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In addition to the familiar string theories with spacetime supersymmetry, there exist a number of
nonsupersymmetric ten-dimensional superstrings. Nearly all of these theories have closed string tachyons,
indicating a misidentification of the vacuum around which they are to be quantized. In this work, we
identify (meta)stable vacua for all known tachyonic superstrings. These vacua are all lower dimensional,
with most of them being familiar two-dimensional string theories. However, there are also intriguing
examples of solutions in dimensions 6, 8, and 9, with respective gauge groups E7 × E7, SUð16Þ, and E8.
These special vacua have positive vacuum energy and no moduli.
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I. INTRODUCTION

One of the long-touted virtues of string theory
is its apparent uniqueness. Famously, the Type IIA/B,
heterotic SOð32Þ, heterotic E8 × E8, and Type I super-
string theories have all been shown to be different
perturbative descriptions of a single underlying
theory. These five descriptions are typically given as
expansions around ten-dimensional flat space, where
they are tachyon free and have manifest spacetime
supersymmetry.
However, it has long been known that there exist

additional, nonsupersymmetric superstring theories, which
lie outside of the standard duality web. These include the
Type 0A/B theories, eight Pin− Type 0 theories [1–4], and a
series of seven nonsupersymmetric heterotic strings [5–7].
Though some preliminary work has been done on bringing
these theories into contact with the more familiar super-
strings [1,2,8–13], as well as exploring their connections to
phenomenology [14–16], it is safe to say that this is not yet
a completed endeavor.
One of the reasons that these additional string theories

have remained relatively understudied is that almost all of
them are plagued by closed string tachyons.1 But the

presence of a tachyon is not itself indicative of an incon-
sistency in the theory. Instead, it simply means that the
presumed vacuum (typically ten-dimensional Minkowski
space) is not a legitimate solution. In other words, these
additional strings theories should not be interpreted as
describing fluctuations around ten-dimensional flat space,
but rather as fluctuations about some other, possibly lower-
dimensional background. As long as some stable vacuum
exists, these theories are well-defined quantum gravitational
theories and are thus expected on general grounds to fit into
the string duality web. In this paper, we will find such (meta)
stable vacua for the tachyonic theories listed above, using
techniques developed in Refs. [13,18–22].
Seemingly unrelatedly, it has also been known that there

exist a number of consistent two-dimensional string theories.
These include three heterotic strings [23–27], two oriented
Type 0 strings [28,29], and a total of eight unoriented Type 0
strings [30,31]. Though much progress has been made in
understanding these theories via e.g., matrix model tech-
niques of Refs. [32,33], these two-dimensional theories have
remained largely disconnected from the space of ten-dimen-
sional strings. Nevertheless, since these theories describe
consistent quantum gravity theories (albeit in two dimen-
sions), by the string uniqueness principle, they are again
expected to be continuously connected to the space of
higher-dimensional string theories. There is one situation
in which such a connection has been concretely realized—
namely, in Ref. [13], it was shown that closed string tachyon
condensation in the ten-dimensional oriented Type 0 theories
leads to a dimension-reducing cascade, with the end point
being the two-dimensional Type 0 theories. Many of the
stable vacua studied in this paper will be exactly of this type;
i.e., we will see that most of the tachyonic ten-dimensional
strings admit a dynamical transition to one of the two-
dimensional (2D) theories previously studied in the
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1Notable exceptions are the Pinþ Type 0 strings [4], the
Oð16Þ ×Oð16Þ heterotic string [5], and the Type Ĩ string [17], all
of which are tachyon free.
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literature. This paves the way toward bringing these 2D
strings into contact with the usual duality web.2

There are, however, some interesting cases in which
tachyonic ten-dimensional string theories do not admit a
stable 2D vacuum, at least not via the simplest condensa-
tion mechanism. For those cases, we will instead identify
stable vacua in dimensions d > 2. Concretely, for the
heterotic E8, Uð16Þ, and ðE7 × SUð2ÞÞ2 heterotic strings,
we will identify stable vacua in dimensions d ¼ 9, 8,
and 6.3 All of the resulting lower-dimensional theories
are free of perturbative anomalies, and interestingly all have
positive one-loop cosmological constant. Because these
theories have no moduli (and in particular the dilaton has an
effective mass), the dilaton tadpole implied by the positive
cosmological constant is not expected to signal any sort of
perturbative instability. Hence, we suspect that these cases
represent metastable solutions of string theory with positive
vacuum energy, at least in the weak-coupling regime.
This paper is organized as follows. In Sec. II, we discuss

nonsupersymmetric heterotic string theories. After review-
ing the six tachyonic ten-dimensional theories in Sec. II A
as well as the three two-dimensional theories in Sec. II B,
we proceed to a discussion of tachyon condensation. In
Sec. II C we consider condensation to theories in d > 2,
study local and global anomaly cancellation in the resulting
theories, and compute the cosmological constant. In
Sec. II D, we consider condensation of the remaining
heterotic theories to d ¼ 2. In Sec. III, we consider tachyon
condensation of oriented and unoriented Type 0 string
theories, where we will see that all cases can be condensed
to known two-dimensional strings.

II. HETEROTIC STRINGS

A. Heterotic strings in d = 10

We begin by reviewing the nonsupersymmetric heterotic
string theories obtained in Refs. [6,7]. Our construction will
be somewhat different from that of the original works.
First, recall that in the free fermion formulation, the

worldsheet theory of heterotic strings consists of 10
bosonic fields Xμ, 10 right-moving fermionic fields ψμ,
and 32 left-moving fermionic fields λ̃a. The supersymmet-
ric heterotic strings are taken to have independent spin
structures for the left- and right-moving fermions, both of
which are summed over in the Gliozzi-Scherk-Olive (GSO)
projection. In contrast, nonsupersymmetric heterotic strings

are obtained by identifying the left- and right-moving spin
structures. The simplest nonsupersymmetric heterotic
string has torus partition function Z ¼ ZNS − ZR, where

ZNS ¼
1

2
jηj−16½ðZ0

0Þ8ðZ0
0Þ32 − ðZ0

1Þ8ðZ0
1Þ32�;

ZR ¼ 1

2
jηj−16ðZ1

0Þ8ðZ1
0Þ32: ð2:1Þ

The minus sign in the Neveu-Schwarz (NS) sector partition
function comes from the fact that the superghost ground
state is fermionic, and the overall factor of 1=2 is added for
the sum over spin structure. We use the usual notation that

Zα
β ¼

�
ϑαβð0jτÞ
ηðτÞ

�1
2

; ð2:2Þ

with ϑαβðzjτÞ the Jacobi theta functions and ηðτÞ the
Dedekind eta function.
The spectrum of the theory in (2.1) can be easily read off

by considering the level-matched partition functions ZNS;R,
obtained by integrating over τ1. This gives

ZNS ¼ 32ðqq̄Þ−1
2 þ 4032þ 188928ðqq̄Þ12 þ…;

