PHYSICAL REVIEW D 103, 112001 (2021)

Measurement of the branching fraction of the decay B* —» n*zx~¢*v,
in fully reconstructed events at Belle
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We present an analysis of the exclusive B — ztz~¢ v, decay, where ¢ represents an electron or a

muon, with the assumption of charge-conjugation symmetry and lepton universality. The study exploits the
full Y (4S) data sample collected by the Belle detector, corresponding to 711 fb~! of integrated luminosity.
Events are selected by fully reconstructing one B meson in hadronic decay modes, subsequently
determining the properties of the other B meson. We extract the signal yields using a binned
maximum-likelihood fit to the missing-mass squared distribution in bins of the invariant mass of the
two pions or the momentum transfer squared. We measure a total branching fraction of
B(B* - ztn=¢*u,) = [22.75] ¢ (stat) & 3.5(syst)] x 107>, where the uncertainties are statistical and
systematic, respectively. This result is the first reported measurement of this decay.

DOI: 10.1103/PhysRevD.103.112001

I. INTRODUCTION

The reported measurements of exclusive semileptonic
b — ufv, decays, with £ being either a muon or an
electron, do not saturate the inclusive charmless semi-
leptonic b — ufv, decay rate. Summing up all observed
exclusive modes, only about 25% of the inclusive rate can
be accounted for [1]. The remaining modes pose a sizeable
source of systematic uncertainty in inclusive and exclusive
semileptonic b — ufv, measurements or in decays in
which such processes constitute important backgrounds.
The magnitude of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix element |V ;| [2,3] can be precisely deter-
mined by combining measured branching fractions with
predictions for the total rate. Three direct methods are
considered to be mature at the present time: first, combin-
ing the measured branching fraction of B — #fv, with
lattice quantum chromodynamics (QCD) information to
determine |V,,| and the nonperturbative form factors in a
global fit [1,4]; second, measurement of the inclusive
charmless semileptonic branching fraction, which is com-
bined with calculations of the decay rate at next-to-next-
leading order in QCD plus nonperturbative parameters,
determined in global fits to b — ¢ semileptonic decays
[1,4]; and last, combining the measured ratio of branching
fractions of A, = pfv, and A, - A £, with lattice QCD
information to extract the ratio |V,,|/|V| [5]. The
determinations from these exclusive and inclusive
approaches are marginally compatible, yielding a differ-
ence more than two standard deviations [6]. A fourth
method is the indirect determination of |V ;| with combin-
ing angles and other measurements characterizing the
unitarity triangle. This indirect method is carried out by
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such groups as CKMfitter [7] and UTfit [8]. The values
determined in these fits favor the exclusive result.

In this paper, we present the first measurement
of the branching fraction of the exclusive channel
BT > rtn ¢ "v,, where charge-conjugation symmetry and
lepton universality are assumed. This channel is of particular
interest, as the z"z~ system receives contributions from
various resonant and nonresonant states, giving rise to a rich
spectroscopy of the system. In this manner, it can serve as a
probe to inspect the internal structure of light mesons
decaying to a charged-pion pair, given that in semileptonic
decays the hadronic and leptonic currents can be treated
independently because the latter are not affected by strong
interaction [9]. Measurements of branching fractions of this
decay will improve the calculation of the B — zz form
factors, which are an essential hadronic input for other
processes such as the rare flavor-changing-neutral-current
decays B — ax/ "¢~ and hadronic decays B — marx
[10,11]. The resonant channel B* — p°¢*v,, which con-
tributes to the BT — zt2~¢"v, final state, has been mea-
sured by the CLEO [12], Belle [13,14], and BABAR [15]
collaborations. All these results focus on reconstructing the
resonant p final state and do not measure the full z+z~
invariant-mass spectrum. The exclusive measurement of the
B" — zta~¢" v, decay presented in this paper extends these
previous studies. Furthermore, more precise knowledge of
the nonresonant z* 7z~ contributions will help improve future
measurements of the p° final state [16]. With the rapid
progress of lattice QCD, we hope that the measured Bt —
atan~ ¢ v, branching fraction and future measurements at
Belle IT will provide a new avenue to determine |V, |, which
is expected to reach a precision at the 2% level [17].

II. DETECTOR, DATA SET, AND
MONTE CARLO SIMULATION

The Belle detector is a large-solid-angle magnetic
spectrometer consisting of a silicon vertex detector
(SVD), a 50-layer central drift chamber (CDC), an array
of aerogel threshold Cherenkov counters (ACC), a barrel-
like arrangement of time-of-flight scintillation counters
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(TOF), and an electromagnetic calorimeter comprised of
CsI(TI) crystals (ECL). All these components are placed
inside a superconducting solenoid coil that providesa 1.5 T
magnetic field. An iron flux-return located outside of the
coil is instrumented with resistive plate chambers to detect
Kg mesons and muons (KLLM). More details on the detector
can be found in Ref. [18].

We use the entire T(4S) data sample of 711 fb~!
recorded by Belle at the KEKB asymmetric-energy e e~
collider [19]. The sample contains (772 4+ 11) x 10°
ete™ = Y(4S) — BB events. The Belle detector used
two inner subdetector configurations in the course of the
experiment. The first arrangement consisted of a 2.0-cm-
radius beampipe, and a three-layer SVD used to collect a
sample of 152 x 10° BB pairs, while the second comprised
a 1.5-cm-radius beampipe, a four-layer SVD, and a small-
inner-cell CDC employed to record the remaining 620 x
10° BB pairs [20].

Monte Carlo (MC) simulated samples are generated with
the EvtGen [21] package, and the response of the detector is
modeled with GEANT3 [22]. We account for final-state
radiation (FSR) effects by using the PHOTOS package
[23,24]. A sample of T(45) — BB events, where both the
B mesons decay via the dominant quark-level transition
b — cW (generic B decays), was generated with a size
equivalent to ten times the integrated luminosity of the data
sample. Continuum events arising from e™e~ — ¢g, where g
denotes u, d, s, or ¢ quark, were simulated using PYTHIAG6.4
[25] in a sample containing six times the data luminosity.
Charmless rare B decays, occurring among others via loop
transitions such as b — s quark transition or via radiative
decays, are generated with a sample size corresponding to
50 times the integrated luminosity of the data sample.

