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We investigate the contributions of the hadronic structure of the neutron to radiative OðαEe=mNÞ
corrections [or the inner OðαEe=mNÞ RC] to the neutron beta decay, where α, Ee, and mN are the fine-
structure constant, the electron energy, and the nucleon mass, respectively. We perform the calculation
within the effective quantum field theory of strong low-energy pion-nucleon interactions described by the
linear σ model with chiral SUð2Þ × SUð2Þ symmetry and electroweak hadron-hadron, hadron-lepton, and
lepton-lepton interactions for the electron-lepton family with SUð2ÞL × Uð1ÞY symmetry of the standard
electroweak theory [Ivanov et al., Phys. Rev. D 99, 093006 (2019)]. We show that after renormalization,
carried out in accordance with Sirlin’s prescription [Sirlin, Phys. Rev. 164, 1767 (1967)], the inner
OðαEe=mNÞ RC are of the order of a few parts of 10−5–10−4. This agrees well with the results obtained in
[Ivanov et al., Phys. Rev. D 99, 093006 (2019)].
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I. INTRODUCTION

According to Sirlin [1,2], the contribution of the had-
ronic structure of the neutron to the radiative Oðα=πÞ
corrections [or the innerOðα=πÞ radiative corrections (RC)
[3] ] to the neutron lifetime is a constant, calculated to
leading order (LO) in the large nucleon mass mN expan-
sion, where α is the fine-structure constant [4]. Because of
the divergent contribution, this constant has been removed
by renormalization of the Fermi coupling constant GV and
the axial coupling constant gA [1,2]. This result has been
confirmed by Shann [5] for the calculation of the Oðα=πÞ
RC to the correlation coefficients of the neutron beta decay
with a polarized neutron and unpolarized electron and
proton (see also [6–8]). However, as has been shown in [9],
the contributions of the inner Oðα2=π2Þ RC to the neutron
radiative beta decay should have a nontrivial dependence

on the electron and photon energies, even these RC are
calculated to LO in the large nucleon mass mN expansion.
Recently [10], we have calculated theOðαEe=mNÞ RC as

next-to-leading order (NLO) corrections in the large
nucleon mass mN expansion to Sirlin’s Oðα=πÞ RC [1]
(or to the outer model-independent RC [3]), where Ee is an
electron energy, We have carried out the calculation within
the effective quantum field theory of strong and electro-
weak low-energy interactions LσM& SET. In this theory,
strong low-energy pion-nucleon interactions are described
by the linear σ model (LσM) with chiral SUð2Þ × SUð2Þ
symmetry [11–13]. For the description of electroweak
hadron-hadron, hadron-lepton, and lepton-lepton inter-
actions for the electron-lepton family, we have used the
standard electroweak theory (SET) with SUð2ÞL ×Uð1ÞY
symmetry [14]. This effective quantum field theory is some
kind of a hadronized version of the Standard Model (SM)
[4,15]. From a gauge invariant set of the Feynman diagrams
with a one-photon exchange, where the contribution of
strong low-energy interactions is presented by the axial
coupling constant gA only (see Fig. 7 in Ref. [10]), we have
reproduced outer Oðα=πÞ RC [1] and calculated NLO
OðαEe=mNÞ terms. This confirms Sirlin’s confidence level
for this kind of OðαEe=mNÞ RC.
We have calculated the contributions of strong low-

energy interactions to OðαEe=mNÞ RC within the LσM in
the limit mσ → ∞ of the σ-meson mass. In such a limit and
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in the tree-approximation, the LσM reproduces all results of
the current algebra in the form of effective chiral
Lagrangians of pion-nucleon interactions with nonlinear
realization of chiral SUð2Þ × SUð2Þ symmetry and differ-
ent parametrizations of the pion field [16–18].
For the exponential parametrization of the pion field, the

