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We study the photoproduction of the Λð1405Þ and Σð1400Þ hyperon resonances, the latter of which is
not a well established state. We evaluate the s-, t-, and u-channel diagrams in the Born approximation by
employing the effective Lagrangians. A new ingredient is the inclusion of a nucleon resonance N�ð1895Þ
that is dynamically generated with predictions for its coupling to the KΛð1405Þ and KΣð1400Þ channels.
To extend the applicability of the model to energies beyond the threshold region, we consider a Regge
model for the t-channel K- and K�-exchanges. Our results are in good agreement with the CLAS data
available on Λð1405Þ, while for Σð1400Þ we predict observables for its production. We also provide
polarization observables for both hyperon productions, which can be useful in future experimental
investigations. The present study provides new information on the nucleon resonance N�ð1895Þwhich can
be an alternative source for generating the hyperon resonances Λð1405Þ and Σð1400Þ.
DOI: 10.1103/PhysRevD.103.114017

I. INTRODUCTION

Understanding the properties of low-lying hyperon
resonances is of special interest to the hadron physics
community, since there are indications that their structure is
much richer than the three valence quark composition. For
instance, the mass of the first excited state with isospin 0,
Λð1405Þ, is lower than its nonstrange counterpart,
N�ð1535Þ. The properties of Λð1405Þ have been studied
in various models, and it is suggested thatΛð1405Þ is a state
arising from hadron dynamics and can be interpreted as a
hadronic molecular state (for a recent review see Ref. [1] or
Refs. [2–11] for some top-cited works). Different studies
attribute a double pole structure in the complex energy
plane to the Λð1405Þ state seen on the real axis. However,
such a double pole nature is still under discussions [12].
An interesting suggestion has been also made for the

isovector sector, while the arguments are not yet fully

settled. Some studies find evidence for the existence of a
JP ¼ 1=2− Σ state in the mass region of Λð1405Þ while
others do not [10,12–20]. In a recent article [21], some of
the coauthors of the present work studied the strangeness
−1 coupled channel interactions by constraining the model
parameters through a χ2-fit to the relevant experimental
data. Besides constraining the parameters, more diagrams
were considered in Ref. [21] as compared to the former
study [22]. In both works, a particular feature is that the
pseudoscalar and vector mesons are considered in the
coupled channels space. Although the vector-baryon
thresholds lie away from the mass region of Λð1405Þ
and, thus, do not play a crucial role in its generation,
important information is obtained within such a formalism,
i.e., the couplings of the vector-baryon channels to
Λð1405Þ (besides the generation of other hyperon states).
Such information is valuable for the study of other
processes like the photoproduction of hyperon resonances.
In Ref. [21], two poles were found in relation with
Λð1405Þ, in agreement with the analysis [20,23] of the
data on the electroproduction and photoproduction of
Λð1405Þ [19,24,25]. Additionally, a 1=2− Σ state, with
mass around 1400 MeV, in the isovector sector was also
found. We shall refer to this state as Σð1400Þ in the
following discussions.
With the idea of bringing more information on the topic,

in the present work, we study the photoproduction of light
hyperons off the proton, i.e., γp → KþΣ0ð1400Þ and
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γp → KþΛð1405Þ. Indeed the data on the photoproduction
of Λð1405Þ are already available from the CLAS
Collaboration [19,25], and the data with better statistics
are expected to be released from the experiments planned at
the ELSA facility in Bonn [26]. The aim of the latter facility
is to better establish the nature of Λð1405Þ. We find that the
results obtained in Ref. [21] are useful in reproducing the
KþΛð1405Þ production data from the CLAS/JLab [25].
Further, to motivate similar experimental studies of
Σð1400Þ, we predict the cross sections for its production
in photon-proton collisions. We also provide the results on
the asymmetries and polarized cross sections for
KþΛð1405Þ as well as KþΣð1400Þ productions, which
can be useful for future experimental investigations.
To accomplish the above mentioned goals, we consider

the s-, t-, and u-channel Born diagrams and employ an
effective Lagrangian approach where the couplings of the
different vertices are obtained mainly from Ref. [21].
Besides considering the nucleon exchange in the s-channel,
we also include N�ð1895Þ, which lies extremely close to
the KY� thresholds, where Y� denotes Λð1405Þ or Σð1400Þ.
We do not require to introduce any unknown parameters
when considering the N�ð1895Þ exchange, since its decay
to the KY� channel was recently studied in Ref. [27].
Furthermore, we determine the electromagnetic couplings
of N�ð1895Þ [as well as of Λð1405Þ and Σð1400Þ] by using
the vector dominance model, where the required vector-
baryon couplings to the resonant states are taken from
Refs. [21,28]. We find that the N�ð1895Þ exchange plays an
important role in describing the Λð1405Þ photoproduction
data near the threshold region. To describe the cross
sections for energies away from the threshold region of
the reactions, the effective Lagrangian approach is
complemented with a Regge model [29] in which the
t-channel K- and K�-Reggeon exchange processes are
considered.
The paper is organized as follows. In Sec. II, we

describe our theoretical framework. In Sec. III, we show
and discuss our numerical results of the total and
differential cross sections for γp → KþΛð1405Þ and
γp → KþΣ0ð1400Þ. We also predict some asymmetries
and polarized cross sections. The final section is devoted
to the summary.

