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The SLð2;RÞ Wess-Zumino-Novikov-Witten model realizes bosonic-string theory in AdS3 with pure
Neveu-Schwarz-Neveu-Schwarz flux. We construct an effective action in the semiclassical limit of the
model, which corresponds to a SLð2;RÞ spin-chain σ-model. We adopt two complementary points of view.
First, we consider the classical action. We identify fast and slow target-space coordinates. We impose a
gauge-fixing condition to the former. By expanding the gauge-fixed action in an effective coupling,
we obtain the effective action for the slow coordinates. Second, we consider the spin chain of the model.
We postulate a set of coherent states to express a transition amplitude in the spin chain as a path integral. We
observe that the temporal interval is discretized in terms of the step length of the spatial interval. This
relationship implies that the Landau-Lifshitz limit of the spin chain involves both intervals. The limit yields
a semiclassical path integral over coherent states, wherein we identify the effective action again.
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I. INTRODUCTION

The SLð2;RÞ Wess-Zumino-Novikov-Witten (WZNW)
model provides a testing ground for nonperturbative
techniques due to its exact solvability.1 The model realizes
bosonic-string theory in AdS3 supported with pure Neveu-
Schwarz-Neveu-Schwarz (NSNS) three-form flux. The
spectrum of the SLð2;RÞ WZNW model is computable
by analyzing the representations of the Kač-Moody algebra
of the currents in the world sheet two-dimensional con-
formal field theory (CFT2) [1]. The PSUð1; 1j2Þ WZNW
model is the supersymmetric embedding of the model,
and realises type IIB superstring theory on AdS3 × S3 ⊂
AdS3 × S3 × T4 with pure NSNS flux [2]. In order for the
PSUð1; 1j2Þ WZNW model to account for the supersym-
metric embedding in T4 ⊂ AdS3 × S3 × T4, the world sheet
CFT2 includes supplementary bosonic and fermionic field
operators; see, for example, Sec. 2 of [3]. The spectrum of
the PSUð1; 1j2Þ WZNW model is computable through the
study of representations of the current algebra [4].
Nonlinear σ-models on highly symmetric backgrounds

are often quantum integrable, and the SLð2;RÞ WZNW
model is no exception. It was both anticipated in [5] and

established in [6] that the spectrum of the PSUð1; 1j2Þ
WZNW model is retrievable from an integrable spin chain.
The spin chain encodes the spectrum in a set of Bethe
equations. The cancellation of wrapping corrections in the
thermodynamic Bethe ansatz renders the Bethe equations
exact. Furthermore, the explicit resolution of the equations
turns out to be feasible. The Bethe equations thus supply
the spectrum in representations of the current algebra
built upon the principal discrete series of PSUð1; 1j2Þ,
and hence SLð2;RÞ. In addition, the Bethe equations admit
exceptional solutions which violate the unitarity bound for
representations of the principal discrete series. Exceptional
solutions were argued to reproduce the spectrum connected
to the principal continuous series of PSUð1; 1j2Þ and
SLð2;RÞ in [7].
The integrable system advanced in [5,6] poses the

question of the emergence of the spin chain in the semi-
classical limit of the PSUð1; 1j2Þ WZNW model. This
question was answered in [8,9] on the basis of the proposal
of [10]. Reference [10] put forward an effective action
in the SUð2Þ sector of the AdS5=CFT4 correspondence,
which is closed at all-loop order in the ’t Hooft coupling.
The effective action corresponds to a SUð2Þ spin-chain
σ-model, and is retrievable from both members of the
AdS5=CFT4 correspondence in the semiclassical limit. At
leading order in the effective coupling, the agreement
implies the matching of the spectra (and the hierarchies
of conserved charges) in the SUð2Þ sector. The agreement
also clarifies the appearance of string configurations in the
spin chain by means of coherent states. In the SUð2Þ sector
of type IIB superstring theory on the AdS5 × S5 back-
ground with pure Ramond-Ramond flux, the derivation
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1We denote by SLð2;RÞ and PSUð1; 1j2Þ the universal cover
of their Lie group and supergroup, respectively.
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of [10] starts from the Polyakov action on R × S3. The
procedure of [10] can be summarized in three steps [11]:
the identification of fast and slow coordinates, the impo-
sition of a gauge-fixing condition on fast coordinates, and
the expansion of the Polyakov action in an effective
coupling in the semiclassical limit. The expansion is
permitted by the generalized velocities of the slow coor-
dinates since they are suppressed by the effective coupling.
The result is an effective action for the slow coordinates.
This action is retrievable from the dual N ¼ 4 super-
symmetric Yang-Mills theory on the conformal boundary
of the AdS5 × S5 background. The derivation of [10]
begins with the XXX1=2 Heisenberg model in this case.
This spin chain encodes the spectrum in the SUð2Þ sector of
the dual theory at one-loop order in the ’t Hooft coupling.
The effective action is obtained in two stages. First, a
general transition amplitude is expressed as an exact path
integral over coherent states. Then, the Landau-Lifshitz
(LL) limit is applied to the action within the path integral.
The LL limit is a continuum limit on the spatial interval of
the spin chain; by construction, it is semiclassical. The LL
limit produces an effective action for the coordinates that
parametrize coherent states and matches the aforemen-
tioned effective action under the identification of coherent-
state coordinates with slow coordinates. The effective
action is linear in the generalized velocities, but it is
quadratic in the spatial derivatives. For a review of spin-
chain σ-models in the AdS5=CFT4 correspondence, the
reader is referred to [12].
References [8,9] modified the method of [10] and applied

it to the PSUð1; 1j2Þ WZNW model. Specifically, [8,9]
constructed an effective action in the truncation of the model
to the SUð2Þ WZNW model, which realizes bosonic-string
theory in S3 with pure NSNS flux. The effective action
corresponds to a SUð2Þ spin-chain σ-model that is linear in
both the generalized velocities and the spatial derivatives.
The derivation of [8] starts from the classical action of the
SUð2Þ WZNW model, i.e., the Polyakov action on R × S3

supplied with a Wess-Zumino (WZ) term for the B-field in
S3. (The derivation instead starts from a nonlinear σ-model
on the integrable background of [13], which is a general
deformation of the background considered here.) The
derivation first distinguishes between fast and slow target-
space coordinates. The former set is determined in [8] by
the equations of motion and the Virasoro constraints. The
generalized velocities of the slow coordinates are not sup-
pressed by the effective coupling in the semiclassical limit;
the B-field implies that the generalized velocities appear at
the same order as the spatial derivatives. The expansion in
the effective coupling of the gauge-fixed action supplies an
effective action for the slow coordinates. The starting point
of [9] is the SUð2Þ sector of the spin chain of [5,6]. The
derivation of [9] contrasts with [10]. First, the temporal
interval is discretized in terms of the spatial step length.
Second, the LL limit is not a continuum limit in the spatial