ZR ¼ 8388608qq̄þ 3019898880ðqq̄Þ2 þ…: ð2:3Þ

From the first line, we see that there are 32 tachyons as well
as 4032 massless bosonic degrees of freedom. These
correspond to a graviton (35), B-field (28), dilaton (1),
and a remaining 496 gauge bosons of SOð32Þ. There are no
massless fermions, so it is clear that this theory is not
supersymmetric.
We may obtain other nonsupersymmetric strings from

this SOð32Þ theory as follows. We begin by noting that the
system of 32 left-moving fermions admits a ðZ2Þ5 global
symmetry, with generators

g1 ¼ σ3 ⊗ 12 ⊗ 12 ⊗ 12 ⊗ 12;

g2 ¼ 12 ⊗ σ3 ⊗ 12 ⊗ 12 ⊗ 12;

g3 ¼ 12 ⊗ 12 ⊗ σ3 ⊗ 12 ⊗ 12;

g4 ¼ 12 ⊗ 12 ⊗ 12 ⊗ σ3 ⊗ 12;

g5 ¼ 12 ⊗ 12 ⊗ 12 ⊗ 12 ⊗ σ3: ð2:4Þ

Each of these acts on 16 of the 32 left-moving fermions λ̃a

with a minus sign and acts as the identity on the others.
We may now choose to gauge some or all of this global
symmetry. Gauging ðZ2Þn for 0 ≤ n ≤ 5 means that we
should replace the above partition function with

2Additional two-dimensional string theories include the 2D
Type II [34–36] and Type I [31] theories. It is natural to suspect
that these, too, can be obtained via dynamical transitions from
tachyonic ten-dimensional strings. Indeed, for the Type II
theories, a potential candidate in ten dimensions is the
ðneven; noddÞ ¼ ð6; 4Þ element of the “Seiberg series” of Ref. [13].
Since these tentative ten-dimensional starting points are not as
well known, though, we will not discuss them further.

3The first of these has already been studied in Ref. [22].
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ZNS ¼
1

2
jηj−16½ðZ0

0Þ8L0
0 − ðZ0

1Þ8L0
1�;

ZR ¼ 1

2
jηj−16ðZ1

0Þ8L1
0; ð2:5Þ

where La
b are twisted left-moving partition functions,4

L0
0 ¼

1

2n
ðZ0

0Þ16½ðZ0
0Þ16 þ ð2n − 1ÞðZ0

1Þ16 þ ð2n − 1ÞðZ1
0Þ16�;

L0
1 ¼

1

2n
ðZ0

1Þ16½ðZ0
1Þ16 þ ð2n − 1ÞðZ0

0Þ16 þ ð2n − 1ÞðZ1
0Þ16�;

L1
0 ¼

1

2n
ðZ1

0Þ16½ðZ1
0Þ16 þ ð2n − 1ÞðZ0

0Þ16 þ ð2n − 1ÞðZ0
1Þ16�:
ð2:6Þ

It is easy to verify that the full partition function, i.e.,
Z ¼ ZNS − ZR, is modular invariant for all n.
With these expressions, we may now read off the spectra

by considering the level-matched partition functions,

n ¼ 1∶ ZNS ¼ 16ðqq̄Þ−1
2 þ 3008þ 168192ðqq̄Þ12 þ…

ZR ¼ 2048þ 8912896qq̄þ…

n ¼ 2∶ ZNS ¼ 8ðqq̄Þ−1
2 þ 2496þ 157824ðqq̄Þ12 þ…

ZR ¼ 3072þ 9175040qq̄þ…

n ¼ 3∶ ZNS ¼ 4ðqq̄Þ−1
2 þ 2240þ 152640ðqq̄Þ12 þ…

ZR ¼ 3584þ 9306112qq̄þ…

n ¼ 4∶ ZNS ¼ 2ðqq̄Þ−1
2 þ 2112þ 150048ðqq̄Þ12 þ…

ZR ¼ 3840þ 9371648qq̄þ…

n ¼ 5∶ ZNS ¼ ðqq̄Þ−1
2 þ 2048þ 148752ðqq̄Þ12 þ…

ZR ¼ 3968þ 9404416qq̄þ… ð2:7Þ

This gives us the data in Table I. These theories are,
respectively, theOð16Þ×E8, Oð8Þ×Oð24Þ, ðE7×SUð2ÞÞ2,
Uð16Þ, and E8 nonsupersymmetric heterotic string theories.5

Let us note that we are not being particularly careful about
the global structure of the spacetime gauge group here. The

cautious reader should take all of our statements at the level
of the algebra.
An intuitive explanation for the first four of the above

gauge groups is as follows. As said before, each of the
generators gi of ðZ2Þ5 acts as −1 on 16 fermions and as
the identity on the remaining fermions. Under any given
subgroup ðZ2Þn, 25−n fermions remain invariant, while
25ð1 − 1

2n
Þ change sign. We thus expect that in general one

breaks soð32Þ to soð25−nÞ × soð25ð1 − 1
2n
ÞÞ. This leads to

an expected sequence of gauge algebras soð16Þ × soð16Þ,
soð8Þ × soð24Þ, soð4Þ × soð28Þ, and soð2Þ × soð30Þ.
Indeed, the soð25−nÞ factor is always present in the
final answer [recall suð2Þ × suð2Þ ≅ soð4Þ and uð16Þ ≅
soð2Þ × suð16Þ], but it turns out that the soð25ð1 − 1

2n
ÞÞ

factor generically gets enhanced to a larger algebra of the
same rank. A crucial point is that in all cases, the tachyon is
a vector of soð25−nÞ, hence its contribution of 25−n to the
partition function. We will discuss this further in Sec. II C.
It will be useful to have more detail on the chiral matter

content of each theory. In self-evident notation, we find the
following massless fermions,

SOð32Þ∶ none

Oð16Þ × E8∶ ð128; 1Þþ; ð1280; 1Þ−
Oð24Þ ×Oð8Þ∶ ð24; 8vÞþ; ð24; 8cÞ−
ðE7 × SUð2ÞÞ2∶ ð56; 2; 1; 1Þþ ⊕ ð1; 1; 56; 2Þþ;

ð56; 1; 1; 2Þ− ⊕ ð1; 2; 56; 1Þ−
SUð16Þ ×Uð1Þ∶ ð120; 2Þþ ⊕ ð120;−2Þþ;

ð120;−2Þ− ⊕ ð120; 2Þ−
E8∶ 248þ; 248−; ð2:8Þ

where the subscript � represents 8s;c of the spacetime
Spin(8). Adding the fermions in each line gives the
cumulative results of Table I.
Perturbative anomalies are canceled as follows. The

SOð32Þ and E8 theories have nonchiral spectra, so these
theories are trivially nonanomalous. For the Oð16Þ × E8

and Oð24Þ ×Oð8Þ theories, anomaly cancellation follows
simply from the relations

TABLE I. Tachyonic heterotic strings in d ¼ 10.

n Tachyons Massless fermions Gauge bosons

0 32 0 496
1 16 256 368
2 8 384 304
3 4 448 272
4 2 480 256
5 1 496 248

4One could contemplate obtaining new theories by allowing
for discrete torsion in these sums. That is, we allow for some extra
phases dictated by an element of H2ððZ2Þn−1; Uð1ÞÞ. This is
analogous to what was done for the supersymmetric E8 × E8

string to obtain the nontachyonic Oð16Þ ×Oð16Þ heterotic
string. We could in fact go further and modify the twisted
partition functions by a general element of ℧2

SpinðBðZ2Þn−1Þ ≔
HomðΩSpin

2 ðBðZ2Þn−1Þ; Uð1ÞÞ, much in the spirit of Refs. [3,4].
We save this analysis for a separate work.

