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We provide high-precision predictions for muon-pair and tau-pair productions in a photon-photon
collision by considering a complete set of one-loop-level scattering amplitudes, i.e., electroweak (EW)
corrections together with soft and hard QED radiation. Accordingly, we present a detailed numerical
discussion with particular emphasis on the pure QED corrections as well as genuinely weak corrections.
The effects of angular and initial beam polarization distributions on production rates are also discussed. An
improvement is observed by a factor of two with oppositely polarized photons. Our results indicate that the
one-loop EW radiative corrections enhance the Born cross section and the total relative correction is
typically about 10% for both production channels. It appears that the full EW corrections to γγ → l−lþ are
required to match a percent level accuracy.
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I. INTRODUCTION

The Standard Model (SM) of particle physics [1–3] has
been perfectly proved as a self-consistent gauge theory with
a weakly-coupled sector for electroweak (EW) symmetry
breaking with the discovery of a 125 GeV of Higgs
boson [4,5] and the ever-increasing confidence of its
compatibility with the SM Higgs boson [6] at the LHC.
With this achievement, further challenges of particle
physics lie in expanding the current theory to explain
phenomena beyond the SM (BSM), like dark matter, the
hierarchy problem, the strong CP problem, and the gen-
eration of a baryon asymmetry, and improve the accurate
measurement of observed phenomena. Advancement of
current experiments is still ongoing in pursuing these aims,
which will offer opportunities to precisely study properties
of our current knowledge of fundamental particles.
Being a proton-proton collider, the LHC generates

plentiful particles so that we can study a particular process
attached with the abundant background. However, probing
phenomenology with another machine, such as electron-
positron colliders with a cleaner background, offers sig-
nificant opportunities. The clean circumstances in these
facilities would ensure that the interested phenomena

would be precisely observed. The International Linear
Collider [7,8] is one of the proposed machines for this
case. It is aimed to construct equipment for e−eþ collision,
together with other types of collision modes like e−e−, e−γ,
and γγ. Another proposal is the Compact Linear Collider
[9], which plans to have a TeV scale high-luminosity
capacity, working with

ffiffiffi
s

p
up to 3 TeV. Another prospec-

tive clean channel is a photon-photon (γγ) collision.
This collision mode could provide an integrated luminosity
by the order of 1000 fb−1 per year. Advancement of the
facility is expected to supply the high energy of 1 TeV with
up to 300 fb−1 per year of total integrated luminosity [10].
The latter channel provides an interesting framework to

improve our understanding of the current theory. High
energy γγ collisions will play an important role as a
comprehensive framework for virtually investigating every
aspect of the SM and beyond since photon couples directly
to all fundamental fields via electromagnetic current, such
as leptons, quarks,Ws, and supersymmetric particles. Some
recent studies regarding this mode have been done, for
example on describing μþμ− resonance [11], quarkonium
pairs with QCD correction [12], neutralino pair production
[13], and also Higgs production [14–16]. The relatively
clean environment of this collision, in particular, opens an
opportunity for further precision tests of the SM that will
complement the ones obtained from future e−eþ scattering
facilities. High-energetic processes of photon-photon col-
lision can be generated through Compton backscattering of
laser light off high-energy electrons [17,18]. Moreover, the
elastic backscattering of this kind is well suited for
monitoring the luminosity of such a collider in analogy
to Bhabha forward scattering in e−eþ colliders. Lepton pair
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production in photon-photon collisions, as an implication,
represents one of the most important processes in this
context.
It is known that the main reactions for the charged

leptons pair production in the modern and future e−eþ

colliders are e−eþ → l−lþ and γγ → l−lþ. Since the
cross section of the former is suppressed by s-channel
contributions at high energies, the production rate of the
latter can give larger measurements. The process e−eþ →
l−lþ has been intensively investigated by considering the
one-loop EW radiative corrections in the SM (see, e.g., in
Refs. [19–24] before the large electron-positron collider
era, and recently in Refs. [25,26]). On the other hand, there
are only a few works for lepton pair production via the
γγ-collision mode. For instance, the complete OðαÞ cor-
rections to γγ → l−lþ have been calculated in Ref. [27] for
arbitrary light fermions (only l ¼ e), where fermion-mass
effects are neglected.
When aiming to have accurate measurements, high

precision predictions from the model are necessary.
Meaning that, for most processes, there is a need to proceed
beyond the lowest order calculations. In particular, a
complete set of one-loop corrections is crucial for analyz-
ing phenomena at the future colliders. In this work, we
investigate production of the charged lepton pairs via γγ
collision for heavy leptons μ and τ in the framework of the
SM, including full one-loop EW radiative corrections, i.e.,
EW corrections, as well as soft and hard QED radiation. We
give a detailed numerical discussion accordingly with
particular emphasis on the pure QED and weak corrections.
In addition, we take into account the decomposition of the
weak corrections into the purely fermionic loops along with
the fermionic part of the counterterms and the remaining
bosonic corrections. We also present numerical results for
angular distribution and initial beam polarisation distribu-
tion on the Born-level and one-loop cross sections.
The rest of this work is arranged as follows. In Sec. II,

we present the Feynman diagrams, the relevant ampli-
tudes, and some useful analytical expressions. We also
discuss the general shapes of the virtual and the real
photon radiation contributions. In Sec. III, we present the
numerical evaluations of the radiative corrections related
to the scattering process, and a detailed analysis of relative
corrections. We also present a comparison with the results
of other tools. Finally, the concluding remarks are given
in Sec. IV.