interval applied to the action of an exact path integral. The
LL limit is a simultaneous continuum limit on the temporal
and spatial intervals. It brings forth a representation of the
transition amplitude as a semiclassical path integral over
coherent states. Coherent states are in fact not known a priori
in [9], but are postulated beforehand. In this case, the action
within the path integral is the effective action. If coherent
states are properly parametrized, the effective actions of [8]
and [9] match.
The semiclassical agreement in the SUð2Þ WZNW

model raises the question of the availability of a spin-
chain σ-model in other truncations of the PSUð1; 1j2Þ
WZNW model. In this article, we construct a SLð2;RÞ
spin-chain σ-model in the semiclassical limit of the
SLð2;RÞWZNWmodel. The SLð2;RÞ spin-chain σ-model
in the AdS5=CFT4 correspondence was analysed in
[14–16], some of whose elements we borrow. (Solutions
to the equations of motion of the model were presented in
[15,17,18].) The article is composed of the following
sections. In Sec. II, we derive an effective action from
the classical action of the SLð2;RÞ WZNW model. We
divide target-space coordinates into fast and slow coor-
dinates by calling on the light-cone gauge-fixing condition
of [6]. We impose the static gauge-fixing condition to the
fast coordinates by means of the formal T-duality of
[16,19]. This condition reveals that, in the semiclassical
limit, the generalized velocities and the spatial derivatives
of the slow coordinates appear at the same order in the
effective coupling. We rephrase the gauge-fixed action as a
Nambu-Goto (NG) form with a WZ term, allowing us to
obtain an effective action that is linear in both the
generalized velocities and the spatial derivatives through
an expansion in the effective coupling. We then study some
solutions previously considered in the bibliography. In
Sec. III, we derive the effective action starting from the
SLð2;RÞ sector of the spin chain of [5,6]. First, we present
the spin chain, then we postulate a set of coherent states.
Except for a slight generalization, we mimic [9] to rephrase
the transition amplitude in the spin chain as a semiclassical
path integral over the coherent states. The temporal interval
is discretized in terms of the spatial step length. The LL
limit is a synchronized continuum limit on the temporal and
spatial intervals, and provides the path integral in the
semiclassical limit. Some manipulations allow us to recover
the effective action of Sec. II. In Sec. IV, we close with a
summary and comment on open problems.

II. THE SLð2;RÞ SPIN-CHAIN σ-MODEL
FROM THE CLASSICAL ACTION

In this section, we derive the action of the SLð2;RÞ
spin-chain σ-model from the classical action of the
SLð2;RÞ WZNW model coupled to a scalar field param-
eterising the equator S1 of S3. Our methodology builds
upon [19], which is a refinement of [10]. Reference [19]
studied the SUð2Þ sector of the AdS5 × S5 background.
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Reference [16] applied the methodology of [19] to the
SLð2;RÞ sector thereof.
To begin, we must divide the target-space coordinates

into two sets: “fast” and “slow” coordinates. Fast coor-
dinates consist of a timelike coordinate and a spacelike
coordinate whose generalized velocities are large in the
semiclassical limit k → ∞. Fast coordinates can be deter-
mined through the static gauge-fixing condition under the
formal T-dualization of the spacelike coordinate. In this
way, fast coordinates parametrize the temporal and spatial
directions in the continuum limit of the spin chain.
Slow coordinates are the remaining coordinates. In the
AdS5 × S5 background, the generalized velocities of slow
coordinates are suppressed when k → ∞. The presence of
the B-field modifies this property by means of the spatial
derivatives of the slow coordinates. Slow coordinates
parametrize coherent states in the continuum limit of the
spin chain.
Therefore, we must introduce a parametrization in

AdS3 × S1 to get a split into fast and slow coordinates.
The parametrization of AdS3 is provided by the Hopf
fibration [14,16]. The fibration reveals the local resem-
blance between H2 × S1 and PSLð2;RÞ, of which AdS3 is
the universal cover. The resemblance is a consequence of
the fibre-bundle structure of PSLð2;RÞ, whereby H2 is the
base space and S1 is the fibre. The gauge group of the fibre
bundle is Uð1Þ. The Hopf fibration is conveniently
expressed in the embedding coordinates of AdS3 into
R2;2. Let us denote them by YA, with A ¼ 0, 1, 2, 3.
The embedding coordinates satisfy ηABYAYB ¼ −1, where
ηAB ¼ diagð−;þ;þ;−Þ. The Hopf fibration corresponds to
the parametrization

Y0 þ iY3 ¼ eiαZ0; Y1 þ iY2 ¼ eiαZ1: ð2:1Þ

The coordinate α is real and parametrizes the fibre S1,
and Za are complex coordinates subject to the constraint
−Z0Z0 þ Z1Z1 ¼ −1. The action of Uð1Þ on α and Za
reads α ↦ αþ β and Za ↦ expð−iβÞZa, hence preserves
the constraint of Za. Therefore, Za parametrize the base
spaceH2. By construction, the coordinate α is fast, whereas
Za are slow.
In Sec. III, the effective action that arises in the semi-

classical of the spin chain is not expressed in (2.1). Instead,
it is written in the global coordinate system of AdS3, which
is related to YA as

Y0 þ iY3 ¼ eit cosh ρ; Y1 þ iY2 ¼ eiψ sinh ρ; ð2:2Þ

where t ∈ ð−∞;∞Þ, ρ ∈ ½0;∞Þ and ψ ∈ ½0; 2πÞ. Notice
that, being noncompact, the range of t forbids closed
timelike curves in AdS3. The comparison with Sec. III
requires us to identify α and Za in (2.2). However, the
relationship between (2.1) and (2.2) is not straightforward
due to the action of Uð1Þ on α and Za.

To resolve the ambiguity, we call on the gauge-fixing
condition for the fast coordinates with respect to the world
sheet coordinates. The procedure of [19] involves the
imposition of the static gauge-fixing condition to the fast
coordinates. By definition, this condition fixes α propor-
tionally to the timelike world sheet coordinate τ. Each
admissible identification of α in (2.2) leads to a gauge-
fixing condition. However, we need to choose α properly
for the comparison with the semiclassical limit of the spin
chain. Reference [6] built the spin chain on the basis of the
light-cone gauge-fixing condition, where t is proportional
to τ. We must then ensure that the static and light-cone
gauge-fixing conditions are compatible. In this way, we
determine