The signal BY — "z~ ¢"v, sample is generated with
the phase-space (PHSP) model of EvtGen, to make sure
that each point in phase space is populated, independent of
whether or not it can be produced by an intermediate
resonance. Given that branching fraction estimations for the
BT - 'tz ¢*v, decay in the entire phase space are
unavailable from either lattice QCD or QCD sum-rule
calculations, we have assumed a branching fraction of
31.7 x 1073 according to Ref. [26] based on |V,;,/V | =
0.083 £ 0.006 [5]. We generate 100 million BB events,
with one B meson decaying generically and the other to the
Bt - nta~¢" v, final state. A sample of exclusive semi-
leptonic decays proceeding through the CKM-suppressed
transition b — ufv, is produced with a sample size
equivalent to 20 times the data luminosity. This sample
contains the following decays: B* — z°¢*v,, Bt - nt*u,,
BjL g ﬂ/erl/f, BJr - a)erl/f, BJr - a0(980)0f+1/f,

BT = a,(1260)°¢*v,, Bt — a,(1320)°%/*v,, B' —
b, (1235)9¢ 0, B = f,(1285)¢ u, B —
£5(1525)¢* vy, B = p~¢tv,, B> n¢fv,, BY—
ay(980)" £ uy, B = a,(1260)~¢*v,, B —

a,(1320)~¢*v,, and B® — b,(1235)"¢*v,. These decays
are generated using form factor calculations from ISGW2
[27] and light-cone sum rules (LCSR) [28]. We do not
consider an inclusive component since the V,;, generator
[29], used to model this contribution, incorrectly describes
nonresonant states in the entire phase space. High-
multiplicity mass terms that can contribute to the nonreso-
nant component come from decays such as Bt —
atn 2’ *v, and BT — ata 22 v,. However, after
simulating these processes with the PHSP generator and
examining their contributions after the full selection, they
are found to be negligible and thus are not considered
further in this analysis.

We set the branching fractions of the decays B — DZvy,
B—)D*Lﬂl/f, B—)leljf, B—)Dllfljf, B—)D;fl/g,
B — D;fv,, and of the known exclusive charmless semi-
leptonic B decays to the latest experimental averages [1].
We reweight the Caprini-Lellouch-Neubert (CLN)-based
form factors [30] of the decays B — D*)#v, to the recent
world-average values [4], and the form factors of the
B — D**¢v, decay according to the Leibovich-Ligeti-
Stewart-Wise (LLSW) model [31]. We also correct the
MC for the efficiency of particle identification of charged
tracks, derived from studies using control samples for
known processes, as described later in the section about
systematic uncertainties associated to the detector simu-
lation. These corrections depend on the kinematics of the
particles involved.

III. EVENT SELECTION

This analysis employs a full reconstruction technique
[32] based on the NeuroBayes neural-network package
[33], in which we reconstruct one B meson (B\,,) stemming
from the Y'(4S) resonance in 1104 hadronic modes. This
tagging technique allows one to determine the properties of
the other B meson (Bg,) from kinematic constraints.
Subsequently, we reconstruct the Bg, using the rest of
the event, except for the neutrino, which is invisible to the
detector.

To distinguish BB events from nonhadronic background
such as two-photon, radiative Bhabha, and 7"z~ processes,
we implement a selection based on the charged-track
multiplicity and total visible energy [34]. Afterward, to
reject continuum events, we combine 18 modified Fox-
Wolfram [35] moment variables in the neural network used
for B, reconstruction. The output classifier of, of the
algorithm ranges from zero to unity, with values closer to
unity indicating a higher probability of correctly recon-
structing a B meson with low contamination of continuum
events. We retain candidates with In og, > —4.9 to ensure
good quality of the By, candidate. This requirement is
optimized using a figure-of-merit Ng/\/Ng + Ny, where
Ng and Np are the number of signal and background
events, respectively, estimated from MC simulation. With
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this selection criterion, we attain a tag-side efficiency of
0.1% and purity of around 23% for charged B mesons
reconstructed with the full hadronic tagging algorithm.
Data-MC differences in the tagging efficiency have been
evaluated in Ref. [14]; they depend on the network output
value and the reconstructed By, channel. We derive an
event-by-event correction factor from this study, using a
control sample of B — D*)£v decays on the signal side, to
account for these discrepancies.

We require the beam-energy-constrained mass, My, =

\/ Eveam — | Ps,,, |+ to be greater than 5.27 GeV [36]. Here,

beam
Epeam and p B,, are the beam energy and the three-
momentum of the By, candidate in the Y(4S) frame,
respectively. We select only charged By,, candidates since
the signal mode involves charged B mesons.

The charged particles and neutral clusters in the event not
associated with the B, candidate are used in the
reconstruction of the B, candidate. Due to the magnetic
field inside the detector, low-momentum charged particles
spiral inside the CDC and may lead to multiple track
candidates for the same particle. A pair of tracks is regarded
as duplicated if they have momenta transverse to the beam
direction below 275 MeV, with a small momentum differ-
ence (below 100 MeV) and an opening angle either below
15° (same charges) or above 165° (opposite charges). In
case such a duplicated pair is identified, the track with the
smaller value of the quantity (5 x |dr|)? + |dz|? is kept,
with |dr| and |dz| denoting the distance of closest approach
of a given track to the interaction point (IP) in the plane
perpendicular, and along the beam direction, respectively.
This criterion is optimized using simulated tracks. In
addition, we require that all selected tracks satisfy |dr| <
0.4 cm and |dz| < 2.0 cm.

We identify charged hadrons using the ionization energy
loss in the CDC, the time-of-flight in the TOF, and the
Cherenkov light yield in the ACC [37]. The identification
of charged pions in this analysis has an efficiency of 85%
with a kaon misidentification rate of 13%.

We consider events with only a single charged-lepton
candidate on the signal side. Electron candidates are
identified based on the ratio of the ECL energy to that
of the CDC track, the ECL shower shape, the position
matching between the CDC track and the ECL cluster, the
energy loss in the CDC, and the response of the ACC [38].
Furthermore, we require electrons to have a minimum
momentum of 0.3 GeV. Muon candidates are selected using
their penetration range and transverse scattering in the
KLM [39], and requiring a minimum momentum of
0.6 GeV. In the momentum region relevant to this analysis,
the average electron (muon) identification efficiency is
about 87% (89%), and the probability of misidentifying a
pion as an electron (muon) is 0.15% (1.3%). We veto
charged leptons arising from photon conversion in the
detector material as well as from J/y and y(2S) decays if

the lepton candidate, when combined with an oppositely
charged particle, gives an invariant mass M, satisfying
any of the following three conditions: M, < 0.1 GeV,
My, € [3.00,3.15] GeV, or M., € [3.60,3.75] GeV.

We reconstruct photons as clusters in the ECL not linked
to any track in the CDC. To reject low-energy photons
originating from background caused by the beam circu-
lation, we require a minimum energy of 50 MeV, 100 MeV,
and 150 MeV in the barrel, forward and backward endcap
region, respectively, of the ECL. We reconstruct neutral
pions from pairs of photons with an invariant mass in the
range 120-150 MeV. The photons forming a neutral pion
candidate are rejected from the one to be linked to a
charged track. In electron events, we take into account
possible bremsstrahlung by searching for low-energy pho-
tons (E, <1 GeV) within a 5° cone around the electron
direction. If such a photon is found, it is merged with the
electron and the sum of the momenta is taken to be the
lepton momentum. If there is more than one photon
candidate, only the nearest photon is combined with the
electron.