5Note that we could also obtain most of these theories via the
covariant lattice formulation of Refs. [37–39]. We do not use that
construction here, though, since it does not give the E8 theory.
This is because in that case the fermions cannot all be bosonized
to lattice bosons.
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Tr8vF
2n ¼ Tr8sF

2n ¼ Tr8cF
2n; Tr128F2n ¼ Tr1280F2n:

ð2:9Þ

Finally, for the ðE7 × SUð2ÞÞ2 and Uð16Þ theories, anoma-
lies can be canceled by the addition of appropriate Green-
Schwarz terms.

B. Heterotic strings in d = 2

In addition to the nonsupersymmetric heterotic strings
reviewed above, there are three heterotic strings in two
dimensions. Two of these strings were introduced in
Refs. [23–25], while the remaining one was discussed in
Refs. [26,27].
In order to ensure worldsheet anomaly cancellation in

two dimensions, we consider solutions with a linear
dilaton. In particular, we take ϕ ∝ X1 with the proportion-
ality constant chosen such that the system has central
charge cX1

¼ 13. The right-moving theory is composed of
the fields X0;1 together with superpartners ψ0;1, giving a
total central charge cR ¼ 15. The left-moving theory is a
bosonic string with X1, X0, and an additional 12 bosons, for
a total central charge of cL ¼ 26. The 12 extra left-moving
bosons must be compactified on an even self-dual lattice to
give a sensible two-dimensional spacetime interpretation.
The candidate lattices are the root lattices of Oð8Þ × E8

and Oð24Þ.
The two-dimensional heterotic strings may be given a

free fermion interpretation as follows. We begin by
replacing the 12 left-moving bosons with 24 free fermions.
Then, as in ten dimensions, different theories correspond to
different gaugings of discrete symmetries of the system of
fermions. As before, we may begin with the ungauged case,
which in other words corresponds to assigning all fermions
a single spin structure. This gives rise to the partition
function

ZNS ¼
1

2
½ðZ0

0Þ24 − ðZ0
1Þ24�; ZR ¼ 1

2
ðZ1

0Þ24; ð2:10Þ

where the sign in the NS partition function comes from
right-moving superghosts. It is a convenient modular
accident that Z ¼ ZNS − ZR ¼ 24, which is trivially modu-
lar invariant. The level-matched partition functions are

ZNS ¼ 24; ZR ¼ 0: ð2:11Þ

The spacetime content of this theory is thus a set of 24
massless bosons transforming in the fundamental ofOð24Þ,
with the gravitons and Oð24Þ gauge bosons not contrib-
uting any propagating degrees of freedom in two dimen-
sions. There are, however, discrete graviton and gauge
fields, where by “discrete” here we mean that the corre-
sponding vertex operators exist at only discrete values of
momenta (namely, p ¼ 0) [25].

This worldsheet theory enjoys a ðZ2Þ2 symmetry, with
each element of the group acting on 16 of the left-moving
fermions with a sign and leaving the remaining 8 invariant.
Gauging ðZ2Þn for 0 ≤ n ≤ 2 then gives rise to the
following partition functions,

ZNS ¼
1

2
ðL0

0 − L0
1Þ; ZR ¼ 1

2
L1
0; ð2:12Þ

where La
b are now defined as

L0
0 ¼

1

2n
ðZ0

0Þ8½ðZ0
0Þ16 þ ð2n − 1ÞðZ0

1Þ16 þ ð2n − 1ÞðZ1
0Þ16�;

L0
1 ¼

1

2n
ðZ0

1Þ8½ðZ0
1Þ16 þ ð2n − 1ÞðZ0

0Þ16 þ ð2n − 1ÞðZ1
0Þ16�;

L1
0 ¼

1

2n
ðZ1

0Þ8½ðZ1
0Þ16 þ ð2n − 1ÞðZ0

0Þ16 þ ð2n − 1ÞðZ0
1Þ16�:
ð2:13Þ

As in (2.10), there are no right-moving contributions to
the partition function, since in two dimensions they are
completely canceled by ghosts.
An alternative interpretation of these partition functions

is as follows. First, the n ¼ 1 gauging can be interpreted as
starting with the Oð24Þ theory, splitting the left-moving
fermions into groups of 8 and 16 and giving them
separate spin structures. This naively breaks Oð24Þ to
Oð8Þ ×Oð16Þ, but the Oð16Þ experiences an enhancement
to E8, as evident from the fact that the partition function
contains a factor of the E8 characters,

ZNS ¼
1

2
ððZ0

0Þ8 − ðZ0
1Þ8ÞχE8

ðq̄Þ; ZR ¼ 1

2
ðZ1

0Þ8χE8
ðq̄Þ:

ð2:14Þ

Hence, this theory has Oð8Þ × E8 gauge group.
By the abstruse identity, in this case, the full partition

function vanishes, i.e., Z ¼ ZNS − ZR ¼ 0, and is thus
trivially modular invariant. The vanishing of the partition
function implies that the spectrum of the theory is super-
symmetric. However, the linear dilaton spoils spacetime
supersymmetry. The level-matched partition functions are
concretely

n ¼ 1∶ZNS ¼ 8; ZR ¼ 8: ð2:15Þ

This corresponds to eight massless bosons in the 8v ofOð8Þ,
eight right-moving fermions in the 8s, and eight left-moving
fermions in the 8c. The corresponding vertex operators are
known [25], though we will not need them here.
As for the n ¼ 2 gauging, it can be interpreted as

gauging left-moving worldsheet fermion number ð−1ÞfL
in the Oð24Þ theory. At the level of the partition function,
this can be seen as follows. Since the right-movers do not
contribute to the partition function, the gauging of this
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symmetry changes the 24 massless scalars of the Oð24Þ
theory to 24 chiral fermions. Hence, the partition function
is − 1

2
times the original Oð24Þ partition function, i.e.,

Z ¼ − 1
2
ð24Þ ¼ −12. It can be checked that this matches

the result obtained from (2.12) and (2.13) with n ¼ 2.
From this result, it follows immediately that the level-

matched partition functions are

n ¼ 2∶ZNS ¼ 0; ZR ¼ 12: ð2:16Þ

The Oð24Þ gauge symmetry remains unbroken, and we see
that we have 24 chiral fermions transforming in the
fundamental. This matter content is seemingly anomalous,
but as discussed in Ref. [26], the anomaly is canceled by a
two-dimensional analog of the Green-Schwarz mechanism.
We will return to this point in Sec. II D.

