
 

Anatomy of the dense QCD matter from canonical sectors
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We investigate the nuclear and quark matters at finite real chemical potential (μR) and low temperature
from the viewpoint of the canonical sectors constructed via the imaginary chemical potential region. Based
on the large Nc estimation, where Nc is the number of colors, we can discuss the confinement-
deconfinement nature at finite μR from the canonical sectors. We find the expectation that the sharp changes
of canonical sectors at μR ∼MB=Nc, whereMB is the lowest baryon mass, happens in the large Nc regime,
and it is matched with the quarkyonic picture. In addition, we discuss the color superconductivity and the
chiral properties from the structure of canonical sectors. Even in the present anatomy from the canonical
sectors, we obtain a suitable picture for the dense QCD matter.
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I. INTRODUCTION

Exploring the phase structure of quantum chromody-
namics (QCD) at finite temperature (T) and real chemical
potential (μR) is an important and interesting subject in
several research fields, such as elementary particle, hadron,
and nuclear physics. Particularly, the moderate μR region
has attracted even more attention recently because some
exotic phases such as the color-superconducting, quar-
kyonic, and inhomogeneous chiral symmetry broken
phases are expected to appear in the region; for example,
see Ref. [1]. If we can obtain the QCD phase diagram
starting from the first principle calculation, the lattice QCD
simulation, there is no unclearness, but it is not feasible at
moderate μR because of the well-known sign problem; see
Ref. [2] for a review of the sign problem and Refs. [3–8] for
recent progress in methods to tackle the sign problem as an
example. Therefore, several expectations at moderate μR
have been obtained by using QCD effective models; see
Refs. [1,9] as an example.
In the early stage of the study for the QCD phase diagram,

the first-order transition was expected to appear at moderate
μR even with sufficiently low T. However, the duality
between the hadron phase and the color-superconducting
phase, which include not only the color-flavor locking (CFL)
phase but also the two-flavor color-superconducting (2SC)

phase, has been proposed [10–12]; there is a one-to-one
correspondence of elementary excitation modes between
phases. It is the so-called the quark-hadron continuity.
In addition, there are several studies that predict the cross-
over between the hadron phase and the deconfined quark
matter by using the QCD effective model [13] and
also the Ginzburg-Landau analysis [14]. Of course, the
duality is not confirmed yet; see Refs. [15] for recent
progress.
To understand the QCD phase diagram at moderate μR,

the quarkyonic phase [16] may play a crucial role. The
quarkyonic phase is first proposed in the large Nc QCD by
using the Nc counting, where Nc is the number of colors;
see Refs. [17,18]. In the large Nc, quarks can be treated as
the probe if μR does not reach OðNcÞ. Then the pressure is
OðN0

cÞ in the confined phase because the physical degrees
of freedom are the glueballs and baryons, but it becomes
OðN2

cÞ in the deconfined phase because physical degrees of
freedom are gluons and quarks. Interestingly, the quark
number density starts to have nonzero value when μR
reaches MB=Nc, where MB is the lowest baryon mass. In
this case, the pressure isOðN1

cÞ, and it can be interpreted as
follows: The thermodynamic quantities are dominated by
quarks inside the Fermi sea, but the physical excitation
modes on the Fermi surface correspond to baryonic degrees
of freedom because the confined nature is not changed; the
quarks are probes and thus they cannot modify the gauge
field configuration. Recently, the quarkyonic phase has also
been investigated by using the top-down approach based on
the AdS/CFT correspondence [19]. Unfortunately, the
quarkyonic phase is not clear when we consider small
Nc such as Nc ¼ 3, but some discussions have been done
with QCD effective models; for example, see Ref. [20].
There is the discussion that the quarkyonic phase is still
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important in the Nc ¼ 3 system, such as in the new
confinement-deconfinement transition scenario [21]. In
addition, the quarkyonic phase may affect the neutron star
properties such as the mass-radius relation [22].
To understand the physical degrees of freedom, the

canonical ensembles may provide important information
since they are directly related to each quark number.
Therefore, we employ the canonical ensemble method
[23–27] to discuss the QCD phase structure at moderate
μR with low T in this paper. The canonical sectors are
constructed by using the imaginary chemical potential (μI)
and then a great deal of knowledge of QCD at finite μI plays
a crucial role; see Refs. [28–34] as examples. In this paper,
we first consider the quarkyonic phase. The color-super-
conducting phase is, of course, an interesting phase on the
QCD phase diagram, but the gauge symmetry issue in the
canonical ensemble method is a tricky issue. Thus, it is
difficult to investigate the phase in the present approach,
but we show some qualitative discussions for the color-
superconducting phase with some ansatz in this paper. In
addition, the chiral symmetry restoration with increasing
μR is discussed from the canonical sectors.
This paper is organized as follows. In Sec. II, we explain

the formulation of the canonical ensemble method.
Section III explains the discussions of the canonical sectors
in the large Nc and Sec. IV shows the simple estimation of
the canonical sectors by using the Polyakov-loop extended
Nambu–Jona-Lasinio model as an example. The chiral
properties and the color superconducting are discussed in
Secs. V and VI, respectively. Section VII is devoted to the
summary.