II. THEORETICAL SETUP FOR A CROSS
SECTION

In this section, some details on the calculation of
the Born-level and the full EW OðαÞ corrections are,
respectively, given for the production of charged lepton
pairs in γγ collision mode. We express the relevant
scattering process as

γðp1; λ1Þγðp2; λ2Þ → lþðk1; σ1Þl−ðk2; σ2Þ; ð2:1Þ

where λ1, λ2, σ1, and σ2 are the helicities of initial photons
and final leptons, respectively. The helicities take the values
λ1;2 ¼ �1 and σ1;2 ¼ �1=2. All momenta p1, p2, k1,
and k2 obey the on shell equations p2

1 ¼ p2
2 ¼ 0 and

k21 ¼ k22 ¼ m2
l� . For further use, also note the Mandelstam

variables:

ŝ¼ðp1þp2Þ2; t̂¼ðk1−p1Þ2; û¼ðk2−p1Þ2: ð2:2Þ

In the center-of-mass system of the final states, we have,

p1 ¼
ffiffiffî
s

p

2
ð1; 0; 0;−1Þ;

p2 ¼
ffiffiffî
s

p

2
ð1; 0; 0;þ1Þ;

k1 ¼
ffiffiffî
s

p

2
ð1;− sin θ; 0;− cos θÞ;

k2 ¼
ffiffiffî
s

p

2
ð1;þ sin θ; 0;þ cos θÞ;

ð2:3Þ

where θ denotes the scattering angle. In order to be used in
the calculation of polarized cross sections, we present the
photon polarization vectors as

ε1μðp1; λ1 ¼ �1Þ ¼ −
1ffiffiffi
2

p ð0; 1;∓i; 0Þ;

ε2μðp2; λ2 ¼ �1Þ ¼ 1ffiffiffi
2

p ð0; 1;�i; 0Þ;
ð2:4Þ

which ensure εi · pj ¼ 0 for i, j ¼ 1, 2. The photon
beams circular polarization provides two possible run-
ning modes in terms of helicities: a parallel and an
antiparallel alignment of the photon helicities. They are,
respectively, equivalent to the overall angular momen-
tums of Jz ¼ 2 and Jz ¼ 0. Basically, one can obtain
either laser photons or e− beams with a suitable choice
of helicity.
The analytical and numerical evaluations have been

made using packages1 described as follows. The
Feynman diagrams and amplitudes have been generated
with the means of FeynArts [30]. Technically, the algebraic
evaluation of the Feynman amplitudes has been performed
in the same way as described in Ref. [15] for γγ → H−Hþ.
Next, squaring the relevant amplitudes, simplifying the
fermion chains, and the numerical computation have
been performed with help of FormCalc [31]. The scalar
loop integrals have been computed with the help of

1We have already carried out several recent works
[13–15,28,29], which include significant results, by using the
same tools.
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LoopTools [31]. The phase-space integrations are computed
via the Monte Carlo integration algorithm Vegas, imple-
mented in the CUBA library [32]. The evaluation of the hard
photon bremsstrahlung process has been successfully
checked against the results obtained with CalcHEP [33]
and WHIZARD [34,35].

A. Lowest-order calculation

In the lowest order, process γγ → l−lþ is a pure QED
process in which the leading contribution comes from t and
u-channel charged lepton-exchange diagrams. We present
the Born-level Feynman diagrams in Fig. 1. The matrix
elements for these diagrams are

M1 ¼
−ie2

½t̂ −m2
l�
ūðk2; mlÞγνενðp2Þð=k2 − =p2 þmlÞ

× εμðp1Þγμvðk1; mlÞ;
ð2:5Þ

M2 ¼
−ie2

½û −m2
l�
ūðk2; mlÞγμενðp2Þð=p2 − =k1 þmlÞ

× εμðp1Þγνvðk1; mlÞ;
ð2:6Þ

where εμðp1Þ and ενðp2Þ refer to polarization vector of

initial photons, and α ¼ e2
4π. The Born-level total amplitude

is given by

MBorn ¼
X2
i¼1

Mi; ð2:7Þ

leading to the differential cross section

�
dσ̂
dΩ

�
γγ→l−lþ

Born
¼ 1

64π2ŝ

X
λ1;2;σ1;2

1

4
ð1þ P1λ1Þð1þ P2λ2Þ

× jMλ1;λ2;σ1;σ2
Born j2; ð2:8Þ

where P1 and P2 are the polarization degree of the
incoming photons. Following the square of total amplitude
and the summation over final particle helicities, the
integrated cross section is obtained by

σ̂γγ→l−lþ
Born ¼ 1

16πŝ2

Z
t̂þ

t̂−

�
1

4

� X
λ1;2;σ1;2

jMBornj2dt̂; ð2:9Þ

where the factor (1=4) comes from averaging spin of the
initial photons and

t̂� ¼
�
m2

l� −
ŝ
2

�
� 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2 − 4ŝm2

l�

q �
: ð2:10Þ

B. One-loop EW radiative corrections

1. Virtual corrections

Higher-order contributions are required to increase
precision in the analysis of high energy processes in
modern and future colliders. The process (2.1) includes
one-loop level contributions in order of OðαÞ, which is
based on pure EW corrections. It is known that the total
amplitude at one-loop level may be taken as a linear sum of
triangle, bubble and box one-loop integrals. Accordingly,
the virtual contributions for the process γγ → l−lþ come
from three different types of diagrams, according to the
loop correction type: box-type, self-energy, and vertex-type
diagrams.
Here, explicit analytical expressions of the full virtual

contributions are not presented as they are very compli-
cated. Instead, a list of all one-loop Feynman diagrams
are provided by the FeynArts. There are 236 one-loop
Feynman diagrams in total (12self-energyþ26box-typeþ
198vertex-type) as shown in Figs. 2–4. In diagrams with
two arrows on the same lines of the loop, particles are
running both clockwise and counterclockwise. The inter-
nal lines are labeled as follows: f stands for
fe; μ; τ; u; c; t; d; s; bg and a l for leptons fμ; τg, (G0; G)
are neutral/charged Goldstone bosons, and u� indicates the
ghosts. The dashed lines represent the Higgs boson and
Goldstone bosons, and the wavy lines indicate gauge vector
bosons (γ and Z, W�). The Mandelstam variables given in
(2.2) are used. We can also topologically divide one-loop
contributions into ŝ-, t̂-, and û-channel diagrams with the
mediator of gauge bosons (γ, Z,W�), neutral Higgs bosons
(h0), and neutral/charged Goldstone bosons (G0; G�).
First, we present the self-energy diagrams in Fig. 2, in

which they include all possible loops of leptons, γ, Z, W�,
Higgs and Goldstone bosons on the charged lepton
propagators. Second, in Fig. 3, we give the irreducible
one-loop diagrams, the so-called box-type contributions.
These include all possible loops of leptons, γ, Z, W�,
Higgs, and Goldstone bosons. They are mainly from t̂ and û
channels.
Finally, we give the vertex-correction diagrams in Fig. 4.