C. Tachyon condensation to d = 6; 8; 9

We now consider condensation of the tachyon in the ten-
dimensional nonsupersymmetric heterotic string theories,
following the general strategy of Ref. [22]. If we denote
the left-moving fermions transforming in the vector of
SOð25−nÞ by λ̃a for a ¼ 1;…; 25−n, then the tachyon
appears in the worldsheet action via a superpotential term,

W ¼
X25−n
a¼1

λ̃aT aðXÞ: ð2:17Þ

This superpotential induces a scalar potential, which takes
the form

V ¼ 1

8π

X
a

T aðXÞ2 − i
2π

ffiffiffiffi
α0

2

r X
a

∂μT aðXÞλ̃aψμ: ð2:18Þ

The linearized equation of motion for the tachyon is
found to be

∂μ∂μT a − 2vμ∂μT a þ 2

α0
T a ¼ 0; ð2:19Þ

where vμ ¼ ∂μϕ is the dilaton gradient. For reasons to be
seen, we will choose a lightlike linear dilaton profile of
the form

ϕ ¼ −
γffiffiffiffiffiffiffi
2α0

p X−; ð2:20Þ

where X� ¼ 1ffiffi
2

p ðX0 � X1Þ and γ > 0 is a constant to be

fixed momentarily.
There are certain solutions to (2.19) which give rise to

tachyon superpotentials that are exactly marginal. One such
solution is to consider a lightlike tachyon profile [18–21],

T aðXÞ ¼
ffiffiffiffi
2

α0

r
eβXþ

Xrþ1

i¼2

Ma
i X

i; β ≔

ffiffiffiffiffiffiffiffi
2

α0γ2

s
; ð2:21Þ

where Ma
i is a matrix chosen such that T 1 ¼ … ¼ T r ¼ 0

along some unique locus X2 ¼ … ¼ Xrþ1 ¼ 0. In particu-
lar, as long as r ≤ 8, we can simply take

Ma
i ¼ mδai−1: ð2:22Þ

Introducing such a tachyon gives rise to the scalar potential

V ¼ m2

4πα0
e2βX

þ Xrþ1

i¼2

ðXiÞ2

−
im
2π

eβX
þ Xr

a¼1

λ̃aðψaþ1 þ βXaþ1ψþÞ; ð2:23Þ

which gives rise to an exponentially growing mass
mðXþÞ ≔ meβX

þ
for Xi and ψ i ði ¼ 2;…; rþ 1Þ, as well

as λ̃a ða ¼ 1;…; rÞ. Thus, as Xþ → ∞, fluctuations in
these directions are highly suppressed, and we expect to
obtain a theory in spacetime dimension d ¼ 10 − r.
In the case of the heterotic theories being studied here,

we would ideally like to condense all 25−n components of
the tachyon. Clearly, this will only be possible using the
ansatz (2.22) if n ≥ 2; otherwise, we would naively obtain a
theory in d ¼ 10 − 25−n < 0 dimensions. Accepting this
restriction for the moment, we may now fix the parameter γ
in terms of n as follows. As Xþ → ∞, we may integrate out
the fields Xi and ψ i ði ¼ 2;…; 25−n þ 1Þ, as well as λ̃a

ða ¼ 1;…; 25−nÞ. This leads to quantum corrections to the
dilaton and metric, and as it turns out, these corrections
appear only at one loop. The corrections can be computed
exactly using the methods in Refs. [18,20] and are found
to be

Δϕ ¼
ffiffiffiffi
2

α0

r
23−n

γ
Xþ; ΔGþþ ¼ −ΔG−− ¼ 24−n

γ2
:

ð2:24Þ

In particular, we see that we have obtained a linear shift of
the dilaton. This is consistent with worldsheet anomaly
cancellation—the contributions to the worldsheet central
charge lost by integrating out fields must be made up for by
a linear dilaton. In particular, the total central charge lost
upon integrating out Xi, ψ i, and λ̃a is 3

2
× 25−n, and hence

we require

cϕ ¼ 6α0Gμνvμvν ¼ 3 × 24−n: ð2:25Þ

Using the results in (2.24), this fixes

γ ¼ 22−
n
2: ð2:26Þ
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Note in particular that for this value of γ, the lower-
dimensional dilaton (i.e., that obtained after integrating out
the massive fields) simplifies as follows:

ϕ ¼ −
γffiffiffiffiffiffiffi
2α0

p X− þ
ffiffiffiffi
2

α0

r
23−n

γ
Xþ ¼ 22−

n
2ffiffiffiffi
α0

p X1: ð2:27Þ

In other words, the dilaton gradient becomes spacelike.
This will be an important point in what follows. Before
moving on, let us emphasize that (2.20) and (2.21)
constitute α0-exact solutions to string theory.
Having constructed the relevant dimension-changing

solutions, we now study the lower-dimensional theories
obtained as Xþ → ∞. The partition functions for these
lower-dimensional theories are obtained by simply inte-
grating out the fields Xi, ψ i for i ¼ 2;…; 25−n þ 1 and λ̃a

for a ¼ 1;…; 25−n. Doing so, we straightforwardly obtain

ZNS ¼
1

2
jηj−16þ26−n ½ðZ0

0Þ8−2
5−n
L0
0 − ðZ0

1Þ8−2
5−n
L0
1�;

ZR ¼ 1

2
jηj−16þ26−nðZ1

0Þ8−2
5−n
L1
0; ð2:28Þ

where La
b are now given by

L0
0 ¼

1

2n
ðZ0

0Þ16−2
5−n ½ðZ0

0Þ16 þ ð2n − 1ÞðZ0
1Þ16

þ ð2n − 1ÞðZ1
0Þ16�;

L0
1 ¼

1

2n
ðZ0

1Þ16−2
5−n ½ðZ0

1Þ16 þ ð2n − 1ÞðZ0
0Þ16

þ ð2n − 1ÞðZ1
0Þ16�;

L1
0 ¼

1

2n
ðZ1

0Þ16−2
5−n ½ðZ1

0Þ16 þ ð2n − 1ÞðZ0
0Þ16

þ ð2n − 1ÞðZ0
1Þ16�; ð2:29Þ

cf. Eqs. (2.5) and (2.6). The case of n ¼ 5 was studied
originally in Ref. [22].
Integrating over τ1 gives the following level-matched

results,

n ¼ 3∶ ZNS ¼ 1080ðqq̄Þ14 þ 31360ðqq̄Þ34…
ZR ¼ 224þ 276480qq̄þ…

n ¼ 4∶ ZNS ¼ 1566ðqq̄Þ18 þ 76440ðqq̄Þ58…
ZR ¼ 960þ 1711104qq̄þ…

n ¼ 5∶ ZNS ¼ 1785ðqq̄Þ 1
16 þ 108500ðqq̄Þ 9

16…

ZR ¼ 1984þ 4058880qq̄þ…; ð2:30Þ

from which we read off the data in Table II. Note that the
methods discussed here also apply to the case of n ¼ 2, but

since this results in a two-dimensional vacuum, we will
wait until the next subsection to discuss it.
In more detail, the spectrum of each theory is as follows.

For n ¼ 3, we have a six-dimensional (6D) tachyon-free
theory with gauge group E7 × E7 and with massless
fermions in the ð56; 1Þþ and ð1; 56Þ−. For n ¼ 4, we have
an eight-dimensional tachyon-free theory with gauge group
SUð16Þ and with massless fermions in the 120þ and 120−.
Finally, for n ¼ 5, we have a nine-dimensional (9D)
tachyon-free theory with gauge group E8 and with a single
massless fermion in the adjoint. It is easy to see how this
chiral matter descends from that in (2.8). All theories also
have gravitons, B-fields, and dilatons for the appropriate
number of spacetime dimensions. These bosonic fields are
massless in the sense that there are no mass terms in the
low-energy effective action, but due to the presence of the
linear dilaton background, the effective mass operator gets
shifted [40] (i.e., there is nonzero vacuum energy), leading
to the effective masses observed in (2.30). Note finally that
in six dimensions, the B-field is nonchiral.

