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Study of Gribov copies in a Yang-Mills ensemble

D. Fiorentini®,"" D. R. Junior®,"*" L. E. Oxman®,"* G. M. Simdes,"* and R.F. Sobreiro®"!
\UFF—Universidade Federal Fluminense, Instituto de Fisica, Campus da Praia Vermelha,
Avenida Litordnea s/n, 24210-346 Niteroi, RJ, Brazil
2University of Tiibingen, Institut fiir Theoretische Physik,

Auf der Morgenstelle 14, D-72076 Tiibingen, Germany

® (Received 3 December 2020; accepted 10 May 2021; published 8 June 2021)

Recently, based on a new procedure to quantize the theory in the continuum, it was argued that Singer’s
theorem points toward the existence of a Yang-Mills ensemble. In the new approach, the gauge fields are
mapped into an auxiliary field space used to initially determine sectors labeled by center vortices, and then
separately fix the gauge on them. In this work, we study this procedure in more detail. We provide examples
of configurations belonging to these sectors and discuss the existence of non-Abelian degrees of freedom.
Then, we discuss the importance of the mapping injectivity, and show that this property holds
infinitesimally for typical configurations of the vortex-free sector and for the simplest example in the

one-vortex sector. Finally, we show that these examples are free from Gribov copies.
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I. INTRODUCTION

After Singer’s theorem [1], it became clear that the usual
Faddeev-Popov procedure to quantize non-Abelian Yang-
Mills theories must be somehow modified in the non-
perturbative regime. Because of a topological obstruction,
there is no condition g(A) = 0 that can globally fix the gauge
on the whole configuration space {A,}. Hence, when such
condition is imposed, the path integral still contains redun-
dant degrees of freedom (d.o.f) associated with gauge fields
obeying g(A) =0 and related by nontrivial gauge trans-
formations. Such spurious configurations are typically
called Gribov copies. The usual way to deal with this
obstruction was implemented in the Landau gauge by
V. N. Gribov in his seminal work [2], see also Ref. [3].
In his proposal, a path-integral restricted to a subset of {A, }
was implemented so as to eliminate infinitesimal copies. As
a consequence, the perturbative gauge propagator is desta-
bilized, giving place to one with complex poles, while the
ghost propagator is enhanced. Later on, many other develop-
ments were achieved. In the Landau gauge, D. Zwanziger
was able to construct a local and renormalizable action [4]
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which was afterwards refined by the inclusion of dimension
two condensates [5,6]. Beyond this gauge, it is worth
mentioning important progress in the maximal Abelian
gauge [7-9] and the linear covariant gauges [10-12], see
also Ref. [13]. Finally, we refer to a Becchi-Rouet-Stora-
Tyutin (BRST) invariant formulation of the path integral
restriction, with a local and renormalizable action, that was
implemented as a gauge independent recipe [14—16].

In Ref. [17], a different procedure to deal with Singer’s
obstruction was introduced, by splitting the configuration
space into domains 9, C {A, } where local sections are well
defined. Of course, Singer’s theorem does not pose any
problem to define regions with a local section having no
Gribov copies. The important point is that, in order for
these regions to serve as a basis to implement the new
proposal, they must form a partition

A =U% 9,09 =0 ifatp (1)

In that case, we would have (Syy = ﬁ [ d*xF2%)

Z,
Zyw=Y 2w  (Ow=D 720w ()
a a YM
Z(a) - / [DA”]e_SYM[A]’
9
1
(O) ) = Zw Jo [DA,Je~Si4l0[4], (3)

and the usual Fadeev-Popov procedure could be separately
implemented on each domain 9J,,. In Ref. [17], motivated by
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lattice procedures used to detect center vortices by looking
at the lowest eigenfunctions of the adjoint covariant
Laplacian [18,19], a partition of {A,} was generated in
the continuum. For this purpose, we considered a gauge
invariant auxiliary action S,[A,w] for a tuple y =
(w1, ....wy,) of auxiliary adjoint scalar fields v,
I'=1,...,N;. Then, the gauge field A, was correlated
with the solution y = y(A) to the set of classical equations
of motion

6Saux

= 0’
oy

wr € su(N),

with appropriate boundary and regularity conditions. Since
the auxiliary action is gauge invariant, when an orbit of A,
is followed, an orbit in the auxiliary space {y } is described,
with components

wi(AY) = Uy, (AU,
AV =UA U +iU0, U (5)

Next, a polar decomposition of the tuple y was introduced.’

w1 =S¢5 .y, = Sqn, S, (6)

based on a concept of “pure modulus” condition for a tuple
q="(q1. - qn,):

f € 3u(N). (7)

After this initial stage, we would have auxiliary variables
q(A) and S(A) such that, when moving along the orbit of
A,, q(A) stays invariant while the phase describes an orbit
S(AY) = US(A). The point is that even for smooth finite-
action configurations A,, S(A) will generally contain
defects, which cannot be removed by means of the regular
U-mappings associated with gauge transformations. That
is, it is not possible to define a “unitary” gauge S(A) = I on
{A}. What can be done is to define regions V(S,) C {A,}
formed by gauge fields that can be gauge-transformed to
S(AY) = S, where U is regular and S, is a reference (class
representative), characterized by a given distribution of
defects. In other words, the gauge can be fixed with the
V(Sy)-dependent condition:

fs,(A) =0, A, € V(So),
fs,(A) = £S5 wi(A)So, - S5 win (A)Sp). (8)
As this is a local condition in the configuration space {A},

it is possibile to have no copies in this setting, while staying
in line with Singer’s theorem. Note also that any pair of

'In general, a relation between tuples of the form given in
Eq. (6) shall be simply denoted by y = ¢5.