They consist of triangle corrections to t̂-channel charged
lepton exchange, bubbles, and triangle vertices attached to

FIG. 1. The lowest order Feynman diagrams contributing to
γγ → l−lþ.
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the final state via an intermediate γ, Z, Higgs, and
Goldstone bosons. We can classify them into three distinct
groups. The first type is the vertex corrections Al�l̄ and
All̄� in the t̂ and û channels, where asterisk marks the off
shell field. In Fig. 4, the vertex corrections Al�l̄ are given
with diagrams (1),(2) and (5)–(7), while the vertex correc-
tions All̄� are shown with diagrams (3),(4) and (8)–(13).

The second and third types are the vertex corrections
AAZ�=G0� and AAh0�, respectively. These are ŝ-channel
contributions shown in diagrams (14)–(24) in Fig. 4.
However, the fermion loop contributions to these vertices
are proportional to the final fermion mass and thus can be
neglected.
The total amplitude for the virtual contributions can be

given by the summation of self-energy, box-type, and
triangle-type contributions, represented as

δMvirt ¼ M○ þM□ þM△: ð2:11Þ

The differential cross section for virtual one-loop contri-
butions can be obtained via

dσ̂γγ→l−lþ
virt ¼ 1

16πŝ2

�
1

4

�X
hel

2Re½M�
BornδMvirt�dt̂; ð2:12Þ

where jδMvirtj2 is not included since it is very small. The
one-loop Feynman diagrams, which form the virtual OðαÞ
corrections δMvirt, have been computed in the ’t Hooft-
Feynman gauge using the on shell renormalization scheme
described in Ref. [36]. The virtual corrections contain
both infrared (IR) and ultraviolet (UV) divergences. The
UV divergences are treated via dimensional regularization
[37]. The counterterms are taken as seen in the diagrams
of Fig. 5. As described in Ref. [36], we have used all
Feynman rules including the counterterms as well as the
renormalization conditions in this work. The fields and
parameters redefinition is performed in the on shell
scheme. This redefinition transforms the Lagrangian into
a bare and counterterm. After the renormalization pro-
cedure, we get the virtual part as UV finite. This can be
checked both analytically and numerically. Though, there
still is the soft IR singularity, originated from virtual
photonic loop correction. The IR singularity is regulated
by adding a photon mass parameter, mγ . From the

FIG. 3. The box-type diagrams contributing to γγ → l−lþ.

FIG. 2. The self-energy diagrams contributing to γγ → l−lþ.

FIG. 4. The vertex-correction diagrams contributing to γγ → l−lþ.
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Kinoshita-Lee-Nauenberg theorem [38,39],2 it is canceled
in the limit mγ → 0 by adding corrections of the real
photon bremsstrahlung.

2. Real corrections

Real photon radiation in γγ → lþl− leads to the
kinematically different process which can be expressed as

γðp1; λ1Þγðp2; λ2Þ → lþðk1; σ1Þl−ðk2; σ2Þγðk3; λ3Þ;
ð2:13Þ

where k3 denotes the radiated photon four momenta.
Figure 6 shows the relevant diagrams. The lowest-order
cross section of real-photon radiation process (2.13) yields
an OðαÞ correction to process γγ → lþl−. The differential
cross section is given by

�
dσ̂
dΩ3

�
γγ→l−lþγ

real
¼ 1

2ŝ

X
λ1;2;σ1;2;λ3

1

4
ð1þ P1λ1Þð1þ P2λ2Þ

×
���Mλ1;λ2;σ1;σ2;λ3

γγ→lþl−γ

���2 ð2:14Þ

with the three-particle phase-space integral as

Z
dΩ3 ¼

Y3
i¼1

Z
d3k⃗i

ð2πÞ32k0i
ð2πÞ4δ

�
p1 þ p2 −

X3
j¼1

kj

�
:

ð2:15Þ

According to the radiated photon energy

k03 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk⃗3j2 þm2

γ

q
, we can divide the bremsstrahlung

phase space into soft and hard regions. Correction from
the real photon radiation then reads

dσ̂γγ→l−lþγ
real ¼ dσ̂softðΔsÞ þ dσ̂hardðΔsÞ; ð2:16Þ

where Δs denotes the soft cutoff energy parameter
Δs ¼ ΔEγ=ð

ffiffiffî
s

p
=2Þ. The radiated photon is called soft

when k03 < ΔEγ ¼ Δs

ffiffiffî
s

p
=2, while it is hard if k03 > ΔEγ .

The approximation formula [36,41]

dσ̂soft ¼ −dσ̂Born
αQ2

l

2π2

Z
jk⃗3j≤ΔEγ

d3k3
2k03

�
k1

k1 · k3
−

k2
k2 · k3

�
2

ð2:17Þ

gives the soft photon correction, where dσ̂Born denotes the
Born-level differential cross section and ΔEγ satisfies

k03 ≤ ΔEγ ≪
ffiffiffî
s

p
. Integrating the soft photon phase space

in the center-of-mass system yields

dσ̂soft ¼ δsoftdσ̂Born; ð2:18Þ

with

δsoft ¼ −
α

π
Q2

l

�
2 ln

�
2ΔEγ

mγ

��
1þ ln

�
m2

l

ŝ

��

þ 1

2
ln2

�
m2

l

ŝ

�
þ ln

�
m2

l

ŝ

�
þ π2

3

�
:

ð2:19Þ

The real corrections are independent of the soft cutoff
parameter Δs despite both the soft and hard photon parts
depend on this parameter. On the other hand, adding the
virtual and soft contributions cancels the IR regulator mγ

dependence. The results now depend on Δs (i.e., ΔEγ), so
that contribution of the hard photon radiation must also be
included for dropping out this dependency.

