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We study the thermodynamic properties of a two-site coupled complex q-body Sachdev-Ye-Kitaev
(SYK) model in the large-N limit by solving the saddle-point Schwinger-Dyson (SD) equations. We find
that its phase diagram is richer than in the Majorana case. In the grand canonical ensemble, we identify a
region of small chemical potential and weak coupling between the two SYKs, for which two first order
thermodynamic phase transitions occur as a function of temperature. First, we observe a transition from a
cold wormhole phase to an intermediate phase that may correspond to a charged wormhole. For a higher
temperature, there is another first order transition to the black hole phase. As in the Majorana case, the low
temperature wormhole phase is gapped, and for sufficiently large coupling between the two complex SYK,
or chemical potential, the first order transitions become crossovers. The total charge is a good indicator to
study the phase diagram of the model; it is zero in the cold wormhole phase and jumps discontinuously at
the temperatures at which the transitions take place. Based on the approximate conformal symmetry of the
ground state, expected to be close to a thermofield double state, we identify the effective low energy action
of the model. It is a generalized Schwarzian action with SLð2; RÞ ×Uð1Þ symmetry with an additional
potential and an extra degree of freedom related to the charge. In the large N and low temperature limit,
results from this low energy action are consistent with those from the solution of the SD equations.
Likewise, a large-q analytical calculation of thermodynamic properties confirms the existence of the
wormhole phase. Our findings are a preliminary step toward the characterization of traversable wormholes
by its field theory dual, a charged strongly interacting fermionic system, that is easier to model
experimentally.
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I. INTRODUCTION

Traversable wormholes are classical solutions of
Einstein’s equations representing shortcuts in the geometry
that may allow teletransportation among distant regions of
space-time. For that reason, it has been a recurrent research
theme for several decades [1–5]. Unfortunately, these
solutions are considered classically unphysical as matter
in these backgrounds would violate some fundamental
physical principle, such as the null energy condition.
The situation changed recently [6], after it was shown

that, turning on an interaction that couples the two
boundaries of an eternal Bañados-Teitelboim-Zanelli black
hole, the quantum matter stress tensor has a negative

average null energy without violating causality, which
suggests that the wormhole becomes traversable. Other
examples in different backgrounds and dimensionalities,
but with similar features, were found shortly after [7–11].
The next main development came after Maldacena and Qi
[12] (see also Ref. [13], in which the authors perform an
explicit bulk time evolution) constructed a near two dimen-
sional anti deSitter (AdS2) background whose ground state
was a time independent traversable wormhole, termed
eternal traversable wormhole. Its highly entangled ground
state is gapped and close to a thermofield double state
(TFD) [14,15]. For sufficiently weak coupling, the system
has a first order transition from the traversable wormhole
phase to the (two) black hole phase. At a certain critical
coupling, the gap vanishes, and the transition becomes a
crossover. The boundary theory is given by a generalized
Schwarzian action related to a modified Liouville quantum
mechanical problem. Unlike the standard Sachdev-Y
e-Kitaev (SYK) case [16,17], the spectrum for low energies
is discrete, representing the wormhole phase. However, for
higher energies, it is continuous, representing the black
hole phase.
Interestingly, the field theory dual of this eternal tra-

versable wormhole was identified [12] to be the low energy
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phase of a two-site coupled Sachdev-Ye-Kitaev model.
It can be shown that the real time evolution of this model
leads to the formation of a traversable wormhole [18].
Previously, a nonrandom SYK model [19,20] was conjec-
tured to describe similar physics. Indeed, both models share
the same pattern of symmetry breaking [21,22].
The SYK model [23–35] is a toy model for holography

that, based on the same pattern of symmetry breaking from
the full conformal group to SL(2,R) [36,37], is believed to
be dual of a certain near AdS2 background [36]. Its main
interest is that, despite being strongly interacting, and
quantum chaotic [32], it is analytically tractable [32].
Distinctive features of the model include the saturation
of a universal bound on chaos [38] typical of fast scram-
blers of information and systems with a gravity dual [38];
the exponential growth [39–41] of low energy excitations,
typical of quantum black holes; and spectral correlations
described by random matrix theory [40–44] that suggests
that quantum dynamics is ergodic for sufficiently long
times. The high temperature limit of the two-site SYK
model [12], dual to two black hole backgrounds, shares
most of these features. However, important differences
arise in the low temperature limit corresponding to the
wormhole phase. The system is no longer quantum chaotic.
The low energy excitations are discrete even in the
thermodynamics limit. This is consistent with the obser-
vation of a transition in level statistics [45], from integrable
in the wormhole phase to quantum chaotic in the black hole
region.
An appealing feature of the SYK model is that, at least

potentially, it could be modeled experimentally [46–48].
That would allow not only the study of novel transport
regimes in strongly interacting quantum dots but also,
through holographic dualities, the experimental test of
certain aspects of quantum gravity. However, this program
is hampered by the difficulty to isolate and handle
Majorana fermions.
In this paper, we study a generalization of the two-site

SYK model with Majorana fermions, dual of the eternal
traversable wormhole [12], to complex fermions with an
extra Uð1Þ symmetry. More specifically, we shall study its
expected field theory dual: a two-site coupled SYK model
with Dirac, instead of Majorana, fermions. Single complex
SYK have already been extensively investigated [49–53] in
the literature. Qualitatively, they retain most of the inter-
esting features of the Majorana SYK model while being
closer to more realistic models of strongly interacting
electrons. We shall see that, to some extent, this applies
to the coupled charged SYK model. We shall find that the
model is still gapped for low temperatures and weak
coupling, which is a signature of the wormhole phase.
For small chemical potential and low temperature, it has no
charge, which is another feature of the traversable worm-
hole dual to the Majorana two-site SYK model [12].
Likewise, the high temperature phase is consistent with
that of a system whose gravity dual is two black holes.

