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We apply the diabatic approach, specially suited for a QCD based study of conventional (quark-
antiquark) and unconventional (quark-antiquarkþmeson-meson) meson states, to the description of
hidden-bottom mesons. A spectral analysis of the I ¼ 0, Jþþ and 1−− resonances with masses up to about
10.8 GeV is carried out. Masses and widths of all the experimentally known resonances, including
conventional and unconventional states, can be well reproduced. In particular, we predict a significant BB̄�

component in ϒð10580Þ. We also predict the existence of a not yet discovered unconventional 1þþ narrow
state, with a significant BsB̄�

s content making it to decay intoϒð1SÞϕ, whose experimental discovery would
provide definite support to our theoretical analysis.
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I. INTRODUCTION

The unified description of conventional and unconven-
tional heavy-quark mesons from QCD, the strong inter-
action theory, is a current theoretical challenge in hadron
physics. Due to the current impossibility of solving QCD in
the nonperturbative regime, effective field theories directly
connected to QCD, involving quark and gluons or hadrons
as degrees of freedom, have been developed for the study of
the heavy-quark meson structure, see for instance [1] and
references therein. On the other hand, QCD calculations of
heavy-quark mesons in the lattice have been performed.
These comprise quenched analyses involving QQ̄ (Q:
heavy quark, b or c) with gluons as the light field [2,3],
and unquenched studies with QQ̄ and meson-meson
components incorporating also light sea quarks in the light
field [4–6]. A nice feature of the lattice, concerning
phenomenology, is that it provides a straightforward way
to compute complete heavy-quark meson potentials from
QCD: the static light field energies evaluated in lattice are
related to static potentials. More concretely, following a
Born-Oppenheimer approximation quenched static ener-
gies can be directly identified with potentials in a
Schrödinger equation for QQ̄, see for instance [2,7].
This allows for a QCD-based description of conventional

quarkonium (bb̄ or cc̄) in terms of a potential whose spin-
independent part corresponds to a Cornell (funnel) form.
As for unquenched static energies, calculated forQQ̄ in the
presence of meson-meson configurations, the Born-
Oppenheimer approximation, which is a single channel
one, is not valid anymore. Instead, a diabatic approach [8]
permits their connection with the potential matrix in a
multichannel Schrödinger equation for the QQ̄ and meson-
meson components.
Strictly speaking the static potential is only exact in the

limit of infinite heavy-quark mass. For bottomonium ðbb̄Þ
with a quark mass, mb, much larger than the QCD scale,
ΛQCD, the static limit represents a rather good approxima-
tion. For charmonium (cc̄), with a much lower quark mass,
mc, nonstatic contributions could be significant. Despite
this drawback, in the last two decades, much more attention
has been paid to the theoretical description of the excited
spectrum of charmonium, the reason being the discovery,
starting at 2003 with the χc1ð3872Þ, of charmoniumlike
mesons whose properties (masses and widths) cannot be
properly described from a conventional cc̄ structure. The
role played by explicit or implicit open charm meson-
meson components in the description of these unconven-
tional states has been recognized, and alternative models
(meson-meson molecules, tetraquarks, hadrocharmonium)
have been formulated, some reviews are [9–13].
Quite recently, a (nonperturbative) diabatic description

of the I ¼ 0, Jþþ and 1−− hidden-charm mesons with
masses up to about 4 GeV, in terms of cc̄ and meson-meson
components, has been undertaken [8,14]. A major differ-
ence with respect to other nonperturbative studies involving
the same degrees of freedom, see for example [15,16], is
the incorporation of a lattice-based form of the mixing
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potential instead of an ansatz with no clear connection to
QCD. Despite the dearth of lattice data, and the technical
approximations followed for tackling the diabatic equa-
tions, the results obtained (masses and widths) are encour-
aging. This supports the diabatic approach in QCD as an
appropriate framework for a unified and complete non-
perturbative description of conventional and unconven-
tional heavy-quark mesons.
For hidden-bottom mesons there have been in the past

many speculations about possible bottomoniumlike part-
ners of the unconventional charmoniumlike states, see for
instance [17] and references therein. The partner hypothesis
is based on the consideration that hidden-charm and
hidden-bottom mesons can be described from the same
flavor independent static potential (up to a constant). This is
clearly acceptable for (conventional) charmonium, cc̄, and
bottomonium, bb̄, with masses lying below the first open-
flavor meson-meson threshold, which are quite success-
fully described from a quark-antiquark Cornell potential.
However, for unconventional states involving QQ̄ and
open-flavor meson-meson components as well, the partner
hypothesis is questionable, for it is doubtful that the off-
diagonal terms in the static potential matrix, giving account
of the QQ̄ and meson-meson mixings, be flavor indepen-
dent. Experimentally, the situation is not well established
due to the current dearth of data (masses and widths) for
I ¼ 0, Jþþ hidden-bottom mesons above the first ð0þþÞ
open-bottom meson-meson threshold, and the absence of
data for I ¼ 0, 1−− resonances with masses above the first
1−− S-wave meson-meson threshold. From the theoretical
point of view, the diabatic approach, generating the static
potential matrix from lattice QCD data, can be an ideal tool
to definitely settle this issue. Indeed, lattice data for the
energy of static b and b̄ sources, when the bb̄ configuration
mixes with one or two open-flavor meson-meson ones, are
available. From them a direct parametrization of the
diabatic potential matrix is possible, and a QCD based
prediction of the unknown excited spectrum is feasible.
Actually, the hidden-bottom meson spectrum has been
partially explored recently in a simplified diabatic treatment
of I ¼ 0, 0−þ and 1−− resonances, involving only one bb̄
channel and at most two distinct meson-meson thresholds
masses [18,19].
In this article we center on the diabatic description of

hidden-bottom mesons. The main differences with respect
to [18,19] are (i) the consideration of all possible bb̄
channels and all meson-meson threshold masses contrib-
uting, (ii) the mixing potential which in our case does not
contain any short range (light quark meson exchange)
contribution, in line with the use of constant meson-
meson potentials, and (iii) the use of a bound-state based
approximation instead of a S-matrix approach to the
spectral solutions. We restrict our study to I ¼ 0, Jþþ,
and 1−− resonances with masses up to about 10.8 GeV,

two hundred MeV below the first 1−− S-wave meson-
meson thresholds. Thus, as all the lower thresholds are
known and have very small widths we avoid the uncertainty
deriving from the partial knowledge of a threshold and the
complexity due to possible threshold width effects. For the
sake of technical simplicity in the evaluation of observ-
ables, we follow a two step description of resonances: first
we approximate them by stable bound states incorporating
closed meson-meson channels, and second we calculate
mass corrections and widths from open meson-meson
channels. We show that a fairly good description of the
currently known Jþþ and 1−− experimental resonances in
the realm of energy under study comes out. We predict that
all these resonances except ϒð10580Þ have a very pre-
dominant bb̄ component. For ϒð10580Þ the reduced, albeit
dominant, bb̄ probability allows us to give accurate account
of leptonic width data. As for the not yet discovered
resonances we predict that only for the third excited 1þþ

