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We present an OðαÞ Standard Model calculation of the inner radiative corrections to Gamow-Teller β
decays. We find that a priori contributions arise from the photonic vertex correction and γW box diagram.
Upon evaluation most elastic contributions vanish due to crossing symmetry or cancellation between
isoscalar and isovector photonic contributions, leaving only the polarized parity-odd contribution, i.e., the
Gamow-Teller equivalent of the well-known axial γW box contribution for Fermi decays. We show that
weak magnetism contributes significantly to the Born amplitude, and consider additional hadronic
contributions at low energy using a holomorphic continuation of the polarized Bjorken sum rule
constrained by experimental data. We perform the same procedure for the Fermi inner radiative correction
through a combination of the running of Bjorken and Gross-Llewellyn Smith sum rules. We discuss heavy
flavor, higher-twist, and target mass corrections and find a significant increase at low momentum from the
latter. We find ΔA

R ¼ 0.02532ð22Þ and ΔV
R ¼ 0.02473ð27Þ for axial and vector inner radiative corrections,

respectively, resulting in ΔA
R − ΔV

R ¼ 0.60ð5Þ × 10−3, which allows us to extract g0A for the first time to our
knowledge. We discuss consequences for comparing experimental data to lattice calculations in beyond
Standard Model fits. Further, we show how some traditional β decay calculations contain part of this effect
but fail to account for cancellations in the full OðαÞ result. Finally, we correct for a double-counting
instance in the isospin T ¼ 1=2 mirror decay extraction of jVudj, the up-down matrix element of the
Cabibbo-Kobayashi-Maskawa matrix element, resolving a long-standing tension and leading to increased
precision.

DOI: 10.1103/PhysRevD.103.113001

I. INTRODUCTION

Precision studies of neutron and nuclear β decays were
of paramount importance in the construction of the
Standard Model and provide stringent constraints on
TeV-scale beyond Standard Model (BSM) physics [1–5].
Electroweak radiative corrections (EWRC) play a central
role in this endeavor [6,7] and are required to be known to
high precision. This is particularly so for top-row unitarity
tests of the Cabibbo-Maskawa-Kobayashi (CKM)
matrix [8–11], where the final uncertainty is dominated
by that on EWRC for some systems. Recently, new
theoretical work on radiative corrections common to
neutron and superallowed Fermi decays [12–15] has caused

a reevaluation of older work [16,17] and an apparent
discrepancy with CKM top-row unitarity.
Following several new experimental results [18–21], the

neutron is quickly reaching competitive levels with super-
allowed β decays [22,23] for an extraction of jVudj, the up-
down CKM matrix element through

jVudj2τnðfV þ 3fAλ2Þ ¼
2π3

G2
Fm

5
eg2V

1

1þ RC
; ð1Þ

where τn is the neutron lifetime, GF ≈ 10−5 GeV−2 is the
Fermi coupling constant, me is the electron mass, λ≡
gA=gV is the ratio of axial and vector coupling constants,
fV=A are their respective phase space integrals, and RC
represents electroweak radiative corrections [10]. The latter
is traditionally written as

1þ RC ¼ 1þ δoutðEÞ þ ΔV
R; ð2Þ

where δoutðEÞ is an energy dependent, but nuclear structure
independent correction, and ΔV

R is the so-called inner
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radiative correction for the vector charged current, i.e., a
renormalization of gV [12,13,17]. While the latter is
protected from QCD corrections through the Ademollo-
Gatto theorem [24], the axial-vector coupling constant, gA,
receives both strong and electroweak corrections at next-to-
leading order. As these bring significant complexity, how-
ever, one typically continues with an experimentally
obtained value that contains all further corrections. In other
words, gA from Eq. (1) is commonly defined as

geffA ¼ gQCDA

�
1þ 1

2
ðΔA

R − ΔV
RÞ þ δBSM

�
; ð3Þ

where gQCDA contains strong interaction effects, ΔA
R are

electroweak corrections to gA, and we have explicitly
allowed the possibility for BSM interference.
Following great progress from lattice QCD (LQCD) in

the past years [25–27], a comparison between experimental
geffA and theoretical gQCDA results has become a new, clean
channel for probing right-handed currents in the electro-
weak sector [5,28]. Specifically, if one assumes that the
bulk of the electroweak corrections are common to both gV
and gA, ΔA

R − ΔV
R is small and geffA ≈ gQCDA ð1þ δBSMÞ. Up to

now, the difference in vector and axial-vector EWRC has
been assumed to be smaller than 0.1%, although no
complete calculations have been performed [29–33].
Here, we focus on a Standard ModelOðαÞ calculation of

ΔA
R. The paper is organized as follows. Section II provides a

sketch of what physics enters the calculation of RC in
Eq. (2) and discusses the tools we will be using. In Sec. III,
we treat the Standard Model electroweak vertex correction,
followed by Sec. IV where we discuss the box diagrams.
These findings coalesce into Sec. V which summarizes the
effective nucleon couplings and nuclear effects. Finally, we
discuss two consequences of our findings in Secs. VI and
VII, treating the comparison to LQCD and consistency
errors in traditional β decay formalisms and mirror jVudj
extraction, respectively.

II. OVERVIEW OF STANDARD MODEL INPUT

Before we proceed, we sketch some general outlines of
the problem. For a more general discussion, we refer the
reader to several excellent reviews [7,34–38].

A. Sketch of the ingredients

The OðαÞ radiative corrections (RC) to the Standard
Model β decay amplitude at first sight correspond to a large
number of contributing diagrams, ranging from virtual
electroweak boson exchange to Higgs interactions [34].
Many of these, however, contribute only to OðG2

FÞ upon
evaluation, and the final selection is much more modest.
Here we are interested only in those which can differ
between Fermi and Gamow-Teller transitions, so that all
diagrams which leave the interaction vertex unaltered

[wave function renormalization, OðαÞ bremsstrahlung,
etc.] serve only to guarantee gauge invariance in the
evaluation of Eq. (3) and remove IR divergences.
We start with the description of the theoretically clean

muon β decay, which was one of the early successes for the
calculation of EWRC [39]. Specifically, one found that
using the older V − A current-current interaction,

Hβ ¼
GFffiffiffi
2

p ēγλð1 − γ5Þμ × ν̄μγλð1 − γ5Þνe þ H:c: ð4Þ

with GF the so-called Fermi coupling constant, the radi-
ative corrections were both infrared (IR) and ultraviolet
(UV) finite. In this theory the only gauge boson that is
present is the photon, and the muon lifetime could be
cleanly calculated to OðαÞ with α the fine-structure
constant

1

τμ
¼ G2

Fm
5
μ

192π3
FðxÞ

�
1þ α

2π

�
25

4
− π2

��
; ð5Þ

where FðxÞ¼1−8x−12x2lnxþ8x3−x4 with x ¼ m2
e=m2

μ.
Equation (5) serves as the experimental definition of GF to
OðαÞ. As a consequence, anything in the Standard Model
EWRC calculation that is common to both the muon and
nuclear β decay can be absorbed into GF [40]. In fact,
standard methods result in the contribution of a number of
divergent but process-independent integrals. When using
an experimental determination of GF, however, all other
nuclear β decay calculations are finite [40,41]. Taking into
account higher-order corrections specific to the muon [7],
the most precise value is found to be [42]

GF=ðℏcÞ3 ¼ 1.1663787ð6Þ × 10−5 GeV−2: ð6Þ

Everything contained then in RC of Eq. (2) is specific to
(nuclear) β decays, relative to muon decay. In order to
clearly denote the differences between ΔV;A

R it is instructive
to specify the precise origin of the pieces in the definition of
ΔV

R . Taking the traditional breakdown as an example [16],

RC ¼ α

2π

�
3 ln

mW

mp
þ ḡðE0Þ þ 6Q̄β ln

mW

Λ

þ 6ðQ̄β − Q̄μÞ ln
mZ

mW
þ 2CB þ 2CINT þAg

�

þ higher order; ð7Þ

where Q̄β ¼ 1=6 is the average charge of up and down
quarks and Q̄μ ¼ −1=2 is the average charge of the μ− and
ν̄μ. The latter appears because we consider all effects
relative to muon decay as mentioned above. The first
two terms arise from low-energy photon exchange and
contain an energy average of Sirlin’s famous g function
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[43]. The following two terms are asymptotic contributions
from γW and ZW box diagrams. Historically [16,44], the
calculation is artificially divided in the loop momentum at
some scalemp < Λ ≪ mW . The benefit of this is that above
this scale, the strong interaction is perturbative and gives
rise to only small corrections. Below this scale, however,
contributions from the axial part of the γW box are sensitive
to physics at the nuclear scale and so are model dependent.
The final three terms are the main model-dependent parts of
the calculation predominantly arising from the famous axial
vector contribution to the Fermi decay rate. One receives
contributions from the Born (elastic) term (CB) at the
nuclear scale, connects the two regimes through some
interpolation function (CINT) and adds small perturbative
corrections from the deep inelastic scattering regime (Ag).
Recently it was shown [13], however, that such a clear
distinction in energy domains does not exist. We will come
back to this in Sec. IV.
Using Eq. (7) it is now easy to see which terms are

modified in the case of Gamow-Teller transitions. The first
two terms do not depend on nuclear structure as they arise
from the infrared-singular part of the γW diagram, which is
known to be universal [43]. Diagrams containing both
virtual W and Z bosons can contribute only asymptotically
to OðαÞ because of the heavy boson propagators and
GF ∝ M−2

W ≪ 1. In this regime, one essentially probes
asymptotically free quarks, and one obtains corrections
proportional to the tree-level amplitude to lowest order.
These give rise to the logarithmic enhancement factors of
the third and fourth terms in Eq. (7) [45]. As they are
common for Fermi and Gamow-Teller transitions, they do
not contribute to a difference in ΔV;A

R . Diagrams containing
virtual photons, however, probe all scales, and will require
the bulk of our attention. These remaining diagrams are
shown in Fig. 1.

B. Common tools

Following recent changes in CKM top-row unitarity
results, a significant amount of research is being performed
also in the jVusj sector [46,47], some of which follow
similar avenues as the ones taken here. Specifically, results
based on current algebra are resurfacing and will form the
basis of our work. In the following sections, we discuss
common elements to the calculation and proceed with the
evaluation of the vertex correction and γW box. We briefly

summarize the other diagrams and their interaction with
parts of the calculations of Fig. 1 in Appendix A.

1. Currents and commutation relations

We follow the current algebra approach pioneered over
50 years ago [34,48,49] and define the following quark
currents:

Jμγ ¼ 2

3
ūγμu −

1

3
d̄γμd; ð8Þ

JμW ¼ ūLγμdL; ð9Þ

JμZ ¼ 1

2
ðūLγμuL − d̄LγμdLÞ

−
1

3
sin2 θWð2ūγμu − d̄γμdÞ; ð10Þ

where θW is the weak interaction angle and all quark fields
obey canonical equal-time commutation relations (ETCR),
fψaðt; xÞ;ψ†

bðt; yÞg ¼ δabδ
ð3Þðx − yÞ. Using this, the ETCR

for the currents of Eqs. (8)–(10) can directly be obtained,
and we find

½J0γðxÞ; JμWð0Þ� ¼ JμWðxÞδð3ÞðxÞ; ð11aÞ

½J0WðxÞ; JμZð0Þ� ¼ cos2θWJ
μ
WðxÞδð3ÞðxÞ; ð11bÞ

½J0WðxÞ; JμWð0Þ� ¼ −2½sin2θWJμγ ðxÞ þ JμZðxÞ�δð3ÞðxÞ: ð11cÞ

The appearance of the δð3ÞðxÞ factors will simplify matters
significantly.
All the Feynman diagrams discussed in the following

sections interfere linearly with the tree-level amplitude,
which is simply

M0 ¼ −
ig2

8
Vud

ēγμð1 − γ5Þν
q2 −M2

W
hfjūγμð1 − γ5Þdjii ð12Þ

as usual, with g the SUð2ÞL gauge coupling and jf; ii are
hadronic states which satisfy the strong interaction equation
of motion. We define the lepton current

Lμ ¼ ēLγμνL ð13Þ

for convenience and recognize

GFffiffiffi
2

p ¼ g2

8M2
W

ð14Þ

for q ≪ M2
W, when making contact with the traditional

Fermi four-point interaction of Eq. (4).
FIG. 1. OðαÞ radiative corrections that give rise to differences
in vector and axial vector transitions.
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2. G-parity and first-class currents

The strong interaction is symmetric under charge con-
jugation and isospin rotations. The combination of these,
introduced by Lee and Yang [50], is the so-called G-parity,
defined as

G ¼ C exp ð−iπT2Þ; ð15Þ

where C is a charge conjugation operator and T2 is the
isospin projection along the 2-axis. While the strong
interaction is invariant under G-parity, both QED and
the weak interaction are not. According to the scheme
by Weinberg [51], all observed weak currents transform as
first-class currents, meaning

GVμG−1 ¼ Vμ; ð16Þ

GAμG−1 ¼ −Aμ; ð17Þ

where Vμ transforms as a Lorentz vector and Aμ as an axial
vector. In the absence of second-class currents (with the
opposite behavior) [52,53], we can require the same thing
from the radiative corrections. Specifically, all terms dis-
cussed in the following sections must individually trans-
form as first-class currents. This is simply a way of quickly
reducing the calculational load, as all terms that appear to
transform as second class vanish regardless in a full SM
calculation.

III. ELECTROWEAK VERTEX CORRECTION

The first diagram under consideration is the vertex
correction, where any of the three electroweak bosons
couple directly to the vertex. A direct evaluation of its
contribution is straightforward for a single nucleon, but
generally is more complex when moving into many-body
systems. Regardless of the result, however, it must trans-
form according to a V − A structure to maintain Lorentz
invariance when combined with Lμ, Eq. (13). Taking the
photon as an example, we can write down an effective
vertex operator, Γμ ¼ Γμ

0 þ δΓμ, for a Ji ¼ 1=2 → Jf ¼
1=2 transition between elementary fields

δΓμ ¼ α

2π
ūf

�
f1ðq2Þγμ − i

f2ðq2Þ
2M

σμνqν þ
f3ðq2Þ
2M

qμ

þg1ðq2Þγμγ5 − i
g2ðq2Þ
2M

σμνqνγ5 þ
g3ðq2Þ
2M

qμγ5
�
ui;

ð18Þ

where fi, gi are dimensionless functions of q ¼ pi − pf.
All electroweak Standard Model currents that transform as
a Lorentz vector are conserved, so that we can set f3 to zero
if initial and final states are on shell. Further, since g2
transforms as a second-class current, we can additionally

set its influence to zero. This leaves a priori four unknown
form factors per virtual gauge boson. If one, as usual,
neglects terms of Oðq=MÞ, the corrections do not depend
on outgoing lepton momenta and contribute only to
renormalize the effective coupling constants. In the follow-
ing, we derive expressions for these form factors and
discuss parts of their evaluation.