However, as we increase the chemical potential, we have
identified qualitative differences between the Majorana and
complex cases in the grand canonical ensemble. In a
relatively narrow range of parameters, there exists an
intermediate phase between the cold wormhole and black
hole phase. For weak coupling, this intermediate phase is
separated from the black hole and cold wormhole phases
by two first order transitions. Tentatively, we believe that
this novel phase may be a charged wormhole [18] char-
acterized by a finite charge and a still gap in the spectrum.
However, further research is required to confirm this
point. For sufficiently large coupling, the transitions end
in a crossover.
The paper is organized as follows. In Sec. II, we

introduce the model, its expected ground state, and sym-
metries and derive the Schwinger-Dyson equations for the
Green’s functions in the large-N limit. Based on the
numerical solution of these equations, Sec. III is devoted
to a detailed analysis of the thermodynamic properties of
the model and the resulting phase diagram. Based on the
approximate conformal symmetry of the ground state and
its soft breaking in the low temperature limit, in Sec. IV, we
write down the low energy generalized Schwarzian effec-
tive action and study some of its properties. This is the
region of parameters where a gravity dual may exist. A list
of problems for future research and conclusions are found
in Sec. V.

II. COUPLED COMPLEX SYK MODEL

A. Action

The Hamiltonian of the complex SYK model is [49,50]

H ¼
X
fig

Ji1…iqψ
i1†…ψ iq=2†ψ iq=2þ1…ψ iq ; ð1Þ

where fig ¼ f1 ≤ i1 < i2 < … < iq=2 ≤ N; 1 ≤ iq=2þ1 <
… < iq ≤ Ng and the complex coupling J satisfies

Ji1…iq=2iq=2þ1…iq ¼ J�iq=2þ1…iqi1…iq=2
;

Ji1i2…iq
2
;iq
2
þ1
…iq ¼ J½i1i2…iq

2
�;½iq

2
þ1
…iq�;

jJi1…iq j2 ¼
ðq=2Þ!2
2qNq−1 J

2; ð2Þ

where the overbar denotes a statistical average with
zero mean.
The Hamiltonian H has a global Uð1Þ conserved charge

Q ¼ 1

N

X
i

ψ i†ψ i −
1

2
; ð3Þ

taking values in ð−1=2; 1=2Þ. We deform H by adding a
term −NμQ, where μ is the chemical potential of the Uð1Þ
charge.
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In this paper, we consider two such SYKs with Dirac
fermions, which we call “left” L and “right” R. The two
Hamiltonians HL and HR involve the same realization of
the disordered coupling Ji1…iq , and we set the chemical
potentials to be equal, μL ¼ μR ¼ μ, since we want to
consider two identical copies of the theory. We couple the
two systems using the interaction

Hint ¼ −
1

2Np−1

�X
i
ðηψ i†

Lψ
i
R þ η�ψ i†

Rψ
i
LÞ
�
p
; ð4Þ

where η is in principle a complex coupling and jηj≡ κ.1

We choose p ¼ 1 for now, but it might also be interesting
to consider p > 1. Therefore, the total Hamiltonian is
given by

Htotal ¼ HL þHR þHint; ð5Þ

where HR ¼ ð−1Þq=2HL.

B. Symmetries

We first discuss the symmetries of the uncoupled model
η ¼ 0,

HL þHR − NμðQL þQRÞ: ð6Þ

There are two global symmetries Uð1ÞL and Uð1ÞR,
which can be combined as

Uð1Þ� ¼ Uð1ÞL � Uð1ÞR; ð7Þ

where Uð1Þþ is interpreted as the symmetry of the system
related to the total charge Qþ ¼ QL þQR. Note that, due
to the form of (6), μ can be thought of as a chemical
potential for Qþ.
If we totally antisymmetrize the fermions in both left and

right site, we also have a particle-hole symmetry at zero
chemical potential μ ¼ 0 [55,56],

ψ i
a ↔ ψ i†

a ; Ji1…iq=2iq=2þ1…iq → J�i1…iq=2iq=2þ1…iq
; ð8Þ

for a ¼ L, R. The extra terms coming from the antisym-
metrization are subleading in the N expansion, so they do
not affect our large-N analytic arguments.
There is also an interchange symmetry,

ψ i
L ↔ ψ i

R: ð9Þ

A general combination of Uð1ÞL ×Uð1ÞR and the
interchange symmetry (9) gives

ψ i
L → eiθRψ i

R; ψ i
R → eiθLψ i

L: ð10Þ

The two-fermion coupling (4) breaks Uð1Þ− explicitly
down to Z2, while it preserves Uð1Þþ.2 Demanding that the
combination (10) is preserved leads to the following
relation between the fermionic phase in each site:

θR − θL ¼ 2θ; θ≡ arg η: ð11Þ
We make the convenient choice θR ¼ −θL ¼ θ.3

C. Schwinger-Dyson equations

One of our main goals is to study the thermodynamic
properties of the system. For that purpose, the first step is to
derive the saddle-point equations, termed Schwinger-
Dyson (SD) equations [39], that control the large-N limit
of the Green’s functions and self-energies that enter in the
calculation of thermodynamic quantities. We first perform
the statistical average of the path integral for the total action
related to the Hamiltonian (5). To leading order in N, a
straightforward calculation [16] yields

hZiJ ¼
Z

Dψ i†
a Dψ i

a exp

�
−
X
i;a

Z
ψ i†
a ð∂τ − μÞψ i

a

þ
X
i

Z
ðηψ i†

Lψ
i
R þ η�ψ i†

Rψ
i
LÞ þ

ð−1Þq=2
qNq−1 J2

×
X
a;b

Z Z
sab

�����
X

i
ψ i†
a ðτÞψ i

bðτ0Þ
����
2
�

q=2
�
; ð12Þ

where a ¼ L, R and sLL ¼ sRR ¼ 1, sLR ¼ sRL ¼ ð−1Þq=2.
We now define the Green’s functions,

Gabðτ; τ0Þ ¼
1

N

X
i

hT ψ i†
a ðτÞψ i

bðτ0Þi; ð13Þ

obeying

G�
abðτ; τ0Þ ¼ Gbaðτ; τ0Þ: ð14Þ

The interchange symmetry (10), (11) implies that

GLRðτ; τ0Þ ¼ e−2iθGRLðτ; τ0Þ; ð15Þ

or GLR ¼ −GRL when θ ¼ π=2.
The particle-hole symmetry (8) implies that

Gabðτ; τ0Þ ¼ −Gbaðτ; τ0Þ; ð16Þ

1We can actually define ηwith any phase if we perform a phase
rotation in one of the systems, as explained in Ref. [54], but we
keep it general in our analytical treatment.

2In Refs. [22,54], the Uð1Þ− was broken spontaneously by a
quartic coupling, and Ref. [22] interpreted it as corresponding to a
bulk gauge field in the gravity dual theory.

3Alternatively, Eq. (11) leads to the Z4 symmetry ψ i
L → ψ i

R,
ψ i
R → −ψ i

L being preserved upon choosing θR ¼ 0, θL ¼ π, and
η purely imaginary as in Ref. [54].
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at zero chemical potential μ ¼ 0. Combining (16) with (14)
gives

ReGLL ¼ ReGRR; ImGLR ¼ −ImGRL;

ImGLL ¼ ImGRR ¼ ReGLR ¼ ReGRL ¼ 0: ð17Þ

This is for reference only; we do not assume these
symmetries in the following as we want to work at μ ≠ 0.
At finite temperature T ¼ 1=β, the Kubo-Martin-

Schwinger (KMS) condition (for the thermofield double
state) reads [57]

GabðτÞ ¼ −Gabðτ þ βÞ; τ < 0: ð18Þ

Introducing in the path integral (12) the Lagrange
multipliers Σabðτ; τ0Þ which enforce the definition (13),
and integrating out the fermions assuming a replica-
diagonal ansatz, we find

hZiJ ∼
Z

DGDΣ exp ½−NIeff �; ð19Þ

where

−Ieff ¼ log det½δabð∂τ − μÞ þ Σab� þ
Z

½ηGLRðτ; τÞ þ η�GRLðτ; τÞ�

þ
X
a;b

Z Z
½Σbaðτ0; τÞGabðτ; τ0Þ þ ð−1Þq=2q−1J2sab½Gabðτ; τ0Þ�q=2½Gbaðτ0; τÞ�q=2�: ð20Þ

Varying the effective action (20) with respect to Gab and Σab leads to the following saddle-point SD equations,

Σ̃LLðτ; τ0Þ ¼ −ð−1Þq=2J2½GLLðτ; τ0Þ�q=2½GLLðτ0; τÞ�q=2−1 þ ð∂τ − μÞδðτ − τ0Þ;
Σ̃LRðτ; τ0Þ ¼ −ð−1ÞqJ2½GLRðτ; τ0Þ�q=2½GRLðτ0; τÞ�q=2−1 þ ηδðτ − τ0Þ;

Σ̃LL⋆GLLðτ; τ0Þ þ Σ̃LR⋆GRLðτ; τ0Þ ¼ −δðτ − τ0Þ;
Σ̃LL⋆GLRðτ; τ0Þ þ Σ̃LR⋆GRRðτ; τ0Þ ¼ 0; ð21Þ

where the star ⋆ denotes the convolution ðf⋆gÞðτ1; τ2Þ≡ R
dτfðτ1; τÞgðτ; τ2Þ and we have defined

Σ̃abðτ; τ0Þ ¼ Σabðτ; τ0Þ þ ð∂τ − μÞδðτ − τ0Þδab: ð22Þ

We also get another set of equations by exchanging L ↔ R and η ↔ η� in (21). For convenience, in the numerical
calculation of thermodynamic properties, we set η ¼ −iκ and q ¼ 4.
These equations (21) are the analogous to those for the two-site coupled Majorana SYK model [12,18] whose gravity

dual in the limit of low temperature and weak coupling between the left and right sites is the eternal traversable wormhole.

D. Grand potential

In the large-N limit, the grand potential, computed by inserting the solution of the SD equations (21) in the on-shell action
(20), is given by

−
βΩ
N

¼ 2 ln

�
2 cosh

βμ

2

�
þ Tr ln

ðiωþ μ − ΣLLÞðiωþ μ − ΣRRÞ − ΣLRΣRL

ðiωþ μÞðiωþ μÞ

− ð−1Þq=2
�
1 −

1

q

�X
ab

Z
dτðJ2GabðτÞq=2Gbaðβ − τÞq=2Þ; ð23Þ

where we have regularized the determinant as in Ref. [56].
From this expression, we can compute the rest of the
thermodynamic quantities.

