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We propose a soft-breaking mechanism for dark matter (DM) shift symmetry in a class of composite
dark matter models, where both DM and the Higgs boson arise as pseudo Nambu-Goldstone bosons from
novel strong dynamics. Our mechanism is utilized to suppress the nonderivative portal coupling between
the Higgs boson and DM particle, which can evade the stringent bound of current DM direct detection
experiments. Otherwise, this nonderivative portal coupling would naturally be at the same order of the
Higgs quartic, rendering this class of models under severe crisis. For realizing the soft-breaking
mechanism, we introduce vectorlike top partners dubbed “softons” to restore the shift symmetry of
DM in the top Yukawa sector, which, however, is only broken by the softon masses. The portal coupling
automatically vanishes as the shift-symmetry-breaking softon masses approach zero. Specifically, we
present a proof-of-concept model of soft breaking based on the coset Oð6Þ=Oð5Þ and the simplest fermion
embedding, and study its DM phenomenology, where we show a large amount of novel parameter space is
opened up by using the soft-breaking mechanism.
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I. INTRODUCTION

One plausible resolution to the hierarchy problem is to
consider the Higgs boson as a pseudo Nambu-Goldstone
boson (PNGB) emerging from spontaneous global sym-
metry breaking of a new strongly interacting sector. In this
scenario, the Higgs boson is protected by an approximate
shift symmetry and thus naturally lighter than the typical
scale of the strong sector. The minimal realization [1–3]
contains four Goldstone bosons forming the Higgs doublet.
Electroweak symmetry breaking (EWSB) is triggered due
to radiative corrections and the masses of the Higgs and
EW gauge bosons are at the same scale. The mass scale of
the strong sector resonances can be uplifted beyond current
collider limits [4] and the scenario is still phenomenologi-
cally intriguing. In addition, extra Goldstone bosons arise
if nonminimal symmetry breaking patterns are employed
[5–7]. Some of these Goldstone bosons are natural dark
matter (DM) candidates if they are stabilized by a discrete

parity or dark Uð1Þ symmetry [8–18], where the Higgs
boson and DM are unified in the same framework with
comparable masses and DM would exhibit typical
phenomenology of weakly interacting massive particles
(WIMPs); see, e.g., [19–22] for reviews.
Within this class of models, when DM candidates are

gauge singlets of the Standard Model (SM), they interact
with SM particles mainly through the Higgs portal. The
leading operators characterizing the portal interactions
between the Higgs doublet H and the real singlet scalar
DM η are [14]

O1 ¼
1

f2
∂μðH†HÞ∂μðη2Þ; O2 ¼ λH†Hη2; ð1Þ

where f denotes the symmetry breaking scale and λ is
the coupling strength of the usual Higgs portal interaction.
The operator O1 characterizes the derivative portal cou-
pling originating from the Goldstone nature of the Higgs
boson and DM, while the operator O2 only arises from
the radiative scalar potential of the Goldstone bosons.
Phenomenologically, O1 is enhanced in the high energy
regime and dominates over O2, e.g., in DM annihilation,
although O1 has higher mass dimension. Nevertheless, O2

would dominate in direct detection experiments, where O1

is highly suppressed due to small momentum transfer [23].
Therefore, direct detection experiments already impose a
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stringent bound on the coupling strength λ. Following naive
dimensional analysis (NDA), λ is estimated to be of the
same order of the Higgs quartic as 1

2
λh ≃ 0.065 if the top

sector breaks both the shift symmetry of the Higgs boson
and DM. However, this value of λ is in tension with current
direct detection bounds [24–26]. Motivated by this fact,
the top sector is required to fully respect the DM shift
symmetry, which usually renders the top sector nonmini-
mal. Two different scenarios are proposed and discussed in
Ref. [14] to evade direct detection bounds, and λ can be
automatically suppressed if the leading shift-symmetry-
breaking effects arise in the bottom sector rather than the
top sector, or a novel dark photon sector with all the quarks
preserving the DM shift symmetry.
In this work, we propose a mechanism for softly breaking

the DM shift symmetry in the top sector, leading to a
suppressed portal coupling λwhile DM still lives in the weak
scale. In conventional top sectors, DM shift symmetry is
broken since the top quark does not fulfill complete
representations of the global symmetry. In contrast, to realize
soft breaking, two model ingredients are as follows.

(i) Extra vectorlike top partners dubbed “softons” are
introduced to restore exact DM shift symmetry in
top Yukawa terms.

(ii) Softon mass terms are naturally introduced, and they
softly break DM shift symmetry, leading to nonzero
DM mass and the portal coupling λ.

The numerical value of the portal coupling λ is proportional
to the shift-symmetry-breaking softon masses. At the limit of
zero softon masses, the DM particle remains an exact
Goldstone boson, and all the nonderivative terms of DM
vanish. For TeV-scale softon masses, λ can be small enough
to evade the bounds of direct detection experiments. In
parallel, we note that a similar idea is implemented to
eliminate quadratic divergence in neutral-naturalness models
[27] and stabilize the Higgs mass in composite Higgs models
[4,28]. Also, in Ref. [18], the direct detection signal is
reduced by giving vectorlike masses to the symmetry
partners of the top quark, in which these top partners are
part of a neutral-naturalness construction. Here we will
discuss the soft-breaking mechanism in a more general
framework, and demonstrate the idea in the top sector of a
more minimal model.