A. Setting stage I

We follow Refs. [34,47] in using the on-mass-shell
(OMS) perturbation formula. The latter states that for a
general form factor

Fμðpf; piÞ ¼ hfjΓμjii ð19Þ

the modification to that form factor, δFμ, because of a
change in the Lagrangian, δL, can be written as

δFμðpf; piÞ ¼ lim
q̄→q

iTμðq̄; pi; pfÞ

≡ lim
q̄→q

½iT̄μ − iBμ�; ð20Þ

where the tensor Tμðq̄; pf; piÞ is

Tμ ¼
Z

d4yeiq̄·yhpfjTfJμWðyÞδLð0Þgjpii − Bμ: ð21Þ

Specifically, Bμ subtracts the contribution from the wave
function renormalization of the outer legs of the vertex [47],
so that δFμ is pole-free by construction.1 For spin-0
systems this is

Bμðq̄; pi; pfÞ ¼ −Fμðpi − q̄; piÞ
iδm2

f

ðp − q̄Þ2 −m2
f

− Fμðpf; pf þ q̄Þ iδm2
i

ðpf þ q̄Þ2 −m2
i
; ð22Þ

where δm2 is the change in mass because of δL,
δm2 ¼ −hpjδLjpi, while for elementary spin-1=2 systems
one writes [34,54]

Bμðq̄; pi; pfÞ ¼ iūðpfÞ
�

δmf

ðpi − =̄qÞ −mf
Fμðpi − q̄; piÞ

þFμðpf; pf þ q̄Þ δmi

ðpf þ =̄qÞ −mi

�
uðpiÞ:

ð23Þ
In the Standard Model, the loop bosons can be
a ∈ ½γ;W; Z0�, and

1While the vertex correction is straightforward to obtain for
neutron β decay using elementary Feynman rules, the relations
here are generally valid.
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δLλ
aλ
ð0Þ ¼ C2

a

2ð2πÞ4
Z

d4k
k2 −M2

a

Z
d4xeik·xTfJλaðxÞJaλð0Þg;

ð24Þ

where Ca are the electroweak coupling constants, i.e.,
Cγ ¼ e2; CW ¼ g2, and CZ0

¼ g2 þ g02, and Ma is the
physical boson mass. The analysis continues by coupling
the OMS formula with the Ward-Takahashi identity (WTI)
[13,34]. We start from

iTμ ¼ −q̄ν
∂
∂q̄μ iT

ν þ ∂
∂q̄μ ðiq̄νT

νÞ; ð25Þ

where, in particular, we are interested in the second term.
We focus on T̄μ ¼ T̄μλ

λðq̄; pi; pfÞ and perform a partial
integration to arrive at

iq̄νT̄ν ¼ −
Ca

2ð2πÞ4
Z

d4k
k2 −M2

a

Z
d4x

Z
d4yeiq̄·yeik·x

× ∂νhpfjTfJνWðyÞJλaðxÞJaλð0Þgjpii: ð26Þ

The partial derivative of the time-ordered product of three
currents obeys the identity

∂
∂xν TfJ

ν
WðxÞJλaðyÞJaλð0Þg

¼ Tf∂νJνWðxÞJλaðyÞJaλð0Þ
þ δðx0 − y0Þ½J0WðxÞ; JλaðyÞ�Jaλð0Þ
þ δðx0Þ½J0WðxÞ; Jλað0Þ�JaλðyÞg: ð27Þ

For the currents defined here, the commutators were
already derived in Eqs. (11a)–(11c) and consist of a single
current, a c-number, and a Dirac delta. As a consequence,
the vertex correction consists at least of a three-point
correlation function and a two-point correlation function,
corresponding to the first, and second and third terms,
respectively. Using Eqs. (20) and (25)–(27), we can write
the vertex correction matrix element as

Ma
v ¼

g2Ca

4ð2πÞ4 Vud
Lμ

q2 −M2
W
lim
q̄→q

�
−q̄ν

∂
∂q̄μ T

ν
a

þ ∂
∂q̄μ

�
Da − q̄νBν

a þ Zλ
aλ

��
; ð28Þ

where

Da ¼
Z

d4k
k2 −M2

a

Z
d4yeiq̄y

Z
d4xeikx

× hpfjTf∂μJ
μ
WðyÞJλaðxÞJaλð0Þgjpii ð29Þ

is the three-point function correction and

Zλ
aλ
ðq̄þ kÞ ¼

Z
d4k

k2 −M2
a

Z
d4xeiðq̄þkÞx

× hpfjTfJλbðxÞJaλð0Þgjpii ð30Þ

is the two-point correlation function according to the
ETCR, i.e., ½J0WðxÞ; Jλað0Þ�≡ JλbðxÞδð3ÞðxÞ.
Since Tμ

a is pole-free by construction, the contribution of
the first term in Eq. (28) is OðαqÞ ∼Oðα2Þ since q ∼ 10−3.
Settingmi ¼ mf in Eq. (22), it is clear that the contribution
of Bμ in Eq. (28) is of order q. If one neglects terms of
OðαqÞ, only contributions from Da and Zλ

aλ
remain. In all

but the photonic case, Da is insensitive to low kμ due to the
presence of the mass term in the heavy boson propagator.
Specifically, since M−2

Z;W ∝ GF and the integrals are IR
convergent, their contributions areOðG2

FÞ and can safely be
neglected. For the W and Z contributions then, only the
asymptotic contributions for kμ → ∞ contribute, specifi-
cally those coming from x ∼ y ∼ 0 and y ∼ 0 for finite
x ≠ 0 [34]. The former can be shown to be finite and of
OðG2

FÞ, while the divergent contributions of the latter can
be shown to cancel through the contribution of tadpole
diagrams and order α counterterms [34,45]. Finally then,
only Dγ and Zλ

aλ
give rise to finite contributions.

We can now move toward a simplification of the results.
We recover the notation of Ref. [34] by recognizing that

∂
∂q̄μ Z

λ
aλ
ðq̄þ kÞ ¼

Z
d4k

k2 −M2
a

∂
∂kμ T

λ
aλ
ðq̄þ kÞ; ð31Þ

where

Tμν
γ ðkÞ ¼

Z
d4xeikxhpfjTfJμγ ðxÞJνWð0Þgjpii; ð32Þ

Tμν
Z ðkÞ ¼

Z
d4xeikxhpfjTfJμZðxÞJνWð0Þgjpii; ð33Þ

Tμν
W ðkÞ ¼ −

Z
d4xeikx½sin2θWhpfjTfJμγ ðxÞJνWð0Þgjpii

þ hpfjTfJμZðxÞJνWð0Þgjpii� ð34Þ

are the Fourier transforms of two-current correlation
functions.
We hold off on an evaluation of the two-point correlation

functions until the next sections, but discuss some general
features. As before, both Tμν

Z and Tμν
W only depend on

physics at and above the weak scale because of the heavy
boson propagator. Their contributions should be considered
together with additional graphs, and a detailed analysis
shows that only finite terms survive that are common to
Fermi and Gamow-Teller transitions [34,45]. We provide a
short summary in the Appendix A. On the other hand, the
photonic contribution, Tμν

γ , is sensitive to loop momenta of
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all scales and gives rise to nonasymptotic contributions. To
neatly separate the latter from the asymptotic contributions
we use a propagator trick introduced by Sirlin, where we
write the photon propagator

1

k2
¼ 1

k2 −m2
þ m2

m2 − k2
1

k2
; ð35Þ

where m is an arbitrary mass scale. The first term can be
interpreted as a massive photon with mass m, whereas the
second term is the usual photon propagator with a Pauli-
Villars (PV) regularization factor at m. If we set m ¼ MW ,
we recover the usual PV regularization factor in the old
Fermi four-point theory [39]. Using this substitution and
performing a partial integration of Eq. (31) results in

Z
d4k
ð2πÞ4

1

k2
∂
∂kμ T

λ
γλ

¼ −
Z

d4k
ð2πÞ4 T

λ
γλ

∂
∂kμ

�
1

k2 −M2
W
þ M2

W

M2
W − k2

1

k2

�
ð36Þ

since the currents disappear at infinity. The first (“heavy
photon”) term combines with additional two-point corre-
lation functions discussed in the Appendix and contributes
only asymptotically through the Born term, i.e., common to
both Fermi and Gamow-Teller transitions. The second
term, on the other hand, contributes nonasymptotically,
and we write

∂
∂kμ

�
M2

W

M2
W − k2

1

k2

�
¼ 2kμ

k2
M2

W

½M2
W − k2�2 −

2kμ

k4
M2

W

M2
W − k2

:

ð37Þ

It is clear that the first term is OðG2
FÞ for k ≪ MW and

vanishes for k → ∞. The second is IR divergent and
contains the so-called “convective” term, which is best
combined with parts of the calculation of the γW box
in Sec. IV.
In summary, all terms arising from the vertex correction

toOðαÞ either vanish or are common to Fermi and Gamow-
Teller transitions, with the exception of the photonic
two-point and three-point functions. The former will be
discussed in Sec. IV, and we hold off on its evaluation. The
latter, on the other hand, is unique to Gamow-Teller
transitions and is discussed below.

B. Three-point function evaluation

The photonic three-point function, Dγ , depends on the
divergence of the weak current as in Eq. (29). For the vector
transition case, i.e., the Fermi transition amplitude, the
vector part of the weak interaction is conserved up to OðαÞ
(since the isospin breaking correction can be thought of as
order α), so that DF

γ ¼ 0 to the order of the calculation. In
the general Gamow-Teller transition, however, this is not

the case. We first look at its asymptotic behavior, i.e.,
k → ∞. While an operator product expansion (OPE) is
straightforward, in this case we can equivalently use the
Bjorken-Johnson-Low limit (BJL) [55,56], with its three-
current generalization given by Ref. [29]. If for constant q̄μ

and k, Dγ → 0 for k0 → ∞, the BJL limit gives

DA
γ ¼ −

1

k20

Z
d4yeiq̄y

Z
d3xeik·x

× hfjTf∂μJμðyÞ½∂0JνaðxÞ; Jaνð0Þ�gjii

þ 1

k20

Z
d3yeiq·y

Z
d3xeik·x

× hfjTf½½∂μJμðyÞ; JνaðxÞ�; Jaνð0Þ�gjii

þO
�
1

k30

�
; ð38Þ

where we added the superscript A to denote the asymptotic
piece. The 1=k0 term was set to zero since ½JνγðxÞ;Jγνð0Þ� ¼ 0

under fairly general circumstances. In the asymptotic
domain, the strong interaction is perturbative and quark
fields are asymptotically free. To zeroth order in αs then,
one can use the canonical ETCR of Eqs. (11a)–(11c) to
evaluate the commutators. Following Ref. [29], the double
commutator can be written as

½½∂μJμðyÞ; JνaðxÞ�; Jaνð0Þ�
¼ −½J0ðyÞ; ½∂0JνaðxÞ; Jaνð0Þ��
þ δð3ÞðyÞ½JμðyÞ; ∂0J

μ
aðxÞ� − δð3Þðx − yÞ½∂0JμðyÞ; Jaμð0Þ�

þ ∂
∂yi ½½J

iðyÞ; JμaðxÞ�; Jaμð0Þ�: ð39Þ

All but the last are trivially evaluated using the ETCR of
Eqs. (11a)–(11c) and give rise to a c-number with
δð3Þðx − yÞδð3ÞðxÞ. The last double commutator can also
be evaluated to give

½½JiðyÞ; JμaðxÞ�; Jaμð0Þ� ¼ 4δð3Þðx − yÞδð3ÞðxÞ
× ūγ0γið1 − γ5Þd; ð40Þ

and the integral resolves to zero up to at leastOð1=k30Þ. As a
consequence, the asymptotic contribution to Dγ vanishes.
This can also be intuitively understood thanks to the
partially conserved axial current hypothesis. In the latter
case the divergence of the axial current is nonzero only
through the finite pion mass. Taking Q2 → ∞ means the
divergence becomes negligible. Another way of under-
standing this is through chiral symmetry, where ∂μAμ

vanishes above the chiral breaking scale Λχ . Higher order
QCD interactions modify this result only multiplicatively,
and so the asymptotic contributions vanish to all orders in
αs. The strong interaction becomes perturbative above the
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QCD scale, i.e., for k ∼ 1 GeV. Since the asymptotic
contributions vanish, the latter has no dependence on
where we set this scale.
Before moving on, we draw attention to an ambiguity in

the evaluation of the time-ordered product in Eq. (29),
courtesy of Refs. [46,54]. Since the time-ordered product is
not uniquely defined [i.e., Lorentz invariance requires the
presence of a general δðtÞCðtÞ), the derivative operator in
∂μJμ causes a problem. Specifically, using covariant
perturbation theory this would translate into ∂μJμ →
qμJμ where qμ picks up off-shell momenta and results in
inconsistent behavior with respect to the WTIþ OMS
approach described above. A way forward is to insert a
complete set of on-shell states and use an equation of
motion ∂μJμðxÞ ¼ sðxÞ to make the substitution
hpfj∂μJμðxÞjpii ¼ hpfjsðxÞjpii. We will use this property
and in the discussion below use ∂μJ