III. THERMODYNAMIC PROPERTIES IN THE
LARGE-N LIMIT AND PHASE DIAGRAM

In this section, we investigate the thermodynamic proper-
ties of the Hamiltonian (5) in the grand canonical ensemble,

which will result in a detailed phase diagram of the model as
a function of the coupling κ between the two complex SYKs
and the chemical potential μ. We obtain all the thermody-
namic quantities of interest by solving numerically the SD
equations (21) using standard iterative techniques.
Wewill be mostly interested in the calculation of the total

charge Q, related to the global Uð1Þ symmetry mentioned
earlier and the grand potential ΩðT; κ; μÞ (23) where
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FIG. 1. Grand potential Ω vs temperature T for κ ¼ 0.03 (a), κ ¼ 0.05 (b), κ ¼ 0.07 (c), with μ ¼ 0, 0.02, 0.04, 0.06, 0.08 and for
μ ¼ 0 (d), μ ¼ 0.05 (e), μ ¼ 0.09 (f), with κ ¼ 0.03, 0.04, 0.05, 0.06, 0.07. The almost constant grand potential is a signature of the
wormhole phase. A finite μ suppresses the wormhole phase and eventually induces a new phase transition for sufficiently low
temperatures. As was expected, the increase of κ, for a fixed μ, enhances the wormhole phase.
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κ ¼ jηj. We shall see that these quantities characterize the
different phases of the model and are easily accessible from
the knowledge of the Green’s functions and self-energies
resulting from the solution of the SD equations (21).
Likewise, the analysis of the exponential decay of GLR
will provide useful information on the gap Eg that char-
acterizes the wormhole phase. We initiate our analysis with
the calculation of the grand potential Ω (23).

A. Grand potential ΩðT;κ;μÞ
We compute the grand potential Ω as a function of the

temperature T for various κ and μ by plugging in the action
the Green’s function and self-energies obtained by the
numerical solution of the SD equations (21). The final
expression for the grand potential, after a determinant
regularization [51], is given by (23).
In general, the SD equations for a given temperature can

have more than one solution corresponding to different
phases of the model. The preferred solution is the one with
a lower value of the grand potential.
Figure 1 depicts the temperature dependence of the grand

potential for several couplings κ (upper plots) and chemical
potentials μ (lower plots). For μ ¼ 0, results are very similar
to the Majorana case [12]. For very low temperatures, and
finite but small κ, the grand potential is almost temperature
independent, suggesting the existence of a gap in the
spectrum. This is the expected behavior in the traversable
wormhole phase where the ground state, approximately
described by a zero entropy TFD state, is separated from
the first excited by a energy gap. As temperature increases,
we observe a kink indicating a first order transition. In the
proximity of the transition, we show the two branches of
the grand potential. The gravity dual of the higher temper-
ature phase is expected to be a two black hole geometry
with an explicit coupling between the two backgrounds.
For sufficiently strong coupling κ ≥ 0.125, the first order
transition ends. It is replaced by a smooth crossover of no
evident gravitational interpretation.
The situation becomes more interesting for finite but

small μ. For sufficiently small μ, the grand potential is
similar to the μ ¼ 0 case. We still observe a flat low
temperature grand potential, related to a gap in the
spectrum typical of the wormhole phase, that eventually
ends in the first order transition mentioned above. The only
difference is that μ slightly lowers both the gap and the
critical temperature. This is expected as physically the
chemical potential effectively increases the energy of
the system that is detrimental of the gap in the wormhole
phase which will vanish at a lower temperature.
However, for μ ∼ 0.05, we start to observe a second

transition around κ ¼ 0.05. More specifically, as temper-
ature increases, the wormhole phase undergoes a first order
transition to an intermediate phase. At a higher temper-
ature, another first order transition occurs from this
intermediate phase to the black hole phase. That the

transition to the two black hole phase is the one at higher
temperature can be inferred from the slope of the grand
potential which is very similar for all values of the chemical
potential no matter whether the intermediate phase exists or
not. When μ increases further, this novel transition becomes
also a crossover, so we can identify regions with two
transitions, two crossovers, and one transition and one
crossover. In general, the window of parameters where the
two transitions are observed is rather narrow.
In Fig. 2, we choose the optimal choice of parameters for

which this second transition is more clearly observed. We
note that, despite the second transition occurring in a
relatively small range of parameters, the region of coex-
istence of the different phases, given by the range of
temperatures in which other branches are present, is still
much smaller than the range of temperatures in which the
intermediate phase occurs. This is a strong indication that
this phase is stable in the grand canonical ensemble.
A technical comment is in order. As was mentioned

earlier, the different solutions of the SD equations only
exist in a determined range of temperatures. As the end
points of each branch are approximated, the numerical
calculation becomes increasing unstable with larger con-
vergence time. We cannot rule out that a given branch
survives for a somehow larger range of temperatures.

B. Energy gap Eg and the charge Q

In order to further elucidate the phase diagram of the
model, especially the nature of the intermediate phase, we
study the energy gap and the charge Q related to the global
Uð1Þ symmetry mentioned in previous sections. We start
with a detailed introduction of both concepts.