state there is a significant meson-meson component.
Although not dominant, this component points out to
ϒð1SÞϕ as a favored decay channel what could be relevant
for its experimental discovery. Altogether these results
indicate that a partner picture of hidden-charm and hid-
den-bottom mesons should be discarded once meson-
meson contributions start to play some role.
These contents are organized as follows. In Sec. II a brief

review of the diabatic formalism particularized for hidden-
bottom mesons is presented, and the diabatic potential
matrix is built from lattice data. As an improvement over
the previous development for hidden-charm mesons a
distinctive treatment of hidden-strange thresholds is incor-
porated. In Sec. III the nonperturbative description of
hidden-bottom mesons is done in two steps: first, a bound
state approximation incorporating closed meson-meson
thresholds is followed, and second, mass shifts and
widths from open meson-meson thresholds are calculated.
Finally, in Sec. IV our main results and conclusions are
summarized.

II. DIABATIC FORMALISM FOR
HIDDEN-BOTTOM MESONS

The diabatic approach in QCD has been developed in
[8]. Hidden-bottom meson states with quantum numbers
JPC, made of bb̄ and open-bottom meson-meson MðiÞ

1 M̄ðiÞ
2

components, with M1 ðM̄2Þ containing qb̄ ðq̄bÞ where q
stands for a light quark, q ¼ u, d, s, are solutions of the
multichannel Schrödinger equation

ðKþ VðrÞÞΨðrÞ ¼ EΨðrÞ ð1Þ

where ΨðrÞ is a column vector
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ΨðrÞ ¼

0
BBBBB@

ψbb̄ðrÞ
ψ ð1ÞðrÞ

..

.

ψ ðNÞðrÞ

1
CCCCCA ð2Þ

with ψbb̄ðrÞ standing for the bb̄ component, and ψ ðiÞðrÞ,
i ¼ 1; 2… for the MðiÞ

1 M̄ðiÞ
2 component.

K is the kinetic energy matrix

K ¼

0
BBBBB@

− 1
2μbb̄

∇2

− 1
2μð1Þ ∇2

. .
.

− 1
2μðNÞ ∇2

1
CCCCCA ð3Þ

where μbb̄ is the reduced bb̄ mass, μðiÞ is the reduced

MðiÞ
1 M̄ðiÞ

2 mass, and matrix elements equal to zero are not
displayed.
VðrÞ is the diabatic potential matrix. Up to spin depen-

dent terms that we shall not consider it can be formally
written as0

BBBBB@

VCðrÞ Vð1Þ
mixðrÞ � � � VðNÞ

mixðrÞ
Vð1Þ
mixðrÞ Tð1Þ

..

. . .
.

VðNÞ
mixðrÞ TðNÞ

1
CCCCCA ð4Þ

where the diagonal elements VCðrÞ and TðiÞ correspond to

the b − b̄ and MðiÞ
1 − M̄ðiÞ

2 potentials respectively, and

VðiÞ
mixðrÞ to the MðiÞ

1 M̄ðiÞ
2 − bb̄ interaction potential.

More precisely, we express the bb̄ component as

ψbb̄ðrÞ ¼
X
t

Rð0Þ
t ðrÞYJ;mJ

lð0Þt ;sð0Þt

ðr̂Þ ð5Þ

where the sum over t goes from 1 to the number of pairs
ðlbb̄ ≡ lð0Þ; sbb̄ ≡ sð0ÞÞ coupling to JPC, Rð0Þ

t ðrÞ stands for a
radial wave function and

YJ;mJ
l;s ðr̂Þ≡ X

ml;ms

Cml;ms;mJ
l;s;J Yml

l ðr̂Þξms
s ð6Þ

for an angular-spin wave function (C is a Clebsch-Gordan
coefficient, Yml

l a spherical harmonic, and ξms
s a spin

vector), and the MðiÞ
1 M̄ðiÞ

2 component as

ψ ðiÞðrÞ ¼
X
k

RðiÞ
k ðrÞYJ;mJ

lðiÞk ;sðiÞk
ðr̂Þ ð7Þ

where the sum over k goes from 1 to the number of pairs
ðlðiÞ ≡ l

MðiÞ
1
M̄ðiÞ

2

; sðiÞ ≡ s
MðiÞ

1
M̄ðiÞ

2

Þ coupling to JPC.

(Let us note that we have changed the notation for the
radial wave function with respect to our previous papers
[8,14]. Here we use the standard R and reserve u for the
reduced radial wave function, see next.)
Then, one has

Z
dΩψ�

bb̄
ðrÞ VðrÞψbb̄ðrÞ ¼

X
t

Rð0Þ�
t ðrÞVCðrÞRð0Þ

t ðrÞ

ð8aÞ
Z

dΩψ ðiÞ�ðrÞ VðrÞψbb̄ðrÞ ¼
X
k;t

RðiÞ�
k ðrÞVðiÞ

mixðrÞRð0Þ
t ðrÞ

ð8bÞ
Z

dΩψ ði0Þ�ðrÞ VðrÞψ ðiÞðrÞ ¼ δii0
X
k

RðiÞ�
k ðrÞTðiÞRðiÞ

k ðrÞ

ð8cÞ

so that the multichannel Schrödinger equation reduces to a
coupled system of radial equations for the sets of channels

fuð0Þt ðrÞ≡ rRð0Þ
t ðrÞg and fuðiÞk ðrÞ≡ rRðiÞ

k ðrÞg.
For example, if we considered for simplicity the case of

the bb̄ component with only one pair, ðlð0Þ1 ; sð0Þ1 Þ, coupling
to the given JPC, and one meson-meson component

Mð1Þ
1 M̄ð1Þ

2 with only one pair, ðlð1Þ1 ; sð1Þ1 Þ, coupling to the
given JPC, the system would read

0
B@− 1

2μbb̄
ð∂2

r −
lð0Þ
1
ðlð0Þ
1
þ1Þ

r2 Þ þ VCðrÞ − E Vð1Þ
mixðrÞ

Vð1Þ
mixðrÞ − 1

2μð1Þ ð∂2
r −

lð1Þ
1
ðlð1Þ
1
þ1Þ

r2 Þ þ Tð1Þ − E

1
CA
0
B@ uð0Þ1

uð1Þ1

1
CA ¼ 0: ð9Þ

The generalization to any number of possible ðlð0Þ; sð0ÞÞ and
ðlðiÞ; sðiÞÞ, i ¼ 1, 2... pairs is straightforward by considering

each uð0Þt and each uðiÞk as a component of the eigenfunction.
Then, for normalizable solutions of the general system of

radial equations, the probability for the bb̄ component can
be calculated as

Pðbb̄Þ ¼
X
t

Z
drjuð0Þt ðrÞj2 ð10Þ
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and for the MðiÞ
1 M̄ðiÞ

2 component

PðMðiÞ
1 M̄ðiÞ

2 Þ ¼
X
k

Z
drjuðiÞk ðrÞj2: ð11Þ

Notice that although no direct interaction potential
between different meson-meson components is considered,
what it is justified for isolated, well separated meson-meson
thresholds with no overlap at all, an indirect interaction
through their coupling to the bb̄ channel is present.