II. SOFT-BREAKING MECHANISM

As a proof-of-concept example, we focus on the next-
to-minimal coset SOð6Þ=SOð5Þ [5] to illustrate the
soft-breaking mechanism for PNGB DM, and a similar
implementation can straightforwardly be generalized to
other cosets. In the following, we explain in detail the
implementation in the top sector.
Within the unbroken global SOð5Þ symmetry, the cus-

todial symmetry is identified as SUð2ÞL×SUð2ÞR≅SOð4Þ
where SUð2ÞL ×Uð1ÞY is further weakly gauged. In the
unitary gauge, the PNGBs are explicitly

Σ ¼ 1

f

�
0; 0; 0; h; η;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 − h2 − η2

q �
T ð2Þ

transforming as a fundamental representation of SOð6Þ
global symmetry and satisfying the constraint ΣTΣ ¼ 1.
Within the field Σ, η is a DM candidate if it is stabilized by
symmetries, and this is achieved by imposing a dark parity
Pη ¼ diagð1; 1; 1; 1;−1; 1Þ as Σ → PηΣ, with which the
global symmetry is enlarged to Oð6Þ=Oð5Þ [8]. Under the
parity Pη, η is odd while all the SM particles are even.
All the terms that are odd under Pη, including the Wess-
Zumino-Witten terms [29–31], are forbidden. If η is the
lightest Pη-odd particle, it is stable and serves as a good
DM candidate.
DM mass and the nonderivative Higgs-DM portal

coupling are induced by any explicit shift-symmetry-
breaking effects. Since η is a SM singlet, SM gauge bosons
do not break DM shift symmetry, though explicit breaking
effects can generally arise in fermion sectors, especially the
top sector, as SM fermions are embedded in incomplete
representations of SOð6Þ. For example, when the electro-
weak doublet ðtL; bLÞT and singlet tR are both embedded in
fundamental representations of SOð6Þ, ðtL; bLÞT respects
the DM shift symmetry while tR breaks it. In order to fully
restore DM shift symmetry in the top Yukawa sector, a
vectorlike softon field XL;R is introduced, where the right-
handed component XR is embedded such that the
Lagrangian is invariant under the SOð2Þd rotationR acting
on the fifth and sixth components in accordance with the Σ
field as shown in Eq. (2):

Σ → RΣ; ΨL;R → RΨL;R; ð3Þ

and therefore, ΣTΨL;R is invariant, i.e.,

ΣTΨL;R → ΣTΨL;R; ð4Þ

where the fermionic fields are

ΨL ¼ 1ffiffiffi
2

p ðibL; bL; itL;−tL; 0; 0ÞT;

ΨR ¼ ð0; 0; 0; 0; XR; tRÞT: ð5Þ

This rotationR defines the shift symmetry of η; i.e., η is an
exact Goldstone boson if the rotation remains an unbroken
symmetry. For any nonvanishing dependence of η in the
Yukawa sector, one can always perform an SOð2Þd rotation
to rotate it away. Furthermore, the left-handed component
XL is assumed as an SOð6Þ singlet. One can introduce the
mass term of XL;R as

L ⊃ mXX̄LXR þ H:c:; ð6Þ
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which breaks SOð2Þd explicitly and serves as the only
source that gives nonzero DM mass and portal coupling λ,
rendering η a PNGB.
In momentum space, the effective Lagrangian below the

scale of strong dynamics is

Leff ¼ ΠL0Ψ̄L=pΨL þ ΠR0Ψ̄R=pΨR þ X̄L=pXL

þ ΠL1ðΨ̄LΣÞ=pðΣTΨLÞ þ ΠR1ðΨ̄RΣÞ=pðΣTΨRÞ
− ΠtðΨ̄LΣÞðΣTΨRÞ −mXX̄LXR þ H:c:; ð7Þ

where ΠL0;L1;ΠR0;R1;Πt are the momentum-dependent
form factors which are all calculable in concrete composite
models. In the decoupling limit of mX → ∞, one can turn
off the fermionic field X; this corresponds to the breaking
of DM shift symmetry in conventional top sectors. Notice
the terms ðΨ̄LΣÞ=pXL and ðΨ̄RΣÞXL are forbidden as they
are odd under the dark parity.

III. EFFECTIVE POTENTIAL

In the following, we present a concrete composite model
from which one can match to the effective Lagrangian in
Eq. (7) and calculate the scalar potential, where the leading
terms are given by

Vðh;ηÞ≃1

2
m2

hh
2þ1

2
m2

ηη
2þ1

4
λhh4þ

1

4
ληη

4þ1

2
λh2η2: ð8Þ

In particular, we demonstrate that the portal coupling λ
in the soft-breaking scenario is suppressed compared to
its NDA value, which, however, can be recovered at the
decoupling limit as mX → ∞.
We introduce composite resonances Q and S arising

from strong dynamics, which are, respectively, in the
fundamental representation and singlet of SOð5Þ, and
construct the composite model following Callan,
Coleman, Wess, and Zumino (CCWZ) [32,33] with the

Goldstone matrix U ¼ exp ði
ffiffi
2

p
f πaTaÞ, where πa are the

Goldstone bosons and Ta are the broken generators of
SOð6Þ=SOð5Þ. Notice the Goldstone matrix realizes the
SOð6Þ symmetry nonlinearly. Under the paradigm of
partial compositeness [34],

Ltop ¼ iΨ̄L=DΨL þ iΨ̄R=DΨR þ iX̄L=DXL −mXX̄LXR

þ
XNQ

i¼1

Q̄iði=Dþ =e −mQi
ÞQi þ

XNS

j¼1

S̄jði=D −mSjÞSj

þ
XNQ

i¼1

ðϵitQΨ̄A
RUAaQa

iL þ ϵiqQΨ̄A
LUAaQa

iRÞ

þ
XNS

j¼1

ðϵjtSΨ̄A
RUA6SjL þ ϵjqSΨ̄A

LUA6SjRÞ þ H:c:;