FIG. 2. Grand potential Ω vs temperature T in the region of
parameters κ ¼ 0.05 with μ ¼ 0.06;…; 0.088 where the two first
order phase transitions are more clearly observed. We observe
that the transitions become crossovers for sufficiently large μ.
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1. Charge Q

Following (3), we define the charge,

Qaa ¼
1

N

XN
i

ψ†
aiψai −

1

2
; ð24Þ

where the index a ¼ L, R. Recalling the definition of the Green’s function above,

GabðτÞ ¼
1

N

XN
i

hTψ†
aiðτÞψbið0Þi ⇒

�GabðϵÞ ¼ 1
N

P
N
i hψ†

aiðϵÞψbið0Þi
Gabð−ϵÞ ¼ − 1

N

P
N
i hψbið0Þψ†

aið−ϵÞi;
ð25Þ
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FIG. 3. ΩðTÞ and EgðTÞ (left column) and ΩðTÞ and QðTÞ (right column) for different μ, κ. (a),(b) Only one phase transition,
wormhole to black hole, is observed. (c),(d) Only the lower temperature transition is observed, and the high temperature one becomes a
crossover. The fit to obtain the gap deteriorates rapidly for temperatures above the low temperature transition, so results are less reliable.
(e),(f) Two phase transitions are observed. The fit to obtain the gap in the intermediate region is less reliable. (g),(h) For sufficiently large
μ, κ, both transitions become crossovers.
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we can express the charge as a function of this Green’s function,

Qaa ¼
1

N

XN
i

hψ†
aiψaii −

1

2
¼ lim

ϵ→0

1

N

XN
i

hψ†
aiðϵÞψaið0Þi −

1

2
¼ Gaað0þÞ −

1

2

¼ 1

2
−

1

N

XN
i

hψaiψ
†
aii ¼

1

2
− lim

ϵ→0

1

N

XN
i

hψaið0Þψ†
aið−ϵÞi ¼

1

2
þGaað0−Þ ¼

1

2
−Gaaðβ − 0þÞ; ð26Þ

leading to [51]

Qaa ¼
1

2
ðGaað0þÞ −Gaaðβ − 0þÞÞ: ð27Þ

Since GLLðτÞ ¼ GRRðτÞ is real, we define the total

charge Q as4

Q ¼ QLL þQRR ¼ Qþ ¼ GLLð0þÞ − GLLðβ − 0þÞ:
ð28Þ

The temperature dependence of the charge is illustrated
in the right column of Fig. 3 for a broad range of
parameters. Interestingly, it trails with great accuracy the
transition in the grand potential. It is almost temperature
independent, and very close to zero, in the low temperature
wormhole phase. Physically, it means that at sufficiently
low temperatures the wormhole ground state is robust to the
presence of a small chemical potential. A finite temperature
or chemical potential increases the energy of the system,
but the interactions are strong enough to balance these

increases and keep the charge almost zero. Only the energy
gap decreases as μ increases.
At the two transitions, for small κ and μ, the charge

jumps, so it can be employed to detect the transition in the
system. For larger values of κ and μ, the transition in the
grand potential becomes a crossover. In this range of
parameters, the abrupt discontinuous changes in the charge
become sharp but smooth, so the study of Q provides a
rather detailed knowledge of the phase diagram of the
model.
In Fig. 4 (right column), we show the temperature

dependence of Q for a choice of parameters where the
two phase transitions are observed with special clarity. In
the low temperature phase, the charge is close to zero, but at
the low temperature phase transition, it jumps to a finite
value. In the intermediate phase, the charge increases
approximately linearly with temperature, so in the inter-
mediate region the entropy is constant. At the high temper-
ature phase transition, toward the black hole phase, it jumps
again. It remains an open question if the jump in the charge
in the low temperature phase transition is associated with a
qualitative change in the wormhole ground state; namely, it
is unclear whether the wormhole geometry is robust and
becomes charged or the finite charge signals a transition to
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FIG. 4. Left: ΩðTÞ and EgðTÞ for κ ¼ 0.05 and μ ¼ 0.072 where the two transitions are clearly observed. The solid line is the gap
obtained by a linear fit of lnGLR. The dashed line is a similar fit, but the exponential decay of GLR occurs in a shorter interval, so the
fitting is less reliable. Right: ΩðTÞ and QðTÞ. In the wormhole low temperature phase, charge is zero. It jumps at both the low
temperature and high temperature transitions. It increases linearly between the two transitions. This linear increase, related to a constant
entropy, may be a feature of the intermediate charged wormhole phase.

4This charge was called Qþ in the previous sections.
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a background with no traversability. The calculation of the
energy gap will shed some light on this issue.

2. Energy gap Eg

In the case of Majorana fermions, the coupled two-site
SYK model [12] has a gap Eg in the low temperature limit
that is a distinctive feature of the wormhole phase. The
almost temperature independence of the grand potential in
this limit is a strong indication of a gapped system. More
direct evidence of a gap in the spectrum is directly obtained
from the decay of the Green’s functions. In gapped systems,
the decay of GLL or GLR is exponential with a decay rate

given by Eg. Indeed, we shall see GLL and GLR have a
similar exponential decay, indicating a similar probability
to stay in each site, which implies a continued tunneling
between the two sites. This is the type of feature expected in
a traversable wormhole. In the low temperature limit, in the
region of parameters where we expect a gap, the Green’s
function is expressed as

GabðτÞ ∼ e−EgτfabðτÞ; ð29Þ
with a ¼ L, R and b ¼ L, R. Numerically, we shall show
that, in this limit, and for sufficiently small μ, fLLðτÞ ≈
fLRðτÞ are nearly constant. We obtain the gap Eg by fitting