IV. SIGNAL SELECTION AND
BACKGROUND SUPPRESSION

After applying the above criteria, we reconstruct the
signal decay BT — z7n~¢"v, from the tracks not asso-
ciated with By,,. In this manner, we require exactly three
tracks on the signal side, the two charged pions and the
lepton. Given that the neutrino is invisible to the detector,
we infer its four-momentum from the overall missing
momentum of the event, defined as

PmiSS:PT(4S)_PB§g_Pf¥_Pﬂ+_P7[_9 (1)

where P; denotes the four-momentum of particle
i ="7T(4S), By, €, 7, 7~. We determine the missing-mass
squared, M2, = P2. . to distinguish semileptonic decays
from other processes. For correctly reconstructed semi-
leptonic decays, M2 sharply peaks at 0, whereas other
processes have a shoulder typically at positive values.

At this point in the reconstruction, the dominant back-
ground is from semileptonic B decays to charmed mesons
whose kinematic distributions resemble those of the signal.
To suppress this background, we deploy a boosted decision
tree (BDT) to recognize B™ — ntn~¢"v, decays and
identify B-meson decays into other final states. This
BDT is also effective against other backgrounds such as
continuum, rare and charmless semileptonic B decays.
A statistically independent two sets of MC samples for
signal and background are prepared. One set is used to train
BDT with the stochastic gradient boosting approach from
the TMVA software package [40]. Another one set is used
for validation of the training. The following input variables
are used:
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Shape comparison of the input variables of the BDT before the selection on Ogpy for simulated signal and background events.
AEg,: the difference between the beam and the overlapping hits in the ECL crystals caused by
B, meson energies in the center-of-mass system hadronic interaction with charged tracks and pho-

(c.m.), which is calculated using the Btag meson,
AEsig = _AEtag = _(Ebeam - EBmg)'

Omiss: the polar angle of the missing momentum in
the laboratory frame.

N : the multiplicity of z° candidates on the sig-
nal side.

shw: the angle between the signal-side #7772~ mo-
mentum and the vector connecting the IP and the
ztn~ decay vertex calculated in the laboratory
frame. The distance of the ztz~ system to the IP
for charmless intermediate states is smaller than that
for two-track pairs associated with D and K9
mesons. Thus the angle 0 is useful in reducing
these background processes.

E s tra—clusters: the total c.m. energy of photons within
the barrel region not associated with either the B,,
or Bg, candidates.

Egcr: the sum of the clusters in the ECL from the
whole event not matching to any tracks but passing
the energy thresholds for photons. This calculation
also includes ECL clusters made by photons that
were incorrectly associated with a track and that
satisfy Eq/E,s > 0.94. The Ey/E,5 variable quan-
tifies the transverse shower shape in the ECL,
defined as the ratio of energy deposited in the
3 x 3 array of crystals centered on the crystal with
the highest energy to that in the corresponding 5 x 5
array of crystals. This variable is suitable to separate

tons. For photons Eg/E,s peaks near one, whereas
for charged tracks it tends to have lower values.

Distributions of the above six variables for signal and
background (with arbitrary normalizations) are shown
in Fig. 1.

We choose a selection criterion on the BDT output
classifier by optimizing the figure-of-merit Ng/+/Ng + Np.
The distributions of the BDT classifier Ogpr for the signal,
B-meson decays to charm mesons and other backgrounds
are shown in Fig. 2. We validate the description of the

variables used in the BDT using the sideband of the M?>

Arbitrary normalization

0.06)

0.02

miss

= B — charm decays

== Other background

FIG. 2. Shapes of the BDT output for the signal and the major
background processes, as predicted by MC. The vertical line
shows the minimum requirement applied on this variable.
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FIG. 3. Distributions of the input variables of the BDT in the sidebands of the missing-mass squared, after the selection on Ogpr. The

shaded histogram shows the contribution from B decays to charm mesons, while the solid histogram shows the contributions from other
processes. The pull values are presented underneath each plot to show the level of data-MC difference. MC events are normalized to the

integrated luminosity.

distribution, defined as M?2.. > 2 GeV?2. These distribu-

miss
tions are shown in Fig. 3.

V. SIGNAL EXTRACTION

We perform a binned extended maximum-likelihood fit
to the M2. = spectrum using histogram templates derived
from MC simulation to determine the signal yield. We use a
bin width of 0.2 GeV? in the range [-1.0,6.0] GeV>.
Because of the negligible contribution of the continuum,
b — ufv, and rare b — s mediated decays, we combine
these into a single component and fix their yields to the MC
expectation (referred to as fixed background in the follow-
ing). We thus distinguish among three components in
our fit:

(1) the signal BT — z7n ¢ v,

(2) B— X.fv (X, is a charm meson) and

(3) the fixed background,
where yields of the first two components are floated in
the fit.

To allow for a BT — z"n~¢"v, decay-model-indepen-
dent interpretation of the result, we analyze the measured
yields in bins of M., = /(P + P,-)* and ¢*= (Ps+P,,)?
using three fit configurations. The minimum value for M,

corresponds to twice the mass of a charged pion, that is
0.28 GeV, whereas the maximum value is about the mass of
the B* meson, which is approximately 5.28 GeV. On the
other hand, ¢> ranges from 0 GeV? to approximately
25 GeV?. The first configuration employs a fit of the
dipion invariant-mass distribution, referred to as
1D(M,,) in the following. In the second configuration,
abbreviated as 2D, we carry out a two-dimensional analysis
and measure partial branching fractions in bins of M, and
g*. Finally, in the third configuration, we perform the
measurement in bins of ¢, and denote this configuration as
1D(g%). We use 13 bins in the 1D(M,,) configuration,
consisting of 11 bins with a uniform width in the dipion
mass of 80 MeV, and two additional bins corresponding to
the low dipion mass (M,+,- < 0.46 GeV) and the high
dipion mass (M +,- > 1.34 GeV) regions. In the 1D(g?)
configuration, we employ 17 bins with a uniform width of
1 GeV? and an additional bin accounting for the region
g*> > 17 GeV?. In the 2D configuration, we employ five
bins of 300 MeV in the dipion mass and, depending on the
size of the data sample for these regions, we split the g°
distribution into either two or three bins. Hence, for
M, < 0.6 GeV we use ¢g> <8 GeV? and ¢ > 8 GeV?;
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for M+ .- > 1.5GeV we use g> <4GeV? and ¢g*> > 4 GeV?.
For the remaining M, ,- bins, we separate ¢> into three
regions: g> <4 GeV?, 4 < ¢*[GeV?| <8, and ¢*> > 8 GeV>.
For the highest bin in the 1D(M,,) configuration
(M ,+,- > 1.34 GeV), we separate the B — X .£v back-
ground into two components: one containing B meson
decays to D mesons as a cross-feed (B — D°/v), and
another involving the remaining charmed mesons (rest of
B — X.fv). The decay Bt — D°¢*v, with D° - ztz~
also peaks at M2. ~0 GeV? in the dipion mass (M ,-)
region from 1.85 to 1.88 GeV, with relatively small
contamination from other processes. In this mass window,
we measure B(BT — D%*v,) = (2.83 £ 0.54)%, where
the uncertainty is only statistical, and the result is com-
patible with the world average B(B* — D°/*v,)ppg =
(2.33 £0.10)% [1]. We fix this component in MC accord-
ing to the measured event yield in data and add it to the
fixed background shape and yield. The detector resolution
for the dipion mass and ¢> are about 4 MeV and
5 x 1072 GeV?, respectively. These values are significantly
smaller than the bin sizes used in our measurement, and
hence no additional corrections to account for migrations
between the reconstructed bins are applied.