ð9Þ

where A ¼ ð1;…; 6Þ; a ¼ ð1;…; 5Þ, NQ;S indicate the
layers of composite resonances, and various ϵ’s are the
mixing parameters between the elementary fields ΨL;R

and the composites Q, S. We consider the minimal
scenario with only one layer of composites, i.e.,
NQ ¼ NS ¼ 1 in this work, which, however, is not viable
in the models of hard shift symmetry breaking [10].
The top mass is obtained after integrating out heavy
composites and turning on the Higgs vacuum expectation
value, e.g., in [35,36].
As shown in Fig. 1, one consequence of imposing soft

breaking is that the scalar η does not suffer from the usual
quadratic divergence because the dependence on η vanishes
in the quadratically divergent diagrams Figs. 1(a) and 1(b),
which do not havemX insertions. OncemX is inserted, e.g.,
as in Fig. 1(c), the diagrams with nonvanishing dependence
on η arise, and they are at most logarithmically divergent or
finite. Notice we only consider the contribution coming
from the composite S in Fig. 1; likewise, one can also
include the contribution of the composite Q. Insertions of
mS can further reduce the degree of divergence of the
diagrams as shown in Fig. 1; however, the terms of
nonvanishing η in the potential cannot arise without mX
insertions.
In order to get rid of all the divergences and make the

scalar potential fully calculable, one can impose Weinberg
sum rules (WSRs) [35,37,38]. When NQ ¼ NS ¼ 1, one
optimal choice can be

ϵqS ¼ −ϵqQ ¼
ffiffiffi
2

p
ϵtS ¼

ffiffiffi
2

p
ϵtQ ¼ ϵ; ð10Þ

with which we calculate the form factors in Eq. (7) and the
scalar potential in Eq. (8). Other choices of WSRs only
modify the quantitative range of viable parameter space of
various masses and mixings in Eq. (9) if all the low energy
parameters in the scalar potential and the top mass are
fixed. But the overall qualitative relations of various
parameters will not change. The portal coupling λ is
now calculable. When the mixing ϵ is smaller than the
symmetry breaking scale f,

(a) (b) (c)

FIG. 1. Illustrative Feynman diagrams that give rise to the
masses of h, η via mixings with the composite resonance SL,
where Ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 − h2 − η2

p
.
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λ ≃
Ncϵ

4

4π2f4
m2

XðmQ þmSÞ2
ðm2

X −m2
QÞðm2

X −m2
SÞðm2

Q −m2
SÞ

×

�
m2

S log
m2

X

m2
Q
þm2

Q log
m2

S

m2
X
þm2

X log
m2

Q

m2
S

�
; ð11Þ

where Nc ¼ 3 is the QCD color factor from the top sector.
At the decoupling limit of mX → ∞, the conventional
portal coupling at the NDA size [10] is recovered, i.e.,

λNDA ≃
Ncϵ

4

4π2f4
mQ þmS

mQ −mS
log

m2
Q

m2
S
: ð12Þ

In contrast, when mX ≲mQ;S, a suppression factor for λ
defined as the ratio of the portal coupling in the shift-
symmetry-soft-breaking scenario and that in the hard-
breaking scenario is obtained as

r≡ λ

λNDA
≃
m2

X

m2�
log

m2�
m2

X
; ð13Þ

where m� denotes the overall mass scale of the strong
dynamics, i.e., mQ ≃mS ≃m�. The smaller the value of
mX, the smaller the portal coupling λ. Without using the
above approximation in the small ϵ limit, we scan the
parameters in the composite model and plot the relation
between λ and mX, as shown in Fig. 2. In the scan, we
require that the top mass, the Higgs mass, and the EW scale
are reproduced. The parameter ξ≡ v2=f2 denotes the usual
vacuum misalignment angle, where we choose ξ ¼ 0.02
and ξ ¼ 0.05 which are consistent with the bounds from
precision measurements of various Higgs couplings [38].
When the softon X is heavy enough, the value of λ

approaches the NDA value as λNDA ≃ 0.065. When mX
is moderately heavier than the Large Hadron Collider
(LHC) bound [39], λ can be much suppressed with respect
to the NDA value. For example, λ can be as small as 0.006
when ξ ¼ 0.02, and the portal coupling will be more
suppressed if the scale of strong dynamics (and the scale
of f) is larger, as shown in Eq. (13). Since the softon X does
not break the shift symmetry of the Higgs boson, the usual
Higgs mass and quartic are reproduced.