II. CANONICAL ENSEMBLE METHOD

Throughout all discussions in this paper, we consider the
large but finite size continuous system because the thermo-
dynamic limit requires careful treatment of the infinite
sums. Starting from the grand-canonical partition function
(ZGC) at finite T and θ ≔ μI=T, we can construct the
canonical partition function (ZC) with fixed quark number
(Q) as

ZCðQÞ ¼
X
n

hnje−βHδðn̂ −QÞjni

¼ 1

2π

Z
π

−π
eiQθZGCðθÞdθ

¼ 1þ zQ þ � � � þ zQðNc−1Þ

2π

Z
π=Nc

−π=Nc

eiQθZGCðθÞdθ

¼
� Nc

2π

R π=Nc
−π=Nc

eiQθZGCðθÞdθ ðQ ¼ 3kÞ
0 ðQ ≠ 3kÞ

; ð1Þ

where H means the Hamiltonian, k ∈ Z, z ¼ expð2πi=NcÞ
is theZNc

factor, and n̂ is the quark number operator. In this
paper, we do not explicitly show T for the argument of the

partition function and also other quantities because we
are interested in μR effects. With the fugacity expansion,
we have

ZGCðμRÞ ¼
X
n

hnje−ðβH−μRn̂Þjni

¼ ZCð0Þ þ e
μR
T ZCðNcÞ þ � � �

¼
X∞

nB¼−∞
enB

μB
T ZCðNcnBÞ; ð2Þ

where nB ¼ n=Nc is the baryon number and μB ¼ NcμR is
the baryon chemical potential; we here use the fact that Nc
multiples of n only contribute ZC because of the Roberge-
Weiss (RW) periodicity; see Eq. (1) and Ref. [28] as
examples. By using the above relations and the lattice QCD
data at finite μI, we can investigate the QCD phase structure
at finite μR with certain T, where the numerical error
induced from the Fourier transformation can be controlled
[23–27]. It is noted that the above expression is valid even
for low T and high μR; numerical confirmations of it in
QCD effective models can be seen in Refs. [35,36].
Therefore, ZGCðμRÞ is constructed from ZGCðθÞ and vice
versa. Finally, we have the inverse relation as

ZGCðθÞ ¼
X∞

nB¼−∞
e−inBNcθZCðNcnBÞ

¼ ZCð0Þ þ 2
X∞
nB¼1

ZCðNcnBÞ cosðNcnBθÞ: ð3Þ

This relation means that ZGCðθÞ is decomposed into the
canonical sectors (oscillating modes) and thus the canonical
sectors survey the elementary excitation modes via the
oscillating behaviors. This fact has been used to investigate
the confinement-deconfinement nature at finite T with
μR ¼ 0 [33].

III. LARGE Nc ESTIMATION

Via the Nc counting of meson, baryon, glueball, gluon,
and quark contributions, the quarkyonic matter has been
proposed in the large Nc QCD; see Fig. 1. Since quark
loops are 1=Nc suppressed, the oscillation of quantities at
finite θ below the critical temperature Tc may be approxi-
mated by simple cosðNcθÞ function. Therefore, we can
assume

ZGCðθÞ ¼ aþ b1 cosðNcθÞ; ð4Þ

where a and b1 should depend on T and the spatial volume
(V). For example, the similar functional form of Eq. (4) is
obtained in the strong coupling calculation; seeRefs. [37,38].
With decreasing T even at small Nc, the oscillation in

terms of θ becomes weak and thus b1 → 0 with T → 0
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because θ can be transformed as the temporal boundary
condition of quarks. Higher-order terms are expected to be
suppressed and thus we have neglected them here. The first
term in Eq. (4), a, represents the glueball contributions
because it does not have the μ dependence. The second
term should mainly contain the baryonic contributions.
In this work, we consider large but finite Nc,

1 ≪ Nc < ∞, for the following reasons: the phase rotation
of the Polyakov loop in terms of θ does not happen in the
large Nc limit because ZNc

broken quark contributions,
which induce the RW periodicity, cannot be modified ZNc

symmetric gluon contributions. This indicates that the
period in terms of θ is 2π at least in the high T region
as mentioned in Refs. [39–41], which is in sharp contrast
with the finite Nc case, when quarks become the probe. At
low T, the system is perfectly dominated by glueballs and
baryons in the large Nc limit and then the periodicity issue

may be relaxed; there is the RW periodicity. However, the
period of the RW periodicity at low T becomes zero in the
largeNc limit and then it is highly nontrivial that the Fourier
transformation is well defined or not when we consider the
order of operation for Nc → ∞ and the integration of
the Fourier transformation; see Sec. II. Therefore, we need
the infinitesimally small but nonzero backreaction of quarks
to the gluon contributions in this work.
Via the change of variables in the partition function, θ