α ¼ t; Z0 ¼ cosh ρ; Z1 ¼ eiφ sinh ρ; ð2:3Þ

where φ ¼ ψ − t. The coordinate t is thus the timelike fast
coordinate, and ρ and φ are slow coordinates. It is worth
noting that these identifications were introduced in the
AdS5 × S5 background to construct the SLð2;RÞ spin-
chain σ-model [14–16].
In addition, we must identify the spacelike fast coor-

dinate. In general, the Hopf fibration singles this coordinate
out in S3 [11,19]. The Hopf fibration manifests the fiber-
bundle structure of S3, whereby S2 is the base space and S1

is the fiber. In AdS3 × S1, the base space of S3 is collapsed
to a point. Therefore, the spacelike fast coordinate is the
coordinate ϕ of the equator S1 ⊂ S3.
Once we have identified target-space coordinates prop-

erly, we can start the derivation of the effective action.
The starting point is the Polyakov action on AdS3 × S1 with
a WZ term for the B-field in AdS3. The associated
Lagrangian is

L ¼ −
k
4π

½γαβð−∂αt∂βtþ ∂αρ∂βρþ 2 sinh2 ρ∂αt∂βφ

þ sinh2 ρ∂αφ∂βφþ ∂αϕ∂βϕÞ − 2ϵαβ sinh2 ρ∂αt∂βφ�:
ð2:4Þ

Above, k ∈ N denotes the level, γαβ denotes a unimodular
world sheet metric whose signature is ð−;þÞ, ϵαβ denotes
the Levi-Civita symbol with ϵτσ ¼ −ϵστ ¼ −1, and lower-
case Greek indices run over τ ∈ ð−∞;∞Þ and the spacelike
world sheet coordinate σ ∈ ½0; 2πÞ. We emphasize that no
gauge-fixing condition has been imposed on γαβ. The fields
in (2.4) satisfy closed-string boundary conditions:

tðτ; σ þ 2πÞ ¼ tðτ; σÞ; ρðτ; σ þ 2πÞ ¼ ρðτ; σÞ;
φðτ; σ þ 2πÞ ¼ φðτ; σÞ þ 2πm;

ϕðτ; σ þ 2πÞ ¼ ϕðτ; σÞ þ 2πn: ð2:5Þ
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The indices m; n ∈ Z are winding numbers. In particular,
n determines the level-matching condition [6].
At this stage, we must impose a gauge-fixing condition

to the fast coordinates. Let us focus on ϕ first. The light-
cone gauge-fixing condition for ϕ in [6] is pϕ ¼ J=2π,
where pϕ denotes the canonically conjugate momentum of
ϕ and J denotes the total angular momentum:

J ¼ −
k
2π

Z
2π

0

dσγτα∂αϕ: ð2:6Þ

As we have mentioned before, we look for a static gauge-
fixing condition relative to ϕ that is equivalent to
pϕ ¼ J=2π. One may be tempted to fix ϕ proportionally
to σ, but this relationship is not consistent with (2.6).
Moreover, the direct usage of pϕ ¼ J=2π would require the
Hamiltonian formalism [11,19]. We can both find a static
gauge-fixing condition equivalent to pϕ ¼ J=2π and avoid
the Hamiltonian formalism by resorting to the formal
T-dualization of ϕ into ϕ̂ [16,19].
We T-dualize ϕ into ϕ̂ on the basis of the Buscher

procedure; see, for example, [20]. Accordingly, we replace
dϕ by a one-form A in (2.4), and add a term to such the
Lagrangian:

L ↦ L −
k
2π

ϕ̂ϵαβ∂αAβ: ð2:7Þ

The Lagrange multiplier ϕ̂ ensures that A is closed, i.e.,
dA ¼ 0. Being closed, A is locally exact, which means
that A ¼ dϕ locally. If exactness held globally, we could
integrate ϕ̂ out in (2.7) and A ¼ dϕ would provide (2.4)
again. Nonetheless, the world sheet is cylindrical, its first
Betti number equals one, and A may not be globally exact.
We overcome this obstruction by arguing that T-duality is
formal in this case. Formal T-duality allows us to derive the
correct action of the SLð2;RÞ spin-chain σ-model without
need for the Hamiltonian formalism. We thus ignore
topological issues concerning the global exactness of A.
We also pass over the dual quantization of (2.6) and the
dilatonic contribution from the path-integral measure
(which would vanish in any case).
Bearing in mind the previous caveat, we eliminate A

from (2.7) by solving its equations of motion. We obtain

Aα ¼ −ϵαβγβδ∂δϕ̂: ð2:8Þ

If we implement this expression in (2.7), we arrive to the
Lagrangian (2.4) up to the replacement of ϕ by ϕ̂ (once we
omit the contribution of a total derivative). The central
improvement brought forth by formal T-duality is the
reformulation of the expression of J. The substitution
of (2.8) in (2.6) leads us to

J ¼ k
2π

ðϕ̂ðτ; 2πÞ − ϕ̂ðτ; 0ÞÞ: ð2:9Þ

Therefore, pϕ ¼ J=2π renders into the static gauge-

fixing condition ϕ̂ ¼ ðJ=kÞσ. The coordinate ϕ̂ thus para-
metrizes the spatial direction of the spin chain in the
continuum limit.
The semiclassical limit k → ∞ raises the question of the

legitimacy of ϕ̂ ¼ ðJ=kÞσ as a regular gauge-fixing con-
dition. The answer relies on the fact that ϕ is fast
by assumption. By definition, its generalized velocity vϕ ¼
γτα∂αϕ is large. Therefore, the light-cone gauge-fixing
condition pϕ ¼ −ðk=2πÞvϕ ¼ J=2π implies that J is semi-
classical and large, hence the ratio J=k is nonvanishing and
large. Not only is k=J small, but k=J is also a sensible
effective coupling in the semiclassical limit.
In addition, we must impose the static gauge-fixing

condition to t. As we have discussed before (2.3), the light-
cone gauge-fixing condition of [6] requires us to fix t ¼ aτ.
This choice reflects the coincidence of the timelike
directions on the target-space and the world sheet, as well
as the temporal direction of the spin chain in the continuum
limit. Note that no obstruction forbids t ¼ aτ as the fields in
the Lagrangian do not satisfy any explicit boundary
conditions with respect to τ. We determine the proportion-
ality coefficient a by arguing the observation presented in
[10], where it was emphasized that t is fast if a is large
when k → ∞. (Consult [15] for the analogous discussion in
the SLð2;RÞ sector of the AdS5 × S5 background.) If we
further insist on the Berestein-Maldacena-Nastase (BMN)
scaling of the semiclassical space-time energy, i.e., that the
leading contribution to the space-time energy is J, we
obtain a ¼ J=k.2

In sum, the static gauge-fixing condition is

t ¼ J
k
τ; ϕ̂ ¼ J

k
σ: ð2:10Þ

We can use the condition above in the equations of motion
following from (2.4) (once ϕ is replaced by ϕ̂). This step is
convenient as the Euler-Lagrange equations supplies us
with a cross-check to validate the equations of motion from
the effective action. If we use (2.10), the equations of
motion of (2.4) read