FIG. 5. Left-top: ΩðTÞ for μ, κ in the region of two transitions. The other diagrams represent lnG, with G ¼ GLL; GLR vs τ=β in the
temperature represented by red circles inΩðTÞ. In the intermediate region, especially close to the low temperature transition, the decay is
linear, and there is still substantial overlap between GLL and GLR, which suggests that some traversability may persist.
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the numerical Gab to an exponential. This was also one of
the procedures employed for Majorana fermions in
Ref. [12] to identify the low temperature phase as a
traversable wormhole. In the high temperature limit, we
expect a transition, or crossover, to the gapless black hole
phase where the ansatz (29) does not apply. A priori, the
nature of the decay is unclear in the intermediate phase of
finite but small μ.
In Fig. 5, we depict results of the decay of the Green’s

function in the three phases. We choose parameters, κ ¼
0.05 and μ ¼ 0.072, where the existence of two transitions
in the grand potential, Fig. 5(a), is more clearly observed.
The red circles correspond to the temperatures in which the
decay of the Greens’s function is studied. As was expected,
the Green’s function in the low temperature phase, plots (b)
and (c) in Fig. 5, decays exponentially, and both Green’s
functions have a strong overlap. This is the behavior for
Majoranas in the wormhole phase [12]. In the high temper-
ature phase, the decays is not exponential for GLR, and
there is virtually no overlap with GLL. This is consistent
with a two black hole phase with an explicit coupling
between them that does not change the gravitational
background.
For intermediate temperatures, between the two

phase transitions, the situation becomes more complicated.
There is still substantial overlap between GLL and GLR,
especially close to the low temperature transition.
Moreover, the decay is still exponential though in a more
limited range of imaginary times which decreases as
temperature increases. We tend to believe it is still a
wormhole phase but with a worse traversability and,
according to previous results, with a finite charge Q > 0

and constant entropy in this region. However, further
calculations are needed to settle the nature of this inter-
mediate region.

In order to gain more explicit information of the gap Eg,
we carry out a fitting of the Green’s function by an
exponential in a broad range of parameters. Results
depicted in the left column of Fig. 3 show that for
sufficiently small μ and not too large κ, Eg vanishes
abruptly at the temperature separating the wormhole from
the black hole phase in the same way as in the Majorana
case. Only one transition is observed in this region of
parameters. As we increase μ, still for small κ, we access
the region where two transitions occur. As was mentioned
earlier, the fitting in the intermediate phase becomes less
reliable. However, we still observe a sharp drop in Eg, but it
does not vanish at the transition. In the intermediate phase,
it increases with temperature, very much like the charge
does, and finally vanishes at the higher temperature
transition toward the black hole phase. We stress the fitting
necessary to obtain Eg becomes increasingly unreliable as
temperature increases. For instance, the abrupt vanishing of
Eg, see Fig. 3(g), for sufficiently large κ, is not related to a
thermodynamic transition as the grand potential only
undergoes a sharp crossover at that temperature.
These results in the intermediate region are confirmed in

Fig. 4 (left) for a choice of parameters where the separation
between the two transitions is larger. Taking into account
that the fitting is more reliable in the lower temperature
limit, the existence of a finite gap for temperature slightly
above the first transition suggests that the intermediate
phase may still be described by a wormhole geometry with
limited traversability and a finite charge and constant
entropy. However, we stress this is a tentative explanation;
it may also occur that a finite charge makes the wormhole
phase unstable and the gap in the intermediate phase is not
related to a wormhole geometry. However, this intermediate
phase is not the high temperature black hole phase in
disguise because the grand potential results indicate that

FIG. 6. Summary of the gap Eg as a function of T in the region of parameters for which two phase transitions coexist.
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this transition occurs at a higher temperature. Therefore, the
nature of the intermediate phase, if it is not a charged
wormhole, would still be an open question.
Clearly, further calculations are needed to reach a firm

conclusion. For the moment, we conclude this section with
a summary, see Fig. 6, of the detailed dependence of EgðTÞ
with κ and μ on a broader range of parameters that includes
the intermediate region between the two transitions. Results
are fully consistent with previous findings for the charge
and grand potential.

C. Phase diagram

We now combine and extend previous results in order to
provide a rather comprehensive description of the system’s
phase diagram for a given coupling κ, temperature T, and
chemical potential μ.
The phase diagram for various μ’s, extracted from the

grand potential, is shown in Fig. 7 as a function of κ and
temperature. Lines indicate first order phase transitions,
and their ends signal that the transition becomes a cross-
over. For sufficiently small μ, the phase diagram is
essentially identical to that of two coupled Majoranas

SYK’s where there is a first order phase transition between
the wormhole and the black hole phase that becomes a
crossover for large κ.
As μ increases, the transition occurs at lower temper-

ature. For μ ≥ 0.06, and a not too large κ, we observe two
transitions. The one at high temperature corresponds to the
transition to the black hole phase. However, there is a new
one at lower temperatures which is rather unexpected.
Based on the previous results for the charge and the gap, it
could in principle be a transition from the wormhole to a
charged AdS background with no traversability or to a
charged traversable wormhole with limited traversability.
As was mentioned earlier, results for the energy gap Eg

suggest the latter, but more information is needed to clarify
this issue. As μ or κ increases further, we shall see the two
transitions eventually become crossovers and this inter-
mediate region cease to exist.
In order to gain a further understanding of the phase