II. THEORETICAL FRAMEWORK

We start our discussions by introducing the effective
Lagrangians for the photoproduction of the hyperon res-
onances Λ� ≡ Λð1405Þ and Σ� ≡ Σð1400Þ, together with
the basics of the Regge model for the t-channel exchange
processes. Next, we provide the formalism to evaluate the
strong vertices N�ð1895Þ → KΛð1405Þ, KΣð1400Þ, and
the radiative decays of N�ð1895Þ, Λð1405Þ, and Σð1400Þ,
which are necessary to determine the γp → N�ð1895Þ →
KY� cross sections.

A. Effective Lagrangians and Regge model

Within our approach, the production mechanism of the
Y� resonances in the reaction γp → KþY� consists of the
standard t-, s-, and u-channel Born terms combined with
the s-channel resonance exchange as shown in Fig. 1.
The effective Lagrangians for the electromagnetic (EM)

interaction vertices shown in Fig. 1 are written as

LγKK ¼ −ie½K†ð∂μKÞ − ð∂μK†ÞK�Aμ;

LγKK� ¼ gcγKK�ϵμναβ∂μAν½ð∂αK�−
β ÞKþ þ K−ð∂αK

�þ
β Þ�;

LγNN ¼ −eN̄
�
γμ

1þ τ3
2

−
κN
2MN

σμν∂ν

�
AμN;

LγYY� ¼ eμY�Y

2MN
Ȳγ5σμν∂νAμY� þ H:c:; ð1Þ

where Aμ is the photon field, e is the unit electric charge
and Y denotes the field for the ground-state Λð1116Þ or
Σ0ð1192Þ. In Eq. (1), the coupling constant gcγKK� is
determined from the experimental data for ΓK�þ→Kþγ

[30], which gives a value of 0.254 GeV−1, and κp ¼
1.79 [30] is the proton anomalous magnetic moment. As
for the transition magnetic moments μY�Y , we refer the
reader to the next subsection for the details on its
determination.
For the strong interaction vertices shown in Fig. 1, the

corresponding effective Lagrangians read as

(a) (c)(b)

FIG. 1. (a) t- (b) s- and (c) u-channel Feynman diagrams for γp → KþY�, where Y� ¼ Λ� or Σ� and k1 (k2), p1 (p2) are the four-
momenta assigned to the particles in the initial (final) state.
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LKNY ¼ −igKNYN̄γ5YK þ H:c:;

LKNY� ¼ gKNY�K̄Ȳ�N þ H:c:;

LK�NY� ¼ i
gK�NY�ffiffiffi

3
p K̄�μȲ�γμγ5N þ H:c:; ð2Þ

where the strong coupling gKNðΛ;Σ0Þ is given by
ð−13.4; 4.09Þ from the Nijmegen soft-core potential
(NSC97a) [31,32]. We take the values for the Y�K̄N and
Y�K̄�N couplings from Ref. [21], where these former
couplings are determined by solving coupled channel
scattering equations for the pseudoscalar- and vector-
baryon channels. The factor 1=

ffiffiffi
3

p
in LK�NY� takes into

account the fact that the Lagrangian has a spin structure
while the couplings in Refs. [21,28] are obtained by
evaluating the residue of the t-matrices projected on spin
1=2. We list the values of the Y�K̄N and Y�K̄�N couplings
in Table I. A comment on the K̄�NY� couplings given in
Table I is here in order. The values used in this work, as
taken from Ref. [21], are different to those obtained in the
former work [22]. This is because the formalism in
Ref. [21] was updated by including s- and u-channel
diagrams for the pseudoscalar-baryon interactions, which
were not taken into account in Ref. [22]. Additionally, a fit
to experimental data was made in Ref. [21] to constrain the
model parameters. The data considered were cross sections
of the processes: K−p → K−p, K−p → K̄0n, K−p → ηΛ,
K−p → π0Λ, K−p → π0Σ0, K−p → π�Σ∓. Data on the
energy level shift and width of the 1s state of the kaonic
hydrogen were also considered in the fit in Ref. [21].
However, it must be mentioned that data on final states
consisting of vector mesons were not taken into account.
Such considerations may update the values given in Table I,
in the future.
In the Particle Data Group (PDG) 2020 edition [30], a

new resonance Λð1380; 1=2−Þ is included while the fea-
tures of Λð1405; 1=2−Þ are kept to be almost the same.

Thus, in this work, the information of the gKNΛ� and gK�NΛ�

are taken from the higher pole given in Table I. It should
be also mentioned that we use the average values of the
couplings listed in Table I.
For the exchange of a ground state hadron h, the

individual amplitudes can be written in the form

Mh ¼ ūY�Mμ
hϵμuN; ð3Þ

where

Mμ
K ¼ −2

egKNY�

t −M2
K
kμ2;

Mμ
N ¼ Mμ elec

N þMμmagn
N ¼ −

egKNY�

s −M2
N
ð=qs þMNÞγμ

−
egKNY�

s −M2
N
ð=qs þMNÞ

iκp
2MN

σμνk1ν;

Mμ
K� ¼ −

iffiffiffi
3

p gγKK�gK�NY�

t −M2
K�

ϵμναβγνγ5k1αk2β;

Mμ
Y ¼ eμY�Y

2MN

gKNY

u −M2
Y
σμνk1νð=qu −MYÞ; ð4Þ

where qs;u denote the four momenta of the exchanged
particles, i.e., qs ¼ k1 þ p1 and qu ¼ p2 − k1, The super-
scripts “elec" and “magn" in Eq. (4) indicate the electric
and magnetic parts of the N-exchange amplitude, respec-
tively. In Eq. (3), up and uY� stand for the Dirac spinors of
the incoming proton and outgoing Y� hyperon, respec-
tively, and ϵμ is the polarization vector for the incident
photon.
We employ a hybridized Regge model for the dominant

t-channel K- and K�-exchanges in order to extend the
applicable energy region. To do this, the Feynman propa-
gators are replaced by the Regge ones [33]