J
k
∂αγ

ατ − ∂α½ðγαβ − ϵαβÞ sinh2 ρ∂βφ� ¼ 0; ð2:11Þ

2Alternatively, we could have followed [16,19]. One thus fixes
t ¼ τ, and rescales τ afterwards in a NG action with a WZ term
akin to (2.15).
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J
k
sinhð2ρÞðvφ − φ0Þ − ∂αðγαβ∂βρÞ

þ 1

2
sinhð2ρÞγαβ∂αφ∂βφ ¼ 0; ð2:12Þ

J
k
½sinh2 ρ∂αγ

ατ þ sinhð2ρÞðvρ − ρ0Þ�
þ ∂αðγαβ sinh2 ρ∂βφÞ ¼ 0; ð2:13Þ

J
k
∂αγ

ασ ¼ 0; ð2:14Þ

where vρ ¼ γτα∂αρ and vφ ¼ γτα∂αφ are the generalized
velocities of ρ and φ, respectively. The equations of motion
are split in terms that are multiplied by J=k and terms
that are not. In the semiclassical limit, both sets of equations
must be satisfied separately because k=J is the effective
coupling. At leading order in k=J, Eqs. (2.11) and (2.14)
imply that γαβ is divergenceless. Since the unimodular world
sheet metric γαβ is covariantly constant with respect to the
torsionless connection, we deduce γαβ ¼ ηαβ þ Oðk=JÞ.
This result simplifies the equations of motion of the slow
coordinates (2.12) and (2.13). Explicitly, it implies that
_ρþ ρ0 ¼ Oðk=JÞ and _φþ φ0 ¼ Oðk=JÞ (as long as ρ does
not vanish). The appearance of ρ0 and φ0 may be traced back
to the presence of a nontrivial B-field in AdS3 × S1. It is
worth noting at this point that the generalized velocities of
the slow coordinates in the AdS5 × S5 background are not
balanced by spatial derivatives, but they are suppressed by
the effective coupling [14–16].
The next step we need to take is the reduction of the

gauge-fixed action to a NG form with a WZ term. Let us
thus rephrase the world sheet metric as γαβ ¼ ffiffiffiffiffiffi

−h
p

hαβ,
where hαβ is a general nonunimodular world sheet metric
and h is its determinant. We solve the Virasoro constraints
through the identification of hαβ with the induced metric on
the world sheet and obtain

S ¼ −
k
2π

Z
∞

−∞
dτ

Z
2π

0

dσ

� ffiffiffiffiffiffi
−h

p
−
J
k
sinh2 ρφ0

�
: ð2:15Þ

The expression of the determinant h is arranged in powers
of the inverse effective coupling J=k; explicitly,

h ¼ −
J4

k4
þ 2

J3

k3
sinh2 ρ _φ −

J2

k2
½−_ρ2 þ ρ02

þ sinh2 ρð− _φ2 þ cosh2 ρφ02Þ�

− 2
J
k
sinh2 ρρ0ð_ρφ0 − ρ0 _φÞ þ sinh2 ρð_ρφ0 − ρ0 _φÞ2:

ð2:16Þ

It follows that, just as the combination λ=J2 in the
AdS5 × S5 background [21,22], the ratio k=J is the

effective coupling that permits an analytical expansion.3

It is worth mentioning that
ffiffiffiffiffiffi
−h

p
hαβ ¼ ηαβ þ Oðk=JÞ,

which is consistent with (2.11) and (2.14).
Finally, let us expand (2.15) with respect to k=J. If we

neglect Oðk=JÞ terms and omit the divergent constant
contribution of the fast coordinates, we obtain the following
effective action:

S ¼ J
2π

Z
∞

−∞
dτ

Z
2π

0

dσ sinh2 ρð _φþ φ0Þ: ð2:17Þ

The effective action corresponds to a SLð2;RÞ spin-chain
σ-model, and is linear in both _φ and φ0. It is in exact
agreement with the expression for the effective action
(3.19) that is shown in Sec. III. The equations of motion
of (2.17) are

sinhð2ρÞð_ρþ ρ0Þ ¼ 0; sinhð2ρÞð _φþ φ0Þ ¼ 0; ð2:18Þ

which are consistent with (2.12) and (2.13). The general
solution to (2.18) is

ρðτ; σÞ ¼ ρðτ − σÞ; φðτ; σÞ ¼ φðτ − σÞ: ð2:19Þ

These solutions are endowed with the closed-string
boundary conditions (2.5). In addition, (2.5) supplies the
boundary conditions of t and ϕ. The periodicity of t is
trivially satisfied in view of (2.10). The quasiperiodicity
of ϕ imposes an additional constraint on (2.19). If we
use (2.8), the constraint reads

2πn ¼ −2
Z

2π

0

dσ sinh2 ρφ0; ð2:20Þ

where we have ignored Oðk=JÞ terms.
The solution (2.19) encodes the semiclassical limit of

those string solutions that are reproducible from the spin
chain. Let us describe some of them. The special case
ρ ¼ 0, where ψ in the global coordinate system (2.2) and
hence φ ¼ ψ − t are undefined, is the solution of the BMN
vacuum. The BMN vacuum is the ground state of the spin
chain of [5,6]. The solution represents a degenerate world
sheet, which is the timelike geodesic along center of AdS3
in the global coordinate system (2.2).
The solution (2.19) also comprises pulsating strings [1],

which are classical closed-string solutions. Pulsating
strings are written in the chart (2.2) of AdS3; ρ and t only
depend on τ, and ψ ¼ mσ, where m is given in (2.5). The
static gauge-fixing condition (2.10) and the general
solution (2.19) imply ρ ¼ ρ0, t ¼ ðJ=kÞτ and m ¼ J=k.
Reference [1] proved that geodesics of AdS3 written in the

3It may seem that k=J is not analytic as k is not quantized in the
SLð2;RÞ WZNW model [1]. However, this is not the case: k is
indeed quantized in the PSUð1; 1j2Þ WZNW model that embeds
the model [2].
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chart (2.2) map to pulsating strings under spectral flow. The
winding numberm of the pulsating strings with respect to ψ
is the integer spectral-flow parameter w, which therefore
equals J=k in the case of our solution. Reference [1] indeed
proved that solutions with constant hyperbolic radii arise
when J=k equals w. Let us moreover note that the equality
between w and m just concerns pulsating strings; w in
general labels spectrally flowed sectors in the world sheet
CFT2. We finally stress that these pulsating strings are
never degenerate because the winding number m ¼ J=k is
always large.
Solutions with ρ ¼ ρ0 constitute the threshold between

short and long pulsating strings [1]. Short pulsating strings
are connected to the principal discrete series of SLð2;RÞ.
They arise from timelike geodesics in AdS3 (hence the
solution of the BMN vacuum) under spectral flow. Long
pulsating strings are connected to the principal continuous
series of SLð2;RÞ. They arise from spacelike geodesics in
AdS3 under spectral flow. Our solutions are compatible
with the unitarity bound of [1] on the principal discrete
series of SLð2;RÞ, which is discussed in [5,6]. We prove in
Sec. III that J=k is bounded from below by w in the
semiclassical limit k → ∞; see (3.15) of Sec. III. Note that
solutions with ρ ¼ ρ0 are also compatible with the claim
made in [7] on the violation of the unitarity bound in the
principal continuous series. Compatibility is possible
because of the limit k → ∞, which permits the saturation
of the endpoints of the unitarity bound by exceptional
solutions to the Bethe equations.