different class representatives Sy, S, are such that S, # US,
(for regular U) so that a gauge field A, cannot be in different
regions. Then, as all the gauge fields belong to some region,
the above procedure gives a partition of {A,}: 9, —V(Sy).
The labels correspond to oriented and nonoriented center
vortices with non-Abelian degrees of freedom (d.o.f.),
where the nonoriented component is generated by monop-
oles. Therefore, the YM field averages in Eq. (2) involve an
ensemble integration over topological defects (sector
labels) with a weight Z(s)/Zyy that is in principle
calculable. Indeed, the all-orders perturbative renormaliz-
ability of the vortex-free sector was shown in Ref. [20]. The
calculation of each sector, followed by the ensemble
integration, is expected to give rise to the confining
behavior in the nonperturbative regime. In this regard,
these topological degrees have been established in the
lattice as relevant for the confinement of quark probes in
pure SU(N) YM theory [21-31]. Moreover, a measure
based on them has recently led to an effective model that
captures the asymptotic properties of confinement [32]. Of
course, this program tends to be prohibitively hard in the
continuum. Nonetheless, understanding some of their
facets could shed light on how to organize an approxima-
tion scheme on each sector. For example, in the calculation
of quadratic fluctuations around a straight thin center-
vortex, different self-adjoint extensions are possible [33].
Which one to use should be determined from first princi-
ples and on physical grounds. This could also provide a
guide to compute the different sectors in the lattice. The
gauge-fixing method is based on many underlying assump-
tions. In this work, we aim at discussing them at the
classical level, paying special attention to sectors that
include center vortices. The purpose is to improve the
understanding of the consistency of this procedure. In our
proposal for continuum YM theories, this analysis was still
lacking.

In Sec. II. we briefly review some well-known gauge-
fixings. Section III is devoted to compare them with our
local procedure in the continuum, while in Sec. IV we
clarify the necessary assumptions involved. Next, in Sec. V,
we present examples of configurations that belong to
sectors labeled by center vortices, and discuss the existence
of non-Abelian d.o.f.. In Sec. VI we study the injectivity of
the functional w(A), and show that it is infinitesimally
injective for typical configurations in the vortex-free sector,
as well as for a particular configuration of the one-vortex
sector. Finally, in Sec. VII, we establish the absence of
Gribov copies for the configurations considered in Sec. VI.

II. YANG-MILLS (GLOBAL) GAUGE-FIXINGS

In this section, we provide a brief discussion of some of
the gauge-fixings commonly used along the history of
continuum and lattice non-Abelian gauge theories. These
gauges are global, in the sense that a unique condition is
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imposed on the whole configuration space. This discussion
will be useful to compare them with our local procedure
and show, in the next section, how their problems and
limitations could be avoided.

In the continuum, globally defined gauge-fixing
conditions,

A, €{A,}, 9)

were extensively studied. For example, the Landau gauge
corresponds to f(A) = 9,A,. Of course, due to Singer’s
(no-go) theorem [1], it is impossible to find a continuous
condition on the whole configuration space {A, } such that
f(AY) =0 = U =1. Then, in this framework, to continue
working with the traditional methods, which are based on a
single global f(A), the path-integral was restricted to a
subset of {A,}. This is known as the first Gribov region,
where infinitesimal copies are eliminated, although it
generally contains finite copies. This region can also be
defined as the smallest connected set, containing the trivial
configuration A, = 0, such that the (gauge-dependent)
Fadeev-Popov (FP) operator is positive definite [2]. In
the infrared regime, it is believed that the YM path-integral
in Landau gauge is dominated by the Gribov horizon
[34,35], which is formed by configurations such that the
corresponding FP operator has zero modes. These operators
were studied in the continuum and in the lattice for the
Coulomb and Landau gauges [36—38]. For example, in the
Landau gauge, where the FP operator is given by

Mab

Landau — _8MDZb5<4) ()C - y)’ (10)
it was shown that smooth center vortices and instantons
belong to the Gribov horizon [25,39,40].

In the lattice, center vortices and their properties have
been extensively studied in the confining regime. In this
case, although a gauge-fixing is not necessary to compute
observables, it is relevant for the purpose of identifying the
dominant configurations in the infrared regime. This was
initially done within the Maximal Center Gauge (MCG)
[21,23,28], which brings each link element as close as
possible to a center element. Given an initial field con-
figuration U,(x) € SU(N) (link-variables), the gauge is
defined by the following maximization over gauge trans-
formations g(x)

mang(trAd(Uz(x)))’

Ad(Ui(x)) = RY(x)Ad(U,(x))R(x +p). (1)

where R = Ad(g) [Ad(-) denotes the adjoint representation
of SU(N)]. In Ref. [28], this gauge was extended to the
continuum by means of the requirement

minzming/de(tr(Ag —as)?), (12)

where ay is the gauge field for a thin vortex localized on
0%, a closed surface. For local extrema, a condition can be
obtained by first considering the minimization with respect
to G = ¢, with infinitesimal 6, and fixed X:

0, +az,A)—0,a; =0. (13)
If this step were free from Gribov copies, we would have a
unique gauge field Ay that satisfies Eq. (13), and the

continuum maximal center gauge would be completed by
determining the best X:

ming / dPxtr(Alas] — as)?. (14)

On a conceptual level, this is an interesting procedure
aimed at bringing A, as close as possible to a thin center
vortex field ay| - However, as pointed out in Ref. [28], this
route would require further improvements. This is due to
the large mismatch between a smooth A, and a thin center-
vortex field ay| , at points that are close to any 0%, where
the difference A — ay is divergent. Thus, the condition (12)
is always achieved for ay =0, for vortexlike smooth
configurations A,. Among the possibilities to avoid this
problem, a smoothed ay or the replacement tr(-) — s(tr(-))
in Eq. (12), with s(¢) a monotonically increasing function,
was considered in Ref. [28]. An issue pointed in that work
is that, to avoid the divergence at 9%, s(¢) cannot diverge as
t — o0. However, this property would not penalize large
deviations between A, and ay|, in other regions. In
addition, for certain functions like s(7) = — tanh(R*#?), it
was noted that the optimal 0X does not coincide with the
guiding-center of a smooth center-vortex A,, even for the
simplest example.