μ
W ¼ ∂μAμ only

schematically.
With this out of the way, we consider the Born channel as

the low-energy contribution, and we set

Dγ ≈DBorn
γ : ð41Þ

It is important to keep in mind that the wave function
renormalization contributions are subtracted by Bμ from the
definition in Eq. (21). Further, because Dγ transforms as a
pseudoscalar, it should be odd under G-parity. Given that
the axial part of JμW is odd, and the isoscalar (isovector)
parts of Jμγ are odd (even) under G-parity, the double
photonic current can only consist of SS or VV terms with
no SV iso-cross terms. This limits the number of contrib-
uting terms considerably.
We assume the coupling to the photon field as usual, with

the Born response in the isospin formalism as

LI
γNN ¼ ieAμ

γ N̄

�
FI
1γμ − i

FI
2

2M
σμν∂ν

�
TIN

≡ ieAμ
γ N̄ΓI

μN; ð42Þ
where Aμ

γ is the photon field and I can be either 0 or 1 for
isoscalar and isovector contributions, respectively. The
form factors are F1

1ð0Þ ¼ 1, F1
2ð0Þ ¼ 3.706, F0

1ð0Þ ¼ 1,
and F0

2ð0Þ ¼ −0.12, and the isospin Pauli matrices are
T1 ¼ τz and T0 ¼ I2. The weak interaction elastic response
for a nucleon is

Wμðp2; p1Þ ¼ N̄

�
gVγμ − i

gM
2M

σμνqν þ
gS
2M

qμ

þgAγμγ5 − i
gT
2M

σμνqνγ5 þ
gP
2M

qμγ5
�
T�N;

ð43Þ
where all gi are a function of q ¼ pi − pf and T� is the
isospin ladder operator and gM ¼ κp − κn ¼ 3.706 is the

isovector magnetic moment using the conserved vector
current hypothesis. The latter also forces gS ¼ 0. Assuming
no second-class current exists [52], this additionally
forces gT ¼ 0.
The Born contribution to Dγ is then

DBorn
γ ¼

Z
d4k
k2

Λ2

Λ2 − k2
N̄ðpfÞ

×

�
Γλ
I

pf − =kþM

k2 − 2pf · k
∂μAμ pi − =kþM

k2 − 2pi · k
ΓI
λ

�
NðpiÞ;

ð44Þ

where we have included the Pauli-Villars regularization
factor at some scale M ≪ Λ ≪ MW . Following the dis-
cussion above, after insertion of a complete set of on-shell
states the transition depends on hp0j∂μAμjpi, with Aμ the
axial vector part of JμW . Using the Dirac equation (thereby
using on-shell nucleons), we can write

hp0j∂μAμjpi ¼ iqμhp0jAμjpi ð45Þ

¼ i

�
2MgAðq2Þ þ

q2

2M
gPðq2Þ

�
½N̄0γ5T�N�

ð46Þ

with M the nucleon mass, and we used the decomposition
of Eq. (43) in the second line. Another way of estimating its
impact is through the use of the partially conserved axial
current (PCAC) hypothesis assuming pion-pole domi-
nance. Specifically, we identify the divergence of the axial
current with the pion field and assume this to be equally
valid near zero momentum transfer appropriate for β decay
rather than at q2 ¼ m2

π when taking mπ → 0. In this case

hp0j∂μAμjpi ¼ i2gπNNFπNNðq2Þfπ½N̄0γ5T�N�; ð47Þ

where fπ ≈ 93 MeV, Fðq2 ¼ m2
πÞ ¼ 1, and gπNN is the

physical pion-nucleon coupling constant. Following
through on PCAC and using the Goldberger-Treiman
relationship we can additionally write

gPð0Þ ≃
ð2MÞ2
m2

π
gAð0Þ ≈ −230 ð48Þ

so that Eq. (46) becomes

hp0j∂μAμjpi ≈ 2gAM

�
1þ q2

m2
π

�
½N̄0γ5T�N�: ð49Þ

Returning to Eq. (44), we assume k≲M due to the
influence of the nucleonic form factors, giðq2Þ, and
evaluate in the center of mass frame of the initial state,
i.e., pi ¼ ðM; 0Þ ≈ pf. This simplifies matters greatly, and
we find
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DBorn
γ ¼

Z
d4k
k2

Λ2

Λ2−k2
ðFI

1Þ2
N̄ðpfÞTI∂μAμTINðpiÞ

k20þ iϵ
ð50Þ

when neglecting Oðq=MÞ terms. We have not yet specified
the isospin structure. The isoscalar nucleonic matrix
element is given by, e.g., Eq. (49) and gives a finite
contribution when integration is over k. Looking at the
isospin structure of the isovector component, however, we
have T1T�T1 ¼ −T� from properties of the Pauli matrices.
We find then

DBorn
γ ¼ 2gAM

�
1þ q2

m2
π

�
½N̄0γ5T�N�

×
Z

d4k
k2

½ðF0
1Þ2 − ðF1

1Þ2�
Λ2

Λ2 − k2
1

k20 þ iϵ
: ð51Þ

In the isospin limit, for the nucleon F0
1ð0Þ ¼ F1

1ð0Þ and
differences are small for k≲M [57]. In this case, the Born
contribution vanishes and so

Dγ ≈DBorn
γ ≈ 0: ð52Þ

Therefore, to OðαÞ the three-point function contribution to
the vertex corrections is the same for Fermi and Gamow-
Teller transitions. We note that this is only valid up to
isospin breaking corrections, where the latter changes the
commutator relations of T�;z operators, and introduces
differences in FI

1. We assume that these corrections are
small (percent level) and continue.

IV. ELECTROWEAK BOX DIAGRAMS

We arrive to the so-called box diagrams, with the
exchange of a virtual photon or Z boson between the
initial or final state and the outgoing lepton as shown in
Fig. 1. As before, the ZW box is insensitive to low-energy
physics to OðGFÞ because of the double heavy boson
propagator. For k ≥ MW the diagrams correspond only to a
modification proportional to the tree-level amplitude [34],
which we summarize in the Appendix. The γW box
diagram, on the other hand, is sensitive to effectively all
scales, from k ∼me to k ≫ MW . In the case of Fermi
transitions, it contains the only remaining model depend-
ence and is responsible for the theory uncertainty on the
inner radiative correction [12,13,17]. We will now discuss
the γW box for Gamow-Teller transitions, where things
become slightly more complex due to the nonconservation
of the weak axial vector current.

A. Setting stage II

The γW box matrix element is typically written as

MγW ¼ −
e2g2

16
Vud

Z
d4k
ð2πÞ4

1

k2½k2 − 2l · k�½k2 −M2
W �

× ēð2lμ − γμ=kÞγνð1 − γ5ÞνTγW
μν ; ð53Þ

where k is the internal loop momentum, l is the external
electron momentum, and TγW

μν is the so-called generalized
Compton tensor of Eq. (32). In order to proceed, we use the
well-known property of γ matrices,

γμγλγν ¼ gμλγν − gμνγλ þ gλνγμ − iϵμλναγαγ5; ð54Þ

to reduce the triple product of gamma matrices and we find

MγW ¼ −
ffiffiffi
2

p
παGFVud

Z
d4k
ð2πÞ4

M2
W

k2½k2 − 2l · k�½k2 −M2
W �

× f2lμLν − Lνkμ − Lμkν þ gμνLλkλ − iϵμλναkλLαg
× TγW

μν ; ð55Þ

where we used e2 ¼ 4πα and ϵμνρσ is the completely
asymmetric tensor with ϵ0123 ¼ 1. Following the ETCR
of Eqs. (11a)–(11c) one can construct two different WTI.
The first of these is

kμTγW
μν ¼ ihpfjJWν ð0Þjpii ð56Þ

where we used the conservation of the QED current, i.e.,
∂μJ

μ
γ ¼ 0, while the second is

kνTγW
μν ¼ ihpfjJWμ jpii þ qνTγW

μν

þ i
Z

d4xeiðk−qÞ·xhpfjTf∂νJWν ðxÞJγμð0Þgjpii:

ð57Þ

For the remainder we drop the γW superscript on Tμν.
Using the WTI, Eq. (55) reduces to

MγW ¼ −
ffiffiffi
2

p
παGFVud

Z
d4k
ð2πÞ4

M2
W

k2½k2 − 2l · k�½k2 −M2
W �

× fTLþ 2lμLνTμν − qνLμTμν

þ kνLνTλ
λ −DμLμ þ iϵμλναkλLαTμνg; ð58Þ

where “TL” stands for tree level and Dμ depends on the
divergence of the weak current

Dγ
μ ¼ i

Z
d4xeiðk−qÞ·xhpfjTf∂νJWν ðxÞJγμð0Þgjpii; ð59Þ
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in analogy with the three-point function correction
of Eq. (29).2

Terms proportional to the tree-level amplitude are shared
between Fermi and Gamow-Teller transitions and do not
contribute to a difference in ΔV;A

R of Eq. (3). The second
term in Eq. (58) is part of the infrared divergent contribution
as categorized in Ref. [43] and becomes part of the common
so-called outer corrections that depend on the electron
momentum but is independent of the strong interaction.
Neglecting effects ofOðαq=MÞ as we have done before, the
third term in the second line of Eq. (58) can equally be set to
zero, and only the last line in Eq. (58) remains. Of these three
terms, the first cancels to the order of the calculation with a
contribution of the photonic vertex correction of Eqs. (28),
(31), and (37). Specifically, we can rewrite the denominator
of the β particle propagator of Eq. (58) as

ðk2 − 2l · kÞ−1 ¼ 1

k2
þ 2l · k
k2ðk2 − 2l · kÞ ð60Þ

so that the photonic vertex contribution of Eq. (37) cancels
exactly with the first term. The second term, on the other
hand, vanishes for k → ∞ (since Tμν ∼ 1=k) but is infrared
divergent and contributes to the outer corrections. This was
noted already long ago [34] and reiterated in another recent
work [47]. Thereby both two-point and three-point functions
of the vertex correction in the previous section have been
dealt with. In Sec. VII Awe show that this cancellation is not
taken into account in the traditional β decay calculations
leading to important discrepancies.
Finally, this leaves the contribution of the divergence of

the weak current, Dμ, and the parity-odd part of Tμν. For a
vector transition the former vanishes due to the conserva-
tion of the weak vector current, whereas the nonzero
divergence of the weak axial current contributes a priori
to the Gamow-Teller transition. For vector transitions, the
parity-odd contribution is the only remaining model
dependence in the evaluation of ΔV

R , i.e., the famous axial
input to the γW box [34,58], which has inspired research
for well over half a century [6,7,12,13,16,17,44,59,60].
Analogously, for Gamow-Teller transitions the parity-odd
contribution arises from the vector part of Tμν to the axial
amplitude. Although some differences arise, we will see
that their treatment is very similar when the dust has settled.
In the case of a vector transition the generalized forward

Compton tensor is

Aμν ¼ i
Z

d4xeikxhpfsfjTfJμγ ðxÞAνð0Þgjpisii; ð61Þ

where Aν is the axial vector component of JνW as before. For
a Fermi transition there is no angular momentum

dependence besides the requirement that initial and final
spins are equal. Further, since the parity-odd term does not
contribute at k ∼me, we can neglect the outgoing lepton
momentum and set pi ¼ pf ¼ p and ke → 0. Therefore,
using Lorentz invariance, one can decompose the forward
Tμν tensor for Fermi transitions into its constituent structure
functions after summing over all spins. The axial current,
however, is not conserved, and the former then requires 14
different structure functions [61,62]. Because of the con-
traction with the Levi-Civita tensor in Eq. (58) and the
absence of spin dependence for a Fermi transition, how-
ever, only a single structure function survives

Aμν!asyi ϵ
μναβpαkβ
2ðp · kÞ A3ðν; Q2Þ; ð62Þ

with ν ¼ p · k=M the energy transfer and Q2 ¼ −k2 the
photon virtuality. Following the usual notation for the
photonic box diagram contribution, this allows one to
write [13,16]

M0 þMγW ¼
ffiffiffi
2

p
gVGFVudð1þ□

VA
γWÞpμLμ; ð63Þ

where

□
VA
γW ¼ 4πα

gVð0Þ
Re

Z
d4k
ð2πÞ4

M2
W

M2
W þQ2

Q2 þ ν2

Q4

A3ðν; Q2Þ
Mν

:

ð64Þ

Analogous to Eq. (61), the Gamow-Teller transition
receives contributions only from

Vμν ¼ i
Z

d4xeikxhpfsfjTfJμγ ðxÞVνð0Þgjpisii ð65Þ

with Vν the weak vector current. Because the latter is
conserved, however, an expansion such as Eq. (62) is
simplified and only seven structures are required3 [63]. If
we once more write only terms that survive the contraction
with the Levi-Civita tensor, we write [61]

Vμν!asyiϵμναβ kαpβ

2ðp · kÞV3ðν; Q2Þ þ iϵμναβ
kα
p · k

�
SβG1ðν; Q2Þ

þ
�
Sβ − pβ

S · k
p · k

�
G2ðν; Q2Þ

�
; ð66Þ

where Sβ is the polarization four-vector. The latter is equal
to Sβ ¼ ð0;SÞ in the rest frame of the initial state and
normalized as S2 ¼ −M2 [64]. Similarly as above, we
define

2An equivalent expression is found in another recent
work [47].

3Because of the spin independence of the Fermi matrix
element and the contraction with the Levi-Civita tensor, however,
the simplification is merely conceptual.
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M0 þMγW ¼
ffiffiffi
2

p
gAGFVudð1þ□

VV
γWÞSμLμ; ð67Þ

where

□
VV
γW ¼ −

4πα

gAð0Þ
Re

Z
d4k
ð2πÞ4

M2
W

k4½k2 −M2
W �Mν

×

�
G1ðν; Q2Þ 2k

2 þ ν2

3
þ G2k2

�
: ð68Þ

This equation can be used as the starting point for a
dispersion relation analysis, which lies beyond the scope of
this article.
In summary, the total difference in contributions for

Fermi to Gamow-Teller transitions from the γW box
diagram is then

ΔA
R − ΔV

R ¼ 2ð□D
γW þ□

VV
γW −□

VA
γWÞ ð69Þ

with □D
γW the contribution of the Dμ term in Eq. (59).