PFeyn
K ¼ 1

t −M2
K
→ PRegge

K ðs; tÞ ¼
�

s
sK0

�
αKðtÞ πα0K

sin½παKðtÞ�
�

1

e−iπαKðtÞ

�
1

Γ½1þ αKðtÞ�
;

PFeyn
K� ¼ 1

t −M2
K�

→ PRegge
K� ðs; tÞ ¼

�
s
sK

�
0

�
αK� ðtÞ−1 πα0K�

sin½παK�ðtÞ�
�

1

e−iπαK� ðtÞ

�
1

Γ½αK�ðtÞ� ; ð5Þ

TABLE I. Pole positions of Λð1405Þ and Σð1400Þ and their couplings to K̄N and K̄�N (in the isospin base) [21]. Note that the
Kð�ÞNΛ� and Kð�Þþp̄Λ� couplings are related by the Clebsh-Gordan coefficient 1ffiffi

2
p , following the convention

jK−i ¼ −jI ¼ 1=2; Iz ¼ −1=2i. Also the Kð�ÞNΣ� and Kð�Þþp̄Σ�0 couplings are related by a factor − 1ffiffi
2

p .

Λð1405Þ Σ’s around 1400 MeV

1385�5 − i124�10 1426�1 − i15�2 − 1399�35 − i36�9

K̄N 0.66�0.35 − i1.93�0.12 2.43�0.16 þ i0.63�0.23 − 0.50�0.29 þ i0.33�0.18

K̄�N 0.62�0.28 − i0.18�0.14 0.04�0.36 þ i0.23�0.19 − −3.46�0.21 − i0.06�0.15
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such that we can explore higher photon-energy regions.
The Regge trajectories read [33]

αKðtÞ ¼ 0.7 GeV−2ðt −M2
KÞ;

αK�ðtÞ ¼ 1þ 0.83 GeV−2ðt −M2
K�Þ; ð6Þ

where α0K;K� ≡ ∂αK;K� ðtÞ=∂t. The energy scale parameters
in Eq. (5) are determined to be sK0 ¼ 3.0 GeV2 and
sK

�
0 ¼ 1.5 GeV2. Since the K and K� Regge trajectories

are known to be degenerate, we consider both a constant (1)
and a rotating ðe−iπαK;K� ðtÞÞ phase.
In the effective Lagrangian framework the individual

amplitudes for the K exchange and the electric part
of the N exchange do not satisfy the gauge invariance,
but their sum does when the scalar (S) meson-baryon
coupling scheme is used as given in Eq. (2) for LKNY�.
Thus we use the following prescription for the full
amplitude:

Mfull ¼ðMKþMelec
N Þðt−M2

KÞPRegge
K þ

�
MK� ðt−M2

K� ÞPRegge
K� þMmagn

N FNðsÞþ
X

Y¼Λ;Σ0

MYFYðuÞþ
X
N�

MN�FN� ðsÞ
�
SGI

;

ð7Þ

where the amplitudes in the square bracket are self-gauge
invariant (SGI) individually. The nucleon resonance
contributions given in the last term will be discussed in
the next section. We verified explicitly that the full
amplitude satisfies the Ward-Takahashi identity, i.e.,
Mfullðϵ → k1Þ ¼ 0.
The second and third terms in the SGI term involve the

following form factor:

FBðq2Þ ¼
�

Λ4
B

Λ4
B þ ðq2 −M2

BÞ2
�
2

; ð8Þ

where q2s;u ¼ ðs; uÞ denote the Mandelstam variables. In
case of the diagram involving the N� exchange, we use the
Gaussian form factor

FN�ðsÞ ¼ exp

�
−
ðs −M2

N� Þ2
Λ4
N�

�
; ð9Þ

such that the corresponding amplitude decreases
more sharply with energy than it would with the form
factor of Eq. (8). The latter choice is based on the
consideration that the excited baryons, like N�ð1895Þ,
which can be understood as moleculelike states, have
more spatially extended structure then the ground state
hadrons.
It is worth mentioning that a prescription has been

suggested in Refs. [34–38] for recovering the gauge
invariance that gets broken by replacing the standard
Feynman-type meson exchange in the t channel by the
exchange of a Regge trajectory. Following such a pre-
scription, the full amplitude with the strong form factors
can be written as follows:

M0
full ¼ MKFt þMelec

N Fs − egKNY�

�
−
Ft − Fc

t − k22
ð2k2 − k1Þ

−
Fs − Fc

s − p2
1

ð2p1 þ k1Þ
�
· ϵþMSGI: ð10Þ

Note that the amplitude in the square bracket and the
arbitrary phenomenological common form factor Fc are
subject to crossing symmetry. If we use this prescription
for the Regge approach, the full amplitude in Eq. (7) is
modified into

M0
full ¼ ðMK þMelec;GV

N Þðt −M2
KÞPRegge

K

þMelec;GC
N Fs þMSGI; ð11Þ

where the superscripts GV and GC denote the gauge-
violating and-conserving parts in the electric amplitude.
Explicitly, the difference between the two prescriptions reads

Mfull −M0
full ¼ egKNY� ½ðt −M2

KÞPRegge
K − Fs�

× ūY�

�
=ϵ=k1

s −M2

�
uN ≡ ΔM: ð12Þ

We have verified that our prescription provides similar
results relative to those obtained by using Eq. (11).