A. Diabatic potential matrix

The explicit form of the matrix elements VCðrÞ, TðiÞ,
VðiÞ
mixðrÞ can be derived from the light field static energies

calculated in lattice QCD [8]. As lattice results depend on
the chosen lattice spacing the philosophy underlying this
derivation is the use of parametrizations motivated from
lattice results with parameters to be fixed from phenom-
enology. Thus, the diagonal element VCðrÞ corresponding
to the b − b̄ potential is parametrized from quenched lattice
data on the static quark-antiquark energy [3] as the Cornell
potential

VCðrÞ ¼ σr −
χ

r
− β þmb þmb̄ ð12Þ

with σ, χ, β, and mb being the string tension, the color
coulomb strength, a constant, and the bottom quark mass,
respectively. We shall assume that all the flavor dependence
in VCðrÞ comes from the mass term. Therefore, we shall
keep for hidden-bottom mesons the same values for σ, χ,
and β used in [8] for hidden-charm mesons. In order to fix
mb we have to take into account that the potential is spin
independent so that the calculated masses should be
compared with the experimental mass centroids obtained
from spin singlet and spin triplet data. So we choose to fit
the 1P ground state mass centroid under the assumption
that 1PJ experimental resonances are pure bottomonium
states, as will be confirmed later on (alternatively we could
have chosen to fit the 1S or 2S or 2Pmass centroid without
any significant change in the forthcoming analysis). Thus,
we have

σ ¼ 925.6 MeV=fm; ð13aÞ
χ ¼ 102.6 MeV fm; ð13bÞ
β ¼ 855 MeV: ð13cÞ

mb ¼ 5215 MeV: ð13dÞ
The bb̄ spectrum from this Cornell potential for Jþþ and
1−− isoscalar states is shown in Table I.
Let us point out that in phenomenological applications of

the Cornell potential [21,22] the chosen value of the bottom
quark mass differs slightly from ours. In these applications

distinct values of β are considered for bottomonium and
charmonium in order to fit approximately the low-lying
mass centroids.
Any of the other diagonal elements TðiÞ represents a

MðiÞ
1 − M̄ðiÞ

2 potential. Up to one pion exchange effects that
we do not consider this potential is given by the ith meson-
meson threshold

TðiÞ ¼ m
MðiÞ

1

þm
M̄ðiÞ

2

ð14Þ

with m
MðiÞ

1

and m
M̄ðiÞ

2

being the masses of the corresponding

mesons. The meson-meson thresholds, calculated from the
masses of bottom mesons in [20], are listed in Table II.
It is worth remarking that the use of the experimental

masses for the thresholds introduces some implicit spin
dependence in the description.
Let us note that each of the BB̄, BB̄�, and B�B̄�

thresholds is composed of two (approximately) degenerate
thresholds. For example BB̄ corresponds to BþB− and
B0B̄0, with an experimental threshold mass difference of

TABLE I. Bottomonium spectrum from the Cornell potential.
Each spectral state is characterized by JPC and nL quantum
numbers. For JPC ¼ ð0; 1; 2Þþþ, it is intended that F-wave
bottotmonium states appear only for 2þþ. Available experimental
centroid masses from [20] are listed for comparison.

JPC nL Mass (MeV) Centroid (MeV)

ð0; 1; 2Þþþ 1P 9900.7 9899.7
2P 10254.4 10260.2
1F 10341.5
3P 10536.6
2F 10601.0
4P 10782.2

1−− 1S 9401.2 9444.9
2S 9993.8 10017.2
1D 10150.4
3S 10338.6
2D 10442.0
4S 10615.0
3D 10694.1
5S 10856.4

TABLE II. Low-lying open-bottom meson-meson thresholds
MðiÞ

1 M̄ðiÞ
2 . Threshold masses TðiÞ from the bottom and bottom

strange meson masses quoted in [20]. Crossing radii of these
thresholds with the Cornell potential, rðiÞc , are also tabulated.

i MðiÞ
1 M̄ðiÞ

2 TðiÞ (MeV) rðiÞc (fm)

1 BB̄ 10559 1.16
2 BB̄� 10604 1.20
3 B�B̄� 10649 1.25
4 BsB̄s 10733 1.33
5 BsB̄�

s 10782 1.38
6 B�

sB̄�
s 10830 1.43
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0.6 MeV. In contrast the hidden strange cases BsB̄s, BsB̄�
s ,

and B�
sB̄�

s are single thresholds.

The off-diagonal elements, VðiÞ
mixðrÞ, correspond to

bb̄-MðiÞ
1 M̄ðiÞ

2 mixing potentials. From unquenched lattice
static energies, calculated for bb̄ in the presence of meson-
meson configurations [4,6], the following parametrization
has been proposed [8]

jVðiÞ
mixðrÞj ¼

ΔðiÞ

2
exp

�
−
ðVCðrÞ − TðiÞÞ2

2σ2ρ2

�
ð15Þ

where ρ is a radial scale for the mixing, that we shall take
equal for all thresholds, and ΔðiÞ is a strength parameter
corresponding to the difference between the unquenched
lattice static energies resulting from the avoided crossing of

VCðrÞ and TðiÞ at the crossing radius rðiÞc defined by

VCðrðiÞc Þ ¼ TðiÞ: ð16Þ

The values of the crossing radii have been tabulated in
Table II.
For the sake of simplicity, in [8,14] the same value for

ΔðiÞ was used for degenerate and single thresholds. Here we
go a step further. As shown in the Appendix a doubly
degenerate threshold can be managed as an effective single
threshold with a different value of Δ:

Δdegenerate ¼
ffiffiffi
2

p
Δsingle: ð17Þ

To make all this clear let us consider for example
a system containing bb̄ and BB̄. From Table II

rðBB̄Þc ¼ 1.16 fm. In the lattice calculation of Ref. [4],

rðBB̄ÞcðlatticeÞ ¼ 1.25 fm and ΔðBB̄Þ
ðlatticeÞ is close to 50 MeV.