3. Classification of full corrections

We can separate the UV and IR finite result for OðαÞ
corrections into three parts:

dσ̂γγ→lþl−
NLO ¼ dσ̂virtðmγÞ þ dσ̂softðmγ;ΔsÞ þ dσ̂hardðΔsÞ:

ð2:20Þ

FIG. 5. The counterterm diagrams for γγ → l−lþ.

FIG. 6. The Feynman diagrams for the real photon radiation.

2It is also well known that this was demonstrated perturbatively
in QED by Schwinger [40].
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The first is from virtual (loop) contribution, the second
from the soft photon emission, and the third from the real
hard photon bremsstrahlung. This form depends neither on
the IR regulator mγ nor on the soft cutoff parameter Δs.
We have numerically inspected that our results are

independent of mγ or on ΔEγ ¼ Δs

ffiffiffî
s

p
=2. In Fig. 7, we

present the virtual plus soft photon, the hard photon
radiation and the total one-loop corrections as a function
of Δs at

ffiffiffî
s

p ¼ 500 GeV for both γγ → μ−μþ and γγ →
τ−τþ processes. We can see from these figures that although
the virtual plus soft correction and the hard photon
radiation correction strongly depend on Δs, the total
correction is independent of this parameter for both
processes. Moreover, the relative one-loop correction
σ̂1-loop=σ̂Born is also stable around 1.06 and 1.12 for
γγ → μ−μþ and γγ → τ−τþ, respectively.
The Feynman diagrams of the virtual contributions can

also be classified according to gauge-invariant subsets:
QED corrections δQED and weak corrections δWeak. Thus,
the total virtual correction becomes

δTotal ¼ δQED þ δWeak: ð2:21Þ

The process γγ → lþl− can be treated in pure QED. The
QED corrections include virtual-photon exchange, real-
photon emission, and the corresponding counterterms. All
QED-like diagrams, that is, those with only A and l fields as
virtual lines, form a gauge-invariant subset. We consider
the one-loop QED corrections δQED as the sum of the soft-
photon contribution and the contribution of diagrams (1)
and (5) of Fig. 2, (1) and (5) of Fig. 3, and (1)–(4) of Fig. 4.
The remaining contributions (non-QED corrections) are
defined as weak corrections δWeak that involve the massive
Z0 andW� gauge bosons. They can be further divided into
two subsets as follows:

δWeak ¼ δferm þ δbos; ð2:22Þ

where δferm denotes fermionic contributions and δbos is
bosonic contributions. This kind of decomposition was
previously made for the γγ → tt̄ process in Ref. [42].
Because the number of fermion generations is a free
parameter in the SM, each generation provides a subset
with gauge-invariant of one-loop diagrams created with
fermionic loops. This correction come from diagrams (15)
and (16) of Fig. 4. Finally, the all remaining, except those
described above, also form a gauge-invariant subset termed
bosonic corrections δbos.
As a result, the factor δTotal represents the full relative

OðαÞ correction. The one-loop corrected cross section can
be factorized into the Born-level cross section and the
relative correction. Thus, the integrated cross section
σ1−loop at one-loop level can be separately defined by

σ1-loop ¼ σBornð1þ δTotalÞ
¼ σBornð1þ δQED þ δWeakÞ
¼ σBornð1þ δQED þ δferm þ δbosÞ;

ð2:23Þ

leading to

δType ¼
σType1-loop − σBorn

σBorn
ð2:24Þ

where type can be “Total,” “QED,” “Weak,” “ferm,”
and “bos.”
The full EW OðαÞ corrections depend on the electro-

magnetic coupling α ¼ e2=ð4πÞ. Different input-parameter
schemes can be chosen for α, which will affect its value.
This can be set in twoways: the fine-structure constant αð0Þ
in the Thompson limit and the running electromagnetic
coupling αðQ2Þ at a high-energy scale Q. As an example, it

(a) (b)

FIG. 7. The virtual plus soft and hard photon radiation corrections to processes (a) γγ → μ−μþ and (b) γγ → τ−τþ as a function of Δs
in the αð0Þ scheme.
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is possible to use the value of αðM2
ZÞ, which is calculated

by analyzing the experimental ratio R ¼ σðe−eþ →
hadronsÞ=σðe−eþ → μ−μþÞ [43,44]. These ways are
referred to as αð0Þ scheme and αðM2

ZÞ scheme, respectively.
Another choice for α is obtained from the Fermi constant
Gμ as follows

αðGμÞ ¼
ffiffiffi
2

p
GμM2

W

π

�
1 −

M2
W

M2
Z

�
; ð2:25Þ

which is called a Gμ scheme. The distinctions between
these schemes will be more obvious in the discussion of the
relevant OðαÞ corrections.