B. Strong decay: N�ð1895Þ → KΛð1405Þ, KΣð1400Þ
In addition to the Born-term contribution mentioned in

the previous subsection, it is important to consider the
exchange of a nucleon resonance in the s-channel as shown
in Fig. 1(b). The relevance of such diagrams was pointed
out in Ref. [29]. In this work, we consider the exchange of
N�ð1895Þ. The motivation for such a consideration is
twofold: (1) the state N�ð1895Þ lies very close to the
KΛð1405Þ and KΣð1400Þ thresholds and (2) the partial
decay widths of N�ð1895Þ to KΛð1405Þ and KΣð1400Þ
have been recently determined in Ref. [27]. The results in
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Ref. [27] can be used to calculate the coupling constants
which can be implemented in the present study of the
photoproduction of Λð1405Þ and Σð1400Þ.
To determine the contribution of N�ð1895Þ, which has

spin and parity JP ¼ 1=2−, we write the following effective
Lagrangian for the strong interaction vertex

L1=2−

KY�N� ¼ −igKY�N�K̄Ȳ�γ5N� þ H:c:; ð13Þ

where the coupling constant gKY�N� is determined such that
the N� → KY� decay widths obtained in Ref. [27] can be
reproduced through

ΓN�→KY� ¼ 1

N

Z ðMN�þ2ΓN� Þ2

ðMN�−2ΓN� Þ2
dm̃2

�
−
1

π

�
Im

�
1

m̃2−M2
N� þ iMN�ΓN�

� jp⃗c:m:ðm̃Þj
4πm̃

jgKY�N� j2½EY� ðm̃Þ−MY� �Θðm̃−MK−MY� Þ:

ð14Þ

Here, jp⃗c:m:ðm̃Þj and EY� ðm̃Þ denote the modulus of the
center-of mass (c.m.) momentum and the energy of the
hyperon Y� calculated as a function of the integration
variable, respectively. N is a normalization factor

N ¼
Z ðMN�þ2ΓN� Þ2

ðMN�−2ΓN� Þ2
dm̃2

�
−
1

π

�
Im

�
1

m̃2 −M2
N� þ iMN�ΓN�

�
:

ð15Þ

The meaning of the integration in Eq. (14) is to calculate the
partial decay width of N� → KY� by taking into account
the finite width of N� itself [27]. It should be recalled that
N�ð1895Þ is associated with two poles in the complex
energy plane in Ref. [27], based on the findings of Ref. [28].
The corresponding poles positions are MN� − iΓN�=2 ¼
1801 − i96 MeV and 1912 − i54 MeV. We would like to
emphasize that although the real part of the former pole lies
below the KY� threshold, its exchange can still be con-
sidered due to its width, which makes that the tail of the
resonance allows for its decay toKY�. Indeed, the influence
of an N� on the photoproduction data was discussed in
Ref. [39], where the nominal mass of the N� lies below the
reaction threshold. Using Eq. (14), we determine the
absolute values of gKY�N� which reproduce the partial
widths obtained in Ref. [27]. The values of the couplings
to be used in Eq. (13) are given in Table II, where the labels
N�

1 and N
�
2 refer to the two poles associated with N

�ð1895Þ
[27,28]. Similarly, the subscripts on Λ� indicate the two
poles related to Λð1405Þ [21]. The coupling constants

given in Table II correspond to the central values of the
widths listed alongside.
Alternatively to using a constant value for the gKY�N�

coupling in Eq. (13), we can extract their energy dependent
values using the N�ð1895Þ → KY� amplitudes provided in
Ref. [27]. In this former work, keeping in mind that
N�ð1895Þ has a large width, the amplitude for its decay
to hyperon resonances Y� were determined as a function of
the variable mass of N�ð1895Þ. The mass values range
within the integration limits in Eq. (14). We determine the
energy dependent values of gKY�N� using the Lagrangian
L1=2−

KY�N� of Eq. (13), so as to reproduce the N�ð1895Þ →
KY� amplitudes of Ref. [27], and depict them in Fig. 2.

C. Radiative decays of N�ð1895Þ, Λð1405Þ, and Σð1400Þ
We now need to discuss the EM vertex which can be

described in terms of the effective Lagrangian

L1=2−

γNN� ¼ eμN�N

2MN
N̄γ5σμν∂νAμN� þ H:c:; ð16Þ

and LγYY� in Eq. (1), which are required to calculate the s-
and u-channel diagrams, respectively, in Fig. 1. To estimate
the transition magnetic moments of N�ð1895Þ as well as of
Λð1405Þ and Σð1400Þ, we employ the vector-meson
dominance (VMD) model as shown in Fig. 3, where the
dashed line corresponds to ρ0, ω, or ϕ. By using the vector
meson-photon vertex Lagrangian

LVγ ¼ −
eFV

2
λVγVμνAμν; ð17Þ

we can evaluate the diagram of Fig. 3 since the couplings of
different vector meson-baryon channels to N�ð1895Þ,
Λð1405Þ, and Σð1400Þ have already been determined in
Refs. [21,28]. Let us see in more detail the evaluation of the
amplitude for the diagram shown in Fig. 3. In Eq. (17), FV
is the decay constant for vector mesons, which we take as
154 MeV [40], Aμν ¼ ∂μAν − ∂νAμ and Vμν is a tensor field

related to ρ0, ω, ϕ, with λVγ ¼ 1; 1
3
;−

ffiffi
2

p
3
, respectively. As in

Ref. [40], the tensor field Vμν is normalized as

TABLE II. Partial decay widths [27] and the extracted cou-
plings gKY�Nð1895Þ. Here, N�, Λ�, and Σ� denote the states
N�ð1895Þ, Λð1405Þ, and Σð1400Þ, respectively. The subscripts
refer to the two pole nature of N�ð1895Þ and Λð1405Þ.
Decay channel Partial width [MeV] jgKY�N� j
N�

1 → KΛ�
1 10.4� 1.3 10.9

N�
1 → KΛ�

2 6.4� 0.8 11.1
N�

1 → KΣ� 11.4� 1.5 12.5
N�

2 → KΛ�
1 1.9� 0.1 3.6

N�
2 → KΛ�

2 1.1� 0.2 4.0
N�

2 → KΣ� 12.1� 1.2 10.2
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Vμν ¼ 1

MV
ð∂μVν − ∂νVμÞ; ð18Þ

and the corresponding propagator is written by

iGαβμνðKÞ ¼
i

M2
VðM2

V − K2Þ ðgαμgβνðM
2
V − K2Þ

þ gαμKβKν − gανKβKμ − α ↔ βÞ: ð19Þ

For the VBB� vertex, we write the effective Lagrangian as

LVBB� ¼ −g̃VBB�B̄γ5σμνB�Vμν† þ H:c: ð20Þ

This Lagrangian leads to the following amplitude
for the VB → B� → VB process, in the nonrelativistic
limit,

tV1B→V2B ¼ g̃V1BB� g̃V2BB�ffiffiffi
s

p
−MB� þ iΓ=2

4K0
1K

0
2

MV1MV2
σ⃗ · ϵ⃗2σ⃗ · ϵ⃗1; ð21Þ

whereMV1 (K0
1) andMV2 (K0

2) denote the mass (energy) of
the vector meson in the initial and final state, respectively.
Comparing Eq. (21) with the Breit-Wigner parameteriza-
tion of the amplitudes projected on spin 1=2 in
Refs. [21,28],

tV1B→V2B ¼ gV1BB�gV2BB�ffiffiffi
s

p
−MB� þ iΓB�=2

; ð22Þ

we find the relation between g̃ViBB� in Eq. (20) and gViBB�

obtained in Refs. [21,28] as

g̃ViBB� ¼ gViBB�

2
ffiffiffi
3

p MVi

K0
i
; ð23Þ

where K0
i is the energy of the meson, at the VBB� vertex, at

the resonance mass

K0
i ¼

M2
B� þM2

Vi −M2
B

2MB�
: ð24Þ

Finally, we obtain the amplitude for the B� → Bγ
process, using Eqs. (17), (20), and (23) as

tB�→Bγ ¼
2eFVg̃VBB�λVγ

M2
V

B̄γ5=ϵ=KB�; ð25Þ

with ϵ denoting the polarization vector for the photon.
Notice that the above amplitude is manifestly gauge
invariant.
The radiative decay width can be obtained through

ΓB�→Bγ ¼
1

8π2
jK⃗jMB

MB�

1

2SB� þ 1

Z
dΩ

X
mB� ;mB;mγ

jMB�→Bγj2;

ð26Þ

and, using the amplitude in Eq. (25), we get

ΓB�→Bγ ¼
4e2F2

V jK⃗j3
πM4

V

				g̃ρ0BB� þ g̃ωBB�

3

−
ffiffiffi
2

p
g̃ϕBB�

3

				
2
�
EB þMB

2MB

�
; ð27Þ

with MV ¼ 770 MeV, and g̃ρ0BB� is related to the ρBB�
coupling g̃ρBB� given in the isospin base by

g̃ρ0BB� ¼ −g̃ρBB�=
ffiffiffi
3

p
. The decay widths determined in this
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FIG. 2. Real (solid) and imaginary (dashed) parts of the coupling constants for (a) N�þ
1;2 → KþΛ1, (b) N�þ

1;2 → KþΛ2, and
(c) N�þ

1;2 → KþΣð1400Þ. The values corresponding to N�
1ð1801Þ and N�

2ð1912Þ are shown in dark and light curves, respectively.

FIG. 3. Radiative decay of a baryon resonance through VMD.
The labels P, K, and p indicate the four-momenta of the
corresponding particles.
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way for Λð1405Þ, Σð1400Þ and N�ð1895Þ are given in
Table III. It should be noted that these results have been
obtained by convoluting the partial widths over the finite
widths of B� as in Eq. (14).
An important point to consider is that Λð1405Þ as well as

N�ð1895Þ are related to two poles in the complex plane. We
provide the decay widths for each pole of Λð1405Þ and
N�ð1895Þ separately. However, since in each case, the
poles have overlapping widths and experimentally they
may be observed as one state, we find it useful to obtain the
decay width of such a state. To do this we recall that the
effect of two close lying poles in the complex plane, on
the real axis, can be produced by an interference between
meson-baryon amplitudes related to the two poles written
within the Breit-Wigner description. In the same spirit, we
calculate the decay width by allowing an interference
between the couplings of the two poles and by using a
mass and width which is an average value obtained from
the pole positions. Such decay widths are underlined in
Table III.
We can now compare our results with the information

available from the experiments. The radiative decay width
ofΛð1405Þ → Λγ determined from the experimental data is
known to be 27� 8 KeV [30]. Our result obtained by
considering the superposition of the two poles is in
remarkable agreement with the experimental data. For
Λð1405Þ → Σγ, PDG [30] provides two possible values:
10� 4 KeV or 23� 7 KeV. Our results are closer to the
former value.
In case of N�ð1895Þ, the branching ratio of the radiative