Another important class of gauges in the lattice consider
a set of eigenvectors ¢\/) corresponding to the lowest
eigenvalues of the discretized covariant adjoint Laplacian,

ALY (v) = i (x). (15)

The gauge can then be fixed by imposing different
conditions on the “lowest” eigenfunctions, i.e., the ones
associated with the lowest eigenvalues. For instance, in the
Laplacian center gauge (LCG) [18], the gauge is achieved
by the composition of a pair of SU(N) gauge trans-
formations on the link variables. The first one is such that
the lowest eigenfunction ¢(!) is oriented along the Cartan
subalgebra. Then, a transformation is performed to make
the color components of the second lowest eigenfunction
¢ satisfy some conventional conditions, while keeping
¢ fixed. The possibility of replacing the pair of Laplacian
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eigenfunctions by other adjoint fields in the continuum was
first pointed out in Ref. [41], although a specific realization
for these fields was not presented. In addition, the use of the
above mentioned global gauge-fixing condition on these
fields would lead to singular gauge-fixed fields, due to the
large topological phases associated with center vortices. In
the lattice, we would also like to mention the direct
Laplacian center gauge (DLCG), introduced in Ref. [19]
to address the above mentioned mismatch between smooth
and thin configurations in the MCG. For SU(2), instead of
using the function s(7), the smoothing of the MCG was
done by promoting R(x) € SO(3) to a new degree of
freedom M(x), given by a 3 x 3 real matrix, and then
performing the constrained maximization

maxMZtr(MT(x)Ad(Uﬂ (x))M(x + p)),

5 M M) = (16

with V' the lattice volume. Then, it was shown that the
solution can be written in terms of the three lowest

eigenfunctions of Eq. (15), M, (x) = c/)gf)(x). In the next
step, an SO(3)-field was extracted from M(x) through a
polar decomposition. This field was then mapped to SU(2)
and the link-variables were gauge transformed to satisfy the
adjoint version of the lattice Laplacian Landau Gauge
(LLG) introduced in Ref. [42]. Finally, the DLCG was
achieved by relaxing these link-variables to the closest
configuration that satisfies the MCG. In Ref. [19], it was
argued that the DLCG is preferable to the LLG since it
avoids the presence of small scale fluctuations in the
P-vortex surfaces of projected configurations.

III. THE LOCAL GAUGE-FIXING
IN CONTINUUM YM THEORY

In the lattice, the use of global gauge-fixing conditions,
in the various center gauges discussed in Sec. II, is always
possible because there is no concept of singular ill-defined
phase field S(x), when x represents the discrete lattice sites.
On the other hand, in the continuum, any attempt of
defining a global condition, in a procedure that detects
non-Abelian large topological phases S(x), x € R*, would
lead to singular gauge-fixed fields. For example, this occurs
in the global gauge of Ref. [43]. In that case, among the
natural large phases there are those corresponding to
monopoles. Then, a gauge-fixing based on a global
orientation of the auxiliary fields, where S(x) is removed,
leads to gauge fields A, containing singularities (Dirac
strings). A similar situation would occur in gauge fixings in
the continuum based on a set of adjoint auxiliary fields
w; € 8u(N), I =1,...,N;. This time, the topological
phases S(x) € SU(N) will certainly include center-vortex
defects. In addition, monopolelike phases will generally be

attached to a pair of (physical) center-vortex defects.”
Again, there will be an obstruction to implement a global
y orientation, for every A, € {A,}. By enforcing such a

condition, ill-defined gauge fixed fields A,%f would be
produced. On the other hand, in the continuum, it is
precisely the clear distinction between regular and singular
SU(N)-mappings that enables the introduction of the
equivalence relation

S(x) ~ 8 (x) if FregularU(x)/S'(x) = U(x)S(x). (17)
Such distinction and equivalence relation have no meaning
for fields defined on the lattice. In the continuum, it enables
us to think of generating, a priori, a catalog of different
equivalence classes [Sy], where Sy(x) is a class representa-
tive. For example, in gauges based on adjoint auxiliary
fields, a possible reference would be S, = €T where yisa
multivalued harmonic function and f is a fundamental
magnetic weight, such that S, changes by a center element
when going around a closed surface JZ. Of course, there is
also a center-vortex free sector that can be labeled by Sy = 1.
Other phases represent center-vortices that are nonoriented
in the Lie algebra (see Refs. [28,32]). Here, we will not
discuss the general classification of sectors. Instead, we shall
analyze some examples. However, it is important to under-
line that, as noted in Ref. [32], multiplying a label S, by a
regular mapping on the right generally leads to a physically
inequivalent label. The identification of these non-Abelian
degrees of freedom is an important property in the con-
tinuum which has no clear counterpart in the lattice. Using a
mechanism that maps A, to § in a gauge covariant way, we
can look for the previously defined reference label S, that is
equivalent to S. Then, instead of a global condition on {A,, },

we can require the gauge-fixed A,%f to be mapped into S,
which is attained by a regular gauge transformation.

The simplest known example where local gauge-fixings
are used is in the context of the Abelian Higgs Model [44].
In the unitary gauge, the phase of the Higgs field is required
to be trivial. However, this condition cannot be applied to
the Nielsen-Olesen vortex. For a straight infinite vortex, the
best we can do is to fix the gauge field as ¢p = he'”, where
@ is the polar angle (9*p =0). This is one of the
motivations that led to the gauge-fixing proposal for pure
YM theories in Ref. [17]. There, the construction of S was
done by introducing a set of adjoint auxiliary fields that
minimize an auxiliary action

Saux = /d4x(<Dﬂl//17Dﬂw1> + vaux)' (18)

The Killing product is defined between elements of the Lie
algebra according to

*These configurations are known as nonoriented center vor-
tices (see Ref. [28]).
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(X.Y) = Tr(Ad(X)Ad(Y)). (19)

The consideration of y/(A) = (w1, ..., wy,), solution to this
minimization problem [cf. Eq. (4)], has the advantage that,
unlike the lowest eigenfunctions of the covariant Laplacian,
itis a a well-posed problem in the continuum. Of course, at
the quantum level, these fields were introduced by means of
an identity, keeping the pure Yang-Mills dynamics
unchanged. Regarding the field content and auxiliary
potential, they were chosen such that the components y;
of the classical solution y(A) enable a simple concept of
“modulus” tuple and the extraction of a phase. For this aim,
we proposed Sy, to display SU(N) — Z(N) SSB, which
requires Ny > N (see also Sec. IV). Among the many
possible flavors of auxiliary fields, we preferred the choice
N¢ = N? — 1, as a simple auxiliary action and procedure to
extract the phase S can be given for general SU(N). For
example, V,,, can be chosen such that it is minimized by
the nontrivial solutions to

_i[llll’ V/J] = vfkVk, (20)

namely, y; = vST,;S~!, where T;, I = 1, ..., N> — 1 is the
usual Lie basis. In regions where A, is close to a pure gauge,
the solution will be close to a rotated frame. This “dynamical
tendency” can be thought of as playing a similar role to the
normalization and orthogonality property of the Laplacian
eigenvector fields in the DLCG [cf. Eq. (16)].

