

�
:

The eigenvalues λkjn are found from the equations Aðλ; k; j3; B̂; RjαÞ ¼ 0. The set of eigenvalues for j3 ¼ � kþ1
2

is
determined by the equations

A

�
λ; k;

kþ 1

2
; B̂; R

�
¼ M

�
−
λ2

2B̂
; kþ 2;

B̂R2

2

�
þ Rλ
2ðkþ 2ÞM

�
1 −

λ2

2B̂
; kþ 3;

B̂R2

2

�
¼ 0;

A

�
λ; k;−

kþ 1

2
; B̂; R

�
¼ M

�
λ2

2B̂
; kþ 2;−

B̂R2

2

�
þ Rλ
2ðkþ 2ÞM

�
1þ λ2

2B̂
; kþ 3;−

B̂R2

2

�
¼ 0:

At B ¼ 0 the equations take the form

ðkþ 1Þ!
�
λR
2

�
−k−1

½Jkþ1ðλRÞ þ Jkþ2ðλRÞ� ¼ 0:

The eigenvalues for j3 ¼ − k−1
2
;…; k−1

2
; k ≥ 1 are found from the equation

Aðλ; k; j3; B̂; RÞ ¼ exp

�
−
B̂R2

2

�
1

λ2

�
λR
2
M

�
k
2
þ 1

2
− j3 þ

−λ2

2B̂
; kþ 2;

B̂R2

2

�

−
�
k
2
þ 1

2
− j3

�
M

�
k
2
þ 3

2
− j3 þ

−λ2

2B̂
; kþ 2;

B̂R2

2

�
þ λ2R2

4ðkþ 2ÞM
�
k
2
þ 3

2
− j3 þ

−λ2

2B̂
; kþ 3;

B̂R2

2

�	

×

�
λR
2
M

�
k
2
þ 3

2
− j3 þ

−λ2

2B̂
; kþ 2;

B̂R2

2

�

−
�
k
2
þ 1

2
þ j3

�
M

�
k
2
þ 1

2
− j3 þ

−λ2

2B̂
; kþ 2;

B̂R2

2

�
þ λ2R2

4ðkþ 2ÞM
�
k
2
þ 3

2
− j3 þ

−λ2

2B̂
; kþ 3;

B̂R2

2

�	

− exp

�
−
B̂R2

2

�
1

λ2

�
k
2

�
k
2
þ 1

�
− j23 þ

1

4

	

×M

�
k
2
þ 1

2
− j3 þ

−λ2

2B̂
; kþ 2;

B̂R2

2

�
M

�
k
2
þ 3

2
− j3 þ

−λ2

2B̂
; kþ 2;

B̂R2

2

�
¼ 0:
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Note the factor exp ð− B̂R2

2
Þwhich does not affect the solutions of the equation, but makes the equation invariant with respect

to j3 → −j3; B → −B (via Kummer transformation). So, the decomposition of ζðsÞ and the free energy will contain only
even powers of B. At B → 0 this equation transforms to

Aðλ; k; j3; 0; RjαÞ ¼
1

λ2
ðkþ 1Þ!

�
λR
2

�
−k−1

�
λR
2
Jkþ1ðλRÞ −

�
k
2
þ 1

2
− j

�
Jkþ1ðλRÞ þ

λR
2
Jkþ2ðλRÞ

	

× ðkþ 1Þ!
�
λR
2

�
−k−1

�
λR
2
Jkþ1ðλRÞ −

�
k
2
þ 1

2
þ j

�
Jkþ1ðλRÞ þ

λR
2
Jkþ2ðλRÞ

	

−
1

λ2

�
k
2

�
k
2
þ 1

�
− j2 þ 1

4

	�
ðkþ 1Þ!

�
λR
2

�
−k−1

Jkþ1ðλRÞ
	
2

¼ 0:

It follows that

ζ=D2ðsÞ ¼ ζð1Þ=D2
ðsÞ þ ζð2Þ=D2

ðsÞ;

where the first term summarizes contributions of the eigenvalues with maximal and minimal projections of total angular
momentum j3 ¼ � kþ1

2
, and the second term with intermediate values j3 ¼ − k−1

2
;…; k−1

2
. It is easily seen that

Aðλ; k; j3; B̂; RÞ ¼ Aðλ; k;−j3;−B̂; RÞ;

so the invariance of the spectrum under the transformation B → −B is manifest.