Lagrangian LLσMjmσ→∞ of the LσM, taken at mσ → ∞,
reduces to the Lagrangian of the chiral quantum field
theory with the structure of low-energy interactions agree-
ing well with Gasser-Leutwyler’s chiral perturbation theory
(ChPT) or the heavy baryon chiral perturbation theory
(HBχPT) [19–36] with chiral SUð2Þ × SUð2Þ symmetry
(see, for example, Ecker [24]). We denote the Lagrangian
of the HBχPT as LHBχPT. At the tree level, the Lagrangians
LLσMjmσ→∞ and LHBχPT differ only by the value of the

bare axial coupling constant gð0ÞA . Indeed, it is gð0ÞA ¼ 1 in

LLσMjmσ→∞ and gð0ÞA ≠ 1 in LHBχPT (see also [16]).
However, as has been shown in [10], a deviation of the
axial coupling constant from unity gA > 1 can be obtained
in the LσM in the one-hadron-loop approximation. We get
gA > 1, taking the limit mσ → ∞ and renormalizing the
contribution of the hadronic axial-vector current. In turn,
hadron-loop corrections (or chiral-hadron-loop correc-
tions), calculated in the HBχPT, lead to appearance
effective low-energy interactions proportional to low-
energy constants (LECs) [19–36]. These LECs play an
important role for the correct description of the dynamics
of low-energy processes within the HBχPT [19–36].
Unfortunately, LECs do not appear in the observables of
low-energy processes described by the LσM. Nevertheless,
fortunately, it turns out that the LECs of the HBχPT do not
contribute to the inner OðαEe=mNÞ RC. This should in
principle allow us to apply the LσM for the description of
strong low-energy interactions in the inner OðαEe=mNÞ
RC. To confirm this, we propose to discuss the studies
carried out by Alvarez et al. [32] and Ando et al. [6]. We
will focus our attention on using them to analyze the
applicability of the LσM to the computation of the inner
OðαEe=mNÞ RC.
In our study of the inner Oðα=πÞ and OðαEe=mNÞ

RC to the neutron beta decay the contributions of strong
low-energy interactions, calculated in the LσM, are
proportional to g2πN and g2πN=mN , where gπN is the pion-
nucleon coupling constant. Alvarez et al. [32] have
analyzed the amplitude of the low-energy πN scattering.
They have compared the contributions of the LσM with
chiral SUð2Þ × SUð2Þ symmetry, taken in its extended
version—the extended linear σ model (ELσM) and the
HBχPT. Recall that the ELσM differs from the LσM by the
phenomenological local current-current interaction [12]
and the interaction proportional to the phenomenological
parameter ε3 [37]. The local current-current phenomeno-
logical interaction is intended to introduce gA > 1 into the
LσM at the tree level. The parameter ε3 defines a correction

to the Goldberger-Treiman relation [38] and leads to a
deviation of the divergence of the hadronic axial-vector
current from its canonical form [11].
As has been shown by Alvarez et al. [32], the

contributions of the ELσM and HBχPT coincide fully
at the tree approximation (see [13,28]). Then, taking
results obtained by Alvarez et al. [32] in the limit mσ →
∞ and setting ε3 ¼ 0, one may show that the difference
between the contributions of these two theories appears
only in the terms dependent on LECs. These terms are
proportional to g2πN=m

2
N and g2πN=m

3
N , respectively. Since

in the neutron beta decay we compute the contributions
of strong low-energy interactions proportional to g2πN and
g2πN=mN only, the problematic terms g2πN=m

2
N and

g2πN=m
3
N , which can depend on LECs, do not appear

at all.
A correctness of the application of the LσM without

LECs to the computation of the innerOðαEe=πÞ RC can be
also confirmed by the results obtained by Ando et al. [6].
They have studied the Oðα=πÞ RC and the OðEe=mNÞ
corrections, caused by weak magnetism and proton recoil,
to the neutron beta decay within the HBχPT. As has been
shown by Ando et al. [6], only two LECs, namely
ðα=2πÞeRV and ðα=2πÞeRA, are needed for the consistent
analyzes of these corrections. The value of ðα=2πÞeRV has
been fixed in terms of the innerOðα=πÞ RC, induced by the
γW− box and calculated by Marciano and Sirlin [39]. In
turn, the difference of LECs ðα=2πÞðeRA − eRVÞ has been
removed by renormalization of the axial coupling constant
gA. Then, no LECs proportional to 1=mN have been
found in [6] for the calculation of RC to the neutron
lifetime and correlation coefficients of the neutron beta
decay. This should indicate that the inner OðαEe=mNÞ RC,
which we calculate in this paper within the LσM& SET,
should not contradict the results, that can be, in principle,
obtained describing strong low-energy interactions within
the HBχPT.
This paper is addressed to the calculation of the con-