The polar decomposition of a tuple y [cf. Egs. (6) and
(7)] was done by defining a modulus tuple ¢ as the rotated
y that minimizes the average square distance

S (g - T 21)

1

This implies that ¢; is “aligned” with the Lie basis 7; on
average,

Z[% T} =0. (22)

I

Then, this procedure allows for the identification of the
phase S(A) of the solution y(A) and identify the corre-
sponding sector V(S,) where A, is. Finally, the gauge can
be fixed by the sector-dependent condition

fs,(w) = [S5'wi(A)So. T;] = 0, (23)

see Eq. (8). This procedure, proposed in Ref. [17], has
many points of contact with Laplacian center gauges used
in the lattice. As discussed in Sec. II, the possibility of
using adjoint fields other than the Laplacian eigenfunctions
in the continuum was first pointed out in Ref. [41]. In our
procedure we gave a realization of the auxiliary fields
through a set of classical equations of motion while, instead

of a pair, we considered various adjoint flavors. This field
content simplified the extraction of a covariant phase out of
. Indeed, our concept of polar decomposition generalizes
to SU(N) the usual decomposition of the 3 x 3 real matrix,
formed with the three lowest eigenvectors, used in the
lattice adjoint LLG in SU(2). In addition, as already
explained, by considering local gauge-fixing conditions
on V(S,) € {A,}, we were able to avoid singular gauge-
fixed fields.

On the other hand, for oriented center vortices, our
procedure differes from the continuum global MCG, as it is
not based on comparing A, with the singular configurations
as. The closed manifold O is not obtained after a best fit to
als, but by reading the defects in S(A). It is also very
different from the traditional global gauge-fixings. For
instance, in the Landau gauge, the Gribov copies associated
with smooth center vortex or instanton configurations
[cf. Eq. (10)] are related with zero mode solutions to a
Schrodinger-like equation. It should be emphasized that the
FP operator for this type of global gauges is completely
different from the FP operator J, in any local sector V(S)),
which is related with the algebraic condition in Eq. (23).
Therefore, there is no a priori reason to expect Jg to
contain zero modes. In order to address the possibility of
copies, the analysis must be completely reformulated.
Instead of considering a general A, € {A,}, it should be
separately done for A, € V(S,), for every possible label S,.
As an initial step, to see if we are on a good direction, we
will address some examples based on the simplest smooth
center vortices. In particular, in Sec. V, we will show that
the associated guiding-centers are correctly detected in the
non-Abelian mapping S(A), that the gauge-fixed field is
regular, and that no copies will arise in this case.

IV. INVESTIGATING THE NEW PROCEDURE

In the local procedure, if the solution to Eq. (4) is
unique (after imposing regularity and boundary conditions),
in a first step we may associate each field in {A, } with the
auxiliary tuple yw(A) that minimizes the auxiliary action
Saux|[A, w]. For this mapping to be useful to fix the gauge,
anecessary condition is that different gauge fields of the same
orbit are associated with different y(A). If y/(A) is left invari-
ant by nontrivial transformations y;(A) — Uy, (A)U™,
U € SU(N), then no matter what the second step is, the
final procedure will have gauge copies. If this is successful, in
a second step, given a tuple y(A), we would like to fix the
gauge by imposing a condition that is satisfied by only one
w(A) as we move on the orbit of A,. Again, because of
Singer’s theorem, it is impossible to find a global and
continuous gauge-fixing condition. However, the idea is to
implement a different gauge-fixing condition on each sector
of a partition of {A,, }. In summary, for the gauge fixing to be
well-defined, we need:
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1. Appropriate regularity and boundary conditions on
the auxiliary fields so as to have a unique solution
w(A) to Eq. (4).

2. The auxiliary-field content and the auxiliary action
must be such that w(A) is injective on any gauge
orbit. This means,

WAY) = p(A) > UeZ(N).  (24)

where Z(N) is the center group of SU(N). This is
just the requirement that the fields transform homo-
geneously under the gauge group in a LCG formu-
lated in the continuum [41].

3. A univocally defined polar decomposition of y(A).
In this case, besides inducing the partition V(S,), a
local condition on V(S,) with no copies,

f5,(w(A))=0 and fg,(y(A"))=0=U=L (25)

would be implemented in terms of the “pure
modulus” concept discussed in Egs. (7), (8) whose
solution® is given by y = ¢%.

If these requirements are fulfilled, we would have an
So-dependent gauge-fixing condition, without copies on
each local sector V(S) of the partition of {A, }. As in other
gauge-fixing procedures, the main idea is not to arrive at a

closed expression for the gauge-fixed field Aﬁ'f' This could
only be done for some specific cases. In fact, the objective
is to properly quantize YM theory. Here, we shall briefly
comment about the above requirements, relating them with
the quantization procedure introduced in Ref. [17]. A
detailed analysis will be developed in the next sections.

Regarding item 1, the natural regularity condition
is to consider continuous single-valued auxiliary fields.
In addition, as the gauge fields A, with finite YM action are
asymptotically pure gauge, the natural boundary condition
is that y is covariantly constant at infinity,

D,y — 0 when |x| = co. (26)

This is consistent with the equations of motion if y(x) —
w(x) € M in this limit, where M is the vacua manifold of
Saux- In Ref. [17], starting from the pure YM partition
function,

Zym = / [DA,Je S, (27)

or the YM correlations, we introduced auxiliary fields
satisfying Eq. (4) by means of an identity

’In general, a relation between tuples of the form given in
Eq. (6) shall be simply denoted by y = ¢5.

2
1= / Dy det( O S )5(553‘"‘), (28)
oy 16y oy
in the integrand of the A, path-integration. Given A,, to
correctly implement this identity, the argument of the
o-functional must have a unique zero, and the quadratic
operator in the determinant must be positive definite. This
is nothing but the uniqueness requirement, which is met by
the regularity and boundary conditions discussed above. In
addition, the positivity of the quadratic form is related to
solutions y(A) with minimum auxiliary action.