III. THE SLð2;RÞ SPIN-CHAIN σ-MODEL FROM
THE SPIN CHAIN

In this section, we construct the action of the SLð2;RÞ
spin-chain σ-model starting from the spin chain proposed
in [5,6]. We proceed along the lines of [9], where the SUð2Þ
spin-chain σ-model was derived from such a quantum
integrable system. To begin, let us briefly review the
relevant aspects of the spin chain of [5,6].
The spin chain of [5,6] encodes the spectrum of the

PSUð1; 1j2ÞWZNWmodel in a system of Bethe equations.
The Bethe equations are built on the transition amplitude
of the S-matrix. They determine the set of admissible
momenta of the eigenstates of the Hamiltonian called
“magnons.” Magnons consist of a linear superposition of
creation operators (“oscillators”) above the BMN vacuum,
which is the ground state of the spin chain. Magnons have
definite momentum. Single magnons, in particular, are
expressed as a linear superposition each of whose terms
involves just one oscillator. The dispersion relation of
magnons follows from the imposition of a shortening
condition to the Hamiltonian. Such a condition reads

H2 ¼
�

k
2π

PþM

�
2

; ð3:1Þ

where H denotes the Hamiltonian, P denotes the momen-
tum operator, and M is a linear operator that shifts the
dispersion relation according to the excitations on which it
acts. The Hamiltonian is semidefinite positive owing to
the Bogomoln’yi-Prasad-Sommerfield bound. Therefore,
the dispersion relation involves the positive branch of the
absolute value following from (3.1). Magnons are called
“chiral” and “antichiral” if the expression inside the
absolute value of the dispersion relation is positive and
negative, respectively.
Henceforth, we focus on the SLð2;RÞ sector of the spin

chain. “Sector” denotes a choice of the type of oscillator
that acts on the BMN vacuum. The type of oscillator is
determined by its representation labels under the super-
isometry algebra of the AdS3 × S3 × T4 background. The
various types of oscillators are listed in [23] (in the general
integrable deformation of [13] of the AdS3 × S3 × T4 back-
ground with pure NSNS flux).4 They have not appeared in
the bibliography to the best of our knowledge. The matrix
elements of the S-matrix between states with different kinds
of oscillator are in general nontrivial. The determination of
whether a sector is closed or not is thus elaborate. The
semiclassical limit k → ∞ allows us to circumvent this
problem because it maps sectors to truncations of the
classical PSUð1; 1j2Þ WZNW model. A sector is closed if
the corresponding truncation is consistent. It is immediate to
check that the SLð2;RÞ sector is closed when k → ∞.
In fact, there are not one but two SLð2;RÞ sectors in the

spin chain, viz. the left-handed sector SLð2;RÞL and right-
handed sector SLð2;RÞR. Both sectors are present because
AdS3 is SLð2;RÞ ≅ SLð2;RÞL × SLð2;RÞR=SLð2;RÞ as a
permutation coset, and hence the isometry group of the
SLð2;RÞ WZNW model is SLð2;RÞL × SLð2;RÞR.
The duplicity is reflected in the eigenvalue m of M in
(3.1). The BMN vacuum has m ¼ 0. Single magnons that
transform under SLð2;RÞL have m ¼ 1; single magnons
that transform under SLð2;RÞR have m ¼ −1. The
dispersion relation of composite magnons follows from
these considerations. The important aspect for us is that the
restriction of m reflects the restriction of the spin chain to a
sector of given handedness. For the sake of definiteness, we
focus on the SLð2;RÞL sector of the spin chain.
Moreover, the number of sites J of the spin chain is

bounded [6].5 In the spin-chain frame in which the spin

4Reference [23] listed the canonical creation and annihilation
operators in the BMN limit. We denote by ‘oscillator’ the
deformation of the creation operator of [23] along the lines of
[24] with the same representation labels. The oscillators have not
appeared in the bibliography to the best of our knowledge.

5Reference [6] identifies J with the length of the spin chain to
introduce the decompactification limit where the S-matrix is
definable. The convention is shared by [10]. To clarify LL limit,
we identify J with the number of sites of the spin chain. Our
convention is shared by [9,14,15]. Both conventions are related
by a rescaling of σ in (3.18).
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chain is defined [6], J equals the total angular momentum
of the BMN vacuum. The number of sites is constrained by
a unitarity bound, which differs among spectrally flowed
sectors [1,6]. In particular, the unitary bound of the w-th
spectrally flowed sectors reads

kwþ 1 ≤ J ≤ kðwþ 1Þ − 1; ð3:2Þ

where w denotes the integer spectral-flow parameter and
k ∈ N denotes the level. In writing (3.2), we have further
assumed that k > 1 and w ≥ 0. The exclusion of k ¼ 1 is
unimportant because we concern ourselves with k → ∞.
In addition, we have made the assumption w ≥ 0 for
simplicity. One may consider w < 0 by inverting the sign
of J in (3.2) without major modifications in the remainder
of the section.
In general, the action of a spin-chain σ-model is built

upon coherent states. Coherent states in the spin chain are
constructed from the tensor product of J copies of one-site
coherent states. The construction of one-site coherent states
is prescribed by the Perelomov procedure (see Appendix A
of [14] for a summary). The procedure requires three
elements: a group, a representation thereof, and a reference
state. The reference state must be invariant under the action
of the Cartan torus of the group up to a phase. We specify
these elements as in [15,25].
The group is SLð2;RÞ. The unitary irreducible represen-

tations of SLð2;RÞ that are nontrivial are infinite-
dimensional. These representations are enumerated in, for
instance, Subsection 4.1 of [1]. We choose the representation
along the lines of [9]. Reference [9] postulated an ansatz
for the representation of one-site coherent states, viz. the
s ¼ 1=2 fundamental representation of SUð2Þ. The equality
of the effective action with the result of [8] supported the
ansatz. Analogously, we postulate that one-site coherent
states belong to the j ¼ 1=2 lowest-weight principal discrete
representation of SLð2;RÞ. The j ¼ 1=2 representation
of SLð2;RÞ is realized in each one-site Hilbert space Ha,
with a ¼ 0;…; J − 1. This choice is supported by the final
effective action (3.19), which matches (2.17) in Sec. II. We
emphasize that the representation of coherent states under
SLð2;RÞ does not coincidewith the representation of zeroth-
level generators of the current algebra. Instead, we assume
the existence of the mapping between our coherent states and
states in the world sheet CFT2 of the PSUð1; 1j2Þ WZNW
model. Moreover, we choose the reference state in each Ha
as the state whose isotropy group is maximal. One-site
coherent states are thus unambiguously determined [15,25].
They read