C. Parent process e + e− → γγ → l+l−
The γγ collision would be one of the interesting

processes in the future colliders with TeV energy scale.
When a polarized laser beam undergoes Compton scatter-
ing with a polarized electron beam at a facility of this kind,
each electron is effectively converted into a high-energy
polarized photon from its energy fraction. Both effective
luminosity and energy of γγ collisions from backscattered
laser beams are expected to be comparable with that of the
primary e−eþ collisions. The high energy luminosity and
polarization of backscattered laser beams hence have the
potential to make γγ collisions a key component of the
physics program of the future linear collider. This feature
would allow detailed works of a large array, including
polarized beams, of high energy γγ and γe collisions.
In this context, γγ → lþl− can be generated as a

subprocess of e−eþ collision. For the parent process
eþe− → γγ → lþl−, the total cross section, folding
σ̂ðγγ → lþl−Þ with the photon luminosity

dLγγ

dz
¼ 2z

Z
xmax

z2=xmax

dx
x
Fγ=eðxÞFγ=e

�
z2

x

�
; ð2:26Þ

can be written as

σe
þe−→γγ→lþl−ðsÞ

¼
Z

xmax

ð2ml�Þ=
ffiffi
s

p dz
dLγγ

dz
σ̂ðγγ→lþl−; ŝ¼ z2sÞ; ð2:27Þ

where Fγ=eðxÞ denotes the photon structure function. This
entity is represented for the initial unpolarized electrons
and laser photon beams by the most promising Compton
backscattering as [17,18,45]

Fγ=eðxÞ ¼
1

DðζÞ
�
1 − xþ 1

1 − x
−

4x
ζð1 − xÞ þ

4x2

ζ2ð1 − xÞ2
�
;

ð2:28Þ

with

DðζÞ ¼
�
1 −

4

ζ
−

8

ζ2

�
ln ð1þ ζÞ þ 1

2
þ 8

ζ
−

1

2ð1þ ζÞ2 ;

ð2:29Þ

where ζ ¼ 2
ffiffi
s

p
ω0

m2
e
, ω0 denotes the laser-photon energy and

x is the fraction of the energy of the incident electron
carried by the backscattered photon. The maximum
fraction of energy carried by the backscattered photon is
xmax ¼ 2ωmax=

ffiffiffi
s

p ¼ ζ=ð1þ ζÞ. We take ω0 to maximize
the backscattered photon energy in our calculations, such
that it is not spoiling the luminosity via electron-positron
pair creation. This procedure requires ζ≤2ð1þ ffiffiffi

2
p Þ≃4.8,

and hence we have xmax ≃ 0.83 and DðζÞ ≈ 1.8397.

III. NUMERICAL RESULTS AND DISCUSSIONS

We discuss in detail the numerical results of the muon-
pair and tau-pair production in photon-photon collisions,
by considering complete one-loop corrections, including
soft and hard QED radiation. We present the Born-level and
one-loop cross sections by considering the pure QED and
weak corrections, separately, as a function of the center-of-
mass energy. In addition, we complement our calculation
by partitioning the weak corrections into the purely
fermionic loops together with the fermionic part of the
counterterms and the remaining weak bosonic contribu-
tions. We show their effect on the total cross section with
the relative corrections previously defined in Eq. (2.24).
Angular and polarization distributions of the process are
also presented.
We implement the following input parameters for the

numerical calculations [46]:

αð0Þ ¼ 1=137.03599907;

GF ¼ 1.1663787ð6Þ × 10−5 GeV−2;

MW ¼ 80.385 GeV; me ¼ 0.510998928 MeV;

MZ ¼ 91.1876 GeV; mμ ¼ 105.6583715 MeV;

Mh ¼ 125 GeV; mτ ¼ 1.77682 GeV;

mu ¼ 73.56 MeV; md ¼ 73.56 MeV;

mc ¼ 1.275 GeV; ms ¼ 95 MeV;

mt ¼ 173.21 GeV; mb ¼ 4.66 GeV:

Furthermore, we set the soft cutoff parameter as
Δs ¼ 10−3 and j cos θj < 0.99 for the range of scattering
angles of the final particles. During our numerical evalu-
ation, we use the αð0Þ scheme where α is inputted in the
Thompson limit, yet we also present a comparison with the
results obtained in the Gμ scheme.
First of all, we compare the numerical results of

FeynArts&FormCalc with the ones obtained by using CalcHEP

and WHIZARD for the cross section of Born-level and hard
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photon bremsstrahlung. In Table I, we present the triple
comparison for Born-level process γγ → l−lþ and hard
process γγ → l−lþγ at

ffiffiffî
s

p ¼ 250, 500, and 1000 GeV. We
have found an excellent agreement for the Born-level cross
section with the aforementioned packages. We have
obtained very good agreement within four to five digits
for hard photon bremsstrahlung cross section.
In Figs. 8(a) and 8(b), we present the Born-level and

one-loop cross sections for processes γγ → μ−μþ and
γγ → τ−τþ as a function of center-of-mass energy, respec-
tively. Moreover, to describe each different type of cor-
rection in the total cross section quantitatively, we plot the

corresponding relative corrections in the same figures.
Since the center-of-mass energy starts at a greater value
than the threshold, all curves start from their maximum
values and decrease with the increment of

ffiffiffî
s

p
. As the

ffiffiffî
s

p
goes from 100 GeV to 1.5 TeV, the one-loop cross section
decreases from 120.83 to 0.51 pb for γγ → μ−μþ and
126.16 to 0.54 pb for γγ → τ−τþ. The full EW corrections
give a positive contribution to the total cross section in the
parameter regions. These results show that the production
rate of γγ → l−lþ is larger by one order of magnitude than
from the e−eþ-collision mode (see Refs. [25,26]).
The fermionic corrections are around þ3.7% for γγ →

μ−μþ andþ7.7% for γγ → τ−τþ, and depend on the center-
of-mass energy weakly. Whereas the bosonic corrections
are about −2%ð−0.01%Þ close to threshold, they decrease
rapidly with the increasing center-of-mass energies, even-
tually reaching about −7.34%ð−5.41%Þ at an energy of
1.5 TeV for γγ → μ−μþ (γγ → τ−τþ). Consequently, the
fermionic and bosonic corrections are partially canceled,
as they are combined to form the full weak corrections.
The fermionic corrections stay almost stable even for high
energies. The bosonic corrections supply a determinative
contribution to weak corrections at high energies. The
QED corrections are about þ6% at the first point, which
hardly changes up to 1500 GeV for both processes. The
QED corrections are independent of the center-of-mass
energy for s ≫ m2

l, because all mass singularities cancel,
and the only scale that survives is s. Both QED and weak
corrections partially compensate each other in the EW
corrections, yielding relative corrections of around
þ7.77% and þ13.94% at the first point, and þ2.40%
and þ8.31% for γγ → μ−μþ and γγ → τ−τþ, respectively,
at 1500 GeV. Our results show that the weak OðαÞ
corrections to γγ → l−lþ are required to match a percent
level accuracy.