Now, the manifold M must be nontrivial, that is, S,
must be constructed with an appropriate spontaneous
symmetry breaking (SSB) pattern. If not, y/(A) could easily
take values close to zero in a spacetime region, and the
condition (24) in item 2 would be violated. In other words,
we need w(A) to be nontrivial almost everywhere to be able
to extract information from it. Indeed, injectivity will be
favored if points  in M satisfy (24), which corresponds to
require an auxiliary action with an SU(N) — Z(N) sponta-
neous symmetry breaking (SSB) pattern. For this to happen,
a minimum value of Ny = N flavors is needed (see Sec. IV).
In this case, M=SU(N)/Z(N)=Ad(SU(N)), where
Ad(-) stands for the adjoint representation, and SU(N) acts
transitively on this manifold. Then, for a univocally defined
polar decomposition (item 3), the asymptotic boundary
condition would be

- N

w(x) = w(x) =u®> when |x| > oo, (29)

where u is the pure modulus tuple in M and S = S(x) is
only defined at infinity by

A, — 850,57 when |x| > . (30)

Next, to represent the YM quantities in terms of a partition in
the local sectors V(S), we introduced a second identity in
the integrand of Eq. (28)

1=,
So

S =US,, (31)

Iy, = / DUIS(f5()) det(J ().

where J(q) is the Fadeev-Popov operator associated to the
condition (25). According to item 3, the characteristic
function 1g is nontrivial on fields of the form y = q°,
f(g) =0. As v is single-valued, when we get close to the
defects of S, the fields accompanying Lie algebra compo-
nents rotated by S, must tend to zero. When restricted to
V(o). in order for the left-hand side of 1, in Eq. (31) to be
one, there should be a unique U that solves f(y) = 0. This
is expected to be addressed by the consideration of the
SU(N) — Z(N) SSB pattern and a good definition of polar
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decomposition with a univocally defined phase (and
modulus).

Let us analyze some possibilities for the auxiliary action
Saux in Eq. (18), initially focusing on the SU(2) case. As
Ad(SU(2)) = SO(3), the group action on an adjoint scalar
field can be pictured as an orthogonal rotation of a three-
component vector. Then, noting that any vector is left
invariant by an SO(2) subgroup of rotations, we clearly see
that it is not possible to produce SU(2) — Z(2) SSB with a
single scalar field. The situation is different if we consider
two adjoint scalar fields

S = / (D D) + (D Dyrs) +V(w12)).

(32)

In this case, if the two vectors are linearly independent, it is
clear that there will be no set of continuous transformations
that leave them invariant. However, the potential must be
chosen carefully. Asymptotically, the scalar fields should
tend to M. It is therefore important that we choose V so as
the field components of the tuples in M are linearly
independent vectors. If we choose

Vi) =4 (wryn) =0 + h((yews) —v°)% (33)

pathological configurations satisfying y; =y,, with
(wi,w1) = v, will belong to M. They are left invariant
by rotations with axis ;. This can be fixed by adding
the term (y,y,)? (see Ref. [45]. Then, M will consist
of two orthogonal vectors which are only invariant by
Z(2) c SU(2) discrete transformations. Had we added
{[wi,wal, [w1,w,]) instead, the pathology would persist.
In general, among the interesting possibilities is the color-
flavor symmetric action containing N> — 1 SU(N) adjoint
scalar fields y; € 8u(N), I = 1,...,N?> — 1, and auxiliary
potential

2
U K
Vax = 5 W) + §f11K<l//1’l//J Ayg)
A 2
+7 (wa A ) (34)
where we introduced the notation A A B = —i[A, B]. In this

case, the tuple w(A) would be obtained by solving the
equations

D*(A)y; =i +f" gy Apg+awg Ay Awg). (35)

As argued in [46], this potential admits SU(N) — Z(N)
SSB, and is thus a good auxiliary action candidate (18) for

general SU(N). Indeed, V,, is minimized by tuples which
are rotated Lie basis, satisfying Eq. (20), with

2 2
U:—ij: £ _/,t_‘
22 24 A

V. PROPERTIES OF THE
YANG-MILLS SECTORS

(36)

In this section, we provide explicit examples of gauge
field configurations belonging to nontrivial sectors labeled
by center vortices. Then, we show that the procedure allows
us to identify more general sectors labeled by non-Abelian
d.o.f.. These are not related to ambiguities, but are in fact
physically inequivalent possibilities located at the same
center-vortex guiding centers.

A. Some sectors labeled by a guiding center

Let us start with some general remarks about thick
center-vortex configurations of the form

A, =ga(x)0,xp-T, p-T=p,T,

where y is a multivalued angle when we go around some
closed surface Q (guiding center), the elements T,
(g=1,...,N—1) are Cartan generators of 8u(N), and
a(x) is a scalar profile that goes to 1 at infinity. In principle,
this profile could be any smooth function. However,
regularity conditions must be imposed on a(x) to prevent
singularities in A, and the associated F,. First of all,
a(x) =0 at Q, otherwise A, would not be well defined
there. Next, we evaluate

(37)

F,, = (0,a0,y —0,a0,x)p-T + a(x)[0,.0,]xp-T. (38)

We have [0,,0,]y =0 everywhere except at Q, where
a(x) = 0, so that we can disregard this term. When probing
the behavior of a(x) at points very close to Q, we can take
x = @, the angle of polar coordinates, with the z—¢ plane
taken as the tangent plane passing through the nearest point
xo € Q. Consequently

1 1
Z <F/4w F;w> = Eﬂ 'ﬁ(auaaﬂaau)(apx - (a;taa#)()z)

= 5B POa¥a=(p-Vap).  (3)

If we expand a(x) = aV(p,z,t)p +aP(p,z,1)p*> + ...,
we must impose a(l)((p, z,t) = 0 or, otherwise, the action
would be infinite due to the divergence of (F,,, F*) near
Xo- In other words, on very general grounds, both a(x) as
well as its derivative in the local p direction should vanish at
every point of Q. In particular, this excludes thin-vortex
configurations, as they are associated to an infinite Yang-