Figure 4 shows the projection of the fit results in the
1D(M,,) configuration in three regions of the dipion mass:
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FIG. 4. Projection of the 1D(M,,) configuration fit results in the M?

a low-mass region (M,+,- < 0.62 GeV), an intermediate-
mass region dominated by the p° meson (0.62 <
M ,+,-[GeV] <£0.94), and a high-mass region (M ,+,- >
0.94 GeV) where we can also observe contributions from
the BT — D°(z*zn~)¢*v, decay. Tables I-III list the fit
results for every bin in the three configurations. In these
tables, we provide the y? value and number of degrees of
freedom to verify the goodness of fit, following the y?
calculation of Baker and Cousins [41], which applies to fits
derived from a maximum-likelihood method where the data
obey Poisson statistics. The fit procedure is validated by
generating an ensemble of pseudoexperiments using the
fitted number of signal and background events in each of
the bins. No bias in the coverage of the reported uncer-
tainties is observed. The recovered central values show
a small bias, which we include into the systematic
uncertainties (discussed in the next section). To validate
our measurement, we used control samples following a
selection procedure similar to that implemented for the
signal. For that purpose, we study four channels in the
BT — D°¢*v, decay, with the D° meson reconstructed as a
combination of two charged hadrons and the possibility to
include a neutral pion: K~z*, K "K', ztz z° and
K~7"7°. The measured branching fractions are in agree-
ment with the world averages [1].

10— T — " T — " 1

o 0.62GeV <M, <0.94GeV

Events/(0.2 GeV?)

Pull

Mz s [GEV?]

B* — n*rl'v

B — X.I'v

- Fixed background

— = Data

distribution (points with error bars) in three regions

miss

of the dipion mass as labeled: (upper left) low-mass region (M,:,- <0.62 GeV), (upper right) around the p° meson
(0.62 GeV < M ,+,- <0.94 GeV) and (lower left) high-mass region (M +,- > 0.94 GeV). The fit components are shown as the
colored histograms as given in the lower right. The pull values are presented underneath each plot to display the accuracy of the fit
relative to the data. The peaking structure in the fixed background around the signal region in the high dipion mass range is due to the

BT —» D%(ntn )¢t u, decay.
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TABLE 1.
maximum-likelihood fit to the M2,
of the fit (Prob.) are provided.

Event yields for the signal and background processes in the BT — ztz~¢"v decay obtained from an extended binned
distribution in bins of M ;- ,-. The y* per number of degrees of freedom (NDF) and the probability

Bin M, [GeV] Signal BT - X .tv Fixed Total MC  Data y?/NDF  Prob. [%]
1 M, <046 7.174] 195.0 + 14.6 20.2 2223 225 275/33 73.7
2 046<M,, <054 10073 1467 + 12.7 17.1 1738 179 302/33 60.7
3 054<M, <062 106133 190.1 + 14.2 14.8 2155 216 383/33 243
4 0.62<M,, <070 233182 185.4 + 14.1 9.3 2180 220 27.9/33 71.7
5  070<M, <078 903407 234.8 +16.0 12.4 3375 337 459/33 6.8
6  078<M,, <086 5053 151.6+12.8 12.3 2144 214 302/33 60.8
7 086<M, <094 296704 108.5+10.8 7.8 1459 146 43.6/33 104
8  094<M, <102 1027} 1024 +10.3 6.1 1187 119 152/33 99.7
9 1.02<M,, <110 89737 1276 £11.3 4.0 1405 140 26.3/33 78.9
10 1.10<M,, <118 5773 1492 £ 12.1 2.9 1578 158  40.0/33 18.8
11 1I18<M, <126 15759 186.6 +13.8 3.0 2053 205 41.2/33 155
12 126<M,, <134 1182 221.4+149 3.1 2363 236 30.5/33 593
Rest of
BT = D¢v Bt - X fv
13 M., > 1.34 2347147 17534494 2893+440 680 556.0 556  283/32 654
TABLE II.  Event yields for the signal and background processes in the Bt — zz~¢*v decay obtained from an extended binned

maximume-likelihood fit to the M ﬁliss
fit (Prob.) are provided.

distribution in bins of ¢2. The ¥ per number of degrees of freedom (NDF) and the probability of the

Bin ¢* [GeV?] Signal B — X, fv Fixed  Total MC  Data */NDF Prob. [%]
1 P <1 16.5+6% 126.4 + 12.1 20.6 163.5 163 32.1/33.0 51.2
2 l<qg?<2 11,4760 150.5 + 12.9 15.2 177.1 176 34.9/33.0 37.9
3 2<q? <3 13.0458 1663 £ 13.4 12.8 192.1 192 40.9/33.0 16.4
4 3<q? <4 16,0788 180.2 + 14.1 13.5 209.7 210 32.2/33.0 50.9
5 4<q* <5 24377 2249+ 15.6 13.8 263.0 263 41.9/33.0 13.7
6 5<¢*<6 122457 2123+ 15.0 14.0 238.5 238 17.4/33.0 98.8
7 6<q <7 10.8+31 2356+ 15.7 10.8 257.2 257 54.2/33.0 11
8 T<q <38 214763 2205+ 153 10.5 2524 253 36.0/33.0 32.9
9 8<q? <9 9.6+ 220.5+ 15.1 9.5 239.6 239 34.1/33.0 41.6
10 9<q? <10 30.8+57 199.0 + 14.6 9.3 239.1 239 36.5/33.0 30.9
11 10<g <11 11,6759 159.4 £ 13.0 9.2 180.2 181 19.2/33.0 97.3
12 M<g<12 1634 122.1+£114 7.2 145.6 146 35.4/33.0 35.4
13 2<¢ <13 19.4753 93.7 4+ 10.0 6.1 119.2 119 16.5/33.0 99.3
14 B<q <14 15474 66.1 £8.5 5.7 87.2 87 21.5/33.0 93.8
15 14< ¢ <15 15,1749 37.1£66 5.9 58.1 61 24.3/28.0 66.3
16 I5<¢? <16 10874 24.1£53 4.8 39.7 41 17.4/23.0 79.1
17 16 < q? <17 12,3734 18.5+5.0 4.8 35.6 36 13.0/23.0 95.2
18 P17 323168 7.8 +4.1 74 415 50 14.5/18.0 69.4