TABLE I. The triple comparison between FeynArts&FormCalc
(FA&FC), WHIZARD and CalcHEP of the Born-level and hard
photon bremsstrahlung cross section calculations.
ffiffiffi
s

p
250 GeV 500 GeV 1000 GeV

σBornðγγ → μ−μþÞ [pb]
FA&FC 17.940(4) 4.4851(3) 1.1212(8)
WHIZARD 17.940(6) 4.4850(8) 1.1212(6)
CalcHEP 17.940 4.4851 1.1213

σBornðγγ → τ−τþÞ [pb]
FA&FC 17.903(7) 4.4828(3) 1.1211(4)
WHIZARD 17.903(8) 4.4830(1) 1.1211(3)
CalcHEP 17.904 4.4828 1.1211

σhard−γðγγ → μ−μþγÞ [pb]
FA&FC 7.2448(1) 1.9892(5) 0.54168(9)
WHIZARD 7.2444(1) 1.9874(1) 0.54194(8)
CalcHEP 7.2432 1.9894 0.54194

σhard−γðγγ → τ−τþγÞ [pb]
FA&FC 4.3588(7) 1.2664(9) 0.36082(8)
WHIZARD 4.3560(6) 1.2657(0) 0.36059(6)
CalcHEP 4.3517 1.2656 0.36417

(a) (b)

FIG. 8. Born-level and one-loop cross sections as a function of center-of-mass energy for (a) γγ → μ−μþ and (b) γγ → τ−τþ. We also
show relative corrections in a percentage at the bottom panel.
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In Figs. 9(a) and 9(b), we give the relative corrections of
processes γγ → μ−μþ and γγ → τ−τþ for two different
schemes, αð0Þ scheme and Gμ scheme, as a function of
center-of-mass energy, respectively. The marks and lines
corresponding to different relative corrections and schemes

are labeled as follows: for the αð0Þ scheme, δαð0ÞQED (purple

square on line), δαð0ÞWeak (green diamond on line), δαð0Þferm

(orange up triangle on line), δαð0Þferm (cyan right triangle on

line), and δαð0ÞTotal (black sphere on line). Meanwhile, the

calculations in the Gμ scheme are represented by the same
symbols on dashed lines but with a hollow. As a general
comment, it can be emphasized that the relative corrections
are almost independent of the choice of scheme, changing
only a few percent. The Born and one-loop cross sections
increase by up to about 7.4% and 7.8%, respectively, in the
Gμ scheme as compared to the αð0Þ scheme. The relative
corrections increase by up to about 4%, in Gμ scheme as
compared to the αð0Þ scheme. These results are almost the
same for both processes considered in this study.
In Tables II and III, we list numerical values for the

unpolarized cross sections and the relative corrections,

(a) (b)

FIG. 9. Relative corrections in the αð0Þ scheme and Gμ scheme as a function of center-of-mass energy for (a) γγ → μ−μþ and
(b) γγ → τ−τþ.

TABLE II. Born-level, one-loop cross sections (in pb) and
relative corrections (in %) of γγ → μ−μþ in the αð0Þ scheme and
Gμ scheme for

ffiffiffî
s

p ¼ 250, 500, and 1000 GeV.

ffiffiffî
s

p
250 GeV 500 GeV 1000 GeV

σðγγ → μ−μþÞ [pb]
σαð0ÞBorn

17.94 4.49 1.12

σ
Gμ

Born
19.27 4.82 1.20

σαð0Þ1-loop
19.30 4.78 1.17

σ
Gμ

1-loop
20.78 5.15 1.26

δðγγ → μ−μþÞ [%]

δαð0ÞQED
þ6.04 þ6.00 þ6.06

δ
Gμ

QED
þ6.26 þ6.26 þ6.22

δαð0Þferm
þ3.73 þ3.73 þ3.73

δ
Gμ

ferm
þ3.87 þ3.87 þ3.87

δαð0Þbos
−2.20 −3.20 −5.37

δ
Gμ

bos
−2.28 −3.32 −5.56

δαð0ÞWeak
þ1.53 þ0.53 −1.63

δ
Gμ

Weak
þ1.59 þ0.55 −1.69

δαð0ÞTotal
þ7.57 þ6.53 þ4.43

δ
Gμ

Total
þ7.85 þ6.80 þ4.53

TABLE III. Same as Table II but for γγ → τ−τþ.
ffiffiffî
s

p
250 GeV 500 GeV 1000 GeV

σðγγ → τ−τþÞ [pb]
σαð0ÞBorn

17.90 4.48 1.12

σ
Gμ

Born
19.23 4.81 1.20

σαð0Þ1-loop
20.33 5.04 1.24

σ
Gμ

1-loop
21.93 5.44 1.33

δðγγ → τ−τþÞ [%]