1. Anomalies

Let us now discuss the anomalies of the putative d ¼ 6,
8, and 9 string theories identified above. The 9D theory is
clearly not subject to any perturbative anomalies, so we
focus on the cases of d ¼ 6, 8 for the moment. In both
cases, anomalies can be canceled via appropriate Green-
Schwarz counterterms, which descend from their ten-
dimensional counterparts.
We begin with the 6D E7 × E7 theory. Recall that the

chiral content of this theory consisted of a left-moving
fermion in the (56, 1) as well as a right-moving fermion in
the (1, 56). Because there are equal numbers of left- and
right-movers, pure gravitational anomalies cancel automati-
cally. The remaining anomaly 8-form is given by

Ið8Þ ∝
1

24
ðTrð56;1ÞF4 − Trð1;56ÞF4Þ

−
1

24
ðTrð56;1ÞF2 − Trð1;56ÞF2ÞtrR2; ð2:31Þ

with F the curvature of the E7 × E7 bundle. We may split
F ¼ F1 ⊕ F2 in terms of curvatures for the individual E7

factors. As is well known, exceptional groups have no
order-4 Casimir invariants, and hence the terms of type
trF4

i ≔ Tr56F4
i can be factorized. Indeed, one computes

from e.g., the Appendixes of Refs. [41,42] that

TABLE II. Heterotic vacua in d > 2.

n d Massless fermions Gauge bosons

3 6 112 266
4 8 240 255
5 9 248 248
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trF4
i ¼

1

24
ðtrF2

i Þ2; i ¼ 1; 2; ð2:32Þ

which allows us to rewrite the anomaly polynomial in the
form

Ið8Þ∝
�
1

2
trR2−

1

24
trF2

1

�
2

−
�
1

2
trR2−

1

24
trF2

2

�
2

: ð2:33Þ

Since the anomaly polynomial does not factorize completely,
the anomaly cannot be canceled by a Green-Schwarz term
involving a single two-form field. Fortunately, in the current
theory, the B-field is nonchiral—in other words, it can be
split into self-dual and anti-self-dual pieces B�, which can
then be used to write two separate Green-Schwarz terms, à la
Ref. [43]. In particular, if we take

dHþ ¼ trR2 −
1

12
trF2

1; dH− ¼ trR2 −
1

12
trF2

2;

ð2:34Þ

for H� ¼ dB�, the relevant Green-Schwarz terms are
simply

SGS ∝
Z

Bþ ∧
�
trR2 −

1

12
trF2

1

�

−
Z

B− ∧
�
trR2 −

1

12
trF2

2

�
: ð2:35Þ

Note that under spacetime parity transformation, we effec-
tively interchange the two factors of E7. This is consistent
with the fact that the chiral spinors charged under each E7

are also interchanged. Incidentally, the opposite signs
between the two Green-Schwarz terms confirms that the
B-field must nonchiral, as opposed to having two B-fields of
the same chirality.
Now, consider the eight-dimensional (8D) SUð16Þ

theory. The chiral content of this theory is a left-moving
fermion in the 120 and a right-moving fermion in the 120.
In eight dimensions, there are no (perturbative) pure
gravitational anomalies, and the anomaly 10-form is

Ið10Þ ∝
1

120
ðTr120F5 − Tr120F

5Þ

−
1

72
ðTr120F3 − Tr120F

3ÞtrR2; ð2:36Þ

with F the SUð16Þ curvature. In the current notation, F is
anti-Hermitian, so we have

Tr120F2nþ1 ¼ −Tr120F
2nþ1: ð2:37Þ

In order to use the Green-Schwarz mechanism, we must
thus check that Tr120F5 factorizes.

To see that it does, we begin by reexpressing the trace in
the antisymmetric 2-tensor representation in terms of the
trace in the fundamental. For general SUðNÞ, one finds

Tr½2�eiF ¼ 1

2
ðtreiFÞ2 − 1

2
tre2iF; ð2:38Þ

which in particular gives

Tr½2�F3 ¼ ðN − 4ÞtrF3;

Tr½2�F5 ¼ ðN − 16ÞtrF5 þ 10trF2trF3: ð2:39Þ

Remarkably, we see that for SUð16Þ, the trF5 term is absent
from the last equation, and hence Tr120F5 does indeed
factorize. We thus have

Ið10Þ ∝
1

60
Tr120F5 −

1

36
Tr120F3trR2

¼ 1

3
trF3

�
1

2
trF2 − trR2

�
: ð2:40Þ

Then, modifying the B-field such that

dH ¼ trR2 −
1

2
trF2; ð2:41Þ

we conclude that the appropriate Green-Schwarz term is

SGS ∝
Z

B ∧ trF3: ð2:42Þ

This completes the perturbative anomaly analysis.
We now briefly discuss global anomalies. Beginning

with the case of d ¼ 6, the full set of possible global
anomalies is captured by

℧7
SpinðBE7 × BE7Þ ≔ HomðΩSpin

7 ðBE7 × BE7Þ; Uð1ÞÞ:
ð2:43Þ

For our current purposes, it suffices to treat BE7 as the
Eilenberg-MacLane space KðZ; 4Þ, in which case we can
use the results of Ref. [44] to conclude that

℧7
SpinðBE7 × BE7Þ ¼ 0: ð2:44Þ

Hence, this theory is free of global anomalies.
Things are somewhat less straightforward in the

remaining cases. For the d ¼ 8 theory, the relevant group
is ℧9

SpinðBSUð16ÞÞ ≅ ℧9
SpinðptÞ ⊕ ℧̃9

SpinðBSUð16ÞÞ. Using
the results of e.g., Appendix B of Ref. [45], the reduced
dual bordism group is seen to vanish,

℧̃9
SpinðBSUð16ÞÞ ¼ 0; ð2:45Þ
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and thus there are no pure gauge nor mixed gauge-
gravitational anomalies. There can, however, be pure
gravitational anomalies, corresponding to the nonzero dual
spin bordism group

℧9
SpinðptÞ ¼ ðZ2Þ2: ð2:46Þ

In fact, one part of this group is familiar from the classic
work of Alvarez-Gaumé and Witten [46]—physically, it
corresponds to the fact that a theory of an odd number of
Majorana fermions is anomalous in eight dimension. Since
in the present case we have an even number of Majorana
fermions, we clearly do not run afoul of this Z2 anomaly.
As for the remaining Z2, this is expected to capture an
analogous anomaly for an odd number of massless spin-3

2

fields, of which we have none.6We thus expect the 8D
theory to be free of global anomalies.
Finally, in d ¼ 9, we consider the group ℧10

SpinðBE8Þ. A
classic result of Stong [47] gives us

℧10
SpinðBE8Þ ¼ ℧10

SpinðptÞ ⊕ ℧̃10
SpinðBE8Þ ¼ ðZ2Þ3 ⊕ ðZ2Þ2:

ð2:47Þ

In this case, we see that there are both potential gauge and
gravitational anomalies. As before, one of the pure gravi-
tational anomalies was already discussed in Ref. [46] and
corresponds to the fact that a theory of an odd number
of Majorana fermions is anomalous in nine dimensions.
Since we have an even number of fermions, the current
setup is not subject to this anomaly. By an argument
analogous to that in Footnote 6, there is also an anomaly
involving an odd number of spin-3

2
fields, which causes no

trouble here. It remains to fully study the other potential
global anomalies.