VI. SYSTEMATIC UNCERTAINTIES

Various sources of systematic uncertainties considered in
this analysis fall into three categories: those related to
detector performance, those due to the modeling of the
signal and background processes, and those associated with

the fitting procedure. In most cases, we estimate the
systematic uncertainties by varying each fixed parameter
in the simulation by one standard deviation up and down
(+10) and repeating the fit to the M2 = distribution. The
relative difference between the signal yield from the
nominal fit and that with the parameter varied is taken
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TABLE III.
maximum-likelihood fit to the M?

miss

probability of the fit (Prob.) are provided.

Event yields for the signal and background processes in the BT — ztz~#"v decay obtained from an extended binned
distribution in bins of M+ ,- and ¢>. The y* per number of degrees of freedom (NDF) and the

Bin M,, [GeV] q* [GeV?] Signal Bt - X .tv Fixed Total MC Data y*>/NDF Prob.[%]
1 M,, <0.6 g* <8 9.814¢ 21824153 15.6 2435 249  50.1/33 2.8
2 M, <06 8 < ¢? 15.8133 2759 +17.4 33.1 3248 329 30.6/33 585
3 06<M,<09 g*<4 29.51%4 1349 +12.1 9.8 1742 175 31.4/33 547
4 06<M;,<09 4<4><8 34849 216.9 4 15.1 9.9 2615 262 24.4/33  86.0
5 06<M,;<09 8<g 116212 318.8 + 18.7 225 4576 457  39.0/33 218
6 09<M,<12 4 <4 8.0737 110.8 +10.6 5.8 1246 124 204/33 958
7 09<M,,<12 4<g*<8 9.2+49 190.2 +13.9 49 2043 204 323/33 504
8 09<M,<12 8<g 27.61%4 169.8 + 13.4 6.6 2041 204 395/33 203
9 12<M,, <15 <4 113143 142.4 + 12.1 4.1 1578 158 36.7/33  30.0
10 12<M,, <15 4<¢*<8 9.7433 227.1+15.1 2.5 2392 239 25.6/33 818
11 12<M,, <15 8<g? 13.2434 1325 £11.6 2.4 148.1 148 272/33 750
Rest of
BT - D% B - X.fv
12 M, > 15 P <4 857101 7214173  63.1+132 362 179.8 180 25.4/32  79.1
13 M, > 15 4 < ¢* 76772 96.4+224 9324202 278 2251 222 27.8/32  68.1

as the systematic uncertainty. We calculate these uncer-
tainties separately for each bin in our measurement.

A. Signal and background modeling

The sources of uncertainties related to the modeling of
physical processes include the lack of precise knowledge of
hadronic form factors that describe a specific decay, and the
relative contributions of background processes. To assess
the systematic uncertainty arising from the signal modeling,
we compare the signal reconstruction efficiency calculated
for each bin in M, g%, or (M ,,., ¢*), using the phase space
BY — nta~¢"v, and other B semileptonic channels with an
intermediate resonance decaying to a #7z~ pair. As these
channels simulate the same final state, the resulting effi-
ciencies should be similar. Nonetheless, resonances do not
span as much of the domain in the phase space as an
inclusive simulation since they have a finite width; hence
their coverage in the dipion mass is essentially limited to the
interval [M g — 2I'g, Mz + 2I'g], with M the nominal mass
of the resonance and I'y its decay width. The range of ¢>
varies with the resonant state as the maximum value depends
on the mass of the resonance through g2, = (Mz — My)?,
where My is the mass of the B meson. We thus simulate
semileptonic B decays with four intermediate resonances
covering the phase space of the BY — 2Tz~ ¢"v, decay,
namely £, (500), p°, f,(1270), and p°(1450), and produce
these with the phase space and ISGW2 [27] models.
Furthermore, we use form factors from LCSR calculations
for the BT — p°¢*v, and the B* — f,(1270)¢* v, decays
according to Refs. [28,42], respectively. We calculate the
root mean square error between the nominal efficiency
(phase space Bt — 772~ ¢"v,) and the resonant models

valid for a given bin as the systematic uncertainty due to
signal modeling. In addition, we also consider the finite size
of the MC sample used to estimate the signal reconstruction
efficiency. We include this error in the systematic uncer-
tainty due to reconstruction efficiency. The values of the
efficiencies used for this assessment are presented in the
Appendix in Tables VII-IX for the 1D(M,,), 1D(g?), and
2D fit binning configurations, respectively.

Given that the continuum background is almost negli-
gible after all selection, we compare continuum MC events
with the off-resonance data applying a loose selection to
assign the uncertainty due to the description of this process.
Consequently, we determine an asymmetric variation in the
continuum normalization (f;ggj) and repeat the fit with
these changes. Contributions from rare decays are also very
small. To evaluate their effects on our measurement, we
carry out 1000 pseudoexperiments (using the same pre-
scription described in Sec. V) with and without this
component. The systematic uncertainty is then derived
from the difference in mean values from both ensembles for
each bin. To assess the impact of the background shape on
the calculation of the branching fraction, we reweight a
specific decay in the MC sample with another model.
Specifically, we adjust the CLN-based form factors [30] of
the B — D*fv, decays in the MC sample to the new world-
average values [4]. Similarly, we reweight the form factors
for the B - D**¢v, decays from the ISGW2 [27] to the
LLSW model [31]. In both cases, we add in quadrature the
change in the branching fraction due to variation of each
form factor to obtain a total uncertainty associated with
these sources. The B — nfv, and B — wfv, MC events
are generated with LCSR form factors taken from Ref. [28].
We reweight the B - w¢v, form factors to the calculation
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of Ref. [43] and use the difference in efficiencies compared
to the nominal sample as the uncertainty. The B — zfv,
form factors are reweighted to the Bourrely-Caprini-
Lellouch model [44], which combines information from
the measured spectra, light-cone sum rules (valid at low g?)
and lattice QCD (valid at high ¢?), and the same procedure
to calculate the uncertainty is used. We also reweight
the form factors of the B — y)¢v, decay from the
ISGW2 [27] and LCSR models according to [45]. Other
exclusive charmless semileptonic B decays considered in
this analysis are generated with the ISGW?2 model. As they
do not have well-established form factors derived from
QCD calculations, we compare their shapes with those
produced using the phase space and FLATQ?2 genera-
tors [21,46].