B. Axial divergence

Here, we consider the contribution of the Dμ term in
Eqs. (58) and (59). Since the weak vector current is
conserved, it vanishes for a pure Fermi transition and
contributes a priori to a Gamow-Teller decay. We will
discuss its asymptotic and Born contributions separately.
In Sec. III B we argued that the partial conservation of

the axial current meant it did not lead to UV divergences.
This can once again be shown using an operator product
expansion or the BJL limit. The result will in this case be
identical, and we write to Oð1=k0Þ

lim
k0→∞

Dν ¼
i
k0

Z
d3xe−ik·xhpfj½∂μJμðxÞ; Jγνð0Þ�jpii: ð70Þ

We can evaluate the commutator explicitly using the ETCR
of Eqs. (11a)–(11c). Because the Standard Model is a local
theory, however, the commutator is proportional to δð3ÞðxÞ,
and it is clear from Eq. (70) that the asymptotic contribution
of Dμ vanishes. This coincides with our initial reasoning
based on the partial conservation of the axial current or chiral
invariance.
Since the asymptotic contribution vanishes, we can

analogously to Sec. III B define some separation energy
scale Λ∼ few GeV above which the strong interaction can
be considered perturbative and we may apply the BJL limit.
Below this scale we consider only the Born amplitude, so
that as in Eq. (41) we write

Dμ ≈DBorn
μ : ð71Þ

As in our discussion above for the three-point contribution,
Dγ , we use the divergence, ∂μAμ, only schematically and
instead use, e.g., the PCAC hypothesis. The Born ampli-
tude then is

DBorn
μ ¼ N̄

�
Γμ

pf þ =kþM

k2 þ 2pf · kþ iϵ
∂νAν

þ∂νAν pi − =kþM
k2 − 2pi · kþ iϵ

Γμ

�
N; ð72Þ

with the notation of Sec. III B. In the Born amplitude the
form factors decrease strongly with increasing k, so that we
may neglect k2 against p · k, and set the latter equal toMk0
in the initial rest frame with impunity. The error we make
with this is Oðme=MÞ and is small. We then find, keeping
only the þiϵ parts,

1

k2 þ 2pf · kþ iϵ
þ 1

k2 − 2pi · kþ iϵ
≈ −iπ

δðk0Þ
M

: ð73Þ

Finally, when invoking G-parity it is obvious that only the
isovector part of Jγ can contribute to Dμ since N̄∂νAνN
transforms as a pseudoscalar. Writing only the monopole
term for clarity

DBorn
μ ≈ −iπδðk0ÞF1

1N̄½Tz∂νAν þ ∂νAνTz�N; ð74Þ

where it is important to note that ∂νAν ∝ T� as discussed
above. Using the anticommutation properties of the Pauli
matrices, i.e., fσa; σbg ¼ 2δabI2, we see that the result
vanishes since fTz; T�g ¼ 0, and soDBorn

μ ¼ 0. Analogous
to Sec. III B, we find that both the asymptotic and finite
parts vanish, and so

□
D
γW ≈ 0: ð75Þ

This leaves only the polarized parity-odd contribution,
analogous to Fermi transitions.

C. Parity-odd amplitude

With all other terms in Eq. (58) either common to Fermi
and Gamow-Teller transitions or the parts specific to the
latter found to vanish, only the parity-odd term remains. We
will be somewhat more careful here and consider not only
the asymptotic and Born contributions but also the inter-
mediate energy regime and perturbative QCD corrections.
We simplify the notation of the final term in Eq. (58) by
introducing a general function FA;VðQ2Þ,

□γW ¼ α

2π

Z
∞

0

dQ2
M2

W

Q2 þM2
W
FA;VðQ2Þ; ð76Þ

where weWick rotated the momentum integral and adopted
a notation similar to Ref. [16]. Now, FAðQ2Þ denotes the
contribution to Gamow-Teller transitions, and FVðQ2Þ that
of Fermi transitions. We first introduce the more straight-
forward elements and build in complexity to arrive at a
consistent description.
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1. Born contribution

We start with the most straightforward part of the
amplitude, which is the Born contribution for low Q2.
The Born amplitude of Tμν in Eq. (58) can be written in the
isospin formalism as

Tμν
Born ¼ N̄

�
Γμ
I

pf − =kþM

k2 − 2pf · kþ iϵ
Wνðpf − k; piÞ

þWνðpf; pi þ kÞ pi þ =kþM
k2 þ 2pi · kþ iϵ

Γμ
I

�
N; ð77Þ

where Wνðp2; p1Þ is the weak transition matrix element of
Eq. (43) and Γμ

I is the electromagnetic vertex of Eq. (42) for
isoscalar (I ¼ 0) or isovector (I ¼ 1) parts. We perform
some reduction of γ matrices for bookkeeping. The
monopole terms are easy to treat, and the numerator in
each fermion propagator can simply be replaced by
2pμ � γμ=k, whereas the F2 terms are somewhat more
involved,

i
F2

2M
N̄σμνkνðpf þ =kþMÞ

¼ −
F2

2M
N̄kνðpνγμ − pμγν

− iϵσμνργσpργ
5 þ kνγμ − kμγν þMσμνkνÞ: ð78Þ

The calculation is simplified by noting that the on-shell
nucleons are highly nonrelativistic, which means that any
product of γ matrices must have nonzero diagonal ele-
ments, lest the matrix element be suppressed by a relativ-
istic factor v=c. Additionally, we can set pμ

i;f ≈ ðM; 0Þ in
the center of mass frame. Finally, when combined with the
lepton tensor Lμ, one must have μ ¼ 0 for it to contribute to
the Fermi box, whereas μ must be spacelike for Gamow-
Teller. It is then straightforward to show that the Fermi
amplitude receives contributions only from the main
Gamow-Teller term, gAγμγ5, whereas the Gamow-Teller
transition receives contributions from both the leading
Fermi amplitude, gVγμ, and the weak magnetism contri-
bution, gMσμνkν. Specifically,

FV
Born ¼

1

Q2

jgAjðF1 þ F2Þ
gVð0Þ

1þ 2r
ð1þ rÞ2 ; ð79Þ

FA
Born;LO ¼ 1

Q2

gVðF1 þ F2=2Þ
jgAð0Þj

5þ 4r
3ð1þ rÞ2 ; ð80Þ

FA
Born;WM ¼ 1

Q2

gMF1

jgAð0Þj
5þ 4r

6ð1þ rÞ2 ; ð81Þ

where for the weak magnetism part only the monopole
contributes up to Oð1=MÞ and r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M2=Q2

p
. We

discuss the calculation in some more detail in Appendix B.

So far, we have not explicitly mentioned the isospin
structure of the electromagnetic interaction. While one can
perform the calculations explicitly [65], we can invoke
G-parity instead. Since all terms must be even (odd) for
Fermi (Gamow-Teller) transitions, only the isoscalar part
contributes to both. Therefore, we can replace Fi every-
where by F0

i , with the charges as defined in Sec. III B. As a
consequence, the magnetic interaction is strongly sup-
pressed and it is mainly the monopole interaction that
dominates.
Previously, the Born contribution has been treated in two

ways with regards to its integration domain. In one [16,17],
it is integrated only to the onset of perturbative QCD
(pQCD) results, whereas in the other [13] all contributions
up to infinity are included. We argue that the latter is
consistent with our approach, as the pQCD results dis-
cussed below were originally derived far away from the
elastic regime. When comparing to data, however, it is
imperative to include also the elastic contribution at all
scales in order to, e.g., determine higher-twist corrections
[66,67]. And so, integrating out to Q2 → ∞ we find

□
Born
F ¼ 0.91ð5Þ α

2π
; ð82Þ

□
Born
GT ¼ ½0.39ð1Þ þ 0.78ð2Þ� α

2π
ð83Þ

¼ 1.17ð2Þ α

2π
; ð84Þ

where we have split up the leading order and weak
magnetism induced effect, and the uncertainty arises from
the form factors added in quadrature [13]. The uncertainty
in the Gamow-Teller contribution is smaller because the
vector form factors are known to higher accuracy. Our
result for the Fermi contribution agrees exactly with
Ref. [13], as expected. It is interesting to note that □Born

GT
is dominated by the induced weak magnetism contribution
rather than the leading-order term. The latter is reduced
compared to the Fermi contribution due to the faster
decrease in the vector form factor and the overall gV=gA
prefactor. The normalization with respect to gAð0Þ makes
the overall axial correction substantially smaller than the
raw γW box integral, which is almost 70% larger in the
axial vector case relative to the vector transition.

2. Deep inelastic scattering

We continue by describing the asymptotic behavior to
zeroth order in αs. This can readily be obtained from the
BJL limit or an OPE, and we retain only the asymmetric
tensor part to arrive at

lim
k0→∞

Tμν
asy ¼ 2Q̄

k2
ϵμνρσkρhpfjJWσ ð0Þjpii; ð85Þ
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where Q̄ is the average of the quark charges. In combi-
nation with the Levi-Civita tensor of Eq. (58) this results in

lim
k0→∞

ϵμνλαkλLαTμν ¼
4Q̄k2

k2 − 2p · k

×

�
gασ −

kσkα

k2

�
hpfjJσWð0ÞjpiiLα;

ð86Þ
as expected. Since this is once again proportional to the
tree-level amplitude, it is common for Fermi and Gamow-
Teller transitions and so does not contribute to a renorm-
alization unique to gA. In fact, as the leading behavior of
Eq. (86) is independent of k in the UV, Eq. (58) gives rise to
logarithmic enhancement factors Q̄ lnMW when perform-
ing the k integration, as mentioned in Sec. II and various
places in the literature [45,59].
The result of Eq. (85) is valid only to zeroth order in αs,

above some scaleM ≪ Λ ≪ MW . In order to include higher-
order QCD contributions in the perturbative (Q2 ≳ Λ)
regime, we follow the reasoning of Refs. [13,16].
Specifically, Marciano and Sirlin [16] realized that the
running of Tμν can be related to that of the polarized
Bjorken sum rule through a chiral transformation (see
Appendix). Since theQCDLagrangian is chirally symmetric
above Λχ ∼ 1 GeV, this relation holds for deep inelastic
scattering where Q2 ≫ Λχ . The polarized Bjorken sum rule
(PBjSR) is written in terms of the difference in Mellin
moments of proton and neutron

Γp−n
1 ðQ2Þ ¼

Z
1

0

dx½gp1 ðx;Q2Þ − gn1ðx;Q2Þ� ð87Þ

¼ jgAj
6

�
1 −

αg1ðQ2Þ
π

�
; ð88Þ

where x ¼ Q2=2Mν is the Bjorken-x, gpðnÞ1 is the polarized
structure function of the proton (neutron), and

1 −
αg1ðQ2Þ

π
¼

�
1 −

XN
i¼1

CBj
i

�
αs
π

�
i
�
: ð89Þ

Corrections up to Oðα4Þ are known in the MS scheme
[68,69], with CBj

1 ¼ 1, CBj
2 ¼ 55

12
− 1

3
Nf, CBj

3 ¼ 41.440−
7.607Nf þ 0.177N2

f, and CBj
4 ¼ 479.4 − 123.4Nf þ

7.697N2
f − 0.1037N3

f where Nf is the number of active
flavors discussed below.
In Ref. [13] one also explored using isospin symmetry to

relate TγW
μν to (anti)neutrino-nucleon scattering. The argu-

ment can be summarized as follows: The optical theorem
and Schwarz reflection principle relate the forward ampli-
tude of Eq. (62) to the analogous structure function,
FγW
3 ðν; Q2Þ, of the full hadronic tensor via

DisA3ðν; Q2Þ ¼ 4πFγW
3 ðν; Q2Þ; ð90Þ

where for unpolarized states

Wμν
γW ¼ 1

4π

X
X

ð2πÞ4δ4ðpþ k − pXÞhpjJμγ jXihXjJνW jpi

¼ � � � þ iϵμνρσpρkσ
2ðp · kÞ FγW

3 ðν; Q2Þ ð91Þ

with X all possible intermediate states. The FγW
3 structure

function of the weak axial vector and photonic current is
not experimentally accessible, however, and one instead
performs an isospin rotation γW → WW. Such a process is
probed in charged current (anti)neutrino-nucleon scatter-
ing, which reveals Fνp

3 ðν; Q2Þ and Fν̄p
3 ðν; Q2Þ. The latter

are known experimentally, and αs corrections are known in
the deep inelastic scattering regime from the running of the
Gross-Llewellyn Smith (GLS) sum rule [68]

Z
1

0

dx½Fνp
3 ðx;Q2Þ þ Fν̄p

3 ðx;Q2Þ� ¼ 3

�
1 −

αF3
ðQ2Þ
π

�
ð92Þ

with x as above and

1 −
αF3

ðQ2Þ
π

¼
�
1 −

XN
i¼1

CGLS
i

�
αs
π

�
i
�
; ð93Þ

writingonly the leading twist result as before.Corrections are
similarly available up to N4LO [68–70] and are largely the
same as those for the PBjSR. Differences show up atOðα3sÞ
due to singlet (light-by-light) contributions, and one finds
CGLS
3 ¼ 41.440 − 8.020Nf þ 0.177N2

f andC
GLS
4 ¼ 479.4−

117.6Nf þ 7.464N2
f − 0.1037N3

f. With some foresight, we
entertain bothGLSandPBj sum rule treatments for thevector
transition and write

FV
DISðQ2Þ ≈ 1

4Q2

8<
:

1 − αF3 ðQ2Þ
π ðGLSÞ

1 − αg1 ðQ2Þ
π ðPBjÞ

: ð94Þ

Because of the large similarity between the two, however, we
anticipate differences to be small.
In the case of the axial transition, the correspondence is

much more transparent and the running of Tμν can easily be
related to that of the polarized Bjorken sum rule (see
Appendix). Once again neglecting isospin breaking cor-
rections, we can therefore write

FA
DISðQ2Þ ≈ 1

4Q2

�
1 −

αg1ðQ2Þ
π

�
: ð95Þ

Before moving on we briefly touch upon the number of
active flavors participating in the running, Nf. The pQCD
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corrections to the sum rules discussed above are derived in
the limit of massless quarks, which implies Nf ¼ 3 at
reasonably low Q2 since charm and bottom are decoupled.
Reference [17] takes into account these heavy quarks by
incrementing Nf when Q2 exceeds some decoupling
thresholds mc and mb, causing discrete jumps in the αg1
function. When taking into account also massive flavor
corrections [71], however, this increment becomes
quenched. In fact, when including these additional correc-
tions the Nf ¼ 5 result is reached only asymptotically for
Q2 → ∞, and the effective Nf lies much closer to Nf ¼ 3.
We include these heavy-flavor corrections as described in
Ref. [71] with mc ¼ 1.59 GeV and mb ¼ 4.78 GeV.