can be absorbed into the temporal boundary condition of
quarks and thus it is irrelevant at low T. This indicates an
important consequence: if the system is confined at μ ¼ 0
with fixed T, the imaginary chemical potential region
should be the confined region. Then, the canonical sectors
constructed by using the imaginary chemical potential
should be independent of μR and thus all canonical sectors
only have the confined information it should have. This fact
is valid even if Nc is small if the confined nature is strong
enough, such as the T ∼ 0 situation. Below, we consider
sufficiently low T because both the fugacity andZCðkÞwith
k ¼ 1; 2;… depend on T and thus discussions about the T
dependence is very difficult unlike the μR dependence.
The canonical sectors with Eq. (4) become

ZCð0Þ ¼ a; ZCðNcÞ ¼ b1; ð5Þ

because

Z
π=Nc

−π=Nc

dθeinθ cosðmθÞ ¼
�
0 ðn ≠ mÞ
nonzero ðn ¼ mÞ : ð6Þ

These results are, of course, consequences from the proper-
ties of the Fourier transformation; we put them here to show
the consistency. Then, we have

ZGCðμRÞ ¼ aþ b1eNc
μR
T þ b1e−Nc

μR
T : ð7Þ

Below, we consider large Nc and nonzero positive μR and
thus we neglect the third term. Since the second term
depends on μR, there is the region where the first and the
second term are balanced at μ̃R,

eNc
μ̃R
T ¼

���� ab1
����: ð8Þ

The second term is the Nc quarks (baryon) contribution and
thus this energy scale may be related with the quarkyonic
phase transition. It is well known that the quarkyonic phase
transition happens around μR ¼ MB=Nc. When we match
this value with Eq. (8), we have

eNc
μ̃R
T ¼ eNc

MB
NcT ¼

���� ab1
����: ð9Þ

Therefore, we obtain

FIG. 1. The schematic figures of the QCD phase diagram in the
ðμ=TÞ2-T plane with sufficiently large Nc (top) and that with
Nc ¼ 3 (bottom). Solid lines represent the phase transition lines
and closed circles mean the critical endpoint. The legend CSC
means the color-superconducting phase, such as the CFL and
2SC, and TRW denotes the Roberge-Weiss endpoint temperature,
which almost corresponds to the deconfinement critical temper-
ature at μ ¼ 0 with large Nc. Bottom: the confined phase is not
clear in meaning above the liquid-gas transition, which is not
explicitly shown in the figure. Also, we assume that there is no
chiral phase transition at low T in the figure; it is, of course, not
confirmed yet.
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jb1j ¼ jaje−MB
T : ð10Þ

This result seems to be natural because of the following two
reasons. First, b1 comes from the baryon contribution in the
case and thus the appearance of MB is natural. Second, the
oscillation of ZGC in terms of θ should vanish with T → 0,
and this fact is realized in Eq. (10) as b1 → 0 with T → 0.
In addition, we can expect this kind of functional form to be
qualitatively obtained in the QCD effective model with
suitable simplifications; see Sec. IV.
The pressure (p) is obtained from the thermodynamic

relation as

pðμRÞ ¼
1

βV
lnZGCðμRÞ; ð11Þ

where β is the inverse temperature, β ¼ 1=T. The b1 term
induces the N1

c-order contributions because MB ∝ Nc until
μR reaches N1

c order. The ZCð0Þ term does not have the μR
dependence but eNcμR=TZCðNcÞ have the dependence and
thus the b1 term leads the opening contribution to nonzero
quark number density (nq),

nqðμRÞ ¼
1

βV
∂ lnZGCðμRÞ

∂μR : ð12Þ

Therefore, nq ∼ 0 remains until μR ∼MB=Nc and it is turned
into N1

c order above the value with large Nc and low T. This
behavior is also consistent with the quarkyonic picture in the
large Nc QCD about the quark number density.
Finally, in this section, we discuss the following two

scenarios. Via the present treatment used in this study, we
discuss the precursory phenomenon for the phase transi-
tions. The first one is A, the change of the infinite tower of
the canonical sectors with increasing μR, and the other is B,
the nonexistence of the change.
Scenario A: With the large Nc, ZCð0Þ [ZCðNcÞ] domi-

nate μR < μ̃R (μR > μ̃R). Since a should be the glueball
contribution, it leads N0

c contributions to the pressure.
Interestingly, there is the balanced region μ̃R − ϵ < μc <
μ̃R þ ϵ with ϵ ∼ ΛQCD=Nc, where we use ΛQCD in the order
counting. If each coefficient has at least the 1=n suppres-
sion factor, the dominant canonical sectors are changed as