Hence, we may expect quite a similar value for ΔðBB̄Þ.
As for ρ we compare the mixing angle between the ground
and excited light field configurations associated to bb̄ and
BB̄ [8]:

θðrÞ ¼ 1

2
arctan

�
2VðBB̄Þ

mix ðrÞ
TðBB̄Þ − VCðrÞ

�
ð18Þ

to the one extracted from lattice, see Fig. 15 in [4]. More
concretely, by using

ΔðBB̄Þ ¼ 55 MeV ð19aÞ
ρ ¼ 0.3 fm ð19bÞ

we obtain the angle and mixing potential drawn in Figs. 1
and 2 respectively.
It is worth remarking that the mixing is only effective in

an interval around rðBB̄Þc determined by the value of ρ and
that the sign of the mixing potential has no effect on the
results that follow.

The diabatic potential matrix reads

�
VCðrÞ VðBB̄Þ

mix ðrÞ
VðBB̄Þ
mix ðrÞ mB þmB̄

�
ð20Þ

and its eigenvalues, given by

V�ðrÞ ¼
VCðrÞ þ ðmB þmB̄Þ

2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
VCðrÞ − ðmB þmB̄Þ

2

�
2

þ ðVðBB̄Þ
mix ðrÞÞ2

s
ð21Þ

and represented in Fig. 3, should be compared to the static
energies for bb̄ in the presence of BB̄ calculated in lattice,
see Figs. 13 and 14 in [4]. (Let us realize that the
comparison has to be more qualitative than quantitative
since the values of the parameters in the lattice depend on
the chosen lattice spacing.)
The extension to a system containing bb̄, BB̄, and BsB̄s

is straightforward. The diabatic potential matrix is now

FIG. 1. Mixing angle between bb̄ and BB̄.

FIG. 2. Mixing potential between bb̄ and BB̄.
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0
BBB@

VCðrÞ VðBB̄Þ
mix ðrÞ VðBsB̄sÞ

mix ðrÞ
VðBB̄Þ
mix ðrÞ mB þmB̄ 0

VðBsB̄sÞ
mix ðrÞ 0 mBs

þmB̄s
:

1
CCCA ð22Þ

By using

ΔðBsB̄sÞ ¼ 55ffiffiffi
2

p MeV ð23Þ

the resulting eigenvalues, plotted in Fig. 4, should be
compared to the educated guess of the static energies for bb̄
in the presence of BB̄ and BsB̄s done in [4] (Fig. 22) and to
the lattice calculation performed in [6].

III. STATE DESCRIPTION

Any hidden-bottom meson state, characterized by the
quantum numbers JPC, with mass below all possible open-
bottom meson-meson thresholds with the same quantum
numbers is stable under decay into open-bottom meson-
meson channels. Hence it corresponds to a bound state
solution of the diabatic multichannel Schrödinger equation.
On the other hand any JPC hidden-bottom meson state with
mass above a possible open-bottom meson-meson thresh-
old with the same quantum numbers is unstable under
decay into open-bottom meson-meson channels and cor-
responds to a scattering solution of the diabatic multichan-
nel Schrödinger equation.
From a technical point of view the extraction of the

values of physical observables from a (normalizable) bound
state wave function is straightforward. In contrast, for a
scattering wave function it requires the development of a
dedicated formalism [23]. Taking into account that the
difference in the wave functions is associated to the
presence of open meson-meson components in the scatter-
ing case, which are asymptotically free, one can approach a
scattering resonance solution through a two-step procedure.
In the first step one solves a bound state problem incor-
porating only the closed meson-meson components; in the
second step, one generates a resonance through the cou-
pling of the bound state solution to the open meson-meson
components. This coupling allows for the calculation of the
mass of the resonance through mass corrections to the
bound state mass, and for the evaluation of its width. Notice
that this procedure is completely nonperturbative. One
should keep in mind though the lack of consistency of
this bound state based approximation when there is some
open threshold giving rise to a mass correction to the bound
state that makes the threshold to close with respect to the
resulting resonance. This is for example the case for the
hidden-charm meson ψð4040Þ, see [14]. Then, only a direct
scattering solution of the multichannel Schrödinger equa-
tion can provide a trustable description.

A. Bound states

In order to calculate bound states a finite number of
closed meson-meson thresholds is considered. This is
justified because in general for a given bound state the
probability of meson-meson components corresponding to
thresholds far above the mass of the bound state is expected
to be negligible. From our mixing potential, we can
estimate that this is the case for any threshold being at
least 200 MeV above the mass of the bound state.
The technical procedure to calculate bound states has

been detailed elsewhere, see Sec. IV F and Appendices C
and D in [8]. Let us only recall here that in order to avoid
possible multiple countings of the same bound state when
different sets of closed meson-meson thresholds are con-
sidered we assume a one-to-one correspondence with the

FIG. 3. Static energies. Dashed line: bb̄ (Cornell). Dotted line:
BB̄ threshold. Dash-dotted lines: r-dependent eigenvalues of the
diabatic potential matrix (20).

FIG. 4. Static energies. Dashed line: bb̄ (Cornell). Dotted lines:
BB̄ and BsB̄s thresholds. Dash-dotted lines: r-dependent eigen-
values of the diabatic potential matrix (22).
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bound states of bb̄ from the Cornell potential. Hence, each
bb̄ bound state is the seed of only one bound state, the one
obtained when the chosen set of closed thresholds is
maximal in the sense of containing the maximum possible
number of them. This assumption has proved to work for
hidden-charm mesons [8,14], and we shall show it also
does for hidden-bottom ones.
Henceforth we center on spin-triplet hidden-bottom mes-

ons with I ¼ 0 and JPC ¼ ð0; 1; 2Þþþ and 1−− for which
there are spectral data available up to 11.0 GeV. We restrict
our study to bound states with masses up to about 10.8 GeV,
two hundred MeV below the first 1−− S-wave meson-meson
thresholds. There are several reasons for this. First, it is
known the 11P1 state B1ð5721Þ but not the corresponding
13P1 state B1ð?Þ with an expected similar mass. Hence, the
threshold B1B̄ is only partially known. Second, B1(5721) has
a non-negligible width, 27.5� 3.4 MeV, and B1ð?Þ is
presumably a much wider state (actually, this may be
preventing its experimental detection). Hence, threshold
width effects should be properly incorporated. Third, the
lowest lying bottomonium hybrid bb̄g (g: gluon), which
could mix with bb̄, is predicted to have a mass about
10.9 GeV, see [24] and references therein.
The possible values of lbb̄ ðsbb̄ ¼ 1Þ and