We correct the branching fractions of the B —
(D) 7,y") @)fv, decay modes according to the
world-averages [1] and vary these values within their
measured uncertainties as presented in Table IV. For the
unmeasured exclusive charmless semileptonic B decays,
we assign a +100% uncertainty in the variation of the
branching fraction. We modify the contribution of the
secondary leptons relative to the total uncertainty in
the measurement of the branching fraction of the decay
chain B — X.¢"v, with X; - #~ + anything. To con-
sider the effect of the BDT selection on our result, we
evaluate the data-MC difference in efficiency and find it to
be negligible as compared to the statistical error.

To assess the effect of inclusive charmless semileptonic
B decays, we include an additional component to the fixed
background simulated with the De Fazio-Neubert model
[29]. The differences with respect to the nominal fit are
taken as a systematic uncertainty.

B. Detector simulation

Since the analysis relies extensively on MC simulation, the
detection of final-state particles affects the reconstruction of
signal and background decays and the subsequent extraction
of signal yields used in the measurement of the branching
fractions. The efficiency for detecting these particles in data
usually differs from that in MC simulation, for which we
apply a correction derived from independent control samples.
We take the total uncertainty associated with this correction
as a systematic uncertainty. These uncertainties include those
related to charged lepton and pion identification efficiencies.
Analogously to secondary leptons, charged tracks misiden-
tified as leptons, i.e., fake leptons, can also originate from the
continuum and charmed semileptonic B decays. To inspect
their effect, we compare the fake rate between data and MC
using a control sample of D** — D(K~z*)z" decay and
determine a weight factor for each lepton type. We then
correct the contribution of fake leptons in MC events and vary
the central value by its error. We assign the relative difference
between the fit results as the uncertainties associated with
fake leptons.

To assess the size of the uncertainty due to FSR, we
prepare histogram templates normalized to the fit results in
data using two versions of the signal component: one where
the signal is generated with the PHOTOS package (as in the
nominal fit) and another without it. We then carry out
1000 pseudoexperiments for each case and take 20% of the
mean difference in the signal yields from these two
scenarios [15,47,48].

C. Fit procedure

We perform 5000 pseudoexperiments to validate our fit
procedure, obtaining pull distributions that take into

TABLEIV. Decay channels that are corrected in the MC, with their branching fractions in the MC, world-average, and their respective

correction (weight).

Decay mode MC World-average 5 [1,4] Weight
B~ - D¢, 2.31x 1072 (2.3340.10) x 1072 1.01
B~ — D¢ 1, 5.79 x 1072 (5.59 +0.19) x 1072 0.97
B~ - D¢ 1y, DY —» D"z~ 5.40 x 1073 (2. 8 +0.1£1.5) %1073 0.52
B~ — D¢ v, DY —» D**z~ 8.20 x 10 (7.7+£0.6 £0.4) x 107 0.94
B~ — D¢, D' —» D**z~ 5.40 x 1073 (1.3£0.3£0.2) x 1073 0.24
B~ —>D0fyf,D*O—>D+ 6.10 x 1073 (284+0340.4) x 1073 0.46
B’ - D%, 2.13 x 1073 (2.20 +0.10) x 1072 1.03
BY - D** ¢, 5.33x 1073 (4.88 +0.10) x 1072 0.92
B~ — 2’1, 7.80 x 1073 (7.80 £0.27) x 107 1.07
B~ = p°¢ 0, 1.49 x 107* (1.58 £0.11) x 107 1.06
B~ = wf i, 1.15 x 107 (1.19 +0.09) x 10~ 1.04
B~ = nt"v, 8.40 x 107> (3.840.6) x 107 0.45
B™ —yt"u, 3.30 x 1075 (2.3+£0.8) x 1075 0.70
B’ - zteu, 1.36 x 107 (1.45 £0.05) x 107* 1.07
B = ptei, 2.77 x 107 (2.94 4+0.21) x 10~ 1.06
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account the asymmetric statistical uncertainties. These
distributions exhibit Gaussian behavior with a slight
deviation from zero in the mean, which in most cases is
an effect at the 1% level. We do not correct the signal yields
or their uncertainties; instead we assign a systematic
uncertainty due to the fit procedure. The size of the
systematic uncertainty is estimated by the difference
between the mean signal yield of the ensemble of pseu-
doexperiments and the signal yield used as the central value
in the generation of the ensemble. This is evaluated
separately for each bin.

Tables X-XII, in the Appendix, list the systematic
uncertainties for the 1D(M,,), 1D(g?), and 2D configu-
rations, respectively.

To estimate correlations among the systematic uncer-
tainties of the values of the partial branching fractions
for each bin, we consider two scenarios. The first corre-
sponds to uncertainties derived from the variation of
one parameter in the MC simulation, such as those
involving normalization of a background component or
branching fractions of some decay processes. We character-
ize each component by a Gaussian distribution with a
width equal to the systematic uncertainty investigated,
draw a random variable for each parameter, and repeat
the entire analysis procedure 1000 times. For each sys-
tematic uncertainty, we associate a correlation matrix
COR;; calculated as:

COR,, = ((AB' = AB)(AB/ — ABY)) ’ )

Giaj

where the indices i, j run over the bins in the sample, AB' is
the mean of the randomly generated partial branching
fractions for the i-th bin, o; is its standard deviation, and
() denotes an average over the 1000 iterations. We then
compute the associated covariance matrix as

COVU = CORijGiGj' (3)

The second scenario applies to systematic uncertainties
assessed under a different procedure, e.g., signal model
dependence or FSR, among others. In this case, we evaluate
the effect of a particular systematic uncertainty k in the i-th
bin, 6%, on AB' and assign it to & = 6¥AB' and from this
quantity, determine the corresponding covariant matrix as

cov = gl @

We provide the total systematic correlation matrices for the
different fit scenarios in Tables XIII-XV.

D. Normalization uncertainties

The uncertainty in the measurement of the number of
B-meson pairs produced is 1.4%, while that in the

branching fraction of Y(4S) - B*B~ is 1.17%. We
assume a 0.35% uncertainty in the track-finding efficiency
for each charged particle reconstructed on the signal side
and add each contribution linearly. Finally, we take the
uncertainty due to the tagging efficiency correction, which
originates from incorrect assumptions of the hadronic
branching fractions on the tag side, as 4.2% [14]. These
uncertainties are assumed to be 100% correlated across all
bins and are also included in the correlation matrices of
Tables XIII-XV.