jn⃗ai ¼ sechρa
X∞
m¼0

e−imφa tanhmρajmi; ð3:3Þ

where jmi is an orthonormal basis of Ha. One-site coherent
states would present a global phase in general, but (3.3)

suffices to recover (2.17). (Such a global phase was used in
[9] to match the effective action of [8].) The pair ρa and φa is
the discrete counterpart of ρ and φ in the Lagrangian (2.4).
The range of both pairs is the same; in fact, ρa and φa will
match ρ and φ under the application of the LL limit. We have
defined short-hand notation n⃗a as

n⃗a ¼ ½coshð2ρaÞ;− sinhð2ρaÞ sinφa; sinhð2ρaÞ cosφa�;
ð3:4Þ

which labels the one-site coherent state. The vector (3.4) is
assembled from the expectation value of the generators of
slð2;RÞ in the coherent state (3.3).
A general coherent state in the Hilbert space of the spin

chain H ¼ H0 ⊗ … ⊗ HJ−1 is

jn⃗i ¼ ⊗
J−1

a¼0
jn⃗ai: ð3:5Þ

Since the spin chain is closed, n⃗0 is identified with n⃗J. This
identification permits the emergence of closed-string boun-
dary conditions in the continuum limit of the spin chain. In
addition, we identify the particular state with every ρa ¼ 0,
which consists of J replicas of j0i, with the BMN vacuum.
Coherent states (3.5) are an overcomplete basis of H. This
fact implies two (correlative) properties which we employ
later. The first is the resolution of the identity operator inH
in the coherent-state basis:

1 ¼
Z

dμ½n⃗�jn⃗ihn⃗j; ð3:6Þ

where dμ½n⃗� is the measure which comprises the product of
one-site measures dμ½n⃗a�.6 The second property is that
coherent states are not orthonormal, but rather satisfy

hn⃗jn⃗0i ¼
YJ−1
a¼0

½cosh ρa cosh ρ0a − eiðφa−φ0
aÞ sinh ρa sinh ρ0a�−1:

ð3:7Þ

Once we have presented the spin chain and our coherent
states, we can start considering the LL limit of the spin
chain. The goal of the LL limit here is a path-integral

6We write neither dμ½n⃗� nor dμ½n⃗a� explicitly for two reasons.
First, the group SLð2;RÞ is the universal cover of the corre-
sponding Lie group, denoted by SLð2;RÞ0 here. Therefore, φ is
not compact, and the usage of the measure of SLð2;RÞ0 employed
in [15] is not applicable. (The compact counterpart of φ in
SLð2;RÞ0 is introduced in [15], and φ is decompactified in the
final effective action.) Second, the measure of both SLð2;RÞ and
SLð2;RÞ0 is defined at j ¼ 1=2 through an analytic continuation
of the measure of arbitrary j [15]. These obstructions are not
directly relevant for us: dμ½n⃗a� eventually becomes the formal
path-integral measure ½dμ� in the path integral (3.17).
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representation for a transition amplitude wherein an effec-
tive action is identifiable, similar to the approach taken by
[9]. The starting point is thus the transition amplitude
between an initial state jΨ1i at t ¼ −T=2 and a final state
jΨ2i at t ¼ T=2. The parameter t is the temporal coordinate
of the spin chain. The limit T → ∞ must be further
considered as the timelike direction in the world sheet is
noncompact. Therefore, the transition amplitude is

Z ¼ lim
T→∞

hΨ2j expð−iHTÞjΨ1i: ð3:8Þ

This transition amplitude involves the Hamiltonian H. The
action of the Hamiltonian in the spin chain is not directly
available. Instead, the action is encoded in the quadratic
constraint (3.1). The form of H is thus not achievable in
general; it depends on the specific state in which it acts. To
proceed, we follow [9]. The initial state jΨ1i (or the final
state jΨ2i) is accordingly assumed to be a magnon, i.e., an
eigenstate of H, P and M with eigenvalues E, p and m,
respectively.7 (Note that E ≥ 0 owing to the fact H is
semidefinite positive, p is quantized since the spin chain is
closed, and m ≥ 0 because jΨ1i belongs to the SLð2;RÞL
sector; these properties are secondary for the LL limit.) Let
the dispersion relation of jΨ1i be

E ¼ −
�
k
2π

pþm

�
; ð3:9Þ

where we have assumed that jΨ1i is antichiral for definite-
ness. We can replace the Hamiltonian H by E in (3.8),
and then replace E with (3.9). If we lift p to an operator
level, (3.8) reads

Z ¼ lim
T→∞

eiTmhΨ2j expðiTðk=2πÞPÞjΨ1i: ð3:10Þ

This form is suited to the path-integral representation of the
transition amplitude.
To construct a path integral, we have to introduce a

partition of ½−T=2; T=2�. Let us slice ½−T=2; T=2� in N
subintervals ½tαþ1; tα� of equal step length Δt ¼ T=N. The
endpoints of the subintervals are tα ¼ ð2α − NÞT=2N,
with α ¼ 0;…; N − 1. If we introduce the resolution of
the identity (3.6) between the endpoints of every pair of
consecutive subintervals, (3.10) is rephrased as

Z ¼ lim
T→∞

Z
dμ½n⃗N �…

Z
dμ½n⃗0�Ψ2ðn⃗NÞ

×

�YN−1

α¼0

eiΔtmhn⃗αþ1j expðiΔtðk=2πÞPÞjn⃗αi
�
Ψ1ðn⃗0Þ:

ð3:11Þ

Here, jn⃗αi ¼ jn⃗α;0i ⊗ … ⊗ jn⃗α;J−1i, Ψ1ðn⃗0Þ ¼ hn⃗0jΨ1i
and Ψ2ðn⃗NÞ ¼ hΨ2jn⃗Ni. Note that Ψ1ðn⃗0Þ and Ψ2ðn⃗NÞ
are wave functions in the basis of coherent states. The
expression (3.11) involves the matrix elements of the
anticlockwise shift operator U ¼ expðiϵPÞ raised to
the power ðk=2πÞΔt=ϵ, where ϵ is the spatial step length.
In order for U to be defined on H, the step length must
satisfy

Δt ¼ 2π

k
ϵ: ð3:12Þ

Therefore, the temporal interval of the closed spin chain is
discretized. In general, one may write Δt as a positive
integer multiple of (3.12), but Δt ¼ ð2π=kÞϵ is obtained
when ½−T=2; T=2� is divided into the maximum amount of
subintervals. The condition (3.12) allows us to reformulate
(3.11) as