1. Contribution of maximal and minimal j3
We start with the representation

ζð1Þ=D2
ðsÞ ¼ Tr

�
sin πs
π

X∞
k¼0

X
j3¼�kþ1

2

ðkþ 1Þ
Z

∞

0

dt
t2s

d
dt

Ψqðkþ 1; j3; t; B̂; RÞg

¼ Tr

�
sin πs
π

X∞
k¼1

k1−2s
Z

∞

0

dt
t2s

d
dt

�X
j3¼�k

2

Ψqðk; j3; kt; B̂; RÞ −
X2
i¼1

uqi ðt; B̂; RÞ
ki

	

þ sin πs
π

X∞
k¼1

k1−2s
Z

∞

0

dt
t2s

d
dt

X2
i¼1

uqi ðt; B̂; RÞ
ki

�
:

We need a suitable asymptotic expansion for the hypergeometric function M to find explicit expressions for counterterms
uqi . The expansion at large k and fixed j=k can be found with the help of the method described in Ref. [58] (Chapter 10, § 9).
We obtain

M

�
mþ 1

2
þ k
2
− jþ nþ k2t2

4
; 1þ kþm; z

�

∼
2kþmΓðkþmþ 1Þ
kkþm

ffiffiffiffiffiffiffiffi
2πk

p ð1þ t2zÞ14 exp
�
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2z

p
− ðkþmÞ log

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2z

p
þ 1

i
−
2j
k

zffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2z

p
þ 1

þ z
2

�X∞
i¼0

AiðzÞ
ki

ðC1Þ

for a fixed z ≥ 0 and arbitrary constants m, n. The coefficients AiðzÞ are found with the help of the recursion relation
(i ≥ 0; A0 ¼ 1)

Aiþ1ðzÞ ¼ −
1

2
ϕ −

1

2

dAi

dz
dz
dξ

þ
Z

dz
dξ
dz

�
ψ þ 1

2

dϕ
dz

dz
dξ

−
1

4
ϕ2

�
Ai;

where
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dξ
dz

¼ 1

2z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2z

p
; ϕ ¼ 2

1þ t2z

�
m −

2j
k

�
; ψ ¼ m2 þ 4nz

1þ t2z
þ 4t2zþ 4z2 − t4z2 þ 8t2z3 þ 4t4z4

ð1þ t2zÞ3 :

The constants of integration are fixed by the requirement

lim
t→∞

AiðzÞ ¼ 0; i ≥ 1:

The asymptotic expansion for the modified Bessel function I is given by (see Eqs. 10.41.3, 10.41.7, and 10.41.9 of
Ref. [59])

IkðktÞ ¼
1ffiffiffiffiffiffiffiffi

2πk
p ð1þ t2Þ14 exp

�
k

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
þ k log

t

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
�X∞

i¼0

UiðpÞ
ki

; ðC2Þ

where

Ukþ1ðpÞ ¼
1

2
p2ð1 − p2ÞU0

kðpÞ þ
1

8

Z
p

0

dp0ð1 − 5p02ÞUkðp0Þ; p ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
:

Now, we substitute Eqs. (C1) and (C2) into Ψq, expand it in powers of k−1, sum overm, and compute the derivative with
respect to t. The functions uqi are given by

uq1ðt; B̂; RÞ ¼ B̂2R4
−8 − 4R2t2 þ R4t4 þ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2t2

p

6R4t4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2t2

p ;

uq2ðt; B̂; RÞ ¼ B̂2R4
−8 − 12R2t2 − 3R4t4 þ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2t2

p
þ 8R2t2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2t2

p

4R4t4ð1þ R2t2Þ32 :