VII. RESULTS AND DISCUSSION

The main result of this analysis is the total branching
fraction for the B* — ntz~¢ "1, decay. Since we carry out
this measurement in bins of the kinematic variables M, or
g%, we calculate the total branching fraction as the sum
over all bins of partial branching fractions, B(BT —
ntn¢ty,) = AB with

AB,' _ lYéignal 1 (5)
4 €; B(T(4S> = B+B_>NBB ’
Here, Yéignal denotes the signal yield measured in the

i-th bin, ¢; is the corresponding reconstruction efficiency,
B(Y(4S) - BtB™) = (51.4 £ 0.6)%, and Ngp =
(771.6 £10.6) x 10° is the number of BB events in the
complete Y'(4S) dataset. We determine the ¢; values from
MC simulation, with corrections applied for data-MC
differences detector performance. The factor of 4 in the
denominator averages the observed branching fraction
across the four channels: BT — ztn~etv,, B™ —
ntn e v, Bt > ntnuty,, and B~ - 2t uo,.

The values of the input parameters for Eq. (5), as well as
the partial branching fractions for each bin, are presented in
Table V for the 1D(M,,) and 2D configurations, and in
Table VI for the 1D(g?) configuration. Adding the partial
branching fractions, the total branching fraction for each
configuration results in

B(BT - nta=¢tv,)[1D(M,,)]

= [22.3179(stat) £ 4.0(syst)] x 1073, (6)

B(BT = ntn=¢*v,)[1D(¢?)]
= [22.77](stat) + 3.5(syst)] x 107, (7)

B(Bt - nta ¢ v,)[2D]
= [23.0779(stat) & 3.0(syst)] x 107, (8)

where the quoted uncertainties are statistical and system-
atic, respectively. As the [1D(g?)] result lies between the
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TABLE V. Signal yields (Y iignal), signal reconstruction efficiency (e), and partial branching fractions (AB') for each bin i in the 1D
(M) and 2D configurations with the bin number convention as defined in Tables I and III, respectively. The first quoted uncertainty is
statistical, and the second is systematic.

1D (M,,) configuration

2D configuration

Bin Y €107 ABI[1079] Yo €107 ABI[1079]

1 7173, 7.92 £ 0.66 0.571933 +0.09 9.8730 7.39 £0.57 0.84:03) +0.18
2 10.0734 8.20 £0.77 0.775937 £0.16 158432 8.45+0.63 1187941 £0.20
3 10.6733 7.75 +0.68 0867033 +0.24 29,5104 8.61 + 0.60 2161047 +0.23
4 23.31%2 7.82 +0.64 1.881070 £0.41 34.8719 8.35+0.63 2.631073 £0.32
5 90.3*{0 9.32 +0.66 6.111072 £ 1.12 116.21122 7.98 +£0.48 9.18105° 4+ 1.02
6 50.51%1 7.76 +0.58 4105070 +£0.74 8.0°37 7.20 + 0.46 0.70%95% 4+ 0.20
7 29.61%4 8.18 £0.57 2.28104) £0.36 9.2139 9.07 £0.56 0.64703% £0.11
8 102737 8.47 £ 0.57 0.76*031 +0.12 276104 9.78 +0.50 178404 £ 0.25
9 8.973/ 8.79 £ 0.56 0.64793] £0.11 11343 7.82+£0.43 0917533 £0.12
10 57734 8.98 £ 0.56 0401022 +0.07 9.7+43 8.45+0.49 0.72+932 +0.08
11 157739 9.04 £0.55 1.091035 £0.12 13.2737 8.97 +£0.49 0937034 £0.11
12 118747 8.20 £0.52 0.917032 +0.14 8.5140 6.77 £0.12 0.79 091 £0.26
13 234713 7.45+£0.10 1.987/ 74 £0.46 76505 8.55+£0.20 0.561033 +0.08

[1D(M,,)] and [2D] results, with the difference in central
values being negligible as compared to the quoted system-
atic uncertainty, we take the [1D(g?)] measurement as our
final result:

TABLE VI Signal yields (Y;ignal), signal reconstruction effi-
ciency (€'), and partial branching fractions (AB') for each bin i in
the 1D(g?) configuration with the bin number convention defined
according to Table II. The first quoted uncertainty is statistical,
and the second is systematic.

Bin Yo €'[1074] AB'[1077]

1 165168 6.27 +0.19 1.66708 +£0.53
2 114160 6.97 +0.22 1.037034 £ 0.25
3 13.0538 7.45+0.25 1105947 +0.20
4 16.009 7.56 +0.27 1.331032 £0.26
5 24377 8.134+0.31 1.887975 +£0.29
6 122537 8.60 £ 0.35 0.897042 +£0.10
7 10.8771 8.43 £0.38 0.81103% +0.13
8 214783 9.17 £0.44 1475945 £0.17
9 9.6147 8.03 £0.45 0.75703] £0.13
10 30.8767 8.96 + 0.53 2175043 £0.23
11 11,6539 9.52 + 0.60 0.771933 4 0.09
12 16.3+49 9.14 + 0.66 1125934 £ 0.14
13 19.4133 8.62 4 0.72 142793 £ 0.17
14 15.4+47 10.1 £0.88 0.9610% +0.15
15 15.1449 8.65+0.93 1.1050356 +£0.17
16 10.8+29 931 +1.12 0.73%93 £0.12
17 12.3434 8.94 +1.28 0.87195¢ £0.15
18 323168 7.85 +0.88 2.591095 £0.47

B(Bt - nta ¢tu,)

= [22.71]2(stat) £ 3.5(syst)] x 107 9)

In the three configurations, our measurement is domi-
nated by systematic uncertainties. The most significant
source of systematic uncertainty comes from signal mod-
eling. The value given in Eq. (9) is the first reported
measurement of the branching fraction for the BT —
xtn~¢"v, decay. A correlation matrix between the mea-
surements using the 18 bins in ¢> and the 13 bins in M, is
provided in Table XVI.

Figure 5 shows the dependence of the partial branching
fractions on the z*z~ invariant mass and the squared
momentum transfer. Though a detailed analysis of the
resonant and nonresonant composition of the dipion mass
spectrum is beyond the scope of this paper due to the
limited statistics, we can observe a dominant peak asso-
ciated with the p° meson and a small bump around the mass
window for the f,(1270) meson. In a previous analysis
[14], using the same data set, the contribution of the po
meson corresponded to a branching fraction of
B(B* = p’¢*uv,) = [18.3 £ 1.0(stat) & 1.0(syst)] x 107.
The excess observed in the dipion mass distribution
motivates the study of other exclusive charmless semi-
leptonic B decays with masses above 1 GeV in the
next-generation B factory experiment Belle IT [17]. Our
measurement of BT — 72~ ¢ v, should help the model-
ing of B semileptonic decays and thus increase the
precision with which the CKM matrix element |V ;| can
be measured.
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FIG. 5.

Partial branching fractions for the decay B™ — n"z~¢"v, in bins of: (left) the #7z~ invariant mass according to the results in

the 1D(M,,) configuration, and (right) the momentum-transfer squared according to the results in the 1D(g?) configuration. As there is
no upper limit in the z*z~ invariant mass, we use a cutoff at 2 GeV for the left.
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TABLE XIII. Systematic uncertainty correlation matrix of the B* — z"z~¢*v, measurement in bins of the dipion mass, ID(M,,)
configuration. The binning convention is defined in Table L.