ðl
MðiÞ

1
M̄ðiÞ

2

; s
MðiÞ

1
M̄ðiÞ

2

Þ coupling to a given JPC are listed in

Table III, where the common notation BðsÞ to refer to
bottom and bottom, strange mesons, and the shorthand
BðsÞB̄�

ðsÞ to denote the C-parity eigenstate, are used.
The calculated spectrum of bound states is shown in

Table IV.
A glance at the table and its comparison with Table I

makes clear that (i) all bound states have a dominant bb̄
component, with more than 90% probability in most cases,
(ii) closed meson-meson thresholds give rise to attraction,
(iii) the attractive effect on the mass is quantitatively
modest, with mass reductions of 16 MeV or less with
respect to the bb̄ masses obtained from the Cornell
potential. These results are in line with the reasonable
mass description of known experimental resonances pro-
vided by the Cornell potential model.
For a detailed comparison to data we have to take into

account that our Cornell potential does not contain spin-
dependent terms. Then, for pure ðnlÞ bb̄ states the

calculated masses have to be compared to the ðnlÞ
experimental centroids; in the other cases, where meson-
meson components are present, since they are specific for
any set of JPC quantum numbers, the comparison has to be
done with the experimental candidates with the same JPC.
Taking this into consideration all known JPC ¼ ð0; 1; 2Þþþ
and 1−− experimental resonances below 10.8 GeV can be
assigned to bound states with the same location (below or
above) with respect to the meson-meson thresholds. Thus,
we see that the calculated mass for the ð0; 1; 2Þþþ ground
states, which are 100% Cornell ð1PÞ bb̄ states, coincides
with the experimental mass centroid from 1PJ states at
9899.9� 0.6 MeV. Actually, this coincidence has been
required to fix the bottom quark mass. As for the first
excited ð0; 1; 2Þþþ states, which are 100% Cornell ð2PÞ bb̄
states, the calculated mass is very close to the experimental
mass centroid from 2PJ states at 10260.2� 0.7 MeV. The
only additional Jþþ pure Cornell state is the second
excitation of 2þþ, assigned to the ð1F2Þ bb̄ state with a
predicted mass of about 10340 MeV.
The second excited ð0; 1Þþþ and the third excited 2þþ

states are predicted to contain more than a 90% of ð3PÞ bb̄
and less than a 10% of meson-meson components. For 1þþ
and 2þþ the calculated masses compare well with existing
data (for 0þþ there is no PDG data). Indeed the measured
masses of χb1ð3PÞ, 10513.42� 0.41� 0.53 MeV, and
χb2ð3PÞ, 10524.02� 0.57� 0.53 MeV, differ from the
calculated values by less than 30 MeV. It is worth
mentioning that the presence of meson-meson components
makes the calculated masses to be 12 MeV closer to data
than the corresponding Cornell masses suggesting that a
renaming of these resonances as χb1ð10513Þ and
χb2ð10524Þ might be in order.
From the point of view of its meson-meson composition

the most interesting Jþþ case is the third excited state of
1þþ with a significant 24% of BsB̄�

s . This significant
percentage has to do with the immediate vicinity of the
Cornell ð4PÞ bb̄ state and the BsB̄�

s threshold, both located
at about 10782.2 MeV. Notice though that the mass shift
due to BsB̄�

s is only 7 MeV with respect to the Cornell ð4PÞ
bb̄ mass. More importantly, as BsB̄�

s can naturally decay
strongly intoϒð1SÞϕ through quark exchange this could be
a possible discovery channel.
For 1−− the ground and the first three excited states are

predicted to be 100% the Cornell ð1S; 2S; 1D; 3SÞ bb̄ states
respectively. For the ground state ð1SÞ the difference
between the experimental centroid (from ηbð1SÞ and
ϒð1SÞÞ at 9445.0� 0.7 MeV and the calculated mass is
45 MeV, significantly higher than in any other case. This
could be indicating the presence of more relevant relativ-
istic effects in the 1S state. Indeed, for the first excited state
ð2SÞ the difference between the ðηbð2SÞ;ϒð2SÞÞ mass
centroid at 10017.20� 1.8 MeV and the calculated value
gets reduced to 23 MeV. For the ð1DÞ and ð3SÞ states the
lack of data prevents the evaluation of the mass centroids

TABLE III. Possible values of lbb̄ ðsbb̄ ¼ 1Þ and
ðl

MðiÞ
1
M̄ðiÞ

2

; s
MðiÞ

1
M̄ðiÞ

2

Þ for given values of JPC. A missing entry means
that the particular meson-meson configuration cannot form a state
with the corresponding quantum numbers.

JPC bb̄ BðsÞB̄ðsÞ BðsÞB̄�
ðsÞ B�

ðsÞB̄
�
ðsÞ

0þþ 1 (0,0) (0,0), (2,2)
1þþ 1 (0,1),(2,1) (2,2)
2þþ 1,3 (2,0) (2,1) (0,2),(2,0),(2,2),(4,2)
1−− 0,2 (1,0) (1,1) (1,0),(1,2),(3,2)
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for comparison. Instead, we can check that the calculated
mass for ð1DÞ is pretty close to the measured mass of
ϒ2ð1DÞ, 10163.7� 1.4 MeV, and that the calculated mass
of ð3SÞ is lower than the measured mass of ϒð3SÞ,
10355.2� 0.5 MeV, as should be expected.
All the higher excited states contain meson-meson

components. However, only for the fifth excited state,
which contains a dominant ð70%Þ Cornell ð4SÞ bb̄ com-
ponent, we predict a significant meson-meson probability
(21% of BB̄�), due to the vicinity of the ð4SÞ bb̄ state and
the BB̄� threshold. This suggests that for the corresponding

experimental resonance the label ϒð10580Þ should be
preferred to the PDG alternative ϒð4SÞ.
It is illustrative to plot the radial wave function of this

state for the several components, see Fig. 5.
We see that the presence of meson-meson components

makes the radial wave function to extend to larger distance
than the Cornell ð4SÞ bb̄ one, and correlated with this there
is a loss of probability density at the origin (r ¼ 0) as
compared to the Cornell case. This could explain the
discrepancies observed between the calculated leptonic
width ratios in the Cornell model and data. More con-
cretely, the 1−− leptonic width ratios are calculated
from [25]

Γðϒðn1Þ → eþe−Þ
Γðϒðn2Þ → eþe−Þ ¼

����Rϒðn1Þ ð0Þ
Rϒðn2Þ ð0Þ

����2 m
2
ϒðn2Þ

m2
ϒðn1Þ

ð24Þ

where RϒðnÞ ð0Þ stands for the radial wave function at the
origin and mϒðnÞ for the mass of the ϒ state containing a
ðnSÞ bb̄ component. The calculated values for these ratios
and their comparison to data are given in Table V (the use
of the experimental masses instead of the calculated ones
would not make any difference).
A look at the table makes clear that (i) the ratios

involving Γðϒð1SÞ → eþe−Þ, are deficiently described
by both the Cornell model (with the exception of
Γðϒð10580Þ→eþe−Þ
Γðϒð1sÞ→eþe−Þ Þ and the diabatic approach, (ii) the diabatic

values for these ratios can be put in accord with data
through multiplication by a common factor of ≃1.3, (iii) all

TABLE IV. Calculated masses, bb̄ and meson-meson component probabilities, for JPC bottomoniumlike bound state solutions.
Vanishing and negligible (i.e., inferior to 1%) probabilities are not displayed.