ZCð0Þ → ZCðNcÞ → ZCð2NcÞ → � � � ; ð13Þ

where the infinite tower of the canonical sectors are
spanned with increasing μR because of the exponential
suppression factors for each canonical sector. Quark loops
are suppressed in the Nc → ∞ limit and thus we can
naturally expect such a 1=n suppression factor; we may
expect a stronger suppression factor from the lattice QCD
data at finite T [42]. If we have stronger suppression factor,
discussions in this paper are unchanged. In the largeNc, the
balanced region is very tiny, but it is enlarged when Nc

becomes smaller. This indicates that there is no clear phase
transition for Nc ¼ 3 at moderate μR with low T. This
expectation is consistent with the recent discussions for the
moderate μR region; there is no phase transition between
the nuclear and quark matters. In contrast, in the case of the
realistic Nc case, it is difficult to obtain a clear consid-
eration, but we can expect the balanced region is enlarged
from the above estimation of the region and thus we do not
have a clear quarkyonic phase transition energy scale; see
the bottom panel of Fig. 1 as a schematic figure of the QCD
phase diagram. This scenario is the most likely scenario
in QCD.
Scenario B: It should be noted that all higher-order

canonical sectors start to contribute to the system at μ̃R if
each higher-order canonical sector does not have the 1=n-
type suppression factor. Then, we cannot have the infinite
tower picture unlike scenario A. In this case, we may have
the sharp energy scale of the quarkyonic phase transition
even in the realistic Nc ¼ 3 system form the comparison
between ZGCð0Þ and ZGCðNcÞ. However, we can find the
suppression factor from the simple estimation by using the
QCD effective model as in Sec. IVand thus this scenario is
not a likely scenario in QCD. It should be noted that ZGC is
not simply converged in this scenario with increasing n and
thus it seems to be rejected in the mathematical sense.

IV. SIMPLE MODEL ESTIMATION

In this section, we show the canonical sectors estimated
by employing the Polyakov-loop extended Nambu–Jona-
Lasinio (PNJL) model [43,44] as an example. The PNJL
model is the extended model of the NJL model to include
the Polyakov-loop dynamics by considering the mean field
of the temporal component of the gluon field (A4) with the
homogeneous ansatz. Of course, it does not contain the
exact confinement mechanism, but it can mimic not only
the approximated confinement nature but also several
important properties such as the RW periodicity and its
transition, which are closely related with physical degrees
of freedom of the system [45,46]. Therefore, we here
employ the PNJL model to estimate canonical sectors and
show that the estimation is matched with the result obtained
in Sec. III.
In the following estimation, we assume that the con-

stituent quark mass (M) is an order of the QCD energy scale
(ΛQCD) in the finite θ region with low T when we estimate
the Fourier transformation. In the PNJL model, we usually
employ the Polyakov-gauge fixing, ∂A4 ¼ 0, and then A4 is
diagonalized by using the gauge degree of freedom
remaining in the spatial component. The Lagrangian
density of the two-flavor PNJL model is given by

L ¼ q̄ðiγμDμ −m0ÞqþG½ðq̄qÞ2 þ ðq̄iγ5τ⃗qÞ2� − U; ð14Þ

where m0 denotes the current quark mass, Dμ is the
covariant derivative Dμ ¼ ∂μ þ igδ4μAμ, where g denotes
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the gauge coupling constant, G is the coupling constant,
and U is the gluonic contribution. In this paper, U is not
important and thus we do not show the explicit functional
form; for example, see Refs. [43,47,48]. With the mean-
field approximation, the effective potential is given by

V ¼ −2Nf

Z
dpp2

4π2

�
NcE − T

X
η¼∓1

ln detð1þ e−βðEþημ̃ÞÞ
�

þ Gσ2 þ U;

¼ −Nf

Z
dpp2

2π2
½NcEþ T lnðf−fþÞ� þGσ2 þ U; ð15Þ

where Nf ¼ 2, μ̃ ¼ μþ igA4, and

f− ¼ 1þ NcðΦþ Φ̄e−βE
−Þe−βE− þ e−NcβE−

;

fþ ¼ 1þ NcðΦ̄þΦe−βE
þÞe−βEþ þ e−NcβEþ

; ð16Þ

here E∓ ¼ E ∓ μ, σ ¼ hq̄qi, and E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
with

M ¼ m − 2Gσ. The definition of the Polyakov loop (Φ)
and its conjugate (Φ̄) in the model are

Φ ¼ 1

Nc
trceiβhgA4i; Φ̄ ¼ 1

Nc
trce−iβhgA4i; ð17Þ

where trc is the trace that acts on the color space. The above
effective potential (16) corresponds to the leading-order
result of the 1=Nc expansion and then the higher-order
contributions that correspond to the meson-loop contribu-
tions are neglected; see Ref. [49] for the result in the NJL
model as an example.
Since we here consider the low T region, the Polyakov-

loop dynamics are usually decoupled from the system; we
here consider the T region where the Polyakov loop and
some other higher-order loops are sufficiently weaker than
expð−NcβðE ∓ μÞÞ. Therefore, the effective potential (15)
may be simplified as