Bin 1 2 3 4 5 6 7 8 9 10 11 12 13

1 1 0.787 0.529 0.635 0.523 0.595 0.777 0.722 0.562 0.573 0.735 0.547 0.327
2 1 0.918 0.966 0.919 0.948 0.990 0.967 0.936 0.934 0.907 0.902 0.749
3 1 0.986 0.986 0.981 0.919 0.944 0.979 0.967 0.824 0.934 0.871
4 1 0.981 0.989 0.964 0.971 0.980 0.971 0.874 0.938 0.837
5 1 0.994 0.934 0.953 0.991 0.979 0.882 0.969 0.859
6 1 0.961 0.976 0.989 0.976 0.905 0.975 0.842
7 1 0.981 0.951 0.945 0.946 0.933 0.761
8 1 0.959 0.949 0.931 0.956 0.792
9 1 0.992 0.898 0.972 0.870
10 1 0.896 0.958 0.860
11 1 0.925 0.681
12 1 0.831
13 1

TABLE XIV. Systematic uncertainty correlation matrix of the BT — z"z~¢"v, measurement in bins of the momentum transfer
square, 1D(g?) configuration. The binning convention is defined in Table II.

Bin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 1 0961 0.949 0.950 0.936 0.850 0.920 0.840 0.867 0.711 0.622 0.746 0.584 0.763 0.419 0.598 0.423 0.686
2 1 0.991 0.992 0.978 0918 0.969 0.901 0.929 0.779 0.709 0.806 0.656 0.823 0.499 0.668 0.488 0.748
3 1 0.995 0.993 0.948 0.985 0.937 0.949 0.835 0.761 0.854 0.716 0.864 0.558 0.721 0.553 0.795
4 1 0.989 0.944 0.985 0.932 0.944 0.821 0.761 0.843 0.703 0.852 0.553 0.714 0.541 0.787
5 1 0.961 0.991 0.954 0.948 0.870 0.797 0.888 0.760 0.888 0.605 0.763 0.607 0.826
6
7
8

1 0.962 0.984 0.951 0.930 0.891 0.926 0.843 0914 0.722 0.832 0.714 0.880
1 0.962 0.963 0.885 0.836 0.901 0.785 0.901 0.641 0.796 0.642 0.844
1 0.960 0.957 0911 0.957 0.881 0.944 0.765 0.872 0.762 0.920

9 1 0912 0.865 0.929 0.846 0.948 0.739 0.847 0.703 0.894
10 1 0.952 0991 0.971 0.974 0.883 0.952 0.890 0.964
11 1 0.933 0.946 0.914 0911 0.943 0.878 0.924
12 1 0.969 0.991 0.882 0.962 0.888 0.979
13 1 0.959 0.962 0.987 0.956 0.973
14 1 0.878 0.956 0.868 0.979
15 1 0.959 0.945 0.925
16 1 0.961 0.980
17 1 0.920
18 1

TABLE XV. Systematic uncertainty correlation matrix of the BT — z"z~#¢"v, measurement in bins of the dipion mass and the
momentum transfer square, 2D configuration. The binning convention is defined in Table III.

Bin 1 2 3 4 5 6 7 8 9 10 11 12 13

1 1 0.940 0.767 0.861 0.881 0.907 0.936 0.934 0.843 0.856 0.877 0.806 0.844
2 1 0.867 0.950 0.965 0.906 0.958 0.968 0.874 0.899 0914 0.769 0.832
3 1 0.969 0.950 0.693 0.846 0.856 0.876 0.925 0.902 0.545 0.683
4 1 0.992 0.790 0911 0.922 0.883 0.931 0.921 0.636 0.746
5 1 0.829 0.932 0.951 0.897 0.938 0.938 0.677 0.789
6 1 0.962 0.956 0.867 0.860 0.900 0.902 0.909
7 1 0.992 0.939 0.952 0.969 0.858 0.904
8 1 0.931 0.946 0.969 0.837 0.904
9 1 0.969 0.972 0.781 0.856
10 1 0.991 0.758 0.852
11 1 0.788 0.874
12 1 0.911
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TABLE XVI. Approximated correlation matrix between the 18 bins in ¢? and 13 bins in M, derived from data by requiring
M2, < 0.5 GeVZ.

Bin 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0.000  0.000  0.091 0.000  0.067 0.085 0.028 0.048 0.000 0.057 0.036 0.182  0.281
2 0.000  0.000 0.050 0.038  0.091 0.046  0.000 0.052 0.052 0.000 0.039 0.050 0.283
3 0.000  0.000 0.058 0.044  0.021 0.027  0.035 0.000 0.000  0.000 0.091 0.000  0.276
4 0.050  0.000 0.050 0.038 0.054 0.046 0.030 0.052 0.052 0.000 0.000 0.000 0.307
5 0.045  0.091 0.045 0.069 0.033 0.107 0.083 0.048 0.095 0.000 0.000 0.000 0.271
6 0.171 0.057  0.000 0.000 0.083 0.053 0.000 0.000 0.060 0.000 0.045 0.000 0.217
7 0.000  0.000 0.000 0.000 0.022 0.055 0.107 0.000 0.062 0.000 0.18  0.000 0.211
8 0.000  0.051 0.051 0.039 0.112 0.048 0.093 0.000 0.000 0.000 0.120 0.000  0.218
9 0.000  0.000 0.000 0.111 0.080  0.069 0.044 0.000 0.000 0.092 0.000 0.000 0.139
10 0.000  0.000  0.000 0.000 0.096 0.074 0.095 0.110 0.000 0.197 0.164 0210 0.112
11 0.000  0.000 0.000 0.150 0.145 0.062 0.000 0.000 0.000 0.165 0.103  0.000  0.094
12 0.000  0.078 0.078  0.000  0.171 0.110  0.000  0.082 0.082 0.000 0.000 0.078 0.019
13 0.000  0.208 0.000 0.053 0.152 0.162 0.168  0.000  0.000  0.000 0.000 0.000  0.000
14 0.000  0.161 0.000  0.061 0.030  0.189  0.098 0.085 0.085 0.000 0.000 0.081 0.000
15 0.000  0.000 0.000 0.000 0.177 0.076  0.195 0.085 0.085 0.000 0.000 0.000  0.000
16 0.000  0.000  0.091 0.069 0.100 0.085  0.165 0.000 0.095 0.000 0.000 0.000 0.000
17 0.167  0.084 0.000 0.000 0.214 0.078 0.000 0.088  0.000 0.000 0.000 0.000  0.000
18 0224  0.000 0.112 0213  0.267 0.105 0.034 0.000  0.000 0.000 0.000 0.000  0.000
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