Mills action density. Thus, within our framework, typical
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calculations of the partial contribution Z g, to the Yang-
Mills ensemble will consist of path-integrals with regularity
conditions at the center-vortex guiding centers. This prob-
lem is similar to the computation of a Casimir energy, but
with conditions imposed on surfaces with higher codimen-
sion d = 2. In Ref. [47], the dynamical Casimir effect
associated to a moving Dirichlet point was discussed for
d=1,2,3. The case d > 2 was found more subtle to deal
with, as it is necessary to renormalize the coupling to
obtain a finite effective action for the particle. Codimension
d =2 is particularly interesting as the coupling acquires
dependence on an arbitrary mass scale y. In this case, it was
found that the effective action contains a term proportional
to %, u being an unitary tangent vector to the particle’s
trajectory. If we interpret the nontrivial trajectory of the
particle as a curved vortexlike object, this term would be
associated to stiffness. It would be interesting to generalize
this calculation to gauge theories, This could allow to make
contact with the observed properties of center vortices in
the lattice, which display stiffness and tension terms
[32,48,49]. It is also worth noting that investigations
regarding quantum corrections to the effective action of
a thin center-vortex were carried out in Ref. [33]. In
particular, the one-loop correction to the thin vortex energy
was shown to vanish for integer fluxes, for a particular
choice of self-adjoint extension of the operator accompa-
nying the fluctuations. The physical determination we are
proposing here is different, so that the partial contribution
of a center-vortex sector should be reexamined.

B. Antisymmetric center vortices with charge k

According to Eq. (31), if there is a regular transformation
U € SU(N) such that

[S5M U (0w (x)(A) U (x)So. ) =0, Vx, (40)

where u; =T, then A, € V(S)). In particular, g,(x)(A) =
S U (x)y;(x)(A)U(x)S, must be single-valued. To pro-
ceed, we consider a class of configurations with cylindrical
symmetry

AP = ag(p)0,ppY - T,

where p, ¢ are the radial and angular coordinates (indices
between parenthesis are not summed). The (N — 1)-tuple 5~
is proportional to the weight of the k-antisymmetric
representation: gf =2N Y% | @, k =1,...,N — 1, where
o' are the weights of the fundamental representation.
The profile ay(p) satisfies the regularity conditions
ar(p— o) =1, a(p=0)=0. The first condition
implies that these are in fact thick center-vortices, as they
contribute a center element to the kth power for large
enough Wilson Loops that link them. In this case, w(A) was
obtained in Ref. [50], and is given by

k k _
p® = hﬁ,,)v(k>T,,v(k1>, (41)
k k k _
W((I) = l//f)) = h(<1 )V(k) Tav(kly (42)
Vi = e, (43)

where the profiles a, h,),, h,, satisfy scalar equations, which
were solved numerically for SU(N). We now proceed to
show that this solution satisfies Eq. (40), with U = L. This
implies that the gauge field already satisfies the gauge
condition. It should be noted that, as expected, it is a regular
configuration, even though the associated defect V) is

not. As a first step, notice that [wgk)(x),u}/(” (x)] =
k - k . .
vw?) (X)V (1) (x) [TI,TJ]V(kB(x). As wﬁj)(x) is symmetric,

this vanishes for all x. Finally, since h((,k) (0) =0, for
a-pF+0, the fields are single valued. Therefore, the
configuration A,(,k) contributes to the sector Vék) for all
values of the parameters consistent with SSB. Additionally,
as the profiles y/y}) do not have other zeros, the configu-
ration cannot contribute to a sector Vi = e%#T  if the
guiding-center of y’ is not located in the plane p = 0.
Moreover, for each k, the set of roots {a,} that satisfy « -
p* # 0 is different. To see this, consider, without loss of
generality, that k > k. Then, for p < k we have

ﬂk . ak/P = —1’ (44)

B -, = 0. (45)

Since hy, (0) # 0, the solution l//Ek/>
the sector V), as it will not be single valued in the p = 0

plane. Similarly, wgk)

qg>FK

will not contribute to

will not contribute to Vy, as for

P ap, =0, (46)
ﬂ(k/) . (Z(k/)q =1. (47)

Therefore, the phases V ;) represent physically inequivalent
center-vortex configurations that are located around the
same points in spacetime (they have the same guiding-
centers).

C. Non-Abelian degrees of freedom

In non-Abelian models with spontaneous symmetry
breaking, vortices can have an internal orientational moduli
[51-53]. In our case, although we are dealing with a pure
gauge theory, a similar situation occurs when defining the
different sectors. As discussed in Ref. [32], the multipli-
cation of a general defect S, by a regular phase U(x) €
SU(N) on the right could yield a physically inequivalent
label. For S, = €7, the new configuration is given by
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A, = aiS9,87' = SA,S7" +i89,57",
A, =(1-a)is'9,s (48)

S =Ue/Ty-1, (49)

while the associated solution can be written in the form
ws = Sp,S~!, where U and {, are single-valued and
regular. Using

$7'9,8 = l~]e_""’ﬁ'Tl~J_l(9ﬂl~]ei¢ﬂ'Tl~]_]
+i0,0Up - TU" + 00,07, (50)

S_I(D/A(A)Dﬂ(A)l//A)S = Dl/_/A + zAu AN aMlZ/A
+ 0, A, ANy
+ A, A (A, Ary), (51)

and the regularity conditions of 4 and a(x) to expand

WA= 1/7540) + l/'/gl)p + .., alx)=aVp4+aPp? + ..., we

see that the term of order p=2 in Eq. (51) is
920 (0) 0w (0)
%2‘ —2X A A

Op Op
X=0p-TU . (52)

+XAEAGY

~—

’

Since 4 is single-valued and regular, the zeroth order term
-~ (0)
A
since the force ’;‘%‘ has no term of order p~2, at the guiding

in the p-expansion cannot depend on ¢. In addition,

center it must be verified
% 5 - (0)y
XANXAw,)=0. (53)
(0)

Taking the scalar product with %, ’ and using the positivity
of the metric, we get,

xAapl =o, (54)

which implies U-dependent regularity conditions on the
components of 4 that do not commute with X. In this way,
even when considering a k = 1 fundamental center-vortex
with a given guiding-center, we showed that there are gauge
field configurations that belong to a continuum of physi-
cally inequivalent sectors of the Yang-Mills theory. These
are genuine non-Abelian degrees of freedom that must be
integrated in the YM ensemble.

VL. INFINITESIMAL INJECTIVITY OF y(A)

In this section we shall see that injectivity is related to the
positivity of the operator introduced in the identity of
Eq. (28), and to the absence of nontrivial gauge trans-
formations that leave invariant the auxiliary fields. Then,

we show that the functional is injective for typical con-
figurations of the vortex-free sector. A particular example
in the one-vortex sector is also provided.