JPC Mass (MeV) bb̄ BB̄ BB̄� B�B̄� BsB̄s BsB̄�
s B�

s B̄�
s

0þþ 9900.7 100%
10254.1 100%
10530.2 91% 8% 1%
10778.1 98% 2%

1þþ 9900.7 100%
10254.2 100%
10532.1 97% 3%
10775.1 75% 24% 1%

2þþ 9900.7 (100, 0)%
10253.9 (100, 0)%
10340.9 (0, 100)%
10527.7 (92, 2)% 3% 1% 2%
10592.7 (2, 91)% 3% 4%
10776.2 (91, 1)% 4% 4%

1−− 9401.2 (100, 0)%
9993.8 (100, 0)%

10150.3 (0, 100)%
10337.2 (100, 0)%
10439.4 (0, 99)% 1%
10598.8 (70, 3)% 21% 6%
10691.3 (0, 98)% 1% 1%

FIG. 5. Radial wave function of the fifth excited 1−− state.
bb̄ð4SÞ, bb̄ð3DÞ, BB̄�ðlBB̄� ¼ 1Þ, and B�B̄�ðlB�B̄� ¼ 1Þ compo-
nents are drawn with a solid, dashed, dotted, and dash-dotted line
respectively.
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the ratios not involving Γðϒð1SÞ → eþe−Þ are well
described by the diabatic approach whereas the Cornell

model is far from data except Γðϒð3sÞ→eþe−Þ
Γðϒð2sÞ→eþe−Þ for which there is

no difference in the calculated wave functions with both
approximations.
These results suggest that the failure of the diabatic

approach regarding the ratios involving Γðϒð1SÞ → eþe−Þ
may have to do with the presence of relativistic corrections
in ϒð1SÞ making its radial wave function at the origin to
decrease a 14%.
Therefore, we may tentatively conclude that data from

leptonic widths can be taken as an indication of the meson-
meson compositeness of ϒð10580Þ. In this regard, it is also
interesting to add that it is the bb̄ ð4SÞ − BB̄� interaction
the main physical mechanism underlying the explanation of
the leptonic widths. The small D mixing, 3% of bb̄ ð3DÞ,
which is mainly induced through the S and D coupling to
B�B̄�, plays a marginal quantitative role. Moreover, other
sources of S −D mixing such as a direct tensor interaction
within the Cornell potential, should also have a quite
limited importance in order to preserve the accurate
leptonic width description. This is in contrast to other
explanations in the literature based on a significant S −D
mixing, see for instance [26].
The calculated sixth excited state has a predicted mass

close to 10700 MeV and it is very dominantly a bb̄ ð3DÞ
state. It could be possibly assigned to the not well
established ϒð10753Þ with a measured mass of
10752.7� 5.9þ0.7

−1.1 MeV. However, the discovery channel
ϒðnSÞπþπ− with n ¼ 1, 2, 3 is not expected to be a
dominant channel for a ð3DÞ state suggesting that some
mixing with the bb̄ ð4SÞ state is lost. This can be due to the
fact that the BB̄�, and particularly the B�B̄� thresholds,
which according to our previous discussion can give rise to
this mixing, are not taken into account in our bound state
approach for the sixth excited state since they are open
meson-meson channels. Indeed, we shall show later on that
this excitation has a prominent width to B�B̄�. Hence, a
significant D − S mixing through the coupling to B�B̄�
could be present. The theoretical description of this

mixing would require a complete (scattering) solution of
the problem which is out of the scope of our current
analysis.

B. Mass corrections and widths

Let us realize that for pure Cornell states, with masses
below the first meson-meson threshold, there are no open
meson-meson channels. Hence, no widths, and mass
corrections being mostly limited to spin splittings which
are known to be quantitatively important for these states.
Indeed, the derivation of the form of the spin dependent
potential terms from QCD, and a numerical evaluation of
the Cornell spin splittings for bb̄ was carried out forty
years ago [27]. We simply copy here those results for the
slightly different values we use for the parameters of the
Cornell potential hardly makes a difference. The cor-
rected masses for the pure Cornell states in Table IV are
given in Table VI.
We see that a very good mass description is obtained.

The biggest difference between the calculated mass and
data is of 35 MeV for ϒð1SÞ which we may attribute, at
least partially, to further relativistic (kinetic energy) effects.
To proceed to a similar evaluation of spin splitting for

states with meson-meson components, spin dependent
terms of the mixing and meson-meson potentials should
be taken into account as well. However, the complete lack
of knowledge of the spin dependence in the mixing
potential prevents carrying out this procedure. Instead,
for states with mass above the first meson-meson threshold,
we can evaluate mass corrections and widths from the open
meson-meson thresholds neglected in the bound state
calculation. The nonperturbative method we follow for
this evaluation has been explained elsewhere, see [14] and
references therein. Let us only recall here that the physical
effect of the coupling to the continuum is to dilute the
bound state through a band of stationary scattering states,
giving rise to a resonance. If we call mbs the mass of the

bound state,MðjÞ
1 M̄ðjÞ

2 with j ¼ 1; 2…; n the corresponding

TABLE V. Calculated leptonic width ratios from the Cornell
model and the diabatic approach, as compared to data from [20].

Leptonic Width Ratio Cornell Experiment Diabatic
Γðϒð2sÞ→eþe−Þ
Γðϒð1sÞ→eþe−Þ 0.36 0.456� 0.14 0.36
Γðϒð3sÞ→eþe−Þ
Γðϒð1sÞ→eþe−Þ 0.25 0.33� 0.1 0.25
Γðϒð10580Þ→eþe−Þ
Γðϒð1sÞ→eþe−Þ 0.21 0.20� 0.02 0.14

Γðϒð3sÞ→eþe−Þ
Γðϒð2sÞ→eþe−Þ 0.70 0.72� 0.03 0.70
Γðϒð10580Þ→eþe−Þ
Γðϒð2sÞ→eþe−Þ 0.58 0.44� 0.06 0.39

Γðϒð10580Þ→eþe−Þ
Γðϒð3sÞ→eþe−Þ 0.82 0.61� 0.08 0.56

TABLE VI. Spin splittings (in MeV) for pure Cornell spin
triplet states. The corrected masses (in MeV) and their compari-
son to the measured masses [20] of the assigned mesons are also
shown.