Z ¼ lim
T→∞

Z
dμN…

Z
dμ0Ψ2ðn⃗NÞ

×

�YN−1

α¼0

eiΔtm
YJ−1
a¼0

½cosh ραþ1;a cosh ρα;a−1

− eiðφαþ1;a−φα;a−1Þ sinh ραþ1;a sinh ρα;a−1�−1
�
Ψ1ðn⃗0Þ;

ð3:13Þ

where we have used

Ujn⃗αi ¼ ⊗
J−1

a¼0
jn⃗α;a−1i; ð3:14Þ

and the scalar product (3.7). The expression (3.13) is
amenable to the LL limit.
For customary spin chains in quantum mechanics, such

as the Heisenberg XXX1=2 model, the LL limit yields an
effective action in the form of a nonlinear σ-model (the
reader is referred to [26] for a standard textbook treatment
of the subject). The LL limit is a spatial continuum limit
applied to the classical action inside an exact path integral
over coherent states. The LL limit is defined by ϵ → 0 and
J → ∞ with the spin-chain length R ¼ Jϵ fixed. Under the
assumption that coherent states depend analytically on their
site labels, the leading contribution within the action in
the LL limit yields the nonlinear σ-model. The exact path
integral over coherent states follows from a continuum

7Reference [9] assumes that jΨ1i is a coherent state whose
parametrization is implicitly constrained; [9] also assumes thatM
is diagonal in the s ¼ 1=2 representation of SUð2Þ. These
assumptions resort to the lack of a mapping between coherent
states and states in the world sheet CFT2. We take jΨ1i as a
magnon instead of a coherent state. The magnon is presumably
expressible as a linear superposition of coherent states. The point
of view is advantageous in that it either clarifies or avoids some of
the steps in [9].
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limit. The latter is applied to a transition amplitude with
respect to the temporal coordinate t, and precedes the LL
limit. This continuum limit is standard in path integrals and
consists of Δt → 0 and N → ∞ with T ¼ NΔt fixed under
the assumption that coherent states depend analytically
on t. In the present case, the application of an analogous
approach to (3.13) is forbidden. The temporal and spatial
continuum limits are intertwined in our spin chain. First and
foremost, the step lengthsΔt and ϵ are intertwined as stated
by (3.12). This relationship implies that T ¼ 2πNR=kJ. If
the continuum limits with respect to α and a in (3.13) keep
T and R respectively finite, the condition N=kJ ∼ Oð1Þ
must be fulfilled. Therefore, N → ∞ and J → ∞ must be
synchronized. Therefore, the LL limit in (3.13) consists
of the simultaneous application of the limit Δt → 0 and
N → ∞ with T ¼ NΔt fixed, and ϵ → 0 and J → ∞ with
R ¼ Jϵ fixed. Furthermore, the LL limit is a semiclassical
limit, i.e., the LL limit presupposes k → ∞. The inequality

(3.2) bounds J in terms of k and w. Since the spectral-flow
parameter remains finite, J → ∞ already implies k → ∞
(which in turn implies that Δt → 0). The counterpart
of (3.2) under J; k → ∞ is

w ≤ J=k ≤ wþ 1: ð3:15Þ

The inequality above indicates that the spin chain belongs
to the wth spectrally flowed sector in the semiclassical limit
(cf. Formula (59) of [1]). We emphasize that the effective
coupling in Sec. II is the ratio k=J, and hence (3.15) states
that the LL limit is accurate in highly spectrally flowed
sectors.
In view of the preceding discussion, let us apply the

LL limit to (3.13). If we assume that ρα;a and φα;a depend
smoothly on α and a, and that ϵ and Δt ¼ ð2π=kÞϵ are
small, (3.13) becomes

Z ¼ lim
T→∞

Z
dμN…

Z
dμ0Ψ2ðn⃗NÞ

YN−1

α¼0

�
eiΔtm

YJ−1
a¼0

½1þ isinh2ρα;aðΔt _φα;a þ ϵφ0
α;aÞþOðϵ2Þ�

�
Ψ1ðn⃗0Þ; ð3:16Þ

where _ and 0 denote derivatives with respect to tα and
xa ¼ aϵ, respectively. If we introduce the short-distance
cutoff ϵ (or, equivalently, Δt), we can deem the expression
between round brackets the formal product of two con-
tinuous products. Accordingly, we can reword (3.16) as the
path integral

Z ¼
Z

½dμ�Ψ2ðn⃗∞Þei SΨ1ðn⃗−∞Þ: ð3:17Þ

The path integral involves various elements. First, the
classical action. At leading order in ϵ, the classical action
reads

S ¼ 1

ϵ

Z
∞

−∞
dt

Z
R

0

dx

�
ϵ

R
mþ sinh2ρ

�
_φþ k

2π
φ0
��

;

ð3:18Þ
where ρ ¼ ρðt; xÞ and φ ¼ φðt; xÞ are the continuous
counterparts of ρα;a and φα;a. Note we have applied
the limit T → ∞ with respect to the interval over t. The
expression (3.17) also involves the path-integral measure
½dμ�, which is the formal measure that arises from
the product of measures dμ½n⃗α�. The path integral extends
over continuous coherent-state configurations n⃗ ¼ n⃗ðt; xÞ
with respect to ½dμ�. As we have previously anticipated,
these coherent-state configurations satisfy periodic boun-
dary conditions: n⃗ðt; xþ RÞ ¼ n⃗ðt; xÞ. They are also sub-
ject to the asymptotic boundary conditions n⃗ð�∞; xÞ ¼
n⃗�∞ðxÞ, where n⃗∞ and n⃗−∞ are the continuous counterparts
of n⃗N and n⃗0, respectively. Finally, the path integral

involves Ψ1ðn⃗−∞Þ and Ψ2ðn⃗∞Þ. These fields are the
counterparts of the wave functions Ψ1ðn⃗0Þ and Ψ2ðn⃗NÞ
in the LL limit. The energy of the system is determined by
Ψ1ðn⃗−∞Þ. In a sense, these wave functions act as sources
at t ¼ �∞ of the semiclassical solutions to (3.17). Our
point of view here is strongly influenced by the interplay
between closed-superstring vertex operator and semiclass-
ical solutions in the AdS5=CFT4 correspondence [27–29].
However, we shall not pursue this line of thought further.
Finally, we have to introduce a change of variables to

retrieve the effective action (2.17) of Sec. II. The change of
variables is based on the form of the NG action (2.15). To
obtain effective action in Sec. II, we have expanded the
NG action in a series with respect to k=J. Apart from an
overall factor of J, the Nth derivative in both τ and σ
appears at order Oððk=JÞNÞ. We must find the same pattern
here. To put (3.18) in the proper form, we set τ ¼ kt. We
also set R ¼ 1, i.e., ϵ ¼ 1=J and σ ¼ 2πx and to match the
conventions of Sec. II. In this way, we conclude