3. Nonperturbative contributions

Finally, this leaves the treatment of physics of inelastic
contributions at and below intermediate momentum scales.
There have been three options explored in the literature.
The oldest among these (MS) [16] takes Eq. (76), defines
an interpolation function between the Born amplitude and
the DIS regime, and requires a matching in Q2 between the
Born and DIS regions determined through a fit procedure.
The interpolation regime is described using a vector (axial)
meson dominance model from large Nc QCD [16], with an
effective interaction coming from ρ, A, and ρ0 mesons.
More recent work (DR) [12–14] employed a dispersion
relation approach to Eq. (64), where A3 is described by a
dispersion integral over a structure function F3, the latter of
which is related to experimental (anti)neutrino nucleon
scattering through an isospin rotation [cf. Eqs. (90)–(94)] as
discussed above. This allows one to compare model
calculations of pion production, Regge physics, and res-
onances in the two-dimensional ðν; Q2Þ space to data. A
major finding of the DR results is that the contribution of
“intermediate” scale physics is significantly larger than
what was included in MS, and that its influence can be felt
even for Q2 ≲ 0.1 GeV2 where the Born term dominates.
The idea of separate domains therefore is somewhat flawed,
and we must take into account additional hadronic physics
not contained in the Born term at low Q2. In response to
this, an updated calculation of the original MS results has
appeared (CMS) [17], which includes additional hadronic
effects through a continuation of Eq. (94) to lower energy
scales. This is done using a number of different methods,
including a holomorphic QCD coupling in the infrared for
the polarized Bjorken sum rule.
Additional differences in Fermi to Gamow-Teller RC

then depend on how (or if) we couple the Born amplitude of
Eq. (84) to an intermediate regime. In the oldest method
(MS), a lower boundary, Q2

min, is determined by, among
others, requiring a smooth continuation such that
FV
BornðQ2

minÞ ¼ FV
INTðQ2

minÞ. Because of the larger Born
amplitude for the Gamow-Teller contribution, this would
imply differences in the fit parameters for FINT and Q2

min,

leading to a different interpolation contribution. As shown
explicitly by the DR group, however, one of the require-
ments to constrain FV

INT in MS was not valid and additional
hadronic physics needs to be included below Q2

min. A
careful treatment using dispersion relations as in
Refs. [12,13] would be of great interest, but lies beyond
the scope of this work. We follow then an approach similar
in spirit to the CMS result and consider the holomorphic
continuation of the GLS and PBj sum rules below
∼1 GeV2. We will additionally go one step further, take
into account target mass corrections in the low Q2 domain,
and discuss higher-twist corrections.
The QCD sum rules of Eqs. (92) and (87) were originally

derived in the large Q2 limit following an OPE treatment,
far away from the nucleon mass scale at ∼1 GeV2. As one
nears this scale, however, several additional contributions
arise, known as higher-twist (nonperturbative) and target
mass corrections. Both have seen an intense period of
research as experimental data became available around and
even below the GeV scale [67,72].
The effect of higher-twist (HT) corrections emerge as a

nonperturbative, 1=Q2n, contribution as one nears the QCD
scale. To Oð1=Q2Þ, contributing matrix elements are
typically around the few percent level [63,73–78] at
Q2 ¼ 1 GeV2, depending on the order of the αs expansion.
With regards to the difference between PBj and GLS sum
rules (i.e., Fermi and Gamow-Teller RC), however, the
situation is not quite as straightforward. In the perturbative
domain, it was already mentioned that differences appear
only at N3LO due to light-by-light contributions to the GLS
sum rule. Initial calculations showed a difference in HT
correction terms [74], although more recently renormalon
results [78] show agreement within experimental and
theoretical uncertainties. Because of the lack of precise
experimental input for the GLS sum rule at low Q2, it is
hard to improve upon this point at this time. Explicit chiral
perturbation theory calculations might shed light on this
issue, which lies, however, beyond the scope of this work.
We will therefore treat its effect only phenomenologically,
and encode its influence through a free fit parameter.
Additionally, it is not certain that these higher-twist
corrections emerge through the isospin rotation unscathed,
and we consider their magnitude to come with a 100%
relative uncertainty.
Taking the pQCD expressions described above to even

lower momenta (Q2 ≲ 1 GeV2) becomes increasingly dif-
ficult. When taken below ∼1 GeV, the running of αsðQ2Þ
using the β function explodes and one encounters the
Landau pole for which αpQCDs → ∞ [79] and which signals
the breakdown of pQCD. Several different ways of con-
structing a holomorphic continuation of αs into the infrared,
using so-called analytical QCD (AQCD), have been
explored, and several reviews are available in the literature
[79,80]. Because of the large amount of experimental data,

STANDARD MODEL OðαÞ … PHYS. REV. D 103, 113001 (2021)

113001-13



we start with a discussion of the PBjSR behavior, relevant
to both axial and vector transitions. We will follow the
results of Ref. [81] where different AQCD models were
compared to experimental data of thePBjSRafter subtraction
of the Born contribution [i.e., the x ¼ 1 contribution in
Eq. (87)]. Below a variable threshold,Q2

0,AQCD takes over.
References [81,82] considered various descriptions of Γp−n

1

both below and above Q2
0, and while chiral perturbation

theory provides a continuation into the IR, the pQCDþ OPE
treatment of Eqs. (85) and (88) was found to give good
agreement with experimental data only when using an
expression motivated by light-front holography (LFH)
[83]. The latter describes the running of the BjSR as follows:

1 −
αg1ðQ2Þ

π
¼Q2<Q2

0
1 − exp

�
−
Q2

4κ2

�
; ð96Þ

where κ is a fit parameter. While more sophistic models exist
in the vicinity of Q2

0, the difference in integrated values are
small enough for us to simply use the pQCDþ OPE results
with theLFHparametrization of Eq. (96), similar to theCMS
approach. Unlike the latter, we leave κ to be a free fit
parameter.
At intermediate Q2 contributions also appear from

discrete resonances. In the case of the GLS sum rule,

some complications arise as Fνpðν̄pÞ
3 is an isovector process,

whereas for our contributions only the isoscalar photonic
current contributes. As a consequence, the resonance
structure for (anti)neutrino scattering is richer than is the
case for us. Luckily, the resonance contribution is very
small [13], and we neglect it going forward.

4. Target mass corrections

Turning to target mass corrections, both PBj and GLS
sum rules have to be modified when Q2 approaches the
nucleon mass scale [84]. Traditionally, this has been
performed in two approaches, using either an expansion
in M2=Q2 [85] or a reordering of the OPE coefficients by
Nachtmann [86]. Both approaches are closely related and
increase the sum rule predictions for low Q2. Typically,
these corrections are removed from experimental results to
allow for an extraction of HT contributions and a deter-
mination of αs. Here, our purpose is somewhat opposite,
since we are interested in the behavior of Eq. (76) over the
full Q2 range and all corrections that come with it. At low
Q2, however, an expansion in M2=Q2 is not very fruitful
and we concentrate on the approach by Nachtmann. The
latter requires the exchange of the Bjorken-x by

ξ ¼ 2x

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4x2M2=Q2

p ; ð97Þ

which approaches x as Q2 → ∞. The difference between x
and ξ is largest for the elastic contribution (x ¼ 1), which

was already taken into account when discussing the Born
term above [Eq. (79)]. We use closed expressions for target
mass corrections to the F3 and g1, g2 structure functions as
provided in the literature [87,88], and estimate their effect
using simple power law expressions as is performed
in Ref. [89].

5. Numerical results

In summary we write the total contribution to FA;V
inel ðQ2Þ

which enters into Eq. (76) as

FinelðQ2Þ ¼ 1

4Q2

8<
:

1 − αg1=F3 ðQ2Þ
π þ μ4

Q2 ðDISÞ
1 − exp ð− Q2

4κ2
Þ ðAQCDÞ

þ FTMC
inel ðQ2Þ; ð98Þ

where μ4 is the first higher-twist [Oð1=Q2Þ] contribution.
We use updated input values for the world average of

αsðM2
ZÞ ¼ 0.1179� 0.0010 [64], a five loop β function

calculation from the RUNDEC package [90], and require a
smooth transition atQ2

0. For the polarized Bjorken sum rule,
our values lie very close to those of Ref. [81] to find
Q2

0 ¼ 0.910, κ ¼ 0.520� 0.020, and μBj4 ¼ −0.0221�
0.010, where the latter is the HT contribution of a 1=Q2

expansion. This is summarized in Fig. 2, where we overlaid
the experimental data and show the effect of heavy flavor
corrections.
We can perform the same procedure for the GLS sum

rule results. Here the available experimental data are much
more scarce, however, since these are obtained from
(anti)neutrino scattering. A compilation of available data
was performed by the CCFR Collaboration [89] for
1.26 GeV2 < Q2 < 12.59 GeV2. Since these are still fairly
close to the plateau at Q2 → ∞, however, such a compari-
son is not a very sensitive probe for the fit parameters as

FIG. 2. Parametrization of the PBjSR and running coupling
αg1ðQ2Þ=π using the pQCD MS parametrization, Eq. (88), for
Q2 > Q2

0 ¼ 0.910 GeV2 and the LFH result of Eq. (96) for
Q2 ≤ Q2

0, together with experimental data between 0.05 GeV2

and 3 GeV2, adopted from Ref. [81]. The dashed line shows the
Nf ¼ 3 result.
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before. Instead, we require continuity in the GLS sum rule
and extracted αF3

ðQ2Þ across Q2
0, where the pQCD results

now use the GLS Ci coefficients in Eq. (93). We find good
agreement for Q2

0 ¼ 1.05 GeV2, κ ¼ 0.530� 0.035,
and μGLS4 ¼ 0.018� 0.025.
We perform the integration of Eq. (76) numerically and

find

□
0
Bj ¼ 0.176ð30Þ α

2π
0 < Q2 < 0.910 GeV2; ð99Þ

□
0
Bj ¼ 2.026ð22Þ α

2π
0.910 GeV2 < Q2 < ∞ ð100Þ

for the Bjorken sum rule results and

□
0
GLS ¼ 0.200ð42Þ α

2π
0 < Q2 < 1.05 GeV2; ð101Þ

□
0
GLS ¼ 2.015ð17Þ α

2π
1.05 GeV2 < Q2 < ∞ ð102Þ

for the GLS sum rule results, where the superscript “0”
denotes the omission of target mass corrections (TMC).
The uncertainties arise from the change in fit parameters
and a 100% uncertainty on the higher twist contributions.
The contribution of heavy-flavor corrections is Oð10−5Þ,
but we include it for completeness.
Finally then, the target mass corrections are implemented

as described above, and change the box contribution with

□
TMC
Bj ¼ 0.089ð45Þ α

2π
0 < Q2 < 0.910 GeV2; ð103Þ

□
TMC
Bj ¼ 0.022ð11Þ α

2π
0.910 GeV2 < Q2 < ∞ ð104Þ

for the Bjorken sum rule and

□
TMC
GLS ¼ 0.092ð46Þ α

2π
0 < Q2 < 1.05 GeV2; ð105Þ

□
TMC
GLS ¼ 0.017ð9Þ α

2π
1.05 GeV2 < Q2 < ∞ ð106Þ

for the GLS sum rule results. Since the behavior of the GLS
and PBj sum rules is identical to leading order, the target
mass corrections are common within uncertainties and
increase both results almost equally. We have conserva-
tively estimated our uncertainties at 50% of the magnitude
of the effect. Note that in this case, the shift corresponds to
more than 1 sigma when compared to the CMS results, who
took the uncertainty on the Q2 < 1.1 GeV2 region to be a
blank 20%.
In our discussion above we have alluded to the pos-

sibility of using either GLS or PBj sum rule results for the
vector transition, with the argument relying on either
isospin or chiral symmetry, respectively. In Ref. [17] one
takes the PBjSR results also below 1.1 GeV2, i.e., in the
regime where chiral symmetry is expected to be broken.

In the DR work [12,13], one uses isospin symmetry to

relate it to the Fνpðν̄pÞ
3 structure function. As also shown in

the Appendix, this correspondence is not completely model
independent since the γW contribution is of the isoscalar
type, whereas (anti)neutrino scattering is fully isovector.
Both in the elastic channel and for intermediate (Regge
[91]) momentum scales, this correspondence can be clearly
established. In the DIS regime, the small difference
between GLS and PBj sum rules provides additional
credence to this hypothesis, and the authors of Ref. [13]
conclude this translation can be made up to isospin
breaking (∼ few percent) corrections. We follow the same
philosophy here, but use the AQCD continuation of the
GLS sum rule to capture the low Q2 behavior coupled with
the PBjSR DIS regime. Additional details are provided in
the Appendix.
Our results are summarized in Fig. 3, shown in a way

similar to Ref. [13]. We see that the holomorphic results for
a vector transition resemble the DR results much closer
than the original MS results, shown in Fig. 7 of Ref. [13].
The increase in the Born amplitude for the axial transition is
clearly visible, even though the difference due to inter-
mediate scale physics from the difference in GLS and Bj
sum rules is not statistically significant. This is not
surprising, given that they approach each other in the
chiral limit, and the lack of high precision data for the GLS
sum rule allows for large variations. Target mass correc-
tions further lift the response at low energies, predomi-
nantly aroundQ2 ≲ 0.1 GeV2. We note that chiral breaking
effects will likely play a role at low Q2 for a difference in
ΔV;A

R , which is a topic of further study.

V. EFFECTIVE COUPLINGS

A. Nucleons

We have identified three sources of OðαÞ radiative
corrections that are a priori different for Fermi to

FIG. 3. Summary of the results for vector and axial vector
transitions including target mass corrections, calculated as in
Ref. [13]. Dashed lines show the contribution of the Born
amplitude.