JPCðnlÞ Splitting Mass Experiment Meson

1−−ð1SÞ 23.7 9424.9 9460.30� 0.26 ϒð1SÞ
0þþð1PÞ −35.8 9864.9 9859.44� 0.42� 0.31 χb0ð1PÞ
1þþð1PÞ −11.0 9889.7 9892.78� 0.26� 0.31 χb1ð1PÞ
2þþð1PÞ 13.8 9914.5 9912.21� 0.26� 0.31 χb2ð1PÞ
1−−ð2SÞ 10.3 10004.1 10023.26� 0.31 ϒð2SÞ
1−−ð1DÞ −3.3 10147.0 10163.7� 1.4 ϒ2ð1DÞ
0þþð2PÞ −26.4 10227.7 10232.5� 0.4� 0.5 χb0ð2PÞ
1þþð2PÞ −8.2 10246.0 10255.46� 0.22� 0.50 χb1ð2PÞ
2þþð2PÞ 10.2 10264.1 10268.65� 0.22� 0.50 χb2ð2PÞ
1−−ð3SÞ 7.8 10345.0 10355.2� 0.5 ϒð3SÞ
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open meson-meson components, and mres and Γ the mass
and width respectively of the resulting resonance, then

mres −mbs ¼
X
j;k

P
Z

dEðjÞμðjÞ
pðjÞ

mres − EðjÞ jI
ðjÞ
k ðpðjÞÞj2

ð25Þ

and

Γ
2
¼

X
j;k

πpðjÞjI ðjÞ
k ðpðjÞÞj2

EðjÞ¼mres
ð26Þ

where P
R
stands for the Cauchy principal value integral,

EðjÞ for the meson-meson energy in the center of mass
frame (resonance at rest)

EðjÞ ¼ E
MðjÞ

1

þ E
M̄ðjÞ

2

ð27Þ

with

E
MðjÞ

1

¼ m
MðjÞ

1

þ ðpðjÞÞ2
2m

MðjÞ
1

ð28aÞ

E
M̄ðjÞ

2

¼ m
M̄ðjÞ

2

þ ðpðjÞÞ2
2m

M̄ðjÞ
2

ð28bÞ

where pðjÞ is the meson momentum, μðjÞ for the reduced

mass of MðjÞ
1 and M̄ðjÞ

2

μðjÞ ≡
m

MðjÞ
1

m
M̄ðjÞ

2

m
MðjÞ

1

þm
M̄ðjÞ

2

ð29Þ

and

I ðjÞ
k ðpðjÞÞ≡

ffiffiffi
2

π

r
i−l

ðjÞ
k

Z
drr2j

lðjÞk
ðpðjÞrÞVðjÞ

mixðrÞ
�X

t

Rð0Þ
t ðrÞ

�

ð30Þ

where jl is the spherical Bessel function.
It should be emphasized that our calculation of mass

corrections and widths does not introduce any new param-
eter, so the comparison of the masses and widths of the
resulting resonances with data may serve as a stringent test
of the mixing interaction.
The calculated masses of the resonances mres, as well as

their differences with the masses of the corresponding
bound states, mres −mbs, are shown in Table VII. For the
sake of completeness we have also included in the table non
pure Cornell bound states whose masses are below the first
open-bottom meson-meson threshold and, consequently
there is no mass correction.

As can be checked the calculated masses are in good
agreement (less than 20 MeV mass difference) with the few
existing data, except for ϒð10753Þ. This may be indicating
that the non considered spin splittings are not quantitatively
as important as for pure Cornell states. On the other hand,
the mass corrections due to open thresholds are quantita-
tively small, of a few ð< 10Þ MeV at most. Altogether,
these arguments make us confident about the predicted
masses for the not yet discovered resonances. Regarding
ϒð10753Þ the deficient predicted mass may be indicating
the lack of a significant D − S mixing which could arise
from the coupling to B�B̄� as well as from the incorporation
of spin dependent terms in the diabatic potential matrix.
As for the decay widths to open-bottom meson-meson

channels, we have summarized them in Table VIII.
It is remarkable that the calculated values are in very

good agreement with the few existing data. So, for
ϒð10580Þ and ϒð10753Þ the predicted values of the total
widths are fully compatible with data. Forϒð10580Þ there
is only one decay channel BB̄ contributing to the width.
Experimentally this channel saturates with more than
96% the total width. For the not well established
ϒð10753Þ we predict a very dominant decay into B�B̄�

TABLE VII. Calculated mass corrections, mres −mbs, and total
masses, mres, in MeV, for non pure Cornell JPC ¼ ð0; 1; 2Þþþ and
1−− states below 10.8 GeV. Measured masses from [20], when
existing, corresponding to the meson type assignment in the last
column (the subscript referring to the dominant bb̄ component),
are also given for comparison.

JPC mres −mbs mres Experiment Meson

0þþ 0 10530.2 ðχb0Þ3P
7.7 10785.8 ðχb0Þ4P

1þþ 0 10532.1 10513.42� 0.41� 0.53 χb1ð10513Þ
3.8 10778.9 ðχb1Þ4P

2þþ 0 10527.7 10524.02� 0.57� 0.53 χb2ð10524Þ
−4.3 10588.4 ðχb2Þ2F
6.1 10782.3 ðχb2Þ4P

1−− 0 10439.4 ðϒÞ2D
1.0 10599.8 10579.4� 1.2 ϒð10580Þ
5.7 10697.0 10752.7� 5.9þ0.7

−1.1 ϒð10753Þ

TABLE VIII. Total masses, mres, and decay widths to open-
bottom meson-meson channels, in MeV, of bottomoniumlike
states above threshold. Available experimental widths from [20]
are quoted for comparison.