δαð0ÞQED
þ6.14 þ6.07 þ6.04

δ
Gμ

QED
þ6.37 þ6.28 þ6.27

δαð0Þferm
þ7.67 þ7.67 þ7.67

δ
Gμ

ferm
þ7.95 þ7.95 þ7.95

δαð0Þbos
−0.23 −1.24 −3.40

δ
Gμ

bos
−0.24 −1.28 −3.52

δαð0ÞWeak
þ7.44 þ6.43 þ4.27

δ
Gμ

Weak
þ7.71 þ6.67 þ4.43

δαð0ÞTotal
þ13.57 þ12.51 þ10.31

δ
Gμ

Total
þ14.08 þ12.95 þ10.69
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calculated in the αð0Þ and Gμ schemes for γγ → μ−μþ and
γγ → τ−τþ, respectively.
In Figs. 10(a) and 10(b), we show the initial beam

polarization dependence of the Born-level and complete
one-loop cross sections on center-of-mass energy for
γγ → μ−μþ and γγ → τ−τþ. Also, we present the rate of
Rλ1λ2 ¼ σλ1λ21-loop=σ

UU
1-loop in order to see effect of polarization

modes on the total cross section. The curves correspond to
the integrated cross section with, respectively, the right-
handed polarized photons (þþ) with photon helicity
Jz ¼ 0, oppositely polarized photons (−þ) with Jz ¼ 2,
and unpolarized photons (UU). Notice that the (−þ)
and (þ−) polarized cross sections are the same, i.e.,
σ−þ ¼ σþ−.
From this figure, all curves for polarized and unpolarized

cases start from their maximum values and fall off rapidly
with the increment of center-of-mass energy. This is also
the expected behavior. The cross sections with total photon
helicity Jz ¼ 0 (σþþ) turn on quickly, because they behave
like x at threshold, whereas the Jz ¼ 2 case (σ−þ) goes like
x3. Compared to the unpolarized case, the integrated Born
and one-loop cross sections with oppositely polarized
photons are increased by a factor of two. For the same-
handed polarized photons, (þþ) or (−−), the cross section
is highly suppressed although at high energies. The rate
Rλ1λ2 is around 2 and 10−4 for λ1λ2 ¼ −þ and λ1λ2 ¼ þþ,
respectively. These behaviors show that having both
photons polarized may be significant to provide a meas-
urable production rate. For the process γγ → μ−μþ, at
100 GeV, σUU1-loopðγγ → μ−μþÞ have a maximum of
120.83 pb and the corresponding relative correction
δUUTotalðγγ → μ−μþÞ is þ7.77%. The σþ−

1-loopðγγ → μ−μþÞ
have a maximum of 242.56 pb, yielding a total relative
correction of aboutþ8.18%. On the other hand, for process
γγ → τ−τþ, σUU1-loopðγγ → τ−τþÞ have a maximum of

126.16 pb and the corresponding relative correction
δUUTotalðγγ → τ−τþÞ is þ13.94%. The σþ−

1-loopðγγ → τ−τþÞ
have a maximum of 249.48 pb and the corresponding
δþ−
Totalðγγ → τ−τþÞ is þ14.25%. Moreover, the absolute
relative corrections decrease as

ffiffiffî
s

p
rises. The full relative

OðαÞ correction is increased up to a few percent by
oppositely polarized photons. As a result, the longitudinal
polarization of initial beams increases the l−lþ production
event rate in the photon-photon colliders.
In Figs. 11 and 12, we present the Born-level and one-

loop level of differential cross sections of γγ → l−lþ as a
function of the angle between the initial photon and the
charged lepton at

ffiffiffî
s

p ¼ 250 and 500 GeV. We also provide
the angular dependence of the relative effect of the EW
corrections on the bottom panel of the same figures. The
angular distribution of the unpolarized Born-level and
the one-loop cross sections are (symmetrically) strongly
peaked in the backward and forward directions. The
relative corrections modify somewhat the Born-level angu-
lar distribution since their influence is larger in the central
region. The relative corrections are relatively flat forffiffiffî
s

p ¼ 250 GeV, especially in the −0.8 < cos θ < 0.8
region, yet the dependence on the angle becomes more
distinctive for

ffiffiffî
s

p ¼ 500 GeV. The corrections reach their
maximums as cos θ approaches the extreme points: −1 or
þ1. Therefore, the charged leptons are dominantly pro-
duced in the forward and backward directions and it would
be more probable to observe them in this collision region.
By changing cos θ, the fermionic corrections stay almost
stable, while the bosonic corrections supply a determinative
contribution to weak corrections. Thus, these two correc-
tions partially cancel as they combined forming the full
weak corrections. However, QED contributions show a
small dependence on cos θ. Furthermore, both QED and
weak contributions are partially compensated with each

(a) (b)

FIG. 10. Polarized Born-level and one-loop cross sections of processes (a) γγ → μ−μþ and (b) γγ → τ−τþ as a function of center-of-
mass energy.
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other in the EW corrections. As cos θ goes from 0 toþ0.97
or −0.97, at

ffiffiffî
s

p ¼ 250 GeV, the full relative correction
δTotal varies from 9.1% to 10.3% for γγ → μ−μþ, while
15.1% to 15.5% for γγ → τ−τþ. In the same cos θ range forffiffiffî
s

p ¼ 500 GeV, the full relative correction δTotal varies
from 7.6% to 10.1% for γγ → μ−μþ, while 12.7% to 15.3%
for γγ → τ−τþ.
In Fig. 13, we present the Born and full one-loop level

cross sections for e−eþ → γγ → l−lþ (l ¼ μ, τ), calcu-
lated by convoluting with the photon luminosity, as a
function of e−eþ center-of-mass energy. Their relative
corrections that describe the effect of each correction type
on the Born-level cross section as a function of

ffiffiffi
s

p
is

also provided. We can observe the expected behavior: a
rapid decrease with the rise of the center-of-mass energy.

The distributions have the same trend as in the subprocess.
As

ffiffiffi
s

p
goes from 100 GeV to 1 TeV, the one-loop cross

section decreases from 17.612 nb to 227.15 pb for γγ →
μ−μþ and 2.507 nb to 63.36 pb for γγ → τ−τþ. The full EW
corrections provide positive contribution to the total cross
section in the parameter regions, and decrease with the
increment of

ffiffiffi
s

p
.