IV. DARK MATTER PHENOMENOLOGY

Since the mass of η is at the EW scale, it is expected to
exhibit traditional WIMP phenomenology, whereas it
cannot be detected in current direct detection experiments.
The numerical results are given in Fig. 3, where the details
are summarized as follows.
In the early Universe, the relic abundance of η is obtained

by the freeze-out of the dark matter self-annihilation
process, i.e., η pair annihilating to SM particles. As given
by the Planck Collaboration [40], the relic abundance of η is
bounded as Ωηh2 ≤ 0.120� 0.001. In the calculation of
DM abundance, we assume the usual radiation dominance
during DM freeze-out. The derivative couplings, e.g., the
operator O1 in Eq. (1), are dominant in the annihilation
processes when η is heavy. As a result, even with much
suppressed portal coupling λ, the correct relic abundance
can be reproduced [8]. The softon field X has only a minor
impact on determining the η abundance. After the
composite resonances are integrated out, the effective
Lagrangian as in Eq. (7) is obtained, which, in particular,
contains the vertex ηt̄LXR þ H:c:, where the softon X is
required to be heavier than η such that η is stable, and the

L
H

C
B

o
u

n
d

FIG. 2. Values of the portal coupling λ as a function of the
softon mass mX, where the misalignment parameter ξ ¼ 0.02
and ξ ¼ 0.05, respectively. The shaded regime denotes the range
of mX excluded by the LHC. The parameters in the model
are scanned in the ranges of mQ;S ∈ ½0; 15f�; mX ∈ ½0; 10f�;
ϵ ∈ ½0; 2f�; fρ ∈ ½f= ffiffiffi

2
p

; 2f�, where fρ comes from gauge
sector [10].

Relic Density

Fermi LAT

Fermi LAT proj.

Xenon 1T

LZ proj.

FIG. 3. Constraints on the model parameters ðmη; λÞ plane
when ξ ¼ 0.02, where only the unshaded red dots are fully viable
under the current bounds from direct detection (yellow region),
indirect detection (blue region), and relic abundance (black). All
the other dots in the shaded region are excluded for various
reasons, and the green dots indicate the region where DM is
overproduced. The pink band denotes the NDA-size portal
coupling given by [10] with NS ¼ 2NQ ¼ 2.
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searches for colored top partners also imply mX is above
TeV scale [39]. Because of the heaviness of X, the
annihilation channel ηη → t̄t induced by X is suppressed,
and the DM coannihilation [41] with X can also be
neglected. All the other processes changing the number
density of η are irrelevant. Consequently, the freeze-out of η
in the early Universe is dominated by the self-annihilation
process in the Higgs portal. The relic abundance of η reads

Ωηh2 ≃ 0.12

�
xf
24

��
3 × 10−26 cm3s−1

hσvrelixf

�
; ð14Þ

where xf ≡mη=Tf and Tf denotes the freeze-out temper-
ature. hσvrelixf is the quantity of the thermally averaged
cross section of DM annihilation at the freeze-out temper-
ature. In this SOð6Þ=SOð5Þ model, we have [12]

σvrel ∝
�
s
f2

− 2λ

�
2

; ð15Þ

where s ≈ 4m2
η is the center-of-mass energy. The first term

on the right-handed side of the equation is from operator
O1, while the second is from operator O2. The minus sign
in the brackets indicates the cancellation of these two
operators. Thus, for dark matter with certain mass, there
could be two different values of λ that correspond to correct
relic abundance. This feature is shown explicitly in Fig. 3,
where the observed DM abundance is denoted by the
black bands.
As motivated in previous sections, λ is much suppressed,

and therefore, the bounds from current direct detection
experiments are evaded. The spin-independent (SI) DM-
nucleon cross section induced by operator O2 is given in
Refs. [42,43], which is the same as the usual Higgs portal
singlet DM. To be specific, it is given by

σηNSI ¼ 1

π

�
mN

mη þmN

�
2
�
Zfp þ ðA − ZÞfn

A

�
2

: ð16Þ

Here, we have A ¼ 130 and Z ¼ 54 for Xenon, and
mN ¼ ðmp þmnÞ=2 is the average nucleon mass. fn;p
describe the coupling between DM and the nucleons.
Substituting the values of these quantities, it reads

σηNSI ≃ 5 × 10−47 cm2

�
λ

0.02

�
2
�
300 GeV

mη

�
2

: ð17Þ

Such a value of the DM-nucleon cross section lies well
below the bounds of current direct detection experiments.
In addition, the softon X only contributes to DM-nucleon
scatterings at loop levels. When the tree-level DM-nucleon
scatterings are suppressed due to the smallness of λ as in
our model, one-loop DM-nucleon scatterings can possibly

dominate over tree-level ones. The yellow-shaded region is
excluded by the current Xenon-1T experiment [26], and the
reach of the future LZ experiment [44] is also shown by
the yellow-dashed line. For completeness, we also show the
constraints from indirect detection experiments, where the
results from Fermi-LAT Collaboration [45,46] are used,
and we require the total thermal-averaged DM annihilation
cross section to be smaller than the value reported by
Fermi-LAT, assuming all the DM particles annihilate to the
b̄b final state. In Fig. 3, the blue-shaded region is excluded
by the current bounds [45,46] and the future projection [47]
is given by blue-dashed curve. Numerically, we note that
the relic abundance of η and direct/indirect detection
bounds are computed with the help of the public code
MICROMEGAS [48] and the model files are obtained
with FEYNRULES [49]. The constraints on DM mass and
portal coupling λ from invisible Higgs decay are not
included here since we concentrate on the heavy DM
region with mη > mh=2.
In addition, we present the result from our parameter

scan, as shown by the dots in Fig. 3. We scanned randomly
within the parameter range ofmQ;S∈ ½0;15f�;mX ∈ ½0;10f�;
ϵ∈ ½0;2f�;fρ∈ ½f= ffiffiffi

2
p

;2f�. fρ is a parameter from the
gauge sector [10]. Meanwhile, we require that all the
heavy resonances lie above the current LHC bounds,
e.g., [39,50–52], and the correct Higgs and top masses,
as well as the electroweak scale are reproduced. The dots
that do not meet these requisites are abandoned and not
shown. As is seen in Fig. 3, only the unshaded red dots are
fully viable under the current bounds from direct detection
(yellow region), indirect detection (blue region), and relic
abundance (black). All the other dots in the shaded region
are excluded for various reasons, and the green dots
indicate the region where DM is overproduced. In particu-
lar, compared to the NDA-size portal coupling in [10] as
shown by the pink band, the portal coupling in our model is
much suppressed, and a large amount of viable parameter
space, as represented by the unshaded red dots, is opened
up, which can be tested in the near future.