decay is known to be 0.01-0.06% [30]. In our case, the
branching ratio for N�

1 is 0.34–0.42%, while for N�
2 is

0.11–0.13%. If we consider the superposition of the
two poles of N�ð1895Þ, which produces a peak on the
real axis with an average width of about 120 MeV, we
obtain a branching ratio ∼0.49–0.60%. Our results for the
second pole seem to be closer to the upper limit of the
value listed in Ref. [30]. Actually the real and imaginary
part of this second pole are closer to the values associated
with N�ð1895Þ in Ref. [30]. Further, it should be
mentioned that making a comparison is difficult in this
case, since all structures above 1800 MeVappearing in the
S11 wave are listed under the label of N�ð1895Þ in
Ref. [30]. And due to this former fact, information from
different states might be associated with N�ð1895Þ. In
fact, the branching ratios are estimated in Ref. [30] by
using helicity amplitudes from Refs. [41,42],
where the former work associates a pole of 1956 −
i449=2 MeV with N�ð1895Þ while the latter one
finds ð1907� 10Þ − ið100þ40

−15Þ=2 MeV.
Having the decay widths in Table III, we obtain the

transition magnetic moments related to each decay using
the relation

ΓB�→Bγ ¼
ðeμB�BÞ2jK⃗j3

4πM2
N

; ð28Þ

and their values are summarized in Table IV. The transition
magnetic moments μΛ�Λ determined in our work for the
individual poles of Λð1405Þ, as well as for their super-
position, are compatible with those obtained within the
chiral unitary model of Ref. [43].

TABLE III. Radiative decay widths for Λð1405Þ, Σð1400Þ and N�ð1895Þ. The underlined process means that an interference between
the two poles related to the decaying hadron has been considered to obtain the decay width.

Decay process Partial width (KeV) Decay process Partial width (KeV)

Λ1ð1405Þ → Λγ 9.47� 2.17 N�
1ð1895Þ → pγ 729.17� 78.20

Λ2ð1405Þ → Λγ 11.91� 3.39 N�
2ð1895Þ → pγ 129.59� 13.89

Λð1405Þ → Λγ 26.19� 6.93 N�ð1895Þ → pγ 650.70� 65.10
Λ1ð1405Þ → Σγ 5.17� 1.75 Σð1400Þ → Λγ 49.97� 8.57
Λ2ð1405Þ → Σγ 2.08� 1.72 Σð1400Þ → Σγ 94.51� 9.33
Λð1405Þ → Σγ 2.50� 1.37

TABLE IV. Transition magnetic moments related to decays of Λð1405Þ, Σð1400Þ, and N�ð1895Þ. The underlined process means that a
superposition of the two poles associated with the decaying hadron has been considered to obtain the decay width.

Decay process Magnetic moment Decay process Magnetic moment

Λ1ð1405Þ → Λγ 0.28� 0.02 N�
1ð1895Þ → pγ 0.56� 0.02

Λ2ð1405Þ → Λγ 0.26� 0.02 N�
2ð1895Þ → pγ 0.20� 0.01

Λð1405Þ → Λγ 0.42� 0.03 N�ð1895Þ → pγ 0.45� 0.02
Λ1ð1405Þ → Σγ 0.33� 0.03 Σð1400Þ → Λγ 0.60� 0.03
Λ2ð1405Þ → Σγ 0.15� 0.04 Σð1400Þ → Σγ 1.28� 0.04
Λð1405Þ → Σγ 0.20� 0.03
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III. NUMERICAL RESULTS AND DISCUSSIONS

Let us show and discuss our numerical results. We first
reproduce the γp → KþΛ� reaction and use the same
model parameters for predicting the observables for the
γp → KþΣ� process except for some coupling constants
which are determined in Sec. II. The cutoff masses in
Eq. (8) and (9) are determined to be ΛN;Λ;Σ ¼ 0.9 GeV and
ΛN� ¼ 0.83 GeV, respectively. The total cross section for
γp → KþΛ� is displayed as a function of the photon
laboratory (lab) energy Eγ in Fig. 4(a). It turns out that
the constant K Regge phase in Eq. (5) produces good
results regardless of the K� phase. The CLAS data [25] at
lab energies above 2.5 GeV are reproduced quite well by
the Born-term contribution mostly due to the K-Reggeon
exchange. The contribution of the K�-Reggeon exchange is
highly suppressed because of the small value of gK�NΛ�

relative to gKNΛ� . The low-energy region (Eγ ≤ 2.5 GeV) is
matched after we additionally include the N� contributions,

each of them is depicted in Fig. 4(b). The previous study
[29] included two PDG resonances, N�ð2000; 5=2þÞ
and N�ð2100; 1=2þÞ, and three missing resonances,
N�ð2030; 1=2−Þ, N�ð2055; 3=2−Þ, and N�ð2095; 3=2−Þ. It
attributed a major role to the two PDG resonances. In this
work, we additionally include the N�ð1895Þ that has a two
pole nature as discussed in Sec. II. The larger discrepancy
between the Born-term contribution and the CLAS data at
Eγ ≤ 2.5 GeV as compared to the results in Ref. [29]
is due to the small modification in constructing a gauge-
invariant amplitude [See Eq. (7)]. It is interesting that
including N�ð1895Þ provides a satisfactory description of
γp → KþΛ�. The two poles of N�ð1895Þ interfere
constructively and their sum reaches around 0.3μb at Eγ ¼
1.6 GeV as shown in Fig. 4(b).
We present our prediction of the total cross section for

γp → KþΣ� in Fig. 5(a). The cross section attains a
maximum value of about 0.12 μb at Eγ ¼ 1.6 GeV.