In Tables IV and V, we list numerical values for the
unpolarized cross sections and the relative corrections for
parent processes e−eþ → γγ → μ−μþ and e−eþ → γγ →
τ−τþ, respectively.
The fermionic and bosonic corrections are around

þ3.7% and −1.8% for e−eþ → γγ → μ−μþ and þ7.7%
and −0.0005% for e−eþ → γγ → τ−τþ, and depend only
weakly on the center-of-mass energy. Therefore, the

(a) (b)

FIG. 11. Angular distribution of the unpolarized Born-level and the one-loop differential cross sections for processes (a) γγ → μ−μþ

and (b) γγ → τ−τþ at
ffiffiffî
s

p ¼ 250 GeV.

(a) (b)

FIG. 12. Same as in Fig. 11 but for
ffiffiffî
s

p ¼ 500 GeV.
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fermionic and the bosonic corrections partially cancel as
they are combined to form the full weak corrections. The
QED corrections are around þ6.95% and þ7.55% at the
first point, which hardly changes up to 1 TeV for both
processes. In the full EW corrections, both QED and weak
corrections partially compensate each other, yielding

relative corrections of about þ8.98% and þ15.16% at
the first point, and þ8.70% and þ14.71% for e−eþ →
γγ → μ−μþ and e−eþ → γγ → τ−τþ, respectively, at
1000 GeV.

IV. SUMMARY AND CONCLUSIONS

High precision calculations are required to further
precision tests of the SM and search for clues on BSM.
It is important to investigate such calculations in a simple
and clean process such as the leptons production at γγ
collisions that would provide an observable signal. A
complete set of one-loop EW corrections must be included
in production channels to ensure sufficient precision. In this
study, we have studied the charged leptons pair production
via γγ collisions by considering a complete set of one-loop
EW corrections. Accordingly, the UV divergences have
been adjusted by dimensional regularization on the on-
mass-shell renormalization scheme, while the IR divergen-
ces have been canceled by the involvements of soft and
hard QED radiation. The numerical evaluation was also
made for two different schemes, the so-called the αð0Þ
scheme and Gμ scheme. The Gμ-scheme calculations are
shifted by about 4%, comparing to the αð0Þ scheme. We
have checked the stability of our result on the variation of
the soft-hard cutoff parameter. We also compared the Born-
level and the hard photon bremsstrahlung cross sections
with the results of CalcHEP and WHIZARD and found very
good (within four to five digits) agreement with the
packages used in this work.
The results indicate that the one-loop EW radiative

corrections mostly improve the Born-level cross section
and the total relative correction is typically about 10%
for both γγ → μ−μþ and γγ → τ−τþ processes. We have
also investigated the interplay between weak fermionic,
bosonic, and QED corrections. The fermionic corrections

(a) (b)

FIG. 13. Born-level and full one-loop cross sections convoluted with the photon luminosity of the parent processes
(a) eþe− → γγ → μ−μþ and (b) eþe− → γγ → τ−τþ versus

ffiffiffi
s

p
. The vertical solid lines denote to the proposed energies of future colliders.

TABLE IV. Born-level, one-loop cross sections (in pb) and
relative corrections (in%) for parent process e−eþ → γγ → μ−μþ

at
ffiffiffi
s

p ¼ 250, 500, and 1000 GeV.
ffiffiffi
s

p
250 GeV 500 GeV 1000 GeV

σðe−eþ → γγ → μ−μþÞ [pb]
σBorn 2509.99 755.58 208.97
σ1-loop 2731.52 821.70 227.15

δðe−eþ → γγ → μ−μþÞ [%]
δQED þ6.83 þ6.78 þ6.74
δferm þ3.75 þ3.74 þ3.74
δbos −1.75 −1.77 −1.79
δWeak þ1.99 þ1.97 −1.96
δTotal þ8.83 þ8.75 þ8.70

TABLE V. Same as Table IV but for e−eþ → γγ → τ−τþ.
ffiffiffi
s

p
250 GeV 500 GeV 1000 GeV

σðe−eþ → γγ → τ−τþÞ [pb]
σBorn 519.14 182.62 55.23
σ1-loop 596.58 209.65 63.36

δðe−eþ → γγ → τ−τþÞ [%]
δQED þ7.29 þ7.18 þ7.09
δferm þ7.68 þ7.67 þ7.67
δbos −0.00045 −0.00049 −0.00059
δWeak þ7.63 þ7.62 þ7.61
δTotal þ14.92 þ14.80 þ14.71
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depend weakly on the center-of-mass energy, whereas the
weak bosonic contribution is negative and decreases rapidly
with increasing center-of-mass energies. Therefore, the
fermionic and bosonic contributions partially cancel when
combined to form the full weak corrections. Additionally,
the QED corrections do not depend on the center-of-mass
energy for s ≫ m2

l, because all mass singularities cancel,
and s is the only scale that survives. The QED plus weak
corrections are partially compensated each other, yielding
relative corrections of about 10%.
Moreover, we have presented numerical results for

angular distribution and the initial beam polarisation
dependence of the Born-level and one-loop cross sections.
As a result, the angular distribution is (symmetrically)
strongly peaked in the backward and forward directions.
The relative corrections modify somewhat the Born-level
angular distribution since their effect is larger in the central
region. On the other hand, it is obvious from polarization
distribution that the polarization effects are significant and
enhance the cross section at the definite initial degrees of
polarization as compared to the unpolarized one.

In summary, the detailed phenomenological results for
the one-loop EW radiative corrections to muon-pair and
tau-pair productions through γγ collisions have been
presented in the framework of the SM. In the light of
this, the effects on the cross section of relative contribu-
tions created by dividing virtual contributions into the
gauge-invariant subsets have been separately investigated.
One-loop EW radiative corrections are clearly shown to
change the lowest-order results significantly, and must
thus be taken into complete account for a realistic
description of experiments at future collider energies.
Our results will be helpful for matching a percent level
accuracy.
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