V. CONCLUDING REMARKS

We propose a soft-breaking mechanism for the shift
symmetry of PNGB DM, which is still at the EW scale,
whereas the stringent bounds from current direct detection
are evaded. We present a proof-of-concept model to
demonstrate the usefulness of our mechanism.
Generalizations to other models are straightforward. In
addition, we notice that the similar soft-breaking mecha-
nism can also be implemented to break the Higgs shift
symmetry [4], where the top partner masses can be uplifted.
Implementing the soft breaking for both the Higgs and DM
shift symmetries would lead to “double” suppression for
the nonderivative portal coupling, i.e.,
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λ

λNDA
≃
m2

X

m2�
log

m2�
m2

X
·
m2

Y

m2�
log

m2�
m2

Y
; ð18Þ

where m� is the typical scale of strong dynamics, and mX
and mY are the softon masses for the breaking of the DM
and Higgs shift symmetries, respectively. When the portal
coupling is very suppressed, one-loop DM-nucleon scatter-
ings will dominate over the tree-level ones in this class of
models. We leave this for future investigation.
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APPENDIX: FROM CCWZ CONSTRUCTION
TO EFFECTIVE POTENTIAL

Generators for the SOð6Þ=SOð5Þ group are chosen as
follows:

Xâ
ij ¼ −

iffiffiffi
2

p ðδâiδ6j − δâjδ6iÞ; Tα
ij ¼ −

iffiffiffi
2

p ðδαiδ5j − δαjδ5iÞ;

TaL;R
ij ¼ −

i
2

�
1

2
ϵabcðδbiδcj − δbjδciÞ � ðδaiδ4j − δajδ4iÞ

�
;

where â ¼ 1;…; 5 counts broken generators, while
aL;R ¼ 1, 2, 3 count generators of the subgroup
SUð2ÞL ⊗ SUð2ÞR ≅ SOð4Þ ⊂ SOð5Þ, and α ¼ 1;…; 4
counts others. There are five Goldstone bosons correspond-
ing to five broken generators. Four of them living in
fundamental representation of SOð4Þ are identified as a
Higgs doublet and the other one which is an SOð4Þ singlet
is considered as a dark matter candidate. These Goldstone
bosons can be parametrized by U ¼ exp ði ffiffiffi

2
p

πâ

f X
âÞ. We

use πâ to represent the Goldstone bosons here. It is
convenient to perform a field redefinition [5] in the

calculation sinðπ=fÞ
π πâ → πâ

f , where π ≡ ffiffiffiffiffiffiffiffiffiffi
πâπâ

p
. To build

the Lagrangian, it is necessary to define the CCWZ
symbols dμ and eμ,

dâμXâ þ eaμTa ≡ −iðU†DμUÞ:

Dμ is a covariant derivative if a subgroup of SOð6Þ
is gauged. In our case, the gauged subgroup is the
electroweak gauge group SUð2ÞL ⊗ Uð1ÞY . We used
a ¼ 1;…; 10 to count all unbroken generators of
SOð6Þ=SOð5Þ. With the exception of the Wess-Zumino-
Witten term [29–31], all terms can be constructed with dμ
and eμ symbols. In leading order, we have

Lπ ¼
f2

4
TrðdâμdμâÞ:

Expanding this term, we can deduce the Lagrangian of
Goldstones h and η.
For spin-1 resonances, we denote the resonances as ρμ ≡

ρaμTa ∼ 10 (adjoint representation) and aμ ≡ aâμXâ ∼ 5
(fundamental representation). The Lagrangian is

Lg ¼ −
1

4
TrðρμνρμνÞ þ

f2ρ
2
Trðgρρμ − eμÞ2 −

1

4
TrðaμνaμνÞ

þ f2a
2Δ2

Trðgaaμ − ΔdμÞ2:

fρ;a denote the decay constants for ρ and a, respectively,
and gρ;a and Δ are constants. The field strengths and
covariant derivatives are defined as

ρμν ¼ ∂μρν − ∂νρμ − igρ½ρμ; ρν�; aμν ¼ ∇μaν −∇νaμ;

∇μ ¼ ∂μ − ieμ:

Note that mass terms in Lg contain mixing terms between
spin-1 resonances and electroweak gauge fields. Integrating
these heavy resonances out, we will get the effective
Lagrangian for electroweak gauge bosons. In momentum
space,

Leff
g ¼ 1

2

�
gμν −

pμpν

p2

�
ð2Πþ−Wþ

μ W−
ν þ Π33W3

μW3
ν

þ ΠBBBμBν þ 2Π3BW3
μBνÞ; ðA1Þ

where

Πþ− ¼ Π33 ¼ Π0 þ
h2

4f2
Πg

1;

ΠBB ¼ ΠB þ g02

g2
h2

4f2
Πg

1; Π3B ¼ −
g0

g
h2

4f2
Πg

1:

g, g0 are electroweak gauge coupling constants. In
Euclidean space, the form factors are

Π0ðBÞ ¼ Q2

�
1þ g2ðg02Þf2ρ

Q2 þm2
ρ

�
;

Πg
1 ¼ g2

�
f2 þ 2Q2

�
f2a

Q2 þm2
a
−

f2ρ
Q2 þm2

ρ

��
:

Consequently, contribution to the effective potential from
the gauge sector reads

VgðhÞ ¼
3

2

Z
d4Q
ð2πÞ4 log ½Π

2þ−ðΠ33ΠBB − Π2
3BÞ�: ðA2Þ
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VgðhÞ is η independent since η is a singlet of the electroweak gauge group. To render the integral finite, we need WSRs to
eliminate divergence,

ðWSR 1Þg∶
f2

2
þ f2a − f2ρ ¼ 0; ðWSR 2Þg∶ f2am2

a ¼ f2ρm2
ρ: ðA3Þ

In the parameter scan, we will use fρ and mρ as free parameters and deduce fa and ma accordingly with these two WSRs.