V ¼ −Nf

Z
dpp2

2π2
½NcEþ T lnðf̃−f̃þÞ�

þ Gσ2 þ U; ð18Þ

where

f̃∓ ¼ 1þ e−NcβðE∓μÞ: ð19Þ

It should be noted that we here consider finite imaginary
chemical potential and thus μ ¼ iμI. When we consider
Nc > 3, there should be contributions of higher-order loops
[50] and thus f∓ must be modified comparing with those in
Nc ¼ 3, but we can expect the appearance of the e−NcβðEþμÞ
term in the logarithmic part because of properties of the
SUðNcÞ Lie group; it is because the ln det term in Eq. (15)
must have exp½−NcβðE ∓ μÞ�. This term mimics the Nc

quarks, and the suppression of other m-quark states with
m ¼ 1;…; Nc − 1 at low T does the QCD confinement
nature; see Ref. [51] for discussions in the case of Nc ¼ 3.
In addition, T is set to be sufficiently small and thus we can
approximate Eq. (15) as

V ¼ −NfT
Z

dpp2

2π2
½e−NcβðE−μÞ þ e−NcβðEþμÞ� þ a; ð20Þ

where σ depends on θ, but the dominant part can be expected
to be θ independent and thus we approximate the second and
third terms in Eq. (18) into the θ-independenta.More strictly
speaking, we areworking in the low-temperature regime that
the arguments are treated as θ-independent quantities,
ZðT;θ;σðT;θÞ;ΦðT;θÞ;Φ̄ðT;θÞÞ→ZðT;θ;σðT;0Þ;ΦðT;0Þ;
Φ̄ðT;0ÞÞ, because the explicit θ-dependent terms can domi-
nate the equation. Then, the explicit θ-dependent terms are
only estimated in Eq. (20). The μR dependence appears via
the fugacity expansion and thus this treatment is not a
problem in our purpose.
In the case of the large Nc, NcM dominates the

integration (static limit) as

p2e−βNc

ffiffiffiffiffiffiffiffiffiffiffi
p2þM2

p
→ ϵ2e−βNc

ffiffiffiffiffiffiffiffiffiffi
ϵ2þM2

p
; ð21Þ

because the exponential suppression is much stronger than
p2 in the large Nc, and

e−Nc

ffiffiffiffiffiffiffiffiffiffi
ϵ̃2þM2

p
≪ e−NcM ð22Þ

is manifested, where ϵ and ϵ̃ are the infinitesimal value
proportional to 1=Nc and the infinitesimal value that
manifests ϵ̃ ≫ 1=Nc. Therefore, we consider the momen-
tum integration up to the region where we do not reach ϵ̄
scale because of the strong exponential suppression effect.
Thus, we have

V ∼ aþ be−βNcM cosðNcθÞ þ � � � ; ð23Þ

where a is θ independent and b is the θ-dependent
coefficient. Here, we use M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2=M2 þ 1

p
∼M. If the

saddle-point approximation is good, we can estimate the
grand-canonical partition function as

Z ∝ e−βVV : ð24Þ

Therefore, we finally obtain

Z ∼ e−βVa½1 − βVbe−NcM=T cosðNcθÞ þ � � ��
¼ ãþ b̃e−NcM=T cosðNcθÞ þ � � � ; ð25Þ

with sufficiently low T and fixed V. The second term
corresponds to b1 in the previous section. Interestingly,
although we use too much simplification, we can find the
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expð−NcM=TÞ ∼ expð−MB=TÞ factor in the present esti-
mation. This form is the same one that we obtained in the
large Nc estimation via matching with the quarkyonic phase
transition energy scale in Sec. III; the difference of coef-
ficients between the present and previous estimation can be
adjusted by μc → μc þ α and α may be order OðlnNc

Nc
Þ.

In principle, higher-order contributions can exist in
Eq. (25) and then we have expð−mNcM=TÞ terms with
m ¼ 1; 2;…; those are not important in the region where
the dominant oscillating mode is cosðNcθÞ when μR is not
large enough. It should be noted that we expand the
logarithmic functions by expð−NcM=TÞ in Eq. (20) and
thus higher-order expansion terms should have, at least, the
1=n suppression factor; existence of this factor is assumed
in the previous section, but we can find it in the present
estimation.