1.5 2 2.5 3 3.5 4
Eγ [GeV]

0

0.2

0.4

0.6

σ 
[μ

b]

CLAS
K + Nelec

K*

sum of N*

Born
full

×103

γ p → Κ+Λ(1405) (a)

1.5 2 2.5 3
Eγ [GeV]

0

0.1

0.2

0.3
σ 

[μ
b]

N*
1(1895, 1/2-)

N*
2(1895, 1/2-)

N*(2000, 5/2+)
N*(2100, 1/2+)
sum of N*

γ p → Κ+Λ(1405) (b)

FIG. 4. (a) Total cross section for γp → KþΛð1405Þ is plotted as a function of the lab energy Eγ. The red dotted curve represents the
sum of the K-Reggeon and electric part of N contributions. The green dot-dashed and the magenta dot-dashed-dashed curves denote the
K�-Reggeon and the N� contributions, respectively. The blue dashed and the black solid curves stand for the Born-term and the full
contributions, respectively. (b) Each of the N� contributions is plotted. (a) The data are taken from the CLAS Collaboration [25]. The
K�-Reggeon contribution is multiplied by the factor of 103 for easy comparison.
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FIG. 5. (a) Total cross section for γp → KþΣð1400Þ is plotted as a function of the lab energy Eγ. The curve notations are the same as
Fig. 4(a). (b) Each of the N� contributions is plotted.
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This magnitude is large enough to be measured in the future
experiments. We find that the contribution from the Born
term is nearly an order of magnitude smaller than that in
γp → KþΛ�. The contribution of the K�-Reggeon
exchange is comparable to that of the K-Reggeon exchange
and even larger than the case of γp → KþΛ�. Here we
include the two poles of N�ð1895Þ as for the N� contri-
butions and each of them is contained in Fig. 5(b).
Although the Born term for γp → KþΣ� is much sup-
pressed compared to that for γp → KþΛ�, the N� contri-
bution decreases by about 50% only.
Figure 6(a) depicts the angle dependence of the differ-

ential cross sections for γp → KþΛ�. The K-Reggeon
exchange shows steadily increasing behavior with cos θ
and falls off drastically at very forward angles. The small
increase in the backward angle regions at W ≥ 2.3 GeV
arises from the u-channel hyperon contributions. The N�
contributions are mostly due to the two pole structures of
N�ð1895Þ and become larger as cos θ decreases. The full
curves show an excellent agreement with the CLAS data at
W ≥ 2.1 GeV. Our predictions of the differential cross
sections for γp → KþΣ� are displayed in Fig. 6(b). The
K- and K�-Reggon exchanges interfere constructively and
mainly consist of the Born-term contribution. Both con-
tributions increase gradually as cos θ, but fall off sharply at
very forward angles because of their spin structures. The
backward peaks are as visible as the forward ones due to the
large values of μΣ�ΛðΣÞ.
At the level of the unpolarized observables, it is difficult

to confirm the reaction mechanism. We depict our results of
some polarized observables, i.e., the photon-beam asym-
metry (Σ), the target asymmetry (T), and the beam-target
asymmetry (E) in Fig. 7 as functions of cos θ at W ¼ 2.1
and 3.0 GeV. Their definitions are given by

Σ ¼ σð⊥;0;0Þ − σðk;0;0Þ

σð⊥;0;0Þ þ σðk;0;0Þ
;

T ¼ σð0;þy;0Þ − σð0;−y;0Þ

σð0;þy;0Þ þ σð0;−y;0Þ
;

E ¼ σðr;þz;0Þ − σðr;−z;0Þ

σðr;þz;0Þ þ σðr;−z;0Þ
; ð29Þ

where the superscripts ðB; T; RÞ stand for the polarization
states of the photon, target nucleon, and recoil
hyperon, respectively. We assume that the ẑ-axis is the
direction of the incident photon beam. When the photon
is polarized in the x̂ and ŷ directions, we use the labels k
(parallel to the reaction plane) and ⊥ (perpendicular
to the reaction plane), respectively. In Eq. (29), r
denotes the helicity þ1 circular polarization state of
the photon.
We first focus on the low-energy region W ¼ 2.1 GeV.

As for γp → KþΛ�, the negative values of the photon-beam
asymmetry Σ for the Born term shown in Fig. 7(a) are due
to the predominant contribution of the unnatural-parity
exchange, i.e., K-Reggon exchange. Meanwhile, Σ for
γp → KþΣ� for the Born term is relatively increased and
becomes close to zero at cos θ ≤ 0, as seen in Fig. 7(a′).
This is because the exchange of the natural-parity particle,
i.e., the K�-Reggeon, is as large as that of the K-Reggeon
and mostly influences σ⊥. When the N� contribution is
included to the Born term, Σ are increased for both
reactions.
In case of the target asymmetry T, we know that the