2. Cosmological constant

Because the d ¼ 6, 8, and 9 theories identified above are
tachyon free and nonsupersymmetric, one expects them to
have a finite and nonzero cosmological constant. The one-
loop contribution to the cosmological constant may be
obtained by simply integrating minus the torus partition
function over the fundamental domain F [48,49],

Λd ¼
1

2ð2πÞd2
Z
F

d2τ

τd=2þ1
2

ðZR − ZNSÞ; ð2:48Þ

where we have included the factors of ð2πτ2Þ coming
from the integral over bosonic zero modes. Though this
integral cannot be evaluated analytically, we may evaluate
it numerically, giving the following results for the d ¼ 6, 8,
and 9 theories,

Λ6 ≈ 0.164; Λ8 ≈ 0.079; Λ9 ≈ 0.054; ð2:49Þ

in units where α0 ¼ ð2πÞ−1. In particular, we see that the
one-loop cosmological constant is positive in all cases.
It is useful to contrast the current situation with that of

the Oð16Þ ×Oð16Þ heterotic string. The Oð16Þ ×Oð16Þ
string was also tachyon free and nonsupersymmetric, and
its one-loop cosmological constant was evaluated in
Ref. [5], giving a result Λ10 ≈ 0.037 of a similar order
of magnitude to the values above. However, in that case,
there was a crucial conceptual difference in the interpre-
tation of this cosmological constant. A positive cosmo-
logical constant generally signals the presence of a dilaton
tadpole, which for a massless dilaton gives rise to an
instability of the vacuum. In the Oð16Þ ×Oð16Þ heterotic
string, the dilaton was indeed massless, so despite the fact
that the theory was tachyon free the positive cosmological
constant indicated a vacuum instability (see e.g., Ref. [50]
for potential stabilization mechanisms). On the other hand,
in the case of the lower-dimensional heterotic strings being
studied here, the dilaton is actually massive. As such, a
tadpole for it only serves as a small perturbation around the
Λd > 0 vacua, at least in the weak-coupling regime.7

Where exactly is the weak-coupling regime? Since in the
lower-dimensional theories the dilaton has a spacelike
gradient, see (2.27), we conclude that the weakly coupled
region is X1 ≪ 0. On the other hand, recall that the lower-
dimensional vacuum is really only observed at Xþ ≫ 0,
where the integrating out of massive fields is valid. Thus,
the region, which is well described by a lower-dimensional
theory with positive cosmological constant, is Xþ → ∞
and X1 → −∞, i.e., late times and toward the left of the
X1-axis.
We should note that, since the lower-dimensional the-

ories have no “Liouville walls,” strings can cross over into
the region to the right of theX1-axis. In this region, tadpoles
may lead to strong-coupling effects which ruin the vacuum,
and we should ideally switch to an S-dual description. One
could certainly imagine deforming the lower-dimensional
theory by adding a Liouville wall, thereby keeping the

6A rough explanation for why this anomaly should be related
to spin-3

2
fields is as follows. Consider compactifying the theory

on a closed 8-manifold down to zero dimensions. If there are
an odd number of fermionic zero-modes on the 8-manifold, we
will encounter the zero-dimensional anomaly captured by
℧1

SpinðptÞ ¼ Z2. An 8-manifold admits two multiplicative genera,
which correspond to the indices of two distinct Dirac operators.
One linear combination of these is the usual spin-1

2
Dirac operator,

and the other is the Rarita-Schwinger operator. I thank Kantaro
Ohmori for this argument.

7The intuition is that a tadpole gives rise to modifications of the
vacuum of order g

M2. If the particle with a tadpole is massless, this
destroys the vacuum. But if the particle is massive, then as long as
we are at sufficiently weak coupling, these corrections are small,
and the vacuum is not appreciably affected.
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fields confined to the weakly coupled region with positive
cosmological constant. However, it is unclear what such a
wall would uplift to in the full, time-dependent solution.
To summarize, it appears that the lower-dimensional

string theories admit perturbatively stable vacua with
positive vacuum energy in some appropriate region, and
with no moduli. This is at the cost of having a linear dilaton.
It would be interesting to see if the positivity of Λd persists
when higher-loop corrections and nonperturbative effects
are taken into account.

D. Tachyon condensation to d = 2

In the cases of n ¼ 0, 1, the ansatz (2.22) cannot be used
to condense all components of the tachyon, since there exist
more tachyons than physical spacetime dimensions. We
must therefore resort to an alternative mechanism.
One particular mechanism is to simply condense eight

components of the tachyon in the previous manner to
reduce to a theory in two dimensions. This automatically
gives rise to a stable vacuum since, due to the coupling to
the spacelike dilaton gradient, the masses of the remaining
components of the tachyon are renormalized to zero. Said
in a different way, in two dimensions, the boundary
conditions at X1 → −∞ (where the linear dilaton theory
is weakly coupled) for normalizable states is such that even
relevant operators do not give rise to normalizable modes
that grow exponentially.8

With this in mind, we condense eight components of the
tachyon. Integrating out the relevant fields from the
partition functions in (2.5) and (2.6), we obtain precisely
the partition functions (2.12) and (2.13) of the known 2D
heterotic strings reviewed in Sec. II B. For convenience, we
recall that the level-matched partition functions for these
theories are

n ¼ 0∶ZNS ¼ 24 ZR ¼ 0

n ¼ 1∶ZNS ¼ 8 ZR ¼ 8

n ¼ 2∶ZNS ¼ 0 ZR ¼ 12; ð2:50Þ

where we have included the n ¼ 2 case, which had a total
of 8 tachyons.
In more detail, beginning with the ten-dimensional

SOð32Þ theory, we condense eight components of the
tachyon, which transforms in the fundamental of
SOð32Þ. Doing so breaks the SOð32Þ and gives rise to a
2D theory with gauge symmetry SOð24Þ. The remaining 24
tachyons become massless due to their coupling to the
dilaton, giving rise to the 24 in ZNS. Since there were no
massless fermions in the original SOð32Þ theory, there are
again none in the resulting 2D theory.