A. Conditions for injectivity

The equations of motion originated from the auxiliary
action X =46S/6y is a functional of y and A,
S = S(I/I,Aﬂ>, and it is invariant under an infinitesimal
gauge transformation, i.e., 60X = 64X + 6, X = 0, with

a 5 a 5
5AE/5A”W, 5,,,5/51/]1 51//7 (55)

Thus, by acting with a variation 6,, on S, we should get the
corresponding solution to another gauge field on the same
orbit, AY. Then, we should study if

— 627‘9 bmn gm n
= / dy 5w7(x)y/§(y)f " (y)
=0 (56)

has nontrivial solutions. We may multiply this equation by
famn'gm' (x)y (x) and integrate over x to arrive at

_BS  ateb(y) =
[ st sy ) o

vi(x) = fEm () (x) = (E(x) Awi(x))e. (57)

&
S () ()
must be positive, as was already required for the identity in
Eq. (28) to be well-defined. Therefore, nontrivial solutions
for (7) are given by

Since ¢ is a minimum of S, all the eigenvalues of

v§ = oy = 0. (58)

We see that the lack of injectivity is associated to the
existence of nontrivial gauge transformations that leave y;
invariant. By using the definitions ¥ = &, X = &AM,
M| pe = if4B€, we can rewrite condition (58) for our
choice of auxiliary action [Eq. (34)] as

X = 0. (59)

For nontrivial gauge transformations, the solutions to
Eq. (59) are related to the existence of zero-modes for
Y. Therefore, we conclude that a lack of infinitesimal
injectivity would be associated to configurations that
satisfy detW¥ = 0.
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B. Vortex-free sector

For the vortex-free sector, in the limit of large v, we
expect that ¥ = vl 4 ¢, where ¢ is a small matrix. Defining
b(e) = det (vI + €), we must show that b(e) # 0 for small
€. By expanding it, we may write

dg

b(e) ~b(0) + 5%

€. (60)

Since b(0) = det vl = v ! is a finite (and large) value,
we may conclude that the only solution to Eq. (59) in this
regime is X = 0. Hence, on the vortex-free sector, injec-
tivity is ensured.

C. Sectors with center-vortices

The argument of the vortex-free sector cannot be
extended to sectors labeled by vortices, as ¥ will neces-
sarily be far from the identity near their guiding-centers. We
may, however, consider a particular example for SU(2).
The simplest case is the sector labeled by an antisymmetric

vortex with charge k = 1. Then, as f = V2, we have

So = eV2T1| where ¢ is the angle of cylindrical
|

0
—&3h(p) cos(p) — &h(p) sin(gp)
—&3h(p) cos() + & h(p) sin(gp)

For p # 0, this gives £, = &, = &3 = 0. The only problem-
atic region is the plane p = 0, which is a region of null
measure in R*. The gauge transformations that would leave
Y invariant, thus leading to the lack of injectivity, should be
different from the identity only in this plane. Such trans-
formations are not continuous, so they can be disregarded.
The functional w(A) is therefore infinitesimally injective in
the one-vortex sector for this particular example.

VII. A POLAR DECOMPOSITION WITHOUT
INFINITESIMAL COPIES

As discussed in Sec. IV, the injectivity of w(A) does not
guarantee that the gauge-fixing is free from copies. We still
need to show that, for all sectors S,

Fs,(w(A) = f5,w(AY)) =0 > U=L  (65)

‘We shall see that this condition is related to the absence of
zero modes of the operator introduced in the identity of
Eq. (31). For instance, to analyze Eq. (65) in the vortex-free
sector, we must show that if

(g: A TP, = f*""qf =0, (66)

coordinates. For SU(2), the solution w(A), when A is a
minimum of the action as well, is known to be [54]

w1 =hi(p)T,
ll/a] = h(p)SOTalSalv
Wa = h(p)SoTe Sy (61)

In this case, there is only one root a; = % satisfying
a; - f =1, and the following relations hold

SoT o, Sy = cos(p)T,, —sin(p)T g,
SOT(i] Sal = COS(¢)T(11 + Sin((p)T(il . (62)

This implies the following ¥ matrix:

hi(p) 0 0
0 h(p)cos(p) —h(p)sin(p) .  (63)
0 h(p)cos(p)  h(p)sin(e)
Now, the condition (59) implies
hi(p)és hi(p)é,
&ih(p)sin(g)  &ih(p)cos(p) | = 0. (64)
=& 1h(p)sin(e) & h(p) cos(@)

then there is no gauge transformation with nontrivial
parameters &%, such that

fa]yfanmq;t(:m =0. (67)
Of course these are just necessary conditions that a
problematic tuple should satisfy, as g; should also mini-
mize the auxiliary action (34). These algebraic conditions
(66), (67) can also be written by using the generators in the
adjoint representation:
Ad(T4)|pe = Mylpe = if**€, (68)
and of the matrix
Q|Ia = q(Il (69)
Then, Eqgs. (66) and (67) become, respectively,
Tr(M,Q) =0, (70)
Tr(M,M,Q)&" = 0. (71)

We may write these conditions as
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JAB&B — 0’ JAB = Tr(MAMB Q),
and conclude that copies are associated with configurations
having detJ = 0. In fact, in Ref. [17], the operator J is
introduced in the Yang-Mills partition function by means of
the Fadeev-Popov procedure [see Eq. (31)]. It is therefore
expected that copies are related to zeros of this determinant.
Let us start by analyzing the above equations for SU(2).
In this case, fABC = %, and the matrices M and X thus

read

0 Q 0 0 -5
M=10 0 51| wMmMy=[0 0 o0 |,
0 -5 0 S0 0
0 50
0 0 0
0 5& —5&
X=M=|-5& 0 el (73)

ER )

The pure modulus condition (70) implies that Q is a
symmetric matrix, and thus can be parametrized as

On Qi 0O
Q=1 Qi 0On 0 (74)
Qi3 0O 0O
The equation for copies (71) then reads
J“hé:b =0,
O»n + 033 -0 -013
J= -0 O + 033 -0 s
-013 -0 O+ 0x»
51
E=| & (75)
53

In order for the system (75) to have a nontrivial solution,
the determinant of C should be 0 (this is a necessary
condition). This yields

detJ = (Qxn + 033)(Q11 + 033)(Q11 + 02)
=2012023013— 0%, (011 + 02) — 035(02 + 033)
- 0%(Q11 + 033) =0. (76)

A. Study of copies in the vortex-free sector

In the vortex-free sector, for the general group SU(N),
the gauge-fixed functional ¢;(A) satisfies

q1(A) A up =0, (77)

q;(A) = Ty, X = 0.