S ¼ J
2π

Z
∞

−∞
dτ

Z
2π

0

dσ sinh2 ρð _φþ φ0Þ; ð3:19Þ

which matches the action of the SLð2;RÞ spin-chain
σ-model (2.17).
We must stress that we have omitted the constant

contribution of m in (3.18). Our assumption is that m
(the eigenvalue of the magnon underM) is finite in the limit
k → ∞, and hence its integral is Oð1=kÞ, which is sub-
leading in the large J=k expansion. In addition, (3.19) is
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obtained under the restriction to antichiral magnons. If
we had started from chiral magnons, we would have
obtained (3.19) up to the replacement of φ0 and −φ0.
A final remark is in order. The spin chain has two

SLð2;RÞ sectors: the SLð2;RÞL sector and the SLð2;RÞR
sector. The relationship of these sectors with coherent
states is not direct because coherent states (3.5) have been
postulated rather than mapped from states in the world sheet
CFT2. One may wonder how coherent states are connected
with the SLð2;RÞL sector and the SLð2;RÞR sector in the
LL limit. The restriction of coherent states to either sector
turns out to be reflected in the orientation of φ in (3.19).
To clarify the reasoning behind this statement, let us turn to
the chart of AdS3 whereby the canonical quantization is
performed [23]. The coordinate system is

ds2 ¼ −
�
z21 þ z22 þ 4

z21 þ z22 − 4

�
2

dt2 þ 16

ðz21 þ z22 − 4Þ2 ðdz
2
1 þ dz22Þ;

ð3:20Þ

where t is the global timelike coordinate in (2.2). As we have
commented in Sec. II, t is fixed by a gauge-fixing condition
prior to the construction of the spin chain. Oscillators in
SLð2;RÞL give rise to magnons along the direction of
Z ¼ −z2 þ iz1; oscillators in SLð2;RÞR produce magnons
along Z̄ ¼ −z2 − iz1. The chart (3.20) is related to (2.2),
the global coordinate system of AdS3, as

z1 ¼ 2 tanh
ρ

2
sinψ ; z2 ¼ 2 tanh

ρ

2
cosψ : ð3:21Þ

Therefore, the clockwise orientation of ψ corresponds to
oscillators transforming under SLð2;RÞL; the anticlockwise
orientation corresponds to oscillators transforming under
SLð2;RÞR. The orientation of ψ carries over into φ owing to
φ ¼ ψ − t. Therefore, the restriction of the orientation of φ
in (3.19) suffices to determine coherent states in either sector.
In particular, φ advances clockwise in the SLð2;RÞL sector
that we have considered.

IV. CONCLUSIONS

In this article, we have obtained the effective action of
the SLð2;RÞ WZNW model in the semiclassical limit,
which corresponds to a SLð2;RÞ spin-chain σ-model. We
have computed the effective action from both the classical
action of the SLð2;RÞ WZNW model and the spin chain
of [5,6], and proved that the results match. Therefore, the
spin chain directly gives rise to the classical SLð2;RÞ
WZNW model in the semiclassical limit. This fact
suggests that the representation of the SLð2;RÞ WZNW
model as a spin chain goes beyond the spectral problem
analysed in [5,6]. It may then possible to use the spin
chain to compute other quantities of the SLð2;RÞWZNW
model. For instance, the spin chain may permit the
computation of the correlation functions of [30], as [6]

already noted. To clarify the scope of coherent states in the
spin chain of [5,6] regarding both the spectral problem
and further applications, some question must be answered.
We comment on them below.
The construction of an effective action from the spin chain

was based on an ansatz for coherent states. In particular, we
have postulated coherent states in the j ¼ 1=2 unitary
irreducible representation of the principal discrete series of
SLð2;RÞ. We have assumed the existence of a mapping
between coherent states in the spin chain and states in the
world sheetCFT2 of theSLð2;RÞWZNWmodel. Inorder for
the derivation to be complete, an explicit mapping between
the two sets of states is needed. The answer may rely on
coherent states in theworld sheet CFT2. Coherent states were
defined in [31] as eigenstates of the lowering operator at the
level N ¼ 1 of the current algebra. These coherent states
consist of an infinite linear superposition of states. Each state
belongs to a different negative level of the current algebra.
More precisely, the state at level −N0, where N0 ∈ N, is
obtained by applying the rising operator at the level N ¼ −1
to the BMN vacuum N0 times. Coherent states thus defined
minimize the Heisenberg uncertainty relation of a pair of
“position” and “momentum” operators [31]. (Inequivalent
coherent states were constructed in [32], but they do not
minimize this relation in general.) To construct the coherent
states defined in Sec. III, one should endeavor to assemble the
coherent states of [31] in states that transform in the afore-
mentioned j ¼ 1=2 representation of SLð2;RÞ. An extension
of the coherent states of [31] would in fact be needed to
embrace all the spectrally flowed sectors of the SLð2;RÞ
WZNW model. Furthermore, the relationship between the
sets of coherent states of [31] and Sec. III would shed light on
the completeness of the latter. We emphasize that analogous
considerations can be advanced regarding the coherent states
of the SUð2Þ WZNW model proposed in [9].
It may be also worth considering subleading corrections

to our SLð2;RÞ spin-chain σ-model. Even though the lack
of a proper characterization of coherent states a priori
forbids computations from the spin chain, it may be still
possible to proceed starting from the classical action. For
the computation to be meaningful, the SLð2;RÞ sector must
be closed at the order being considered. In the AdS5=CFT4

correspondence, subleading corrections were obtained in
the closed SUð2Þ sector in [11,19]. (Reference [19] ana-
lyzed the SOð6Þ sector instead, to which the SUð2Þ sector
belongs; [33] proved that the SOð6Þ sector is closed if
J → ∞.) Canonical perturbation theory would supply a
systematic framework to address this task [19].
Finally, one may also attempt to construct a fermionic

spin-chain σ-model. The simplest fermionic sector is the
SUð1j1Þ sector. In the AdS5=CFT4 correspondence, the
SUð1j1Þ spin-chain σ-model was constructed in [34,35].8

8Fermionic spin-chain σ-models embedding the model were
also considered in these references and [36–38].
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Four SUð1j1Þ sectors are identifiable in the PSUð1; 1j2Þ
WZNW model [6,23]. (Recall that sector means a choice
of the type of oscillator that acts on the BMN vacuum.)
New difficulties arise in the derivation from the classical
action [35]. For instance, the imposition of an appropriate
gauge-fixing condition for the κ-gauge symmetry of the
action, the computation of consistent truncations, and the
introduction of field redefinitions to identify “slow”
Graßmann-odd target-space coordinates. In the spin chain,
the procedure may parallel [9] and Sec. III. The steps would
thus be the postulation of coherent states in a representation
of SUð1j1Þ, and the subsequent derivation of a semi-
classical path integral in the LL limit. Being nilpotent,
Graßmann-odd variables may further clarify the LL limit.

Again, a complete derivation would require the explicit
connection between coherent states and states in the world
sheet CFT2.
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