For fermion contribution, we add the expressions of the form factors in Eq. (7) here,

ΠL0 ¼ 1þ
XNQ

i¼1

jϵiqQj2
Q2 þm2

Qi

; ΠL1 ¼
XNS

j¼1

jϵjqSj2
Q2 þm2

Sj

−
XNQ

i¼1

jϵiqQj2
Q2 þm2

Qi

;

ΠR0 ¼ 1þ
XNQ

i¼1

jϵitQj2
Q2 þm2

Qi

; ΠR1 ¼
XNS

j¼1

jϵjtSj2
Q2 þm2

Sj

−
XNQ

i¼1

jϵitQj2
Q2 þm2

Qi

;

Πt ¼
XNS

j¼1

ϵ�jtSϵ
j
qSmSj

Q2 þm2
Sj

−
XNQ

i¼1

ϵ�itQϵ
i
qQmQi

Q2 þm2
Qi

: ðA4Þ

The scalar potential can be deduced from Eq. (7), and the coefficients in Eq. (8) are integrals of the form factors

μðfÞ2h ¼ −
Nc

8π2f2

Z
∞

0

dQ2Q2

�
ΠL1

ΠL0
þ 2ΠR1

ΠR0
þ Π2

t

Q2ΠL0ΠR0

�
;

λðfÞh ¼ Nc

4π2f4

Z
∞

μ2
dQ2Q2

�
1

4

�
ΠL1

ΠL0
þ 2ΠR1

ΠR0
þ Π2

t

Q2ΠL0ΠR0

�
2

þ Π2
t −Q2ΠL1ΠR1

Q2ΠL0ΠR0

�
;

μ2η ¼ −
Nc

8π2f2

Z
∞

0

dQ2Q2
m2

X

m2
X þQ2ΠX

ΠR1

ΠR0
;

λη ¼
Nc

16π2f4

Z
∞

0

dQ2Q2

�
m2

X

m2
X þQ2ΠX

ΠR1

ΠR0

�
2

;

λ ¼ Nc

16π2f4

Z
∞

0

dQ2Q2
m2

X

m2
X þQ2ΠX

�
Π2

R1

Π2
R0

þ Π2
t

2Q2ΠL0ΠR0

�
1þ ΠR1

ΠR0

��
: ðA5Þ

We defined ΠX ¼ ΠR0 þ ΠR1. To eliminate quadratic di-

vergence in μðfÞ2h , we need to impose the following WSRs:

lim
Q2→∞

Q2
ΠL1

ΠL0
¼

XNQ

i¼1

jϵiqQj2 −
XNS

j¼1

jϵjqSj2 ¼ 0;

lim
Q2→∞

Q2
ΠR1

ΠR0
¼

XNQ

i¼1

jϵitQj2 −
XNS

j¼1

jϵjtSj2 ¼ 0:

The cancellation of logarithmic divergence in μðfÞ2h requires

lim
Q2→∞

Q4

�
ΠL1

ΠL0
þ 2ΠR1

ΠR0

�
¼
XNQ

i¼1

�
jϵiqQj2 − 2jϵitQj2

�
m2

Qi

−
XNS

j¼1

�
jϵjqSj2 − 2jϵjtSj2

�
m2

Sj
¼ 0:

Once these conditions are satisfied, all the UV divergen-
ces in the integrals Eq. (A5) disappear. In the case of
NS ¼ NQ ¼ 1 that is adopted in this work, one appro-
priate choice of WSRs that accommodates experimental
constraints better is

ϵqS ¼ −ϵqQ ¼
ffiffiffi
2

p
ϵtS ¼

ffiffiffi
2

p
ϵtQ ¼ ϵ;

where ϵ is a constant. Note that λðfÞh is also IR divergent.
It is because the effective potential is singular at h ¼ 0.
This issue can be cured by introducing another
term ΔV ¼ δh4 log ðh2=f2Þ [53]. It absorbs the
singularity of the Higgs quartic coupling constant.
Nevertheless, we will simply cut off this divergence with
μ2 ¼ m2

t .

SOFTLY SHIFTING AWAY FROM DARK MATTER DIRECT … PHYS. REV. D 103, 113006 (2021)

113006-7



[1] K. Agashe, R. Contino, and A. Pomarol, Nucl. Phys. B719,
165 (2005).

[2] R. Contino, L. Da Rold, and A. Pomarol, Phys. Rev. D 75,
055014 (2007).