(78)

If there is a copy, then there exists a gauge transformation
U(x) such that

q7 (A) Aup =0, (79)
Ux) =1, X > 0. (80)

For infinitesimal transformations, Eq. (80) reads
ferfemgpEn = 0. (81)

In the vortex-free sector, the boundary condition of Eq. (78)
will imply (on the limit of large v) that the fields Q are close
to ol everywhere, ie., gf = Y + €{. Equation (81) thus
becomes

57 +fa1yfan;n§n€;1n — 0, (82)

ém(ém}/ _'_falyfanme;z) =0. (83)

This yields a system of N?—1 linear equations in the
variables &, with coefficients that will depend on €{, i.e.,

(84)

where M is the matrix of coefficients. For this system to
have a nontrivial solution, a necessary condition is
k(e)=detM(e) = 0. (85)

Since k(¢) is polynomial on the infinitesimal parameters €,
we may approximate:

€d. (86)

As M(0) is simply the (N> — 1) x (N? — 1) identity matrix,
we have k(0) = 1, a finite value. Therefore,, in the large
v-limit, there are no Gribov copies for the dominant
configurations in the vortex-free sector.

B. Study of copies in a general sector

In a general sector labeled by a defect S, the functional
y(A) satisfies
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SSaux

=0. 87
5, (87)

For a general A in this sector, y will be of the form
w; = USpq;S;'U™!, with U regular. The gauge-fixed A,
will be associated to ¢; = Syq;S;", and should satisfy

i(A) Amp =0, (88)
= vST1Sy", (89)

Ci(A) = vSo TSy, X — oo. (90)

If there is a copy, then there exists a gauge transformation
U(x) such that

CY(A) Amp = (USoqiS5' U™ A ST S5t =0, (91)

Ux) > 1, X = 0. (92)

We may write condition (91) in terms of ¢;:
(S5 USoqy(S5'USo)™) Aup =0, (93)

In terms of the matrix Q defined in the previous section,
this is

R(S5'USy)Q = Q. (94)

with Q, Q' being pure modulus matrices. By defining
U= S5'US,, we arrive at the conditions that problematic
matrices Q should satisfy:

R(0)0 =0, (95)

Ulx) > 1, X — 00. (96)
An important fact that follows from the definition of U is
that if U is infinitesimal, so is U. This is so because
So € SU(N), so that it preserves the norm of the vector &.
Specifically,

U=T1+T" > U=1+ (&)"T4,
& = R(So)¢. (97)

The equation for infinitesimal copies is therefore the
same in all sectors. However, in a general sector there is no
reason to believe that g; will be close to vT; everywhere,
since some of its components must go to zero at the guiding
centers of the vortices. Gauge transformations with param-
eters that are nonzero only in these regions surrounding
the guiding-centers of the vortices could, in principle,
yield copies. However, as v grows, these regions become
increasingly small.

An example of configuration that could yield copies is
when A, = a(p)d,pp - T, belonging to the sector labeled
by a vortex along the z axis. As discussed in (61), for
SU(2), the solution for y(A) is known. It is of the form

Y= huSoT[SEl- (98)
This implies
qr = hyT;. (99)

The associated Q—matrix is symmetric, as required by the
gauge fixing. For this to admit infinitesimal copies, Eq. (76)
should be satisfied at some finite region. The necessary
condition for the existence of copies is [Eq. (76)]

2h(hy + h)?> = 0. (100)
Since the profiles h;(p) and h(p) are positive for all p > 0
(see Ref. [54]), it is easy to see that this condition is only
satisfied at p = 0, which is a region in R* of null measure.
The transformations that lead to copies are not continuous,
as they should be nontrivial only in this plane. Then, they
should not be considered as associated to gauge trans-
formations. This configuration, therefore, does not admit
Gribov copies.

VIII. CONCLUSIONS

In this work, we studied the consistency of a recently
proposed procedure to fix the gauge on different sectors of
the gauge-field configuration space {A,}. Unlike the usual
procedure, based on a unique gauge-fixing condition and a
restriction to the first Gribov region (to avoid infinitesimal
copies), our proposal is based on the consideration of
different local conditions on the infinitely many sectors of
apartition of {A, }. These sectors are labeled by oriented and
nonoriented center vortices, and the Yang-Mills path-inte-
gral measure includes a sum over partial contributions. Our
procedure is suited to detect the microscopic features of
center vortices in the continuum, which in global gauge-
fixing conditions, like the Landau gauge, are effectively seen
signaling the breaking of the perturbative regime at the
Gribov horizon [40,55]. Each partial contribution can be
associated to a problem written in a form closer to the usual
one. Here, along the way, we clarified the relevance of the
regularity conditions to solve the auxiliary field equations
and provide a physical determination of center-vortex
sectors. In principle, this is different from considering a
thin or thick center-vortex background plus quantum fluc-
tuations. Instead, it is based on path integrating over gauge
and auxiliary fields with given singular phases and regularity
conditions. We provided explicit examples of thick center-
vortex configurations belonging to nontrivial sectors. We
also discussed the existence of non-Abelian degrees of
freedom, which are related to physically inequivalent labels
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with the same guiding centers. Finally, we showed the
absence of Gribov copies for typical configurations of the
vortex-free sector and for the simplest example in the sector
labelled by a center vortex. This points to the idea that a
possibility to deal with the Singer’s obstruction to a global
gauge-fixing is to approach Yang-Mills theories as an
ensemble of center-vortex degrees.

In a future work, it would be interesting to establish the
absence of copies for more general configurations of the
oriented and nonoriented center-vortex sectors, and for
more general values of the gauge-fixing parameters.
This result, together with the all-orders perturbative renor-
malizability of these sectors, are important steps toward

the establishment of the Yang-Mills ensemble in the
continuum.
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