individual particle exchange is consistent with zero. As for
γp → KþΛ�, the Born-term contribution turns out to be
close to zero at cos θ ≥ 0, as shown in Fig. 7(c), since the
single K-Reggeon exchange dominates. The deviation
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FIG. 6. Differential cross sections dσ=d cos θ are plotted as functions of cos θ for (a) γp → KþΛð1405Þ and (b) γp → KþΣð1400Þ for
different c.m. energiesW ¼ ð2.0 − 2.8Þ GeV. A constant (1) Regge phase for the K and K� trajectories is used. The curve notations are
the same as Fig. 4(a). (a) The data are taken from the CLAS Collaboration [25].
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from zero at cos θ ≤ 0 arises from the interference
between the K-Reggeon and the u-channel hyperon
exchanges. Meanwhile, as seen in Fig. 7(c′), T for γp →
KþΣ� for the Born term is nonzero and reaches around
−0.2 at cos θ ≥ 0 because of the interference between the
K- and K�-Reggon exchanges. The u-channel hyperon
contribution is also observed at cos θ ≤ 0. The effect of
the N� exchange is more dramatic in case of γp → KþΣ�.
The results of the beam-target asymmetry E also reveal a
distinctive behavior when we compare both reactions as
shown in Figs. 7(e) and (e′).
In a higher energy region, W ¼ 3.0 GeV, the effect of

the N� exchange is negligible and thus we can easily find
how the u-channel hyperon exchange comes into play. It is
interesting that the u-channel contribution clearly exhibits
different structures at cos θ ≤ 0 for Σ, T, and E as illustrated
in Figs. 7(b, d, f, b0, d0, f 0).

Finally, we depict the energy dependence of the parallel
(σk) and perpendicular (σ⊥) cross sections in the left and
right panels of Figs. 8 and 9, respectively. As indicated
from the discussion of the photon-beam asymmetry, K- and
K�-Reggeon exchanges govern σk and σ⊥, respectively. It
turns out the full result of σk for γp → KþΣ� is still an order
of magnitude smaller than that for γp → KþΛ�. However,
when it comes to σ⊥, the full result for KþΣ� production is
only 3 times suppressed when compared to that for KþΛ�
production in the nonresonant region Eγ ≈ 3.0 GeV. This is
because the K�-Reggeon exchange for the former reaction
is approximately 100 times larger than that for the latter
one. Furthermore, the difference of σ⊥ between two
reactions becomes smaller as Eγ increases due to the larger
intercept of the K� trajectory than that of K, i.e., αK�ð0Þ >
αKð0Þ [see Eq. (6)]. Meanwhile, we find that the N�

FIG. 8. (a) Parallel and (b) perpendicular cross sections for γp → KþΛð1405Þ are plotted as a function of the lab energy Eγ. The curve
notations are the same as Fig. 4(a). The K�-Reggeon contribution is multiplied by the factor of 103.
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contribution to σk and σ⊥ is more or less equal to
each other.

IV. SUMMARY

In the present work, we have investigated the reaction
mechanism of the photoproduction of the Σð1400Þ reso-
nance found in Ref. [21]. For a reasonable prediction of
various physical observables we have studied the photo-
production of Λð1405Þ also, which has the same spin and
parity as Σð1400Þ, i.e., JP ¼ 1=2−. We have employed an
effective Lagrangian approach in the Born approximation,
combining it with a Regge model for the t-channel K- and
K�-Reggeon exchanges. We have also considered contri-
butions from the excitation of the nucleon in the inter-
mediate state. The largest of such contributions comes from
the inclusion of N�ð1895Þ, to which two poles in the
complex energy plane are associated; MN� − iΓN�=2 ¼
1801 − i96 MeV and 1912 − i54 MeV. The model param-
eters such as the cutoff mass and energy scale parameter are
the same for both reactions except for some coupling
constants.
We have presented discussions on the couplings at strong

vertices related to N�ð1895Þ decay to the KΛð1405Þ and
KΣð1400Þ channels. We have also presented details on the
determination of the radiative decay widths of N�ð1895Þ,
Λð1405Þ, and Σð1400Þ by relying on the vector-meson
dominance mechanism.
We have first obtained the total and differential cross

sections for γp → KþΛð1405Þ and compared them with the
CLAS data. Encouraged by the finding of a good agreement
between our results and the data, we have presented the
predictions on the cross sections for γp → KþΣð1400Þ. The
cross sections in the latter case have been found to be an
order of magnitude suppressed because of the smaller value
of gKNΣ� relative to gKNΛ� . Still, the magnitude of the γp →
KþΣð1400Þ cross sections found in our work, is large
enough to be measured in the future experiments. We have

also found that the backward peaks in the differential cross
sections for KΣ� production are relatively more visible than
those for the KΛ� case due to μΣ�ΛðΣÞ > μΛ�ΛðΣÞ.
Further, we have shown the angle dependence of some

polarization observables, such as the photon-beam asym-
metry, target asymmetry, and beam-target asymmetry. We
have found that the results for KΛ� production are clearly
distinguishable from those for the KΣ� case. Such findings
can play a crucial role in determining the corresponding
reaction mechanisms. A comparison of our results with
future experimental data can be useful in revealing a subtle
interference effect between the Born-term and resonance
contributions.
We have finally presented the energy dependence of

the parallel and perpendicular cross sections and found that
K- and K�-Reggeon exchanges dominate σk and σ⊥,
respectively. The full result of σ⊥ for γp → KþΣð1400Þ
has been found to be only 3 times suppressed as compared
to that for γp → KþΛð1405Þ at Eγ ≈ 3.0 GeV and the
difference has been found to become smaller as Eγ

increases due to αK� ð0Þ > αKð0Þ.
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FIG. 9. (a) Parallel and (b) perpendicular cross sections for γp → KþΣð1400Þ are plotted as a function of the lab energy Eγ. The curve
notations are the same as Fig. 4(a). The N� contribution is multiplied by the factor of 0.2.
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