[3] R. Contino, arXiv:1005.4269.
[4] S. Blasi and F. Goertz, Phys. Rev. Lett. 123, 221801

(2019).
[5] B. Gripaios, A. Pomarol, F. Riva, and J. Serra, J. High

Energy Phys. 04 (2009) 070.
[6] J. Mrazek, A. Pomarol, R. Rattazzi, M. Redi, J. Serra, and

A. Wulzer, Nucl. Phys. B853, 1 (2011).
[7] L. Da Rold and A. N. Rossia, J. High Energy Phys. 12

(2019) 023.
[8] M. Frigerio, A. Pomarol, F. Riva, and A. Urbano, J. High

Energy Phys. 07 (2012) 015.
[9] M. Chala, J. High Energy Phys. 01 (2013) 122.

[10] D. Marzocca and A. Urbano, J. High Energy Phys. 07
(2014) 107.

[11] N. Fonseca, R. Zukanovich Funchal, A. Lessa, and L.
Lopez-Honorez, J. High Energy Phys. 06 (2015) 154.

[12] R. Balkin, M. Ruhdorfer, E. Salvioni, and A. Weiler, J. High
Energy Phys. 11 (2017) 094.

[13] Y. Wu, T. Ma, B. Zhang, and G. Cacciapaglia, J. High
Energy Phys. 11 (2017) 058.

[14] R. Balkin, M. Ruhdorfer, E. Salvioni, and A. Weiler, J.
Cosmol. Astropart. Phys. 11 (2018) 050.

[15] A. Davoli, A. De Simone, D. Marzocca, and A. Morandini,
J. High Energy Phys. 10 (2019) 196.

[16] G. Cacciapaglia, H. Cai, A. Deandrea, and A. Kushwaha, J.
High Energy Phys. 10 (2019) 035.

[17] M. Ramos, J. High Energy Phys. 07 (2020) 128.
[18] A. Ahmed, S. Najjari, and C. B. Verhaaren, J. High Energy

Phys. 06 (2020) 007.
[19] G. Bertone, D. Hooper, and J. Silk, Phys. Rep. 405, 279

(2005).
[20] M. Lisanti, arXiv:1603.03797.
[21] M. Bauer and T. Plehn, Lect. Notes Phys. 959 (2019).
[22] S. Profumo, L. Giani, and O. F. Piattella, Universe 5, 213

(2019).
[23] D. Barducci, A. Bharucha, N. Desai, M. Frigerio, B. Fuks,

A. Goudelis, S. Kulkarni, G. Polesello, and D. Sengupta,
J. High Energy Phys. 01 (2017) 078.

[24] D. S. Akerib et al. (LUX Collaboration), Phys. Rev. Lett.
118, 021303 (2017).

[25] X. Cui et al. (PandaX-II Collaboration), Phys. Rev. Lett.
119, 181302 (2017).

[26] E. Aprile et al. (XENON Collaboration), Phys. Rev. Lett.
121, 111302 (2018).

[27] L.-X. Xu, J.-H. Yu, and S.-H. Zhu, Phys. Rev. D 101,
095014 (2020).

[28] S. Blasi, C. Csaki, and F. Goertz, arXiv:2004.06120.
[29] J. Wess and B. Zumino, Phys. Lett. 37B, 95 (1971).
[30] E. Witten, Nucl. Phys. B223, 422 (1983).
[31] C.-S. Chu, P.-M. Ho, and B. Zumino, Nucl. Phys. B475, 484

(1996).
[32] S. R. Coleman, J. Wess, and B. Zumino, Phys. Rev. 177,

2239 (1969).
[33] C. G. Callan, Jr., S. R. Coleman, J. Wess, and B. Zumino,

Phys. Rev. 177, 2247 (1969).
[34] D. B. Kaplan, Nucl. Phys. B365, 259 (1991).
[35] D. Marzocca, M. Serone, and J. Shu, J. High Energy Phys.

08 (2012) 013.
[36] G. Panico and A. Wulzer, Lect. Notes Phys. 913, 1 (2016).
[37] A. Pomarol and F. Riva, J. High Energy Phys. 08 (2012)

135.
[38] H.-L. Li, L.-X. Xu, J.-H. Yu, and S.-H. Zhu, J. High Energy

Phys. 09 (2019) 010.
[39] A. S. Belyaev, T. Flacke, B. Jain, and P. B. Schaefers, Phys.

Rev. D 98, 035019 (2018).
[40] N. Aghanim et al. (Planck Collaboration), Astron. As-

trophys. 641, A6 (2020).
[41] K. Griest and D. Seckel, Phys. Rev. D 43, 3191 (1991).
[42] J. M. Cline, K. Kainulainen, P. Scott, and C. Weniger, Phys.

Rev. D 88, 055025 (2013); 92, 039906(E) (2015).
[43] G. Arcadi, A. Djouadi, and M. Raidal, Phys. Rep. 842, 1

(2020).
[44] D. Akerib et al. (LUX-ZEPLIN Collaboration), Phys. Rev.

D 101, 052002 (2020).
[45] M. Ackermann et al. (Fermi-LAT Collaboration), Phys.

Rev. Lett. 115, 231301 (2015).
[46] A. Albert et al. (Fermi-LAT, DES Collaboration), Astro-

phys. J. 834, 110 (2017).
[47] E. Charles et al. (Fermi-LAT Collaboration), Phys. Rep.

636, 1 (2016).
[48] G. Blanger, F. Boudjema, A. Goudelis, A. Pukhov, and B.

Zaldivar, Comput. Phys. Commun. 231, 173 (2018).
[49] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr, and B.

Fuks, Comput. Phys. Commun. 185, 2250 (2014).
[50] M. Aaboud et al. (ATLAS Collaboration), Phys. Rev. Lett.