V. CHIRAL PROPERTIES

In this section, we discuss the chiral properties from the
canonical sectors. In the case of the chiral condensate, it can
have finite value at finite θ at low T. Then, the chiral
condensate at finite μR can be expressed as

hσiðμRÞ ¼
X∞
n¼−∞

enμR=T
ZCðNcnÞ
ZGCðμRÞ

hσiCðNcnÞ: ð26Þ

At low μR, higher-order canonical sectors above the n ¼ 0
sector are irrelevant and then the contribution of hσiCð0Þ
dominates hσiðμRÞ.
It is known that the absolute value of the chiral

condensate at finite θ becomes larger than that at μ ¼ 0
from the lattice QCD simulation [29] and the QCD
effective model calculations [52]. This indicates that the
oscillating behavior at sufficiently low T is expected as

hσiðθÞ ¼ aσ − bσ cosðNcθÞ; ð27Þ

where aσ and bσ are positive coefficients and σ means the
absolute value of the chiral condensate. In the T → 0 limit,
aσ dominates the system and then we can expect aσ is the
ΛQCD order; the first term hσiCð0Þ can be assumed as the
ΛQCD order in the setup. When T increases, higher-order
oscillating modes start to appear in the equation. Therefore,
the canonical sectors with n ¼ Nc should have the opposite
sign of the canonical sector with n ¼ 0 after the Fourier
transformation because of Eq. (6) as

sgn

�Z
π=Nc

−π=Nc

einθfaσ − bσ cosðNcθÞgdθ
�
n¼0

¼ þ1;

sgn

�Z
π=Nc

−π=Nc

einθfaσ − bσ cosðNcθÞgdθ
�
n¼Nc

¼ −1;

where sgn is the sign function. Because of the sign
difference, the n ¼ 0 canonical sector is weakened by

the n ¼ Nc canonical sector. If μR increases more and more,
higher-order canonical sectors join the cancellation of the
n ¼ 0 canonical sector and then the sign of each canonical
sector becomes important. To discuss more details, we need
actual numerical data and thus it is a problem left unclear,
which will be clarified in our future work. The present
discussion is the picture of the chiral symmetry restoration
with increasing μR at sufficiently low T from the viewpoint
of the canonical sectors.
If the chiral phase transition, which can be characterized

by the corresponding local order-parameter, happens at
μR ¼ μσ, ZGC becomes zero very close to μσ on the
complex μ plane; for example, this fact plays a crucial
role in the Lee-Yang zero analysis [53]. With sufficiently
low T, we can estimate the transition point from

0 ∼ ZCð0Þ þ eNcðμσþiϵÞ=TZCðNcÞ
¼ Aþ eNcðμσþiϵ−MÞ=TB1; ð28Þ

and then

μσ ∼M þ T
Nc

ln

�
A
B1

�
; ð29Þ

where M is the constituent quark mass, which depends on
the current quark mass and we here temporally introduce
the infinitesimally small μI ¼ ϵ. It should be noted that we
here consider the sufficiently large but finite size system
and thus phase transition is smeared. However, Lee-Yang
zeros can appear very close to the real axis and thus we can
evaluate the phase transition point from the finite size
system without any inconsistencies. In the large Nc with
sufficiently low T, we can consider the following three
scenarios I–III.
Scenario I: If the second term is 1=Nc suppressed in

Eq. (29) and the cosðNcθÞ function dominates the oscillat-
ing behavior of ZGCðθÞ, the transition point is coincident
with the value of the quarkyonic phase transition energy
scale. This corresponds to the situation where A and B1 are
the same order.
Scenario II: If lnðA=B1Þ in the second term is propor-

tional to Nc, the transition point is shifted from M.
Scenario III: If lnðA=B1Þ in the second term is propor-

tional to N2
c or higher, the transition point diverges. At low

T, this scenario seems an unfeasible scenario because of the
following discussion based on the physical degrees of
freedom. The Stefan-Boltzmann limit of the pressure is
proportional to N2

c because of the gluon degree of freedom,
but it should be lower number in the sufficiently lowT region
because the physical degrees of freedom are glueballs and
baryons even at finite θ. Therefore, in the present energy
scale, scenario I or II is realized because the pressure and the
partition function are related with each other via Eq. (11); for
an example, see Ref. [54] for the normalized pressure on the
lattice by thatwith the Stefan-Boltzmann limit for severalNc.
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These discussions, of course,must bemodifiedwith largerT:
the above discussion is relevant to the case that the chiral
phase transition happens at sufficiently low T. Therefore, the
lower critical endpoint denoted in the bottom panel of Fig. 1
can be discussed when it appears in the sufficiently low T
region. To discuss the higher critical endpoint as shown in the
bottom panel of Fig. 1, we must carefully consider the
temperature effect and then higher oscillating modes will
joint the estimation. In this case, we have some additional
Fourier coefficients in Eq. (28). Then, these induce the
unclearness in the present estimation of the Lee-Yang zeros.
We leave this for future work.
In the above discussions, it was implicitly assumed that