STANDARD MODEL OðαÞ … PHYS. REV. D 103, 113001 (2021)

113001-15



Gamow-Teller transitions. Two of these originated from the
nonzero divergence of the axial current, Eqs. (29) and (59).
In both cases the UV contribution vanished, which can be
intuitively understood from the partially conserved axial
current hypothesis. Somewhat more surprising is that the
Born contribution also vanishes, through either a cancella-
tion between isoscalar and isovector parts [Eq. (51)] or a
crossing symmetry for the isovector contribution (72). The
only remaining OðαÞ difference was found to originate in
the vector induced part of the γW box. Specifically, we
found an increase in the Born contribution for Gamow-
Teller transitions due to the influence of weak magnetism in
the weak nucleon vertex, Eq. (84). We have treated all other
nonelastic contributions based on the polarized Bjorken
and Gross-Llewellyn Smith sum rules, using pQCD for
Q2 ≳ 1 GeV2 and a holomorphic continuation toward the
infrared using light front holography results, constrained by
experimental data and continuity requirements. We have
supplemented these results using highest-twist and target
mass corrections, with changes to numerically integrated
values predominantly arising from the latter. Since the
running of the two sum rules coincide in the chiral limit, it
is unsurprising that their difference is small, and not
statistically significant.
For the total inner RC we use the expressions obtained

from summing large logs using renormalization groups
[17,22]

ΔR ¼ 0.01671þ 1.022ANP þ 1.065AP; ð107Þ

where the first term corresponds to all common, model-
independent logarithmic factors of Eq. (7) and AðNÞP are
(non)perturbative contributions discussed in the previous
section. Summing everything together we have

ΔV
R ¼ 0.02473ð27Þ; ð108Þ

ΔA
R ¼ 0.02532ð22Þ: ð109Þ

We note that ΔV
R agrees nicely with the dispersion relation

results of Refs. [12,13]. It is somewhat larger than the new
results of Czarnecki, Marciano, and Sirlin [17], which can
be traced back to two different effects. The first is because
we argue that the Born contribution should be integrated up
to Q2 → ∞ rather than the cutoff energy at which pQCD
contributions arise, similar to the dispersion relation results
and the treatment of the QCD sum rules upon which their
analysis was based. Second, the contributions due to target
mass corrections are substantial mainly in the low Q2

domain and increase results nontrivially. By including these
corrections, the dispersion results are very similar in spirit
to the ones we have presented here. Both rest on the
argument that in the isospin limit, we can identify expres-
sions with well-studied QCD sum rules. While the
dispersion results go to great lengths to motivate their

physics input over the entire domain, the analytical
continuation presented here must be consistent with a
subset of the same data that Ref. [13] is comparing to. It
is therefore hardly surprising that in the end our results
agree.
Our uncertainty is larger than the DR results, but smaller

than those of CMS. Taking a closer look at the latter, the
predominant source of uncertainty arises almost equally
from the blanket 5% and 10% relative uncertainty on the
DIS and Born contributions, respectively. In the DR result,
on the other hand, no uncertainty is provided for the DIS
contribution, and the uncertainty on the Born amplitude is
derived from data. Here we decided to take an intermediate
approach, with the uncertainty on the Born contribution in
accordance with the DR work but an uncertainty on the DIS
regime due to fit uncertainties and a 100% relative
uncertainty on higher-twist corrections.
The difference in inner radiative corrections between

vector and axial vector is now found to be

ΔA
R − ΔV

R ¼ 0.52ð5Þ α

2π
¼ 0.60ð5Þ × 10−3; ð110Þ

where the uncertainty originates from the form factors in the
Born contribution and the ambiguity in GLS nonelastic
results taken in quadrature. Since the target mass corrections
are the same within uncertainties and are strongly correlated
we do not take its additional error into account. The differ-
ence is then driven almost exclusively by the elastic response,
in particular that of the weak magnetism contribution.
This also allows one to, for the first time to our

knowledge, extract the underlying gA from experimental
measurements which is to be used in neutral current
processes and used in comparison with lattice QCD.
Using the most precise individual measurement [20],
geffA ¼ 1.27641ð56Þ, we find

g0A ≡ geffA

1þ ðΔA
R − ΔV

RÞ=2
ð111Þ

¼ 1.27603ð56Þ; ð112Þ

or a 0.7σ shift with respect to the traditionally quoted value.

B. Nuclear effects

Up to now, we have treated only the case where the initial
and final nucleon in the diagrams of Fig. 1 are the same
nucleon. In a nucleus, however, this need not be the case.
As a consequence, an additional term shows up which
depends on nuclear structure [22]

1þ ΔR → ð1þ ΔRÞð1 − δC þ δNSÞ; ð113Þ

where δC are so-called isospin breaking corrections and δNS
is the effect of multiple nucleons in the γW box diagram.
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For the case of superallowed 0þ → 0þ Fermi transitions
explicit calculations have been performed, taking into
account two different nucleons in initial and final states
[65]. There it was found that in general the corrections
depend on

δFNS ∼
hpNi
M

¼ vN
c
; ð114Þ

where hpNi is the average nucleon momentum and vN the
corresponding velocity. This can be intuitively understood
since the Fermi transition receives a contribution from the
axial vector part of Tμν. Because of the contraction with the
asymmetric tensor at least one index must be spacelike, so
that the amplitude for nucleons depends on vN=c. The same
argument applies for a Gamow-Teller transition, so that
a priori the contributions are expected to be of similar size.
Another way of treating nuclear structure information

has traditionally been achieved via the decomposition of
the weak vertex, Wμ in Eq. (43), into model-independent
form factors in one of two ways. The first is to perform a
spherical tensor decomposition in the Breit frame, where
the timelike and spacelike currents can separately be
expanded using (vector) spherical tensors [92–95]. The
other consists of a manifest Lorentz invariant decomposi-
tion, which is practical mainly for allowed decays due to
the limited number of terms [96]. For the purpose of the
discussion here, we use the latter for its clarity, even though
the results obtained using the former will be identical [up to
Oðq=MÞ]. All nuclear structure information is then
encoded into form factors. In this case we can write [96]

VμðqÞ ¼
1

2M
ðaPμ þ eqμÞδJJ0δMM0 þ i

b
2M

ϵ0iμkqiCk1

þ Ck2
2M

½higher order�; ð115Þ

AμðqÞ ¼
Ck1
4M

ϵijkϵijμν½cPν − dqν þ � � ��

þ Ck2;3
ð2MÞ2 ½higher order�; ð116Þ

where Ck
i is a Clebsch-Gordan coefficient, P ¼ pi þ pf,

and all form factors are a function of q2. Typically, the form
factors are expanded using a power series in q2, or assumed
to be of a dipole shape. This then usually corresponds to
including only the Born contribution and is discussed in the
previous section. This serves as the replacement of
Eq. (43). In the case of the neutron the correspondence
can be read off directly from comparing the latter and
Eqs. (115) and (116), where the higher-order terms are
zero. The calculation then proceeds analogously as for the
neutron, and assuming a dipole shape for the form factors
one finds [97]

ΔA
R − ΔV

R ∼
4

5

αZ
MR

b
Ac

; ð117Þ

where R ¼ ffiffiffiffiffiffiffiffi
5=3

p hr2i1=2 is the nuclear radius, Z is its
atomic number, and bðcÞ is the so-called weak magnetism
(Gamow-Teller) form factor. We can understand the
appearance of the factor αZ rather than α as follows.
While in theory every nucleon inside a nucleus can undergo
decay, because of their occupancy in specific orbitals and
relative position with respect to the Fermi energy, only
those closest to the latter do at a reasonable rate. When two
different nucleons are involved, however, every nucleon
which interacts with the outgoing β particle through
exchange a photon can do so equally, with the other
nucleon near the Fermi energy interacting with the W
boson. Besides this simplified picture additional effects
show up. This is in part because of the presence of discrete
levels at the MeV rather than the GeV scale and a
significant quasielastic response [13,14]. While these
effects can be expected to be of similar magnitude, a more
detailed treatment lies beyond the scope of this work.

VI. THE LATTICE AND RIGHT-HANDED
CURRENTS

Traditionally, one defines gA as in Eq. (3), i.e., containing
any difference in vector to axial RC and potential BSM
signals. Because of the rapid progress in the field of lattice
QCD, an accurate first principles calculation of gQCDA has
been demonstrated to the percent level [25,26], although it
is currently unclear how some systematic effects influence
the final accuracy [27]. Nevertheless, a comparison
between experimentally obtained values for λ≡ gA=gV
and calculations for gQCDA allow one to disentangle potential
BSM signatures in a clean system. Assuming new charged
current physics to appear only at high scales, Λ2

BSM ≫ M2
W ,

we can treat the problem using an effective field theory
[4,5,98–100]

λEFT ¼ λSMð1 − 2Re½ϵR�Þ; ð118Þ

where ϵR is a BSM right-handed coupling constant assum-
ing new UV physics, interpreted in the Standard Model
EFT. Within the context of BSM searches in the charged
current sector, the particular form of Eq. (118) is pleasing
because of its simplicity and sensitivity enhancement. On
the other hand, a difference in radiative corrections between
vector and axial vector transitions mimics exotic right-
handed currents, so that a failure to take it into account
would incorrectly lead to a nonzero BSM signal when the
precision reaches the expected offset. Using the results of
Eq. (110), we find

λSM ¼ gQCDA

gV

�
1þ 1

2
ðΔA

R − ΔV
RÞ
�

ð119Þ
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¼ gQCDA

gV
½1þ 0.30ð3Þ × 10−3�: ð120Þ

As a consequence, experimental results extract λEFT
[5,19,20], which is then assumed to be equal to gQCDA after
setting gV to unity [24]. We find that the difference is
smaller than 0.1%.
Currently, there are a number of results available for a

LQCD determination of gA. We compare here two different
results: The FLAG2019 summary [27],which finds gFLAGA ¼
1.251ð33Þ and the most precise (MP) individual determi-
nation published this year, gMP

A ¼ 1.2642ð93Þ [101]. The
calculated shift in gA from Eq. (120) corresponds to about
one-third of the MP result. The anticipated shift of Eq. (120)
and the possibility of detecting right-handed currents through
λ has prompted interest in pushing for a more precise
calculation in the near future [101]. Figure 4 shows the
current and anticipated limits using gA from the lattice with
the recent PDG average for λ ¼ 1.2756ð13Þ [64].
The correction corresponds to a 0.02% shift in ϵR, which

leaves the current limits unchanged due to the large uncer-
tainty of lattice results for gQCDA . As mentioned above,
however, there is significant interest in improving the
precision of the latter [101]. After correcting for
Eq. (120), equality between experimental and lattice values
for gA will then put the most stringent direct limits on right-
handed currents.4

We note again that although the relative difference
between ΔA

R and ΔV
R is relatively small, the Born

contribution to the bare γW integral is increased by almost
70% for the axial vector renormalization, and should be
accessible via LQCD calculations with an explicit photon.

VII. CONSISTENCY ISSUES IN TRADITIONAL β
DECAY THEORY INPUT

Upon closer inspection, some of the results obtained in
traditional β decay formalisms [95,96,105] have the same
origin as some of the radiative corrections discussed above,
although the connection is not immediately clear when
comparing final expressions. Because the neutron calcu-
lations do not have to take into account any nuclear
response, calculations can be performed in a more straight-
forward manner, and historically results have been pub-
lished using several different formalisms. On the nuclear
theory side, the connection with radiative corrections is
typically not as obvious in the formalisms that are com-
monly used, and the main QED effect that is taken into
account is the Coulomb interaction. The latter can be
understood as part of the low k ≪ MW contribution of the
γW box diagram of Sec. IV. While this is obvious for the
leading Coulomb term (∼αZ=β with β ¼ v=c the velocity),
additional higher-order terms sneak in. Some of these
cancel in the full OðαÞ calculation as we have shown
above, while they survive in the traditional β decay results.
Further, because some of these additional terms are
included in some elements of the commonly used theory
input and not in others for, e.g., correlation measurements
in nuclear mirror systems, double counting occurs when
putting all results together for, e.g., a Vud extraction.

A. Missing cancellation

In the traditional β decay calculations of the second half
of the last century [95,96], a particular focus was placed on
a rigorous classification of the nuclear current while taking
into account the Coulomb interaction between initial and
final states as the dominant QED correction. In the
Standard Model this is to be understood to first order in
αZ as the Born amplitude of the γW box, using only the
electric monopole term. Taking Eq. (55) and using the Born
amplitude of Eq. (77), to first order in αZ the matrix
element can be written as follows:

4παGFVud

Z
d4k
ð2πÞ4

ēð2lμ − γμ=kÞγνð1 − γ5Þν
k2½k2 − 2l · k�

× ū

�
ZFf

1ðk2Þ
2pf;μ þ γμ=k

k2 þ 2pf · kþ iϵ
Wνðpi þ k; pfÞ

þðZ − 1ÞFi
1ðk2ÞWνðpi; pf − kÞ 2pi;μ − γμ=k

k2 − 2pi · kþ iϵ

�
u:

ð121Þ
Neglecting the difference between Z and Z − 1 and
assuming the normalized charge form factors, Fi;f

1 ðk2Þ,

FIG. 4. Current limits (68% C.L.) on left- and right-handed
couplings interpreted in the SMEFT, showing Z-pole (blue)
[102,103], LHC (black) [104], LQCD results from FLAG’19
[27] and Ref. [101]. In red we show anticipated limits when gA
reaches 0.1% on the lattice. The black vertical line represents the
effects of Eq. (120) as a false BSM signal.