diagram, we compute the charge Q in the κ − μ parameter
space. As is observed in Fig. 8, in the low temperature (left
figure), small-μ limit, the dependence of μ is very weak,
and only one transition is observed, denoted by red circles,
between a wormhole phase for larger κ and a black hole for
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FIG. 7. Phase diagram of the model as a function of the coupling κ and temperature T for different μ’s obtained from the singularities
of the grand potential. Blue (red) lines represent the critical κ corresponding to the low (high) temperature phase transition. The end of
lines indicates that the phase transition is replaced by a crossover. The intermediate phase, that may correspond to a charged wormhole,
is only observed in a limited range of parameters.
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lower κ. There is an intermediate region in κ − μ space
where the two transitions mentioned above are observed.
We note that the one for larger κ corresponds to a wormhole
phase. The intermediate phase between the two transitions
has a finite charge, and as shown earlier, the gap Eg is
still finite, so it may still be a wormhole but charged and
at finite temperature. For sufficiently large μ, the black
hole transition becomes a crossover. At sufficiently higher

temperature (right plot), the low temperature phase tran-
sition will become crossover in the region of μ where the
high temperature phase transition happens. Therefore, we
only observe a transition to a charged black hole. This is
fully consistent with the phase diagram obtained from the
grand potential.
This picture of the intermediate phase is confirmed

explicitly in Fig. 9 for μ ¼ 0.07. A fixed and sufficiently
low temperature T ¼ 0.008, represented by a blue dotted
vertical line on the left, will intersect the charge curve at
couplings κ belonging to the black hole, the intermediate,
and the wormhole phase in agreement with the results of
Fig. 8. Likewise, a red dotted vertical line for a higher
temperature will intersect the charge for couplings κ that,
according to Fig. 8, belong to either the crossover between
the chargeless and possibly the charged wormhole or the
black hole phase, which confirms that only one transition
exists. Eventually, as we further increase κ, we will see a
similar behavior in the high temperature phase transition
toward a black hole which will become a crossover.
Finally, for the sake of completeness, we study, see

Fig. 10, the gap, the charge, and the grand potential, for
larger values of κ and μ and the lowest temperature that we
can reach numerically. Interestingly, we observe Eg

decreases monotonically and almost linearly with μ, for
a fixed low T and different values of κ. It eventually
vanishes abruptly for sufficiently large μðκÞ ∼ 0.2, and it is
zero for κ ¼ 0, which suggests Eg is related with the
wormhole phase and that μ is only a shift in energy that
reduces its value. This is confirmed by the dependence on μ
of the grand potential for κ ¼ 0. This is the only case where
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FIG. 9. QðTÞ for μ ¼ 0.07 with κ ¼ 0.035;…; 0.065. For small
κ, both transitions, characterized by jumps in the charge, are
observed. However, as κ increases, eventually the low temper-
ature transition becomes a crossover. The vertical lines corre-
spond with the temperatures employed in Fig. 8. As was
expected, results of both figures are fully consistent.
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Ω is not completely flat for small μ, which is an indication
that Eg ¼ 0 in this case. For finite κ, we observe a transition
for small κ and a crossover for larger κ.
Another interesting feature is the observed jump in the

chargeQ for large values of μ > 0.2, which are much larger
than those corresponding to the transitions studied earlier.
Similar results have been reported [52] in single complex
SYK, so we do not think that it has any relation with the
wormhole phase.

IV. LOW ENERGY EFFECTIVE ACTION

In this section, we exploit symmetries of the SD
equations in the infrared limit in order to find out the
low energy effective action of the model.
At low energies ω; T ≪ J, the SD equations (21) can be

written compactly as

Σ̃abðτ; τ0Þ ¼ −ð−1Þq=2J2sab½Gabðτ; τ0Þ�q=2½Gbaðτ0; τÞ�q=2−1
− ηabδðτ − τ0Þ; ð30aÞ
X
b

½Gab⋆Σ̃bc� ¼ −δacδðτ − τ0Þ; ð30bÞ

where

ηab ¼
�−∂τ þ μ η

η� −∂τ þ μ

�
: ð31Þ

Ignoring the ηab terms in (30a), the above system of SD
equations (30) possesses the following time reparametriza-
tion and Uð1Þ gauge symmetries,

Gabðτ;τ0Þ→ ½f0aðτÞf0bðτ0Þ�ΔeiðΛaðτÞ−Λbðτ0ÞÞGabðf0aðτÞf0bðτ0ÞÞ;
ð32aÞ

Σ̃abðτ;τ0Þ→ ½f0aðτÞf0bðτ0Þ�1−ΔeiðΛaðτÞ−Λbðτ0ÞÞΣ̃abðf0aðτÞf0bðτ0ÞÞ;
ð32bÞ

where fa ∈ DiffðS1Þ;Λa ∼ Λa þ 2π, and the winding num-
ber na of the compact gauge parameter Λa is conjugate to
the Uð1Þ charge Qa.