Evaluating the sums and integrals, one finds

X∞
k¼1

k1−2s
Z

∞

0

dt
t2s

d
dt

X2
i¼1

uqi ðt; B̂; RÞ
ki

¼ B̂2R4þ2s

�
ζð2sÞ sΓð1 − sÞΓðsþ 1

2
Þ

2
ffiffiffi
π

p ðsþ 2Þ − ζð1þ 2sÞ sΓð1 − sÞΓðsþ 3
2
Þ

2
ffiffiffi
π

p ðsþ 2Þ
�
:

The expansion of the counterterm in powers of s is

sin πs
π

X∞
k¼1

k1−2s
Z

∞

0

dt
t2s

d
dt

X2
i¼0

uqi ðt; B̂; RÞ
ki

¼ −
1

16
B̂2R4sþOðs2Þ;

and the corresponding contribution to the effective potential reads

1

2

d
ds

ζð1Þ=D2
ðsÞ

���
s¼0

¼ −
1

32
TrB̂2R4 ¼ −

1

64
B2R4:
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2. Contribution of intermediate j3
The starting expression in this case is

ζð2Þ=D2
ðsÞ ¼ Tr

(
sin πs
π

X∞
k¼1

Xk−12
j3¼−k−1

2

ðkþ 1Þ
Z

∞

0

dt
t2s

d
dt

Ψqðkþ 1; j3; t; B̂; RÞ
)

¼ Tr

(
sin πs
π

X∞
k¼1

ðkþ 1Þk−2s
Z

∞

0

dt
t2s

d
dt

" Xk−12
j3¼−k−1

2

Ψqðkþ 1; j3; kt; B̂; RÞ −
X2
i¼0

uqi ðt; B̂; RÞ
ki

#

þ sin πs
π

X∞
k¼1

ðkþ 1Þk−2s
Z

∞

0

dt
t2s

d
dt

X2
i¼0

uqi ðt; B̂; RÞ
ki

)
;

where

uq0ðt; B; RÞ ¼ B̂2R4
R4t4 − 2R2t2 − 4þ 4ð1þ R2t2Þ1=2

6R4t4ð1þ R2t2Þ1=2 ;

uq1ðt; B̂; RÞ ¼ B̂2R4
−3R4t4 − 8þ 8ð1þ R2t2Þ1=2 − 12R2t2 þ 8R2t2ð1þ R2t2Þ1=2

6t4ð1þ R2t2Þ32 ;

uq2ðt; B̂; RÞ ¼
B̂2R4

48ð1þ R2t2Þ1=2
�
−

32

R2t2
þ R2t2ð8þ 13R2t2Þ

ð1þ R2t2Þ3 − 64
1 − ð1þ R2t2Þ1=2

R4t4

	

þ B̂4R8

480ð1þ R2t2Þ1=2
�
−
128

R6t6
þ 32

R4t4
−

16

R2t2
þ 10þ 13R2t2

ð1þ R2t2Þ2 − 256
1 − ð1þ R2t2Þ1=2

R8t8

	
:

We find

X∞
k¼1

ðkþ 1Þk−2s
Z

∞

0

dt
t2s

d
dt

X2
i¼0

uqi ðt; B̂; RÞ
ki

¼ B̂2R4þ2s

�
ζð−1þ 2sÞ−Γð2 − sÞΓð1=2þ sÞ

6
ffiffiffi
π

p ð2þ sÞ þ ζð2sÞ−ð1þ 2s2ÞΓð1 − sÞΓð1=2þ sÞ
6

ffiffiffi
π

p ð2þ sÞ

þ ζð1þ 2sÞ ð12þ sð4 − sÞð1þ sÞÞΓð1 − sÞΓð3=2þ sÞ
18

ffiffiffi
π

p ð2þ sÞ
�
− B̂4R8þ2sζð1þ 2sÞ sΓð2 − sÞΓð3=2þ sÞ

240
ffiffiffi
π

p ð4þ sÞ :

The small-s expansion is

sin πs
π

X∞
k¼1

ðkþ 1Þk−2s
Z

∞

0

dt
t2s

d
dt

X2
i¼0

uqi ðt; B̂; RÞ
ki

¼ B̂2R4

�
1

12
þ 1

144
ð29þ 24γ − 24 log 2þ 4π2 þ 24 logRÞs

	
þ B̂4R8

�
−

1

1920
s

	
þOðs2Þ:

And we find the corresponding contribution to the effective potentiall

1

2

d
ds

ζð2Þ=D2
ðsÞ

����
s¼0

¼ −
1

2
Tr

X∞
k¼1

ðkþ 1Þ
" Xk−12
j3¼−k−1

2

Ψqðk; j3; 0; B̂; RÞ − B̂2R4
1

12

�
1 −

2

k2

�#

þ B2R4

576
ð29þ 24γ − 24 log 2þ 4π2 þ 24 logRÞ − B4R8

30720
:

Combining the two contributions ζð1Þ=D2
and ζð2Þ=D2

considered above, one obtains Eq. (30).
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APPENDIX D: ASYMPTOTIC EXPANSION FOR
QUASIZERO EIGENVALUES

Let x stand for the smallest solution of the equation. The
equation

M

�
−
xðzÞ2
2z

; kþ 2;
z
2

�
¼ 0; k ¼ 0; 1; 2;… ðD1Þ

reduces to�
xð0Þ
2

�
−k−1

Jkþ1ðxð0ÞÞ ¼ 0; k ¼ 0; 1;…

at z → 0. The solution can be sought in the form of a power
series in z,

xðzÞ ¼
X∞
i¼0

zi

i!
∂i

∂zi x
ðiÞð0Þ: ðD2Þ

The derivatives xðiÞð0Þ can be found successively from the
equations

∂i

∂zi M
�
−
xðzÞ2
2z

; kþ 2;
z
2

�����
z¼0

¼ 0:

We find

dxðzÞ
dz

����
z¼0

¼ −
kþ 2

2xð0Þ ;

d2xðzÞ
dz2

����
z¼0

¼ −
k2 þ 8kþ 12 − x2ð0Þ

12x3ð0Þ ;

d3xðzÞ
dz3

����
z¼0

¼ −
ðkþ 2Þðk2 þ 8kþ 12 − x2ð0ÞÞ

8x5ð0Þ ;

where we used the identities (see Eq. 9.1.27 of Ref. [57])

Jν−1ðzÞ þ Jνþ1 ¼
2ν

z
JνðzÞ;

J0νðzÞ ¼ −Jνþ1ðzÞ þ
ν

z
JνðzÞ

and the fact that

Jkþ1ðxð0ÞÞ ¼ 0:

Next, we use the uniform asymptotic expansion of zeros of
the Bessel functions JνðzÞ (see Eq. 10.21.vii of Ref. [57]),

ρνðtÞ ¼ ν
X∞
k¼0

αk
ν2k=3

; θð−21
3αÞ ¼ πt; α0 ¼ 1;

α1 ¼ α; α2 ¼
3

10
α2;…; ðD3Þ

where θðxÞ is the phase of Airy functions,

θðzÞ ¼ arctan
AiðzÞ
BiðzÞ :

Quasizero solutions of Eq. (D1) at z → 0 become the
smallest zeroes of the Bessel functions that correspond to
t ¼ 1. With t ¼ 1, Eq. (D3) gives the desired expansion for
the first zero of Jkþ1ðzÞ,

xð0Þ ¼ ðkþ 1Þ
X∞
i¼0

αk
ðkþ 1Þ2i=3 ; ðD4Þ

where α ≈ 1.855757. This series can be once again
expanded in powers of k.
According to Eq. (D4), xð0Þ ∼ k for k ≫ 1. One notices

that the power of the leading-asymptotics term of the
derivative xðiÞð0Þ is smaller for larger i,

xð0Þ ∼ k;
dxðaÞ
da

����
a¼0

∼ k0;…

so we need only several terms in the series (D2) to find the
asymptotic expansion of xðzÞ in k up to a given order:

xðzÞ ¼ kþ αk1=3 þ 1þ 3α2

10
k−1=3 þ α

3
k−2=3

þ
�
1

70
−

α3

350

�
k−1 þ z

�
−
1

2
þ α

2
k−2=3 −

1

2
k−1

	
þOðk−4=3Þ: ðD5Þ
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