4We have omitted here the combination of CKM unitarity
(ΔCKM ∝ ϵL þ ϵR) and the pion decay (δΓπ→μ2 ∝ ϵL − ϵR) due to
the degeneracy with pseudoscalar, scalar, and tensor interactions
[5,28].
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to be the same (analogous to taking only the isoscalar
moment as we have done above), using that pf ≈ pi ¼
ðM; 0Þ in the center of mass frame and neglecting k ≪ M
due to the suppression of the form factors for high k2, one
arrives at

− i4παZGFVud

Z
d4k
ð2πÞ4

ēð2p0−γ0=kÞγνð1−γ5Þν
k2½k2−2p ·k�

×2MF1ū

�
Wνðpþk;pÞ
k2−2p ·kþ iϵ

þ Wνðp;p−kÞ
k2−2p ·kþ iϵ

�
u: ð122Þ

Using Eq. (73) to reduce the hadronic propagators and
recognizing now the definition of the Coulomb potential to
order αZ [106]

VCðrÞ ¼ 8παZ
Z

d3k
ð2πÞ4

1

k2
eik·rF1ðk2Þ; ð123Þ

the electron wave function to order αZ is then

ϕ̄eðr;pÞ¼ ūe−ip·r− i
Z

d4zūeipzγ0VCðzÞSFðz−rÞ ð124Þ

with SF the fermion propagator. One then generalizes the
resulting form to take ϕ̄e as the solution to the Dirac
equation in the central Coulomb potential of the daughter to
all orders in αZ. Finally, we obtain the traditional Coulomb-
corrected β decay amplitude as first written down by Stech
and Schülke [92,106],

Mfi ¼
Z

d3rϕ̄eðr; peÞγμð1 − γ5Þvðpν̄Þ

×
Z

d3s
ð2πÞ3 e

is·r 1

2
½hfðpf þ pe − sÞjVμ þ AμjiðpiÞi

þ hfðpfÞjVμ þ Aμjiðpi − pe þ sÞi�: ð125Þ

The vector and axial vector currents can then be replaced
by, e.g., Eqs. (115) and (116) or a (vector) spherical
harmonics expansion as is done in the work of Behrens
and Bühring [95]. Upon inspection, it is clear that s ¼
pe − k ≈ −k for large loop momenta. The calculation then
proceeds through a similar expansion of the lepton current
which defines the basic matrix element. While this in itself
is not a problem, based on our discussion of the Born term
in Sec. IV C it is clear that for pe ≪ k ≪ M terms of
OðαZ=MRÞ show up; see Eq. (117). This had been noted
before [107,108] and is included by default in the Behrens-
Bühring formalism even though there was no explicit
publication of the latter. In particular, it was observed that
a renormalization of sorts happens to the different form
factors, such as for the Gamow-Teller form factor [97,105]

c → c� 2

5

αZ
MR

�2bþ d
Ac

; ð126Þ

with b, c, and d the weak magnetism, Gamow-Teller, and
induced tensor form factors in the Holstein notation as in
Eqs. (115) and (116). What is of special importance,
however, is that the origin of the b and d terms differ,
as they originate from different terms of the reduction of the
product of three gamma matrices in Eq. (122) when using
Eq. (54). We find that the d term arises from the piece
equivalent to =kT0

0 in Eq. (58), whereas the weak magnet-
ism contribution arises from the parity-odd amplitude,
ϵμναβkαLβTμν, as we have seen above. In the full calcu-
lation, however, the former cancels completely with the
low-energy part of the vertex correction; see the discussion
at Eq. (60) and the Appendix B. As a consequence, the
ðαZ=MRcÞd term should not be present in a consistent
OðαÞ calculation,

2

5

αZ
MR

d
Ac

→ 0; ð127Þ

and care must be taken when combining OðαÞ radiative
corrections calculations with classical calculations of the β
decay rate such as those listed in Refs. [96,105]. For Fermi
transitions this is not a problem, as even in the “naive”
calculation of Eq. (125) the total contribution vanishes.

B. jVudj Double counting in T = 1=2 mirror decays

The second issue pertains to the evaluation of Vud from
mirror decays, i.e., β transitions within an isospin T ¼ 1=2
doublet. The master equation relating the lifetime, phase
space, and matrix elements can be obtained by making the
substitution 3λ2 → ρ2 in Eq. (1) and inserting the Fermi
matrix element, MF,

t1=2fV

�
1þ fA

fV
ρ2
�
¼ 2π3ℏ ln 2

M2
FV

2
udG

2
Fg

2
VðmecÞ5

1

1þ RC
; ð128Þ

where we have inserted the half-life rather than lifetime and

ρ ¼
8<
:

cðq2Þ
aðq2Þ Holstein ½96�
AF101ðq2Þ
VF000ðq2Þ Behrens-Bühring ½95�

ð129Þ

is the ratio of Gamow-Teller and Fermi form factors in the
two most popular formalisms.5 Because its decay occurs
within an isospin doublet, the Fermi matrix element is
completely determined thanks to the conservation of the
weak vector current and one finds M0

F ¼ 1, where the
superscript denotes the assumption of isospin symmetry. In
this sense, it can be thought of as the nuclear equivalent of
the neutron which brings with it a number of distinct

5Depending on the formalism, the sign of ρ can change. Since
we are concerned here only with ρ2 we refer the reader to, e.g.,
[109] for more detail.
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advantages. As with the neutron, ρ can be determined
experimentally through βð−νÞ correlation measurements,
with some isotopes gaining significant enhancements due
to near cancellations [109]. In summary, we can define the
so-called corrected ft value common to all mirror decays
[i.e., all the nucleus-independent factors in the right-hand
side of Eq. (128)], F t0, which is defined as [110]

F t0 ¼ g2VfVtð1þ δ0RÞð1þ δVNS − δVCÞ½1þ ðfA=fVÞρ2�
≡ F t½1þ ðfA=fVÞρ2�; ð130Þ

where δi are outer radiative (R), nuclear structure (NS), and
isospin-breaking (C) corrections [111], following jMFj2 ¼
jM0

Fj2ð1þ δVCÞ ¼ 1þ δVC [112]. Then, if theory input is
provided for the so-called phase space factors fA;V , one can
extract a complementary determination of Vud, the up-
down quark mixing matrix element [110,111] from the
relation

V2
ud ¼

K

F t0G2
Fð1þ ΔV

RÞ
; ð131Þ

where K=ðℏcÞ6 ¼ 2π3 ln 2ℏ=ðmecÞ5 ¼ 8120.278ð4Þ×
10−10 GeV−4 s, GF=ðℏcÞ3¼1.1663787ð6Þ×10−5GeV−2

[42], and ΔV
R ¼ 2.467ð22Þ% the inner radiative correction

obtained from dispersion relations [12,13] or our own result
in Eq. (108).
The problem now is the following: the quantities fA;V are

calculated as the integral of the β spectrum shape for vector
and axial vector transitions in the Behrens-Bühring for-
malism [22,105,113], whereas experimental analyses typ-
ically use expressions based on that of Holstein [96] or
older resources to extract ρ. As we have seen in the
previous section, parts of the Gamow-Teller-specific RC
by default leak into the formalism in the former, whereas
these have to be added post hoc in the latter [97], and which
are not included in experimental analyses and compilations
of formulas. As a consequence, the analysis of experimen-
tal data returns ρSM—which includes the renormalization
analogous to Eq. (120)—so that when it is combined into
Eq. (130) double-counting occurs.6

We recalculate the standard fA=fV values [110,111,113]
by subtracting the αZ=ðMRcÞb contributions to the result.
Table I lists updated fA=fV and F t0 values for the isotopes
for which all experimental information is available to allow
extraction of Vud: 19Ne, 21Na, 29P, 35Ar, and 37K.
It is exactly this Gamow-Teller-specific RC part that is

included in the Behrens-Bühring part that gives the most
significant shift in fA=fV , which is now removed. The
reason why, e.g., the general weak magnetism spectral

correction [105], which typically results in a slope of
∼0.5% MeV−1 for a Gamow-Teller transition, does not
contribute can be understood from a theorem by Weinberg
[120]. The latter states that—in the absence of QED—no
vector-axial vector cross terms can contribute to a scalar
quantity such as the lifetime. While the γW box is a
dramatic example of when QED does interfere with this
theorem, the influence of the weak magnetism spectral
correction integrates to zero were it not for the Fermi
function. Other spectral features coming from induced
currents are seen to have a similar effect in, e.g., the
explicit calculation by Wilkinson for the neutron [35]. The
differences between fA and fV are now much smaller as
finite size corrections are very similar for axial and vector
transitions [105]. The change in F t0 is strongest for 19Ne
due to the large value for ρ, where the change in fA=fV
causes a dramatic 3.4σ shift in F t0 and reduces the
uncertainty by 24%. Given that this is the most accurate
determination of F t0, its influence cannot be understated.
Combining all newly calculated results, one obtains an

average F t0 ¼ 6141ð13Þ with χ2=ν ¼ 0.119, resulting in
an enhanced internal consistency. Application of Eq. (131)
then leads to a new value for jVudj extracted from mirror
decays

jVudjmirror ¼ 0.9739ð10Þ; ð132Þ

which lies 0.3% (3σ) higher than the result obtained using
the old fA=fV values with the most up-to-date experimental
input, jVudjmirror

old ¼ 0.9710ð12Þ, and 0.3% (2.2σ) higher
than the results previously reported in 2009 [110] when
accounting for the new radiative corrections [12],
jVudjmirror

09 ¼ 0.9712ð17Þ. Figure 5 shows an overview of
the current status.
Our new result agrees extremely well with that of

superallowed Fermi decays, jVudj0þ→0þ ¼ 0.97366ð16Þ
[12,22] and the neutron [5]. Additionally, it resolves the
long-standing internal discrepancy in the mirror F t0 data-
set, thereby confirming its value and complementarity.

TABLE I. Difference in calculated fA=fV values and its effect
on F t0 for the mirror T ¼ 1=2 transitions for which all exper-
imental information is available to allow extraction of jVudj. F t
value are taken from [114] for all isotopes. Uncertainties in
fA=fV are taken as 20% of the deviation from unity [111],
reflecting an uncertainty in the shell model calculations of a
matrix element in fA [105].

ðfA=fVÞold ðfA=fVÞnew F told0
F tnew0

19Ne [115] 1.0143(29) 1.0012(2) 6200(21) 6142(16)
21Na [116] 1.0180(36) 1.0019(4) 6179(44) 6152(42)
29P [117] 1.0223(45) 0.9992(1) 6535(606) 6496(593)
35Ar [110] 0.9894(21) 0.9930(14) 6126(51) 6135(51)
37K [118,119] 1.0046(9) 0.9957(9) 6141(33) 6135(33)

6It is somewhat fortuitous that the effect is smaller than it could
have been since in Eq. (126) d ¼ 0 for decays within isospin
multiplets.
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As an example, using only the neutron and 19Ne F t0 values
it is possible to constrain new tensor interactions in the
charged weak current at the 5.1 TeV level (90% C.L.)
[115]. Because of the sensitivity enhancement to ρ that
several mirror isotopes offer [109], these present an
enticing prospect for complementary study.

VIII. CONCLUSIONS

In summary, we presented for the first time a consistent
calculation of the OðαÞ inner radiative corrections to
Gamow-Teller transitions. Although a priori three contri-
butions specific to the latter compared to Fermi transitions
can be identified, two of these depend on the divergence of
the axial current and we find that their contribution vanishes
in the UV. Additionally, we find that invoking G-parity
reduces the number of terms in the IR, and their Born
contribution vanishes through either crossing symmetry or
a cancellation between isoscalar and isovector photon
contributions. To OðαÞ, this leaves the polarized parity-
odd contribution of the γW box diagram, analogous to the
case of Fermi transitions. We find that the Born contribu-
tion is significantly enhanced because of weak magnetism,
leading to an increase of a factor 2.9 with respect to Fermi
transitions. Following the findings of recent dispersion
relation results [13], we take into account additional
hadronic contributions besides the Born amplitude below
1 GeV through a model for a holomorphic strong coupling
constant. The latter agrees well with experimental data for
the polarized Bjorken sum rule, which up to isospin
breaking determines the running of the coupling in the
vector γW box. For consistency, we treat the axial γW box
in the same way, using instead a combination of polarized
Bjorken and Gross-Llewellyn Smith sum rules. Even

though the latter has limited experimental data available,
we obtain good agreement using the same model, supple-
mented by continuity requirements across the threshold.
Within uncertainties, this results in the same increase below
∼1 GeV2 as for the vector γW case. In both cases we have
discussed higher-twist and target mass corrections, with the
latter providing the dominant increase at low Q2. Using
these methods, we find ΔV

R ¼ 0.02473ð27Þ and ΔA
R ¼

0.02532ð22Þ for a difference ΔA
R − ΔV

R ¼ 0.60ð4Þ × 10−3.
We note that the vector prediction is consistent with both
dispersion relation [13] and similar recent work [17], with
the increase with respect to the latter arising from an
integration of the Born contribution for 0 ≤ Q2 < ∞ rather
than up to the deep inelastic scattering threshold, and the
inclusion of target mass corrections. The difference
between vector and axial inner RC is dominated by the
weak magnetism Born contribution.
This allowed us to, for the first time, extract the under-

lying g0A, which is required for use in neutral current
processes and compared to lattice QCD. Using the most
precise individual measurement, the shift corresponds to
0.7σ. As experimental precision increases further with
several upcoming measurements, this effect becomes sta-
tistically significant.
We discussed the effect of our findings on an extraction

of limits on exotic right-handed currents from comparisons
of experimental and lattice QCD gA determinations. Within
the current precision of the latter, the calculated shift is not
significant. As the raw γW box integral for the axial vector
renormalization is almost 70% larger than the equivalent
integral for the vector transition, this difference should be
clearly visible when explicitly putting photons on the
lattice.
Finally, we explicitly showed how some of the vector-

axial vector RC difference is present in some traditional β
decay formalisms. More importantly, however, we found
that some of these contributions cancel in the full OðαÞ
calculation not present in the traditional results.
Additionally, we corrected a double-counting instance in
the jVudj extraction from isospin T ¼ 1=2 mirror nuclei
because of inconsistent experimental extraction and theory
input, originating from the partial inclusion of the effect
described here. Besides resolving the internal inconsistency
in the mirror dataset, the extracted jVudjmirror ¼ 0.9739ð10Þ
now is in excellent agreement with both neutron and
superallowed 0þ → 0þ Fermi determinations. This rein-
forces the quality of the mirror dataset and stresses its
potential.
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APPENDIX A: INTERACTIONS WITH MAIN
DIAGRAMS

While the diagrams shown in Fig. 1 are the main
contributors for a difference in ΔV;A

R , several of the terms
arising from the latter interact with diagrams common to
Fermi and Gamow-Teller. To OðαÞ, the ones important for
this work are shown in Fig. 6.
Both of these correspond to additional two-current

correlation functions which are in essence universal to
both Fermi and Gamow-Teller transitions, and serve to
cancel or combine with elements of the calculation pre-
sented above. Taking the virtual Z expanded vertex diagram
as an example, the matrix element can be written as

MZ
1 ¼ −

ig4

2ð2πÞ4
Lμ

q2 −M2
W

Z
d4k

ðk2 −M2
ZÞ½ðk − qÞ2 −M2

W �
× ½ð2k − qÞμgλρ þ ð2q − kÞλgμρ − ðkþ qÞρgμλ�Tλρ

Z :

ðA1Þ

The asymptotic behavior can once again be studied using
an OPE or the BJL limit. In the case of the former the
leading behavior for large k is determined by the lowest
order operator on the OPE. Because of the charge change in
Tλρ
Z , this operator must be bilinear in the quark fields.