A. High temperature

Let us first discuss the high temperature limit where we
expect that the coupling η can be neglected and the SD
equations (21) can be solved by an ansatz in which all
L − R, R − L functions vanish, describing two copies of a
charged SYK model in a thermal state dual to black hole.
Standard arguments [39] imply that, at low energies, the
effective action of the system is

S ¼ Schw½fL;ΛL� þ Schw½fR;ΛR�; ð33Þ
where the Schwarzian of a single complex SYK model can
be expressed [50,56] in terms of the time reparametrization
and Uð1Þ gauge symmetries in (32),

Schw½fa;Λa� ¼ −NαS

Z
dτ

�
tan

faðτÞ
2

; τ

�

þ NK
2

Z
dτðΛ0

aðτÞ þ iEaf0aðτÞÞ2; ð34Þ

The coefficient αS is the prefactor of the heat capacity in the
low temperature limit, K is the compressibility, and E is an
effective parameter that describes the coupling of charge
and gravitational degrees of freedom.
The action above has a [50,58,59] SLð2;RÞ ×Uð1Þ

gauge symmetry. Moreover, there is a global Uð1Þ which
will give to a conserved charge.
For a two complex SYK model, at sufficiently high

temperature β, the grand potential is (twice) the usual for
the complex SYK model [51],

Ω
2N

¼ fðμ0Þ − GðEÞβ−1 − 2π2αSβ
−2; ð35Þ

where we have assumed that the two systems are identical.
In the above, f is the ground state energy, μ0 ¼ μþ 2πEβ,
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FIG. 10. The grand potentialΩ, the chargeQ, and the gap Eg in the low temperature limit for a broad range of parameters μ and κ. The
transition in the charge for large Q ≥ 0.2 is not related to the wormhole phase as it also occurs in the single complex SYK [52]. Eg

decreases monotonically with the chemical potential.
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and GðEÞ is the Legendre transform of the entropy
GðEÞ ¼ SðEÞ − 2πEQ. The explicit analytical expressions
for E and Q in the case of the single complex SYK model
can be found in Ref. [51].
Including small corrections due to the coupling between

the two systems can be accounted for perturbatively. We
refer to Ref. [12], for a detailed analysis in the case of
Majorana fermions.

B. Low temperature

In the low temperature limit, we expect that the ground
state is related to the traversable wormhole. In the Majorana
case, it was argued that, in this region, the ground state of
the coupled system is close to the TFD state at a particular
fictitious temperature β̃ðηÞ [12,45] that depends on cou-
pling η between sites. We note that the physical temperature
is completely unrelated to β̃ðηÞ.
The L − R, R − L Greens’s functions can be obtained

simply by analytically continuing the single-sided corre-
lators to complexified time with imaginary part β̃=2 [60].5

Additionally, for small enough η, based on the approximate
TFD nature of the ground state [12], we can employ
conformal techniques to write down coupling term of
the low energy effective action. Analogously, in the
gravitational picture, the two spacetime boundaries
(L − R) will become causally related in the wormhole
phase. In the following, this idea is applied to investigate
the coupled complex SYK model.
Based on these assumptions [18,50,56], we can use

conformal field theory predictions, also for left-right
correlations, together with the effective infrared symmetries
of the SD equations mentioned earlier, to write down the
Green’s functions of our system in the low temperature
limit corresponding to the wormhole phase as follows,6

GLLðτÞ ¼ GRRðτÞ ¼ A
e−Eτ

ðsinh τ
2
Þ2Δ

GLRðτÞ ¼ −GRLðτÞ ¼ B
ie−Eτ

ðcosh τ
2
Þ2Δ ð36Þ

where A and B are undetermined parameters and
0 < τ < β. In the following discussion, we will explore
the consistency between results stemming from this ansatz
and the previous numerical results.

The reparametrization transformation and gauge trans-
formation in the Green’s functions (32),

8>><
>>:

e−Eτ

ðsinhτ
2
Þ2Δ → eiΛðτÞ−EfðτÞ f0ðτÞΔ

ðsinhfðτÞ
2
Þ2Δ

ie−Eτ

ðcoshτ
2
Þ2Δ → ieiΛðτÞ−EfðτÞ f0ðτÞΔ

ðcoshfðτÞ
2
Þ2Δ ;

ð37Þ

leads to the introduction of reparametrization fðτÞ and
gauge ΛðτÞ modes, which are the effective degree of
freedom of the low energy effective action and can be
determined by solving the classical equations of motion.
Following the procedure introduced in Ref. [12], see also

Ref. [56], we can get the specific form of the Schwarzian in
the low energy effective action,

Schw½fa;Λa� ¼ NαS

Z
dτ

�
tanh

faðτÞ
2

; τ

�
þ NK

2

×
Z

dτðΛ0
aðτÞ þ iEf0aðτÞÞ2; a ∈ fL;Rg;

ð38Þ

and the interaction term

Sint ¼ Nκ

Z
dτ cosðΛLðτÞ − ΛRðτÞÞ coshðEfLðτÞ

− EfRðτÞÞ
�

f0LðτÞf0RðτÞ
cosh2 fLðτÞ−fRðτÞ

2

�
Δ

ð39Þ

As a result, the effective low energy action will be
given by

S ¼ Schw½fL;ΛL� þ Schw½fR;ΛR� þ Sint; ð40Þ

The low energy solutions (see the Appendix) in the zero
and low temperature limits corresponding to the wormhole
phase are given by fðτÞ ¼ fLðτÞ ¼ fRðτÞ ¼ f0τ and
ΛðτÞ ¼ ΛLðτÞ ¼ ΛRðτÞ ¼ constant.
Since the resulting action depends on Λ0 but not on Λ,

there exists a conserved charge,

Q ¼ 2NKð−iΛ0ðτÞ þ Ef0ðτÞÞ; ð41Þ

which is indeed the Uð1Þ charge Q computed numerically
in the previous section. We recall that numerically we
observe thatQ ¼ 0 for sufficiently low temperatures. Given
the solutions above, this is only possible provided that
K ¼ 0 in this region. This is indeed plausible taking into
account that K has the meaning of compressibility andQ is