Likewise, beginning with the Oð16Þ × E8 tachyonic
theory, we condense eight components of the tachyon,
which breaks the gauge group toOð8Þ × E8. The remaining
eight tachyons become massless, giving rise to the eight
contributions in ZNS. It is easy to see how the 8s and 8c
fermions descend from the data in (2.8), upon noting the
branching 128 ¼ ð8s; 8sÞ ⊕ ð8c; 8cÞ under the decomposi-
tion Oð16Þ ⊃ Oð8Þ ×Oð8Þ, and likewise for 1280. Finally,
in the case of the Oð8Þ ×Oð24Þ theory, we again condense
eight components of the tachyon, breaking completely
Oð8Þ. In this case, we have actually removed all tachyons,
and hence we are left with an empty NS sector. There is,
however, a single chiral fermion in the fundamental of
Oð24Þ. This gives the factor of 12 in ZR.
Incidentally, note that the technique of reducing down to

two dimensions in this way cannot be applied to the heterotic
theories with higher-dimensional vacua, i.e., those with
n > 2. Indeed, it is simple to check that reducing those
theories to two dimensions in the above way gives rise to
negative degeneracies in the tentative partition functions.
This is in line with the fact that the three 2D heterotic strings
discussed above are the only such consistent theories.
Finally, let us address the issue of anomalies in the 2D

theories obtained here. Since the field content of the n ¼ 0
and n ¼ 1 theories is clearly nonchiral, there are no
perturbative anomalies. On the other hand, for the n ¼ 2
case, one has 24 chiral fermions, which on their own do
have a chiral anomaly. In order to cancel this, one would
expect the presence of a Green-Schwarz term. At first sight,
this might seem rather mysterious from the higher-dimen-
sional perspective, since as discussed at the end of Sec. II A
the original Oð8Þ ×Oð24Þ theory had no Green-Schwarz
term. However, in two dimensions the Green-Schwarz term
is simply SGS ∝

R
B, which can in fact descend from ten

dimensions.9

III. TYPE 0 STRINGS

In this section, we study tachyonic Type 0 string theories.
We will show that all such tachyonic strings admit two-
dimensional stable vacua. For the case of oriented Type 0
strings, this was already shown in Ref. [13]. In particular, it
was found there that a cascade of tachyon condensations
leads to a gradual reduction of dimension, ending even-
tually with the two-dimensional Type 0 strings introduced
in Refs. [28,29]. In the current section, we will extend that
result to the eight Pin− Type 0 strings.
Of use to us will be the recent understanding that string

theories with different GSO projections can be thought of

8I thank Simeon Hellerman for very useful correspondence
about this point.

9Note, by the way, that the interpretation of this Green-
Schwarz term is rather different from its counterpart in higher
dimensions—in the current case, we require that dH ¼ 1 and
hence that there is a spacetime-filling source for the B-field. The
role of this source is played by a “long string”; see Ref. [26] for
details.
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as differing by the addition of certain topological terms to
the worldsheet action [3,4]. In the presence of boundaries,
these topological terms give rise to anomalous edge modes,
which in turn lead to extra structure (e.g., Clifford bundles)
carried by the end points of open strings. This extra
structure modifies the K-theoretic classification of branes
in the different GSO-projected theories.
From this point of view, the fact that the classification of

2D string theories mimics that of tachyonic ten-dimensional
(10D) theories is in some sense obvious. Beginning with a
given 10d worldsheet theory, condensing the tachyon leads
to solutions in which certain fields are integrated out. But
this process has no effect on the topological term present in
the worldsheet action. Thus, the lower-dimensional string
should also admit variants distinguished by such terms.
When considering open strings, these terms demand the
same anomalous edge modes in two dimensions as in ten
dimensions, and hence the K-theory classification of branes
(in the applicable range of world volume dimensions) must
be the same. We will give slightly more detail on this below.
To recapitulate, for many known two-dimensional closed

superstrings, we will identify a ten-dimensional tachyonic
string which admits a dimension-changing dynamical
transition to them. It should be noted that this hierarchy
can be continued upward indefinitely, i.e., the ten-
dimensional theory can itself be understood as descending
from condensation of a supercritical theory, and so on. The
only special thing about ten dimensions is that a linear
dilaton is not needed for worldsheet anomaly cancellation.

A. Tachyon condensation

We begin by reviewing the general framework of
tachyon condensation for N ¼ ð1; 1Þ superstrings, which
differs slightly from that in the heterotic case.
For the known tachyonic N ¼ ð1; 1Þ superstrings, there

is always a single tachyon. Condensation of the tachyon is
expected to give a (1,1) superpotential,

W ¼ T ðXÞ; ð3:1Þ
which gives rise to a scalar potential,

V ¼ α0

16π
gμν∂μT ðXÞ∂νT ðXÞ − iα0

4π
∂μ∂νT ðXÞψ̃μψν: ð3:2Þ

Unlike in (2.18), this scalar potential depends only on the
derivatives of the tachyon. Hence, we will have to take the
tachyon profile to be quadratic, as opposed to linear, in
the fields that we want to give a mass to. Taking the dilaton
to be as in (2.20), the simplest tachyon profile (subject to
some additional discrete global symmetry constraints) is of
the form [20]

T ðXÞ ¼ 2m
α0

eβXþ
Xrþ2

i¼2

XiXrþi ð3:3Þ

for some r. This profile then gives rise to exponentially
growing masses for the 2r coordinates Xi with
i ¼ 2;…; 2rþ 2, as well as their fermionic superpartners
ψ i. Consequently, as Xþ → ∞, we obtain a theory in d ¼
10 − 2r dimensions, localized at X2 ¼ … ¼ X2rþ2 ¼ 0.
In this way, we may condense ten-dimensional N ¼

ð1; 1Þ theories to any even number of dimensions (for the
case of an odd number of dimensions, see Ref. [13]).
However, by explicitly integrating out the appropriate fields
in the ten-dimensional partition functions given below, it is
simple to check that a new tachyon appears if we condense
to any dimension d > 2. One thus obtains a cascade of
tachyon condensations, the stable end point of which is a
two-dimensional vacuum. We now show that these are
precisely the known two-dimensional strings.

B. Oriented Type 0 strings

1. d = 10

We begin by reviewing the known case of oriented Type
0 strings. These strings have the sameworldsheet content as
the Type II strings, namely, ten left- and right-moving
bosonic fields Xμ, together with their superpartners ψμ

and ψ̃μ. The defining feature of Type 0 strings is the fact
that left- and right-moving worldsheet fermions are taken to
have the same spin structures. Because of this identification
of spin structures, the torus partition function is

Z ¼ 1

2
jηj−16ðjZ0

0j16 þ jZ0
1j16 þ jZ1

0j16 � jZ1
1j16Þ ð3:4Þ

in the notation of (2.2). Above, we have included a possible
choice of sign in front of the final term. This sign has no
effect on the partition function since Z1

1 ¼ 0, and the level-
matched result is

Z ¼ ðqq̄Þ−1
2 þ 192þ 1296ðqq̄Þ12 þ 49152qq̄þ… ð3:5Þ

in both cases. We see that both theories have a single
tachyon. There are no spacetime fermions in these theories,
so the 192 massless degrees of freedom can decomposed
into a graviton (35), a B-field (28), a dilaton (1), and
remaining 128 massless bosonic degrees of freedom which
end up being Ramond-Ramond (RR) form fields.
The difference between the two signs is in how the

128 degrees of freedom are organized into separate RR
form fields. As was discussed in Refs. [3,4], this may be
understood by interpreting the sign as arising due to the
presence of an extra topological term in the worldsheet
action. Concretely, given a worldsheet Σ and a spin
structure σ, we may add to the action a factor of the Arf
invariant,10

10We consider only the cases of zero or one copy of Arf since it
is a mod 2 invariant.
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S ¼ S0 þ iπnArfðΣ; σÞ; n ¼ 0; 1; ð3:6Þ

where S0 is the standard worldsheet action without topo-
logical term. Concretely, the Arf invariant is defined such
that [51]

ArfðT2; σNSNSÞ ¼ ArfðT2; σNSRÞ ¼ ArfðT2; σRNSÞ ¼ 0;

ArfðT2; σRRÞ ¼ 1; ð3:7Þ
and hence the contribution of this topological term to the
torus partition function, namely, ð−1ÞnArfðT2;σÞ, reproduces
the sign in (3.4). In the presence of a boundary, the Arf
invariant leads to Majorana edge modes, which modify the
K-theory classification of D-branes and RR fields.11

The upshot is that for the plus sign, the 128 degrees of
freedom are organized into two 1-forms and two 3-forms,
while for theminus sign, they are organized into two scalars,
two 2-forms, and a non-self-dual 4-form. This field content
is exactly twice that of the usual Type IIA and IIB theories,
and for that reason, these theories are usual referred to as
Type 0A and 0B. The spectrum of branes in a given Type 0
theory is twice that of its Type II counterpart.