JPC mres ΓBB̄ ΓBB̄� ΓB�B̄� ΓBsB̄s
ΓTheor
tot ΓExpt

tot

0þþ 10785.8 1.6 5.3 0.7 7.6
1þþ 10778.9 0.2 1.7 1.9
2þþ 10588.4 4.3 4.3

10782.3 5.4 1.5 21.0 10.4 38.3
1−− 10599.8 21.9 21.9 20.5� 2.5

10697.0 2.0 1.0 38.0 41.0 36þ17.6þ3.9
−11.3−3.3
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which could help to guide new experimental searches. It
is also worth to emphasize the pretty small values of the
widths predicted for some not yet discovered ð0; 1; 2Þþþ
resonances, in particular for the third excited 1þþ state
with a value smaller than 2 MeV. Although we should add
to these predictions some uncertainty we consider them
encouraging for experimental analyses. In the 1þþ case,
its small width (to B�B̄� and B�B̄�), and its BsB̄�

s content
(see Table IV) pointing out to a significant ϒð1SÞϕ decay,
can help to its experimental discovery.
It should be mentioned that the effect of meson-meson

thresholds in the hidden-bottom spectrum has been pre-
viously studied in the literature, see for instance [28–30]
and references therein. Quite generally all these studies
make use of the 3P0 quark pair creation mechanism to mix
the bb̄ and meson-meson components. This 3P0 model
lacks direct justification from QCD. Instead, we use a
mixing potential whose form is directly based on lattice
results for the static light field energies for bb̄ in the
presence of meson-meson configurations. This gives rise to
an utterly different mixing description which is enhanced
around the crossing points of the Cornell potential with the
meson-meson thresholds. Moreover, in most of these
previous studies a perturbative hadron-loop treatment has
been followed to calculate mass corrections and widths
from meson-meson thresholds. This is conceptually ques-
tionable since the perturbative series is divergent as shown
in [14]. Much more related to our work is a quite recent
analysis [19] where the authors proceed to a numerical
parametrization of the diabatic potential matrix from lattice
data and to the evaluation from it of the scattering solutions
of the Schrödinger equation. However, due to the formi-
dable difficulty of the problem only bb̄ S-waves and a
reduced number of thresholds masses (at most two) have
been considered until now, what reduces considerably its
predictive power.

IV. SUMMARY

We have applied the diabatic approach, which allows for
a QCD based analysis of the heavy-quark meson spectra, to
the description of I ¼ 0, JPC ¼ ð0; 1; 2Þþþ and 1−− hidden-
bottom mesons with masses below 10.8 GeV. More
precisely, we have solved the Schrödinger equation for
bb̄ and meson-meson components with the same JPC

quantum numbers. The form of the diabatic potential
matrix entering in this equation has been derived from
current lattice data on the energy of static b and b̄ sources,
when bb̄ mixes with BB̄ and BsB̄s configurations. For
practical purposes, we have followed a bound state based
approximation to describe resonances. From it mass cor-
rections and widths have been properly incorporated. A
good description of masses, decay widths to open-bottom
meson-meson channels, and (for 1−−) leptonic widths of
known resonances has been obtained. Of particular interest
is the prediction of a significantly lower than 1 bb̄

probability in ϒð10580Þ which allows for an accurate
description of its leptonic width ratios with the
ϒðð2; 3ÞSÞ states. Concerning the not yet discovered
resonances it is noteworthy the prediction of a narrow
χb1ð10779Þ, possibly with a significant decay into ϒð1SÞϕ
as a consequence of its BsB̄�

s content.
These results for bottomoniumlike mesons give addi-

tional support to the diabatic approach in QCD as an
appropriate framework for a unified and complete non-
perturbative description of conventional and unconven-
tional heavy-quark mesons. They make also clear that the
presence of meson-meson thresholds introduces a flavor
spectral dependence so that a flavor independent partner
correspondence between the hidden-bottom and the
hidden-charm mesons is limited to the conventional
bottomonium, pure bb̄, and charmonium, pure cc̄, states.
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APPENDIX: DEGENERATE THRESHOLDS

Let us consider for instance the (almost) degenerate
BþB− and B0B̄0 thresholds.
In the diabatic formalism the potential matrix for a

physical system containing bb̄, BþB−, and B0B̄0 compo-
nents reads

0
BBB@

VCðrÞ Vð1Þ
mixðrÞ Vð2Þ

mixðrÞ
Vð1Þ
mixðrÞ TBþB− 0

Vð2Þ
mixðrÞ 0 TB0B̄0

1
CCCA ðA1Þ

with

Vð1Þ
mixðrÞ ¼ hζbb̄jHlf

staticðrÞjζBþB−i ðA2aÞ

Vð2Þ
mixðrÞ ¼ hζbb̄jHlf

staticðrÞjζB0B̄0i ðA2bÞ

VCðrÞ ¼ hζbb̄jHlf
staticðrÞjζbb̄i ðA2cÞ

TBþB− ¼ hζBþB− jHlf
staticðrÞjζBþB−i ðA2dÞ

TB0B̄0− ¼ hζB0B̄0 jHlf
staticðrÞjζB0B̄0i ðA2eÞ
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where Hlf
staticðrÞ denotes the Hamiltonian for the light fields

(gluons and light quarks), and jζbb̄i, jζBþB−i, jζB0B̄0i, the
ground and excited light field configurations associated to
the bb̄, BþB−, and B0B̄0 components respectively [8].
If we neglect the small mass difference between TBþB−

and TB0B̄0 , assume Vð1Þ
mixðrÞ ¼ Vð2Þ

mixðrÞ≡ VmixðrÞ, and
define the light field configurations

jζðBB̄Þ0i ¼
1ffiffiffi
2

p jζBþB−i − 1ffiffiffi
2

p jζB0B̄0i ðA3aÞ

jζðBB̄Þ1i ¼
1ffiffiffi
2

p jζBþB−i þ 1ffiffiffi
2

p jζB0B̄0i ðA3bÞ

then the expression of the diabatic potential matrix in terms
of these light field configurations reads

0
BBB@

VCðrÞ
ffiffiffi
2

p
VmixðrÞ 0ffiffiffi

2
p

VmixðrÞ TBB̄ 0

0 0 TBB̄

1
CCCA ðA4Þ

where TBB̄ ¼ TBþB− ¼ TB0B̄0 and

hζbb̄jHlf
staticðrÞjζðBB̄Þ0i ¼

ffiffiffi
2

p
VmixðrÞ ðA5aÞ

hζbb̄jHlf
staticðrÞjζðBB̄Þ1i ¼ 0 ðA5bÞ

Hence, as the light field configuration jζBB̄i1 does not
couple to jζbb̄i the physical system is equivalent to two
decoupled subsystems, one containing bb̄ and ðBB̄Þ0
components and the other containing the ðBB̄Þ1 compo-
nent. Actually, ðBB̄Þ0 and ðBB̄Þ1 correspond to an iso-
singlet and to the neutral projection of an isotriplet
respectively. Therefore, the lack of mixing between
jζbb̄i, associated to the bb̄ isosinglet, and jζBB̄i1 is just
a consequence of the isospin conservation in strong
interactions.
These resultsmake clear that the effect of twodegenerate

thresholdssuchasBþB− andB0B̄0 canbe taken intoaccount
through one effective ðBB̄Þ0 threshold whose mixing
potential with bb̄ contains an additional factor

ffiffiffi
2

p
as

compared to that for a single threshold as BsB̄s.
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