the condensates are homogeneous. Even if we consider the
spatial inhomogeneity, the above discussions are valid if we
replace σ as σðxÞ. Then, we can discuss the inhomogen-
sously chiral symmetry broken phase, which is the so-
called real kink crystal [55], by introducing the external
field that breaks the transnational invariance (Jδ) and take
the Jδ → 0 limit. In addition, via the same procedure as in
the diquark condensate, which will be explained in the next
section, we can consider the condensation of the neutral
pion hπ0ðxÞiðμRÞ because the pion condensate does not
appear in the finite θ region in the Jδ → 0 limit. Then, we
can consistently investigate the dual chiral density wave
[56], which is another type of inhomogeneous chiral
symmetry broken phase in addition to the real kink crystal.
Unfortunately, we do not exactly know the type of the
inhomogeneity realized in QCD at each energy scale; see
Refs. [57,58] as an example. The real kink crystal and the
chiral density wave are expected to appear in QCD based
on the results obtained in the 1þ 1-dimensional Gross-
Neveu model; for examples, see Ref. [59] for the analytic
solution and Ref. [60] for the lattice simulation. It should be
noted that the other type of the inhomogeneity is also
expected in the quarkyonic phase, which is the so-called
chiral spiral [61]. Such inhomogeneity is not 1=Nc sup-
pressed and thus inhomogeneous condensates are impor-
tant even in the large Nc QCD. However, to discuss the
details of the inhomogeneity, we need the actual correlation
between condensates. Then, the detailed information of
configurations that are responsible for the spacial structure
must be required. Moreover, the behavior of the homo-
geneous part of the chiral condensate can affect the
inhomogeneity. Therefore, we cannot proceed with the
discussion for the inhomogeneous chiral phase transition
based on our approach at present. We save this for
future work.

VI. COLOR SUPERCONDUCTIVITY

Here, we discuss the color superconductivity from the
viewpoint of the canonical sectors. However, the color
superconductivity is 1=Nc suppressed [62] and thus it is
difficult to obtain a clear picture from the present canonical
sector approach without actual numerical calculations.

Therefore, we here show some very qualitative discussions
on color superconducting.
To discuss the color-superconducting phase with the

canonical ensemble method, we must introduce the external
field (JΔ) and take the JΔ → 0 limit even at finite θ. Of
course, at least for CFL, we can consider the gauge-
invariant (color singlet) order parameter, but it is not
possible for the 2SC because the unbroken global sym-
metries in the 2SC phase are the same as those in the hadron
phase; for examples, see Refs. [63,64]. Therefore, we here
consider the diquark condensate by introducing the gauge
symmetry breaking external field. With the external field,
we have the following relation, where Δ means the
particular diquark operator,

hΔiðμRÞ ¼
X∞
n¼−∞

eNcnμR=T
ZCðNcnÞ
ZGCðμRÞ

hΔiCðNcnÞ; ð30Þ

where hΔiC means the expectation value of the Δ operator
calculated from the θ region. We here assume that all
flavors are degenerated.
Since we introduce JΔ and consider the JΔ → 0 limit, we

can assume

hΔiCðNcnÞ ¼ ϵn; ð31Þ

where ϵn is an infinitesimal value and approaches zero in the
JΔ → 0 limit. It should be noted that we may have finite
hΔiCðNcnÞ even ifwe take JΔ → 0 becausewe here consider
the sufficiently large but finite size system. Therefore, more
strictly speaking, we have hΔiCðNcnÞ → ϵV, where ϵV is the
infinitesimal value that approaches zero with the V → ∞
limit. Below, we concentrate on the infinitesimal value
induced by nonzero JΔ and thus we simply write ϵV ¼ 0
because the following discussions are almost unchanged if
we maintain ϵV: At least for discussions in this section, the
thermodynamic limit is not the problem and thus one can
consider the following discussions are donewith the thermo-
dynamic limit.
As with the same discussion in Secs. III and IV, we can

expect that the exponential suppression factor depends on
MB ¼ NcM, which can be factored out from the canonical
partition function. Therefore,wemaywrite the condensate as

hΔiðμRÞ ¼
X∞
n¼−∞

eNcnðμR−MÞ=T
�
eNcnM=T ZCðNcnÞ

ZGCðμRÞ
�
ϵn

∼
1

ZGCðμRÞ
½f0ϵ0 þ f1eNcðμR−MÞ=Tϵ1 þ � � ��; ð32Þ

where fn are coefficients depending on T, n, M, and JΔ at
moderate μR, and the suppression factor is factored out from
them; this means that we factor out the suppression factor
from ZCðNCnÞ in the second line of Eq. (32). It should be
noted thatwe assume that the expð−nNcM=TÞ factor appears
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for each canonical sector as in the last line of Eq. (32) because
they arenNc-quark contributions. In the presentwork,we are
workingwith T ≪ 1 and thus exponential factors can lead to
the strong suppression at small μR.
Our interest is that the above expression can lead to the

following situation:

hΔiðμRÞ ¼
�
0 ðlow μRÞ
nonzero ðmoderate and high μRÞ

:

ð33Þ

In other words, the present question is whether it is possible
to manifest Eq. (33) in the canonical ensemble method. The
answer to that question can be easily understood from the
final expression in Eq. (32); if exp½NcðμR −MÞ=T�
becomes ϵ−1 order, the above situation (33) is realized.
Therefore, if the second term is the first nontrivial con-
tribution to hΔi, the necessary energy scale ΛΔ for the
phase boundary of the color-superconducting phase is
about μR ∼M. When μR becomes a larger value than
ΛΔ, higher-order terms will join the game and thus this
discussion will be modified. A detailed value of ΛΔ is
strongly affected by the actual dependence of fn on n; the
higher oscillating modes are expected to be 1=n suppressed
with increasing n and thus the second term in Eq. (32) is
expected to be the first nontrivial contribution for the
nonzero diquark condensate at moderate μR. Therefore, the
answer to our question is yes at least with the present
simplified setup. This is one of the possible scenarios for
color superconducting from the viewpoint of the canonical
sectors.
To discuss one other possible scenario for the situation

(33), we consider the following setup. To simplify our
discussion, we here assume

eNcnM=T ZCðNcnÞ
ZGCðμRÞ

ϵn ∼ fnϵ; ð34Þ

where f is a constant which is less than 1 and ϵ denotes the
infinitesimal value; fn mimics the 1=n suppression of
higher-order oscillating modes. With this assumption,
Eq. (32) becomes the sum of an infinite geometric series as

hΔiðμRÞ ∼
1

1 − r
ϵ; ð35Þ

with

r ¼ feNcðμR−MÞ=T: ð36Þ

From the equation, we have the critical chemical potential
(μΔ) for the color superconducting as

μΔ ¼ M −
T
Nc

ln f: ð37Þ

It could be obtained from ð1 − rÞ ¼ ϵ. Since f is smaller
than 1 in the present setting, μΔ is shifted to a larger value
compared withM. To be more correct in the discussion, we
need the exact expression of the sum; the coefficient f
should have μR dependence via ZGCðμRÞ and should
remove the divergence. With increasing μR, the denomi-
nator of Eq. (35) can become ϵ1 order around μR ∼M; its
detailed value is affected by the actual value of f.
Therefore, we can have the same result obtained in the
previous paragraph in the present setup. This means that the
situation for the chiral condensate and the diquark con-
densate are different, even if we consider the same
canonical ensemble.
The above discussions are just theoretical expectations

and thus it is not exact because we do not know the actual
behavior of the second term in Eq. (32) with JΔ → 0 limit
at low T. It should be noted that each ϵn should depend on
1=Nc and thus it becomes zero in the large Nc limit; it is
consistent with the large Nc QCD picture. These results can
be checked when JΔ is introduced to the NJL-type model in
the canonical ensemble method with the multiprecision
calculation used in Refs. [35,36].

VII. SUMMARY

In this paper, we have discussed the confinement-
deconfinement nature of QCD at moderate real chemical
potential (μR) with low temperature (T) from the viewpoint
of the canonical ensembles. The canonical partition func-
tion (ZC) with fixed quark number n is constructed by
using the grand-canonical partition function (ZGC) at finite θ
via the Fourier transformation and the fugacity expansion,
where θ ≔ μI=T with the imaginary chemical potential (μI).
We have assumed that ZGCðθÞ consists of the constant

part and the 2π=Nc-periodic oscillating mode which is
proportional to cosðNcθÞ; it can be justified at sufficiently
low T. With the matching with the energy scale of the
quarkyonic phase transition known in the large Nc QCD,
we can discuss the confinement-deconfinement nature from
the change of relevant canonical sectors with varying μR. It
should be noted that this behavior can be obtained in the
QCD effective model with some ansatz. There is a balanced
region where two canonical sectors equally contribute to
ZGCðμRÞ, and it is very tiny in the large Nc because the
region is 1=Nc suppressed.
In the realistic QCD case, it is difficult to make the

discussion clear about the quarkyonic phase, but we can
still expect the change of relevant canonical sectors with
varying μR. In this case, the balanced region between
nearest-neighbor canonical sectors is not strongly sup-
pressed and thus there are continuous changes in the
system. This behavior may be consistent with the recent
expectation at moderate μR based on the quarkyonic phase
and the soft surface delocalization scenario. Unfortunately,
the numerical calculation to construct the canonical sectors
is quite hard; we need the multiprecision calculation in the
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Fourier transformation [26,35,36] and thus the actual
numerical calculation is our future work.
In addition to the quarkyonic phase, we have presented

some qualitative discussions about the color superconduct-
ing and the chiral symmetry restoration from the canonical
sectors. This paper guarantees that the canonical ensemble
method can work at moderate μR even with low T and then
the quarkyonic and color-superconducting phases and the
chiral symmetry restoration can be described in the method.
Though the exploration of the QCD phase diagram from the

lattice QCD simulation with the canonical ensemble
method at moderate μR and low T will be a long journey,
we hope our presented results can become markers for
taking us in the right direction.
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