121, 211801 (2018).
[51] A. M. Sirunyan et al. (CMS Collaboration), J. High Energy

Phys. 03 (2019) 082.
[52] D. Liu, L.-T. Wang, and K.-P. Xie, J. High Energy Phys. 01

(2019) 157.
[53] D. Marzocca, A. Parolini, and M. Serone, J. High Energy

Phys. 03 (2014) 099.

XING, XU, and ZHU PHYS. REV. D 103, 113006 (2021)

113006-8

https://doi.org/10.1016/j.nuclphysb.2005.04.035
https://doi.org/10.1016/j.nuclphysb.2005.04.035
https://doi.org/10.1103/PhysRevD.75.055014
https://doi.org/10.1103/PhysRevD.75.055014
https://arXiv.org/abs/1005.4269
https://doi.org/10.1103/PhysRevLett.123.221801
https://doi.org/10.1103/PhysRevLett.123.221801
https://doi.org/10.1088/1126-6708/2009/04/070
https://doi.org/10.1088/1126-6708/2009/04/070
https://doi.org/10.1016/j.nuclphysb.2011.07.008
https://doi.org/10.1007/JHEP12(2019)023
https://doi.org/10.1007/JHEP12(2019)023
https://doi.org/10.1007/JHEP07(2012)015
https://doi.org/10.1007/JHEP07(2012)015
https://doi.org/10.1007/JHEP01(2013)122
https://doi.org/10.1007/JHEP07(2014)107
https://doi.org/10.1007/JHEP07(2014)107
https://doi.org/10.1007/JHEP06(2015)154
https://doi.org/10.1007/JHEP11(2017)094
https://doi.org/10.1007/JHEP11(2017)094
https://doi.org/10.1007/JHEP11(2017)058
https://doi.org/10.1007/JHEP11(2017)058
https://doi.org/10.1088/1475-7516/2018/11/050
https://doi.org/10.1088/1475-7516/2018/11/050
https://doi.org/10.1007/JHEP10(2019)196
https://doi.org/10.1007/JHEP10(2019)035
https://doi.org/10.1007/JHEP10(2019)035
https://doi.org/10.1007/JHEP07(2020)128
https://doi.org/10.1007/JHEP06(2020)007
https://doi.org/10.1007/JHEP06(2020)007
https://doi.org/10.1016/j.physrep.2004.08.031
https://doi.org/10.1016/j.physrep.2004.08.031
https://arXiv.org/abs/1603.03797
https://doi.org/10.1007/978-3-030-16234-4
https://doi.org/10.3390/universe5100213
https://doi.org/10.3390/universe5100213
https://doi.org/10.1007/JHEP01(2017)078
https://doi.org/10.1103/PhysRevLett.118.021303
https://doi.org/10.1103/PhysRevLett.118.021303
https://doi.org/10.1103/PhysRevLett.119.181302
https://doi.org/10.1103/PhysRevLett.119.181302
https://doi.org/10.1103/PhysRevLett.121.111302
https://doi.org/10.1103/PhysRevLett.121.111302
https://doi.org/10.1103/PhysRevD.101.095014
https://doi.org/10.1103/PhysRevD.101.095014
https://arXiv.org/abs/2004.06120
https://doi.org/10.1016/0370-2693(71)90582-X
https://doi.org/10.1016/0550-3213(83)90063-9
https://doi.org/10.1016/0550-3213(96)00322-7
https://doi.org/10.1016/0550-3213(96)00322-7
https://doi.org/10.1103/PhysRev.177.2239
https://doi.org/10.1103/PhysRev.177.2239
https://doi.org/10.1103/PhysRev.177.2247
https://doi.org/10.1016/S0550-3213(05)80021-5
https://doi.org/10.1007/JHEP08(2012)013
https://doi.org/10.1007/JHEP08(2012)013
https://doi.org/10.1007/978-3-319-22617-0
https://doi.org/10.1007/JHEP08(2012)135
https://doi.org/10.1007/JHEP08(2012)135
https://doi.org/10.1007/JHEP09(2019)010
https://doi.org/10.1007/JHEP09(2019)010
https://doi.org/10.1103/PhysRevD.98.035019
https://doi.org/10.1103/PhysRevD.98.035019
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1103/PhysRevD.43.3191
https://doi.org/10.1103/PhysRevD.88.055025
https://doi.org/10.1103/PhysRevD.88.055025
https://doi.org/10.1103/PhysRevD.92.039906
https://doi.org/10.1016/j.physrep.2019.11.003
https://doi.org/10.1016/j.physrep.2019.11.003
https://doi.org/10.1103/PhysRevD.101.052002
https://doi.org/10.1103/PhysRevD.101.052002
https://doi.org/10.1103/PhysRevLett.115.231301
https://doi.org/10.1103/PhysRevLett.115.231301
https://doi.org/10.3847/1538-4357/834/2/110
https://doi.org/10.3847/1538-4357/834/2/110
https://doi.org/10.1016/j.physrep.2016.05.001
https://doi.org/10.1016/j.physrep.2016.05.001
https://doi.org/10.1016/j.cpc.2018.04.027
https://doi.org/10.1016/j.cpc.2014.04.012
https://doi.org/10.1103/PhysRevLett.121.211801
https://doi.org/10.1103/PhysRevLett.121.211801
https://doi.org/10.1007/JHEP03(2019)082
https://doi.org/10.1007/JHEP03(2019)082
https://doi.org/10.1007/JHEP01(2019)157
https://doi.org/10.1007/JHEP01(2019)157
https://doi.org/10.1007/JHEP03(2014)099
https://doi.org/10.1007/JHEP03(2014)099