2. d = 2

Two-dimensional analogs of the Type 0 theories have a
long history; see e.g., Refs. [26,28,29]. In two dimensions,
the Type 0B theory has as its physical operator spectrum
one propagating massless bosonic field in the Neveu-
Schwarz-Neveu-Schwarz (NSNS) sector (often referred
to as a “tachyon,” even though it is massless in two
dimensions) as well as a pair of compact chiral bosons
in the RR sector. As for the Type 0A theory, there is again a
single scalar in the NSNS sector, as well as a pair of 1-form
fields (fixed at zero momentum).
In Ref. [13], it was shown that the ten-dimensional

Type 0A/B theory condenses to the two-dimensional
Type 0A/B theory upon choosing the profile (3.3) with
r ¼ 4. The massless NSNS sector scalar is the descendant
of the tachyon in higher dimensions. The fact that the
spectra of RR fields match with their higher-dimensional
counterparts (for p-forms with p < 2) follows from the fact
that the worldsheet factors of the Arf invariant in (3.6) are
left unchanged by the integrating out of fields and lead to
the same spectra of boundary Majorana fermions.

C. Unoriented Type 0 strings

1. d = 10

We now move on to the new case of unoriented Type 0
theories. In Refs. [3,4], unoriented Type 0 theories were
classified, again using invertible phases.12 There are two

broad classes of unoriented Type 0 strings—those with
Pin− structure on the worldsheet and those with Pinþ

structure. Recall that the difference between Pin� can be
captured by the squaring properties of the orientation
reversal operation R being gauged, i.e.,

Pinþ∶ R2 ¼ 1; Pin−∶ R2 ¼ ð−1Þf; ð3:8Þ

with ð−1Þf ≔ ð−1ÞfLþfR the total worldsheet fermion num-
ber. In the standard conventions, worldsheet parity Ω acts
on fermions as

Ωψðt; σÞΩ−1 ¼ −ψ̃ðt; 2π − σÞ;
Ωψ̃ðt; σÞΩ−1 ¼ ψðt; 2π − σÞ; ð3:9Þ

and hence Ω2 ¼ ð−1Þf. Thus, gauging Ω alone gives rise to
worldsheets with Pin− structure. Unlike for Type II
theories, Ω is a symmetry of both Type 0A/B and hence
can be gauged in both to give two separate Pin− theories.
One can also consider gauging Ω twisted by some

additional discrete global symmetries. In particular, the
Type 0 theories have a Z2 × Z2 symmetry generated by
left-moving spacetime and worldsheet fermion parities,
ð−1ÞFL and ð−1ÞfL . We may then consider alternative
orientifoldings by ΩF ≔ Ωð−1ÞFL and Ωf ≔ Ωð−1ÞfL .
Note that ðΩFÞ2 ¼ ð−1Þf once again, and thus gauging it
in the Type 0A/B theories again gives two Pin− theories. In
fact, each of the four Pin− theories mentioned thus far
admits two variants, differing by the action of Ω on Chan-
Paton factors; this is analogous to the difference between
O9− and O9þ orientifolds of Type IIB. So, in total, there are
actually eight Pin− Type 0 strings.
In Refs. [3,4], these eight theories were interpreted as

arising from the addition of a topological term to the
worldsheet action. In particular, given a worldsheet Σ
with Pin− structure σ, one can consider adding to the
action n copies of the so-called Arf-Brown-Kervaire
(ABK) invariant [57], much like the Arf invariant in
the oriented case. The ABK invariant is a mod 8 invariant,
and we have the following identifications,

n ¼ 0; 4∶ ð0B;ΩÞ n ¼ 1; 5∶ ð0A;ΩÞ
n ¼ 2; 6∶ ð0B;ΩFÞ n ¼ 3; 7∶ ð0A;ΩFÞ; ð3:10Þ

with the first element in parentheses denoting the
starting theory and the second element denoting the
operator being gauged. The difference between theories
differing by Δn ¼ 4 is the action of the parity operators
on Chan-Paton factors. The massless and tachyonic
spectra of all eight theories was determined in
Refs. [3,4]—for our purposes, we simply note that all
theories have a single tachyon, and the spectrum of branes
is as given in Table III.

11This mechanism was anticipated in Refs. [52–54].
12For previous works toward such a classification, see e.g.,

Refs. [1,2,55,56].
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Before proceeding to two dimensions, we address the
remaining parity operator Ωf. It is clear that

ðΩfÞ2 ¼ Ωð−1ÞfLΩð−1ÞfL ¼ Ωð−1ÞfLþfRΩ ¼ ð−1ÞfΩ2 ¼ 1;

ð3:11Þ

so this gives a theory with Pinþ structure. In Ref. [4], this
case was shown to be tachyon free, so it will not be relevant
for our discussion.

2. d = 2

The Pin− theories discussed above condense to two-
dimensional unoriented Type 0 theories. The latter were
classified in Refs. [30,31]. As expected, they are obtained
by starting with the 2D Type 0 theories of Sec. III B 2 and
gauging an appropriate parity operation.
In Refs. [30,31], eight 2D Pin− strings were identified,

again interpretable as orientifolds of 2D Type 0A/B by Ω or
ΩF, with some twofold choice of action on Chan-Paton
factors.Wemay again label the theories by n ∈ f0;…; 7g, in
accordance with the assignments in (3.10). In Ref. [30], the
spectra of these theories were found to be as follows. In the
n ¼ 0 theory, there is a single propagating massless scalar
field from the NSNS sector, as well as two 2-forms (of fixed
momentum). The objects charged under these 2-forms are

two distinct types of D1-branes. In the n ¼ 1 theory, there is
again a single propagating massless scalar field, as well as a
single 1-form. The object charged under this is a single type
of D0-brane. In the n ¼ 2 theory, there are two massless
scalar fields, one of which is compact. There are Dð−1Þ-
branes charged under the compact scalar. Finally, in the
n ¼ 3 case there is again a single propagating massless
scalar field, as well as a single 1-form. The object charged
under this is a single type of D0-brane. The (nontorsion)
spectrum is periodic mod 4, so this completes the list.
In all cases, the massless scalar field can be interpreted as

the descendant of the higher-dimensional tachyon upon
condensation. The spectra of branes is seen tomatch precisely
with the nontorsion elements listed in Table III, in the
appropriate range of world volume dimensions. This again
must be the case, since the worldsheet factors of ABK—and
hence the corresponding K-theory classification—remain
unchanged upon condensation of the tachyon.
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