tribution of the hadronic structure of the neutron to the
inner Oðα=πÞ and OðαEe=mNÞ RC to the neutron beta
decay. We calculate them in the two-loop approximation
within the effective quantum field theory LσM& SET [10].
The complete set of the two-loop Feynman diagrams is
shown in Figs. 1–4. They are conditioned by one-photon
exchange and the contributions of strong low-energy
interactions, which do not reduce to the axial coupling
constant gA after renormalization [10]. We treat the inner
OðαEe=mNÞ RC as next-to-leading order (NLO) correc-
tions in the large nucleon mass expansion to the inner
Oðα=πÞ RC [1]. They can be observable after the removal
of the inner Oðα=πÞ RC by renormalization of the Fermi
weak coupling constant and the axial coupling constant
(see [1]).
The paper is organized as follows. In Sec. II, we describe

in outline the approach to the analytical calculation of the
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two-loop Feynman diagrams in Figs. 1–4 in agreement with
the applicability of the LσM for the calculation of strong
low-energy interactions. In Sec. III, we define the general
expression for the contribution of the one-virtual photon

exchanges to the amplitude of the neutron beta decay
within the LσM& SET. In Sec. IV, we present the con-
tributions of the inner OðαEe=mNÞ RC (i) to the amplitude
of the neutron beta decay, (ii) to the electron-energy and

(a)

(d)

(g)

(j)

(m)

(p) (q)

(s)

(r)

(n) (o)

(k) (l)

(h) (i)

(e) (f)

(b) (c)

FIG. 1. The two-loop Feynman diagrams of the inner RC with a virtual photon coupled to the hadronic structure of the neutron,
charged decay particles, and the electroweak W− boson.
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(a)

(d)

(b) (c)

FIG. 2. The two-loop Feynman diagrams of the inner RC with self-energy corrections to the virtual charged hadrons.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 3. The two-loop Feynman diagrams of the inner RC, induced by the interactions of the γW−-pair with the ππ and πσ pairs.

(a) (b) (c)

(d) (e) (f)

FIG. 4. The two-loop Feynman diagrams of the inner RC, induced by a virtual photon emitted by virtual hadrons from the self-energy
hadronic corrections to the neutron.
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angular distribution of the neutron beta decay with unpo-
larized massive fermions, and (iii) to the rate of the neutron
beta decay. We show that in the total electron-energy region
me ≤ Ee ≤ E0 the innerOðαEe=mNÞ RC are of the order of
a few parts of 10−5–10−4. In Sec. V, we discuss the obtained
results and perspectives of further development of the
effective quantum field theory of strong and electroweak
low-energy interactions LσM& SET, where strong low-
energy interactions are described by the HBχPT.
In the Supplemental Material [40] in Appendixes A, B, C,

D, E, and F, we give (i) the analytical expressions for the
Feynman diagrams in Figs. 1–4, obtained by using the
Lagrangian Eq. (44) in Ref. [10], (ii) the analysis of gauge
invariance of the Feynman diagrams in Figs. 1–4, and
(iii) the analytical calculation of the Feynman diagrams
using the standard procedure [41–53]. The numerical values
of the structure constants of the innerOðαEe=mNÞ RC to the
amplitude of the neutron beta decay are evaluated by using
Wolfram Mathematica 12.0.

II. THE APPROACH TO ANALYTICAL
CALCULATIONS OF THE FEYNMAN

DIAGRAMS IN FIGS. 1–4

An important role of strong low-energy interactions in
decay processes has been pointed by Weinberg [54]. In this
connection, according to Sirlin [2], the current algebra is a
nice tool for the analysis of contributions of strong low-
energy interactions in the Oðα=πÞ RC to semileptonic and
leptonic decays of hadrons. The method of the current
algebra is model independent. It is based on the use of
equal-time commutators of the hadronic currents and their
divergences imposed by the SUð2Þ × SUð2Þ or SUð3Þ ×
SUð3Þ symmetries of strong low-energy interactions
[55,56] (see also [15]). Indeed, as has been pointed out
by Sirlin [2]: “In fact, a current algebra formulation is
probably our only hope of controlling the effects of the
strong interactions in a clear and logical manner.” He has
shown [2,57] that the contributions of strong low-energy
interactions to the inner Oðα=πÞ RC have the standard
V − A structure [58–60] in the amplitude of the neutron
beta decay.
In our analysis, we treat the inner OðαEe=mNÞ RC as

NLO corrections in the large nucleon mass mN expansion
to the innerOðα=πÞ RC. This causes the inner OðαEe=mNÞ
RC to have the V − A structure as well. To reproduce the
inner Oðα=πÞ RC with the V − A structure and to calculate
NLO corrections OðαEe=mNÞ, we use the leading loga-
rithmic approximation (LLA) (see, for example, [61,62])
for the analytical calculation of the Feynman diagrams
in Figs. 1–4. As has been pointed out by Bissegger and
Fuhrer [62], the linear σ model without a nucleon is
equivalent to the ChPT by Gasser and Leutwyler [19] in
the LLA. The application of the LLA to the calculation of
the inner OðαEe=mNÞ RC within the effective field theory

LσM& SET can also be justified as follows. It is well-
known by example of the bosonization of the extended
Nambu-Jona-Lasinio (ENJL) model [26] that the divergent
parts of the Feynman diagrams or the counterterms pre-
serve fully the symmetry of the dynamical quark system.
Indeed, the effective local Lagrangian of the bound quark-
antiquark pairs, induced by the divergent parts of one-
quark-loop diagrams, preserves the symmetry of the ENJL
quark model [26] with a local four-quark interaction,
invariant under chiral SUð2Þ × SUð2Þ or SUð3Þ × SUð3Þ
symmetries.
Thus, keeping only the divergent contributions of the

Feynman diagrams in Figs. 1–4, we preserve the chiral
SUð2Þ × SUð2Þ symmetry of the LσM. The divergent
contributions of the Feynman diagrams in Figs. 1–4,
calculated by following the standard procedure [41–53]
with the n-dimensional regularization [43–53], are propor-
tional to Γð2 − n=2ÞðQ=m2

NÞ−4þn=Un=2. In this product, Q
is a function of the Feynman parameters, momenta,
and squares of the masses of interacting particles in the
dependence of the structure of the Feynman diagram,
and U is the determinant of the Feynman diagram depend-
ing on the Feynman parameters and the structure of the
Feynman diagram [43,44,51–53]. Then, taking the limit
n → 4 and keeping the divergent contributions proportional
to Γð2 − n=2Þ, we get ðΓð2 − n=2Þ − 2lnQ=m2

NÞ=U2.
Expanding ðΓð2 − n=2Þ − 2lnQ=m2

NÞ=U2 in powers of
kn · q=m2

N , kn · ke=m2
N , and m2

N=M
2
W and integrating

over the Feynman parameters, we obtain the leading
order contributions, determined by ðΓð2 − n=2Þ−
2lnQ=m2

NÞ=U2jq¼ke¼0, and the NLO contributions propor-
tional to kn · q=m2

N , kn · ke=m
2
N , and m2

N=M
2
W . The sum of

these contributions preserve the V − A structure of the
amplitude of the neutron beta decay (see Appendix F
of [40]).

III. GENERATING FUNCTIONAL OF INNER
RADIATIVE CORRECTIONS IN THE
ONE-VIRTUAL PHOTON EXCHANGE

APPROXIMATION

The general expression for contributions to the amplitude
of the neutron beta decay, taken in the one-virtual photon
exchange approximation with a photon coupled to
the hadronic structure of the neutron, is defined by
[10,63,64]

Mðn→pe−ν̄eÞst
¼
�
in; ν̄e

�
k⃗ν̄;þ

1

2

�
;e−ðk⃗e;σeÞ;

×pðk⃗p;σpÞjTei
R
d4xLLσM&SETðxÞjnðk⃗n;σnÞ; in

�
one-photon-approx

;

ð1Þ
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where LLσM&SET is the Lagrangian of the effective quantum
field theory LσM& SET defined by Eq. (44) in Ref. [10],
and T is the time-ordering operator [65].
The wave functions of fermions in the initial and final

states are determined in terms of operators of creation
(annihilation) [65,66] (see also [10,63,64]),

jnðk⃗n; σnÞ; ini ¼ a†n;inðk⃗n; σnÞj0i;�
in; ν̄e

�
k⃗ν̄;þ

1

2

�
; e−ðk⃗e; σeÞ; pðk⃗p; σpÞ

����
¼ h0jbν̄e;in

�
k⃗ν̄;þ

1

2

�
ae;inðk⃗e; σeÞap;inðk⃗p; σpÞ: ð2Þ

The operators of creation (annihilation) obey standard
anticommutation relations [65,66]. The required contribu-
tion of the hadronic structure of the neutron to the inner
Oðα=πÞ RC appears in the two-loop approximation with
one-virtual photon exchange. It is defined by the Feynman
diagrams in Figs. 1–4. Since, as has been shown in [63,64],
the RC to the one-pion-pole exchanges are of the order of
10−9 (see also [67]), we omit them from consideration. The
analytical expressions for the Feynman diagrams in
Figs. 1–4 and their properties under gauge transformation
of the virtual photon propagator are given and investigated
in Appendixes A, B, C, D, E, and F [40]. For the calculation
of the Feynman diagrams in Figs. 1–4, we have used

the standard technique [41–53]. We have carried out the
numerical evaluation of the structure constants of the
analytical expressions for the Feynman diagrams in
Figs. 1–4 with Wolfram Mathematica 12.0.

IV. THE INNER Oðα=πÞ AND OðαEe=mNÞ
RADIATIVE CORRECTIONS

The contributions of the inner Oðα=πÞ and OðαEe=mNÞ
RC are calculated to the amplitude of the neutron beta
decay in Appendixes A, B, C, D, E, and F of [40]. These
corrections are described by the complete set of the
Feynman diagrams in Figs. 1–4. We have given the
analytical expressions for the Feynman diagrams in
Figs. 1–4 in Appendix A in [40]. As we have shown in
Appendix B in [40], this set of Feynman diagrams is
gauge invariant. In other words, it does not depend on
longitudinal polarization states of a virtual photon. The
inner OðαEe=mNÞ RC are obtained as NLO terms for the
inner Oðα=πÞ RC, calculated to LO in the large nucleon
massmN expansion [1,2]. Following [1], we have absorbed
the terms of order Oðα=πÞ by renormalization of the Fermi
weak couping constant GV and the axial coupling constant
gA. As a result, the contribution of the Feynman diagrams in
Figs. 1–4, calculated to NLO in the large nucleon mass mN
expansion and the electroweak W−-boson mass MW
expansion, is given by (see Appendix F in [40])

Mðn → pe−ν̄eÞðNLOÞst ¼ −
α

2π
GV

��
GðVÞ

st
kn · q
m2

N
þHðVÞ

st
kn · ke
m2

N
þ ðGðWÞ

st þ FðWÞ
st Þ m

2
N

M2
W

�
½ūeγμð1 − γ5Þvν̄�½ūpγμun�

þ
�
GðAÞ

st
kn · q
m2

N
þHðAÞ

st
kn · ke
m2

N
þHðWÞ

st
m2

N

M2
W

�
½ūeγμð1 − γ5Þvν̄�½ūpγμγ5un�

�
; ð3Þ

where q ¼ kp − kn ¼ −ke − kν̄ is a four-momentum transfer and Ee=mN ∼ 10−3 and m2
N=M

2
W ∼ 10−4, respectively.

The contribution of the inner OðαEe=mNÞ RC in Eq. (3) agrees well with the assertion that the inner Oðα=πÞ RC do not

depend on the electron energy [1,2]. The structure constants in Eq. (3) are equal to GðVÞ
st ¼ −70.71, HðVÞ

st ¼ 67.75,

GðWÞ
st ¼ 8.94, GðAÞ

st ¼ 41.95, HðAÞ
st ¼ −40.78, HðWÞ

st ¼ 2.10, and FðWÞ
st ¼ −1.64 (see Appendix F in [40]). The Lorentz

structure of Eq. (3) is obtained at the neglect of the contributions of order OðmemN=M2
WÞ ∼Oðkn · q=M2

WÞ ∼
Oðkn · ke=M2

WÞ ∼ 10−7, and OðE2
0=m

2
NÞ ∼Oðm2

π=M2
WÞ ∼ 10−6, respectively (see [40]). We would like to emphasize that

all structure constants in the matrix element Eq. (3) are induced by the contributions of the first class currents [68], which are
G even [69] (see also [66]).
In the rest frame of the neutron and in the nonrelativistic approximation for the proton, the amplitude of the neutron beta

decay with the contribution of the inner OðαEe=mNÞ RC is given by

Mðn → pe−ν̄eÞ ¼ −2mNGV

��
1þ α

2π
ḡstðEeÞ

�
½φ†

pφn�½ūeγ0ð1 − γ5Þvν̄�

þ
�
gA þ α

2π
f̄stðEeÞ

�
½φ†

pσ⃗φn� · ½ūeγ⃗ð1 − γ5Þvν̄� þ…

�
; ð4Þ

where the ellipsis implies the contributions of other terms (see, for example, [8,10]), which we do not take into account here.
The functions ḡstðEeÞ and f̄stðEeÞ are defined in terms of the structure constants as follows:
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ḡstðEeÞ ¼ −GðVÞ
st

E0

mN
þ
	
GðWÞ

st þ FðWÞ
st


 m2
N

M2
W
þHðVÞ

st
Ee

mN
¼ 0.098

�
1þ 0.95

Ee

E0

�
;

f̄stðEeÞ ¼ þGðAÞ
st

E0

mN
−HðWÞ

st
m2

N

M2
W
−HðAÞ

st
Ee

mN
¼ 0.057

�
1þ Ee

E0

�
; ð5Þ

where E0 ¼ ðm2
n −m2

p þm2
eÞ=2mn ¼ 1.2926 MeV is the end point energy of the electron-energy spectrum [70,71]. The

electron-energy and angular distribution of the neutron beta decay for unpolarized massive fermions, taking into account the
RC Eq. (4), is given by

d5λnðEe; k⃗e; k⃗ν̄Þ
dEedΩedΩν̄

¼ ð1þ 3g2AÞ
jGV j2
16π5

�
1þ α

π
ðgstðEeÞ þ 3fstðEeÞÞ þ

�
a0 þ

α

π
ðgstðEeÞ − fstðEeÞÞ

�
k⃗e · k⃗ν̄
EeEν̄

þ…

�

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e −m2

e

q
EeFðEe; Z ¼ 1Þ; ð6Þ

where dΩe and dΩν̄ are infinitesimal solid angles in the directions of the electron and antineutrino three momenta,
a0 ¼ ð1 − g2AÞ=ð1þ 3g2AÞ [70,71], and FðEe; Z ¼ 1Þ is the well-known relativistic Fermi function, describing electron-
proton Coulomb final-state interaction [72,73]. The ellipsis denote the contributions of other terms (see, for example, [8]).
The functions gstðEeÞ and fstðEeÞ are related to the functions ḡstðEeÞ and f̄stðEeÞ as follows:

gstðEeÞ ¼
1

1þ 3g2A
ḡstðEeÞ ¼

0.098
1þ 3g2A

�
1þ 0.95

Ee

E0

�
¼ 0.017

�
1þ 0.95

Ee

E0

�
;

fstðEeÞ ¼
gA

1þ 3g2A
f̄stðEeÞ ¼

0.057gA
1þ 3g2A

�
1þ Ee

E0

�
¼ 0.012

�
1þ Ee

E0

�
: ð7Þ

These corrections depend strongly on the axial coupling constant gA. The numerical values are evaluated for gA ¼ 1.2764
[74] (see also [75]). The rate of the neutron beta decay is defined by the integral,

λn ¼ ð1þ 3g2AÞ
jGV j2
π3

Z
E0

me

�
1þ α

π
hstðEeÞ þ…

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e −m2

e

q
EeFðEe; Z ¼ 1ÞdEe; ð8Þ

where the function hstðEeÞ is equal to

hstðEeÞ ¼ gstðEeÞ þ 3fstðEeÞ ¼ 0.053

�
1þ Ee

E0

�
: ð9Þ

The functions ðα=πÞgstðEeÞ, ðα=πÞfstðEeÞ, and
ðα=πÞhstðEeÞ are calculated at the neglect of the terms of
the order 10−6. In Fig. 5, we plot these functions for
gA ¼ 1.2764. The values of the functions ðα=πÞgstðEeÞ are
ðα=πÞfstðEeÞ are of the same order and of the order of a few
parts of 10−5. An increase of the values of the function
ðα=πÞhstðEeÞ to a few parts of 10−4 is caused by the
hadronic axial-vector current. Its contribution to the neu-
tron lifetime is enhanced by a factor of 3 with respect to the
contribution of the hadronic vector current.
In order to calculate correctly the relative contribution of

the inner OðαEe=mNÞ RC, described by the function
ðα=πÞhstðEeÞ, to the neutron lifetime we make a replace-
ment 1þ… → ζðEeÞ in Eq. (8). We take the correlation
function ζðEeÞ in the form, calculated in [8]. It contains a
complete set of outer Oðα=πÞ RC [1] and the OðEe=mNÞ
corrections, caused by weak magnetism and proton recoil.

In addition, the correlation function ζðEeÞ includes the
contributions of the inner Oðα=πÞ RC defined by ΔV

R and
ΔA

R. They are induced by the Feynman γW−-box diagrams
and calculated to LO in the large nucleon mass mN
expansion in [39,76–81]. Having integrated over the
electron energy, we get

λn ¼ ð1þ 3g2AÞ
jGV j2
π3

ð6; 136 × 10−2 þ 1.18 × 10−5Þ
∝ 1þ 1.92 × 10−4; ð10Þ

where the term 1.18 × 10−5 is the contribution of the
function ðα=πÞhstðEeÞ defining the inner OðαEe=mNÞ
RC in the neutron lifetime. In turn, the relative contribution
of these RC is of the order 10−4.

V. DISCUSSION

We have calculated the inner OðαEe=mNÞ RC, induced
by the hadronic structure of the neutron (i) to the amplitude
of the neutron beta decay, (ii) to the electron-energy
and angular distribution of the neutron beta decay for
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unpolarized massive fermions, and (iii) to the neutron
lifetime. We treat them as NLO terms in the large nucleon
mass mN expansion to Sirlin’s inner Oðα=πÞ RC [1,2],
calculated to LO in the large nucleon mass mN expansion.
For the calculation of the innerOðα=πÞ and OðαEe=mNÞ

RC, we have used the effective quantum field theory
LσM& SET of strong and electroweak low-energy inter-
actions, proposed in [10]. In such an effective quantum
field theory, strong low-energy interactions are described
by the linear σ model (LσM) with chiral SUð2Þ × SUð2Þ
symmetry [11]. In turn, electroweak interactions are
described by the standard electroweak theory (SET) with
SUð2ÞL ×UY symmetry [14,15] (see also [4]). The had-
ronic and leptonic sectors are represented by the nucleon
coupled to pions and the scalar isoscalar σ-meson and the
electron-lepton family, respectively. The application of this
effective quantum field theory to the calculation of the inner
OðαEe=mNÞ RC is well motivated and justified by the
results, obtained in [10].
The contributions of the inner Oðα=πÞ and OðαEe=mNÞ

RC are described in the LσM& SET by the two-loop
Feynman diagrams. They are shown in Figs. 1–4. We have
calculated these Feynman diagrams in the LLA [61,62].
This approximation is justified as follows: (i) the linear σ
model without the nucleon is equivalent to the ChPT by
Gasser and Leutwyler [19] in the LLA (see [62]), (ii) the
leading divergent and finite logarithms preserve the chiral
SUð2Þ × SUð2Þ symmetry of strong low-energy inter-
actions, described by the LσM (see also [26] for bosoniza-
tion of the ENJL quark model), and (iii) the contributions of
the inner Oðα=πÞ and OðαEe=mNÞ RC to the amplitude of
the neutron beta decay have the standard V − A structure in

agreement with [1,2]. Such a V − A structure of the inner
Oðα=πÞ RC has been pointed out by Sirlin [1,2] within the
current algebra approach [55,56]. The latter has allowed to
remove the inner Oðα=πÞ RC by renormalization of the
Fermi weak couping constant GV and the axial coupling
constant gA [1,2].
After renormalization, we have got a set of the inner

OðαEe=mNÞ RC of the order of a few parts of 10−5 − 10−4.
We would like to emphasize that these corrections are
calculated in agreement with the constraints on the appli-
cability of the LσM for the description of strong low-energy
interactions [32,62]. It agrees also with analysis of the
RC in the neutron beta decay, performed in [6] within
the HBχPT.
The inner OðαEe=mNÞ RC are represented by two

functions ðα=πÞgstðEeÞ and ðα=πÞfstðEeÞ in the electron-
energy and angular distribution of the neutron beta decay.
In turn, the contribution of the inner OðαEe=mNÞ to the
neutron lifetime is determined by the function
ðα=πÞhstðEeÞ. It is a linear superposition of the functions
gstðEeÞ and fstðEeÞ, i.e., hstðEeÞ ¼ gstðEeÞ þ 3fstðEeÞ ¼
0.053ð1þ Ee=E0Þ. We have plotted the functions
ðα=πÞgstðEeÞ, ðα=πÞfstðEeÞ, and ðα=πÞhstðEeÞ in Fig. 5.
In the electron-energy region me ≤ Ee ≤ E0, the numerical
values of the functions ðα=πÞgstðEeÞ and ðα=πÞfstðEeÞ are
of the order of a few parts of 10−5. Nevertheless, the
function ðα=πÞhstðEeÞ is of the order of 10−4 and varies
over the region 1.72×10−4≤ ðα=πÞhstðEeÞ≤2.46×10−4.
The contribution of the function ðα=πÞhstðEeÞ, integrated
over the phase volume of the neutron beta decay, is of the
order of 10−5 to the rate of the neutron beta decay. In turn,
its relative contribution is of the order of 10−4.
As has been shown in [82], the inner OðαEe=mNÞ RC

Eq. (7) provide the SM theoretical description of the
neutron beta decay at the level of 10−5–10−4 together
with (i) the OðαEe=mNÞ RC, calculated in [10], (ii) the
OðE2

e=m2
NÞ ∼ 10−5 corrections, caused by weak magnetism

and proton recoil [83], and (iii) Wilkinson’s corrections
[73] (see also [8,84,85]). The theoretical accuracy of these
corrections is of a few parts of 10−6 [82]. Such a SM
theoretical background of the neutron beta decay should be
very important for experimental searches of interactions
beyond the SM [86–88] with experimental uncertainties of
a few part of 10−5 and even better.
Of course, a very challenging extension of our approach

to the calculation of the inner OðαEe=mNÞ RC is the use
of the effective quantum field theory of strong and
electroweak low-energy interactions HBχPT& SET. In
this effective theory, the hadronic part is described by
the HBχPT, which is accepted as an effective low-energy
dynamics of QCD (see, for example, Ecker [24,25]). In
such an effective theory, we could do calculations beyond
the LLA and take into account a variety of Lorentz
structures that differ from the standard V − A structure.
We would like to emphasize that the problem of the

FIG. 5. The RC ðα=πÞgstðEeÞ (red), ðα=πÞfstðEeÞ (blue), and
ðα=πÞhstðEeÞ (green) caused by the hadronic structure of the
neutron, to the electron-energy and angular distribution of the
neutron beta decay, and to the neutron lifetime in the electron
energy region me ≤ Ee < E0. These are next-to-leading order
corrections in the large nucleon mass mN expansion to Sirlin’s
inner RC, which have been absorbed by renormalization of the
Fermi weak coupling constantGV and the axial coupling constant
gA [1].
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reformulation of the effective quantum field theory of strong
and electroweak low-energy interactions LσM& SET,
where the LσM is replaced by the HBχPT, is not straightfor-
ward. We are planning to devote to the analysis and solution
of this problem our subsequent researches.
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