Dimensional analysis learns then that Tλρ
Z behaves as k−1

and the integral in Eq. (A1) is logarithmically divergent for
the k products in the numerator, while it is finite but of
OðG2

FÞ for the q products because of the presence of the Z
mass. Further, we can use the Ward-Takahashi identities for
the kλ and kρ products. Similar to Eqs. (56) and (57), this

results in the appearance of Born amplitudes and deriva-
tives in the currents. One can check that the latter contribute
only at OðG2

FÞ based on dimensional analysis [34] or brute
force through the BJL limit. One finds then [34]

MZ
1 ¼ −

ig4

2ð2πÞ4
Lμ

q2 −M2
W

Z
d4k

ðk2 −M2
ZÞðk2 −M2

WÞ
× ½2kμTλ

Zλ þ 2icos2θWhpfjJWμ ð0Þjpii�: ðA2Þ

The first term partially cancels the contribution from the
vertex correction of Eq. (31) for Z exchange, and similarly
for photon exchange [cf. Eq. (36)]. The second term is
proportional to the tree-level amplitude and, in fact, does
not depend on the initial and final states. Although the
integral is divergent, the latter implies that it is absorbed
into the definition of GF taken from the muon lifetime and
we need not worry about it further (see Sec. II).
The nonasymptotic part of the ZW box diagram con-

tributes only to OðG2
FÞ thanks to the double heavy boson

propagator. The asymptotic behavior of the ZW box
diagram is discussed at length in Ref. [34], and it is—
most importantly—to lowest order proportional to the tree-
level amplitude and therefore common to Fermi and
Gamow-Teller transitions. We merely state the final result

MZ
2 ¼ α

4π
M0cot2θW

�
2þ 1þ R

1 − R
lnR

�
; ðA3Þ

where

R ¼ M2
W

M2
Z
¼ cos2 θW ðA4Þ

as usual in the Standard Model and was mentioned
in Sec. II.
We have omitted all OðαÞ graphs which leave the weak

vertex untouched, although their contributions are neces-
sary for the complete calculation. Specifically, the wave
function renormalization of the outgoing β particle and real
bremsstrahlung emission are required for a removal of the
infrared divergences appearing in the γW box of Eqs. (53).
Since these are well-known and common to Fermi and
Gamow-Teller decays [43], we do not include a specific
discussion.

APPENDIX B: BORN CONTRIBUTION TO
THE γW BOX

The treatment of the Born contribution proceeds along
analogous lines as those described in work by Towner
[121]. The vertex functions describing the Born couplings
of nucleons to electromagnetic and weak fields were given
in Eqs. (42) and (43). Writing the Born contribution to the
Tμν tensor explicitly

FIG. 6. Additional OðαÞ two-point correlation function con-
tributions and ZW box diagram that interact with the main
diagrams of Fig. 1.
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TBorn
μν ¼ ūðpÞ

��
F1γμ þ i

F2

2M
σμλkλ

�
p − =kþM
k2 − 2p · k

�
gVγν − i

gM
2M

σνρkρ þ gAγνγ5
�

þ
�
gVγν − i

gM
2M

σνρkρ þ gAγνγ5
�
pþ =kþM
k2 þ 2p · k

�
F1γμ þ i

F2

2M
σμλkλ

��
uðpÞ; ðB1Þ

we take into account only isoscalar photons as discussed above since it is trivial to show that isovector contributions vanish
due to crossing symmetry. The renormalization of gV is affected only by the gA term, the analysis of which can be found in
Ref. [121] and more recent work [13]. Analogously, gA is affected only by gV and—more importantly—gM and we use

ūðpÞ½γμðp − =kþMÞγν�uðpÞ ¼FCC − iϵμρνσkρūðpÞγσγ5uðpÞ; ðB2aÞ

ūðpÞ½σμαkαðp − =kþMÞγν�uðpÞ ¼FCC0; ðB2bÞ

ūðpÞ½γμðp − =kþMÞσναkα�uðpÞ ¼FCC2MϵμρνσkρūðpÞγσγ5uðpÞ; ðB2cÞ

ūðpÞ½σμβkβðp − =kþMÞσναkα�uðpÞ ¼FCC − iðk2 − 2k · pÞϵμρνσkρūðpÞγσγ5uðpÞ; ðB2dÞ

where FCC means we only retain terms which transform as first-class currents for an axial transition. The gMF2 term is
suppressed by 1=4M2 which we neglect going forward.7 If we plug these expressions into Eq. (B1) and the integral of
Eq. (58), and combine Levi-Civita tensors using ϵμρνσϵ

μλνα ¼ −2ðδλρδασ − δλσδ
α
ρÞ, we find

MBorn; A
γW ¼ −i2

ffiffiffi
2

p
παGFVudLμ

Z
d4k
ð2πÞ4 ½gVF1ðPþ þ P−Þ þ gMF1P− þ gVF2Pþ�ūðpÞ½k2γμ − =kkμ�γ5uðpÞ ðB3Þ

with P� ¼ ðk2 � 2k · pÞ−1. The momentum integral is of the form

Z
d4k
ð2πÞ4 kμkνFðp · k; k2Þ ¼ gμνI1 þ

pμpν

M2
I2 ðB4Þ

due to Lorentz covariance for a general scalar function F. Plugging this into Eq. (B3) results in

MBorn; A
γW ¼ −i2

ffiffiffi
2

p
παGFVudūðpÞ

�
3I1γμ þ I2

�
γμ þ

pμ

M

��
γ5uðpÞLμ; ðB5Þ

which is similar in form to what is found in Ref. [121] for the vector case. In the latter, the main correction stems from the
timelike contribution for which the I2 prefactor is Oðq2=M2Þ. For the spacelike contribution to axial vector transition we
have pi=M ¼ Oðq=MÞ and ūγ5u ¼ Oðq=MÞ so that the I2 integral contributes to leading order. The two integrals can be
found easily from Eq. (B4):

I1 ¼
1

3

Z
d4k
ð2πÞ4 ðk

2 − ν2ÞFðp · k; k2Þ; ðB6Þ

I2 ¼
1

3

Z
d4k
ð2πÞ4 ð4ν

2 − k2ÞFðp · k; k2Þ: ðB7Þ

The integrals can be brought into the Q2 ¼ −k2 variable through a Wick rotation and using

Z
d4k
ð2πÞ4 Fðν; Q

2Þ ¼ i
8π3

Z
∞

0

dQ2Q2

Z
1

−1
du

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
FðiQu;Q2Þ ðB8Þ

7Numerically this contribution is less than 1 part in 105.
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with ν ¼ p · k=M as before. Putting everything together,
we find

MBorn; A
γW ¼ −

ffiffiffi
2

p
α

4π
GFVudūðpÞγμγ5uðpÞLμ

×
Z

dQ2

Q2

5þ 4r
3ð1þ rÞ2

�
gV

�
F1 þ

F2

2

�
þ gMF1

2

�

ðB9Þ

with

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M2=Q2

q
: ðB10Þ

Comparing to the leading order expression for the axial
transition we can write

□
Born
VV ¼ −

α

2π

Z
dQ2

Q2

5þ 4r
3ð1þ rÞ2

gVðF1 þ F2

2
Þ þ gMF1

2

gAð0Þ
;

ðB11Þ

leading to the expressions in the main text [keeping in mind
gAð0Þ < 0 in our definition].
We perform the integration by defining the form factors

as giðQ2Þ ¼ gið0ÞGiðQ2Þ. If we assume a standard dipole
form GDðQ2Þ ¼ ð1 −Q2=Λ2Þ−2, these expressions can be
put into closed form using standard methods [33]. Instead,
we follow Ref. [13] and use the global fit results of
Ref. [57] for the Sachs isoscalar magnetic moment and
the vector form factor, and Ref. [122] for the axial form
factor. Invoking the conserved vector current hypothesis,
we use the isovector magnetic moment also for GMðQ2Þ.
The numerical results are summarized in Eqs. (82)–(84).

APPENDIX C: DEEP INELASTIC SCATTERING
AND QCD SUM RULES

The DIS contribution to the γW box diagram was
discussed in terms of different QCD sum rules. Here, we
summarize the main results.

1. Axial vector transition

Just like the famous axial vector contribution to the γW
box for Fermi transitions, an analogous situation occurs for
the axial transition with the isoscalar photonic and weak
vector current, shown in Eq. (65). The OPE expression
discussed in the main text is proportional to the tree-level
amplitude, but contains pQCD corrections. We can relate
these corrections quite easily to those of the polarized
Bjorken sum rule, which treats the Cornwall-Norton
moments of the polarized g1 function in proton and
neutron, i.e.,

Z
1

0

dx½gp1 ðxÞ − gn1ðxÞ� ¼
1

6

				 gAgV
				
�
1 −

αg1ðQ2Þ
π

�
; ðC1Þ

where the constant prefactor can be determined using
current algebra or the quark parton model. The pQCD
corrections can be determined by using the operator
product expansion of

i
Z

dz expðiqzÞTfVa
μðzÞVb

νð0Þg

≃
Q2→∞

ϵμνρσ
qσ

q2
CðAÞðμ2=Q2; αsÞdabcAρ

cð0Þ þ � � � ; ðC2Þ

where Va
μ ¼ ψ̄γμtaψ and Aa

μ ¼ ψ̄γμγ5taψ are nonsinglet
vector and axial-vector quark currents, respectively, with t5

the SUð3Þ flavor generators [68]. For simplicity, we take
only u, d, s quarks into account. In order to relate it to our
γW diagram, we define the relevant currents

V� ¼ 1ffiffiffi
2

p ðV1 � iV2Þ; ðC3aÞ

A� ¼ 1ffiffiffi
2

p ðA1 � iA2Þ; ðC3bÞ

Jγ ¼ V3 þ
1ffiffiffi
3

p V8; ðC3cÞ

as the SUð3Þ flavor representation [48,49]. For the isoscalar
photonic contribution only V8 contributes, and using
d811 ¼ d822 ¼ 1=

ffiffiffi
3

p

i
Z

dz expðiqzÞTfV�
μ ðzÞJγSð0Þg

¼ iffiffiffi
3

p
Z

dz expðiqzÞTfV�
μ ðzÞV8

νð0Þg

≃
Q2→∞

ϵμνρσ
qσ

q2
ffiffiffi
3

p CðAÞðμ2=Q2; αsÞAρ
�ð0Þ; ðC4Þ

and so regardless of SUð3Þ breaking the pQCD corrections
to the γW box are exactly those of the polarized Bjorken
sum rule, if we neglect contributions from strange quarks
present in V8.

2. Vector transition

In the case of the γW box contribution to the vector
transition, the situation is somewhat more complex. The
original idea by Marciano and Sirlin [16,54] was to relate
the axial vector contribution to the Bjorken sum rule
through a chiral rotation, i.e., d → γ5d and s → γ5s.
Above Λχ the Standard Model Lagrangian is invariant
under such chiral transformations, and the electromagnetic
current is unchanged while transforming V�

μ → A�
μ and
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vice versa. Reference [17] took this approach one step
further and used the polarized Bjorken sum rule data also at
low momenta (i.e., Q2 ≪ Λ2

χ) to describe the low and
intermediate momenta contributions not captured by the
elastic channel. As the approximation of chiral invariance
breaks down below this scale, however, the correspondence
is not rigorously expected to hold. In their work, this low-
Q2 region contributes 4.6ð9Þ × 10−4 to ΔV

R , with a generic
20% uncertainty. It is currently not clear whether this
corresponds to an over- or underestimation of the true
uncertainty.
Another approach that was discussed briefly in Ref. [13]

was to, besides explicit modeling, relate the behavior of the
axial γW contribution to charged current (anti)neutrino-
nucleon scattering. The structure functions probed in the
latter obey the GLS sum rule,

Z
1

0

dx½Fν̄
3 þ Fν

3� ¼ 6

�
1 −

αF3
ðQ2Þ
π

�
ðC5Þ

with F3 the parity-violating structure function similar to the
ones discussed in the main text. The pQCD corrections can
similarly be obtained from an OPE [68]

i
Z

d4z expðiqzÞTfAa
μðzÞVb

μg

≃
Q2→∞

δabϵμνρλ
qλ

q2
CðVÞðμ2=Q2; αsÞVκð0Þ þ � � � ðC6Þ

with definitions equivalent to Eq. (C2), and Vκ ¼ ψ̄γκψ is a
singlet vector current. The Kronecker delta makes

identification with the axial vector γW box contribution
less obvious. In fact, connection with the isoscalar electro-
magnetic contribution (V8

μ) is impossible in this form
without resorting to a chiral transformation as above.
Instead, we continue with the isovector part of the electro-
magnetic current, V3

μ, and relate it to A3
μ,

i
Z

d4z expðiqzÞTfA3
μðzÞJγVνð0Þg

≃
Q2→∞

ϵμνρλ
qλ

q2
CðVÞðμ2=Q2; αsÞVκð0Þ þ � � � : ðC7Þ

If we choose a representation of SUð3Þ such that

ti ¼ 1

2

�
τi 0

0 0

�
; ðC8Þ

where i ¼ 1, 2, 3 and τi are the SUð2Þ Pauli matrices, we
can relate A3

μ to A�
μ using isospin symmetry. If we then

assume isoscalar and isovector behavior is sufficiently
similar, we can up to additional isospin symmetry breaking
corrections use the GLS pQCD corrections for those of the
axial γW box contribution. Reference [13] found a similar
isovector-isoscalar correspondence in the Born channel and
argued that the I ¼ 0 and I ¼ 1 Regge physics at inter-
mediate scales can easily be related, albeit with the model
dependence inherent to the Regge description. Since
isospin is broken at a lower scale than chiral symmetry,
however, we believe the use of the GLS Nachtmann
moment can more easily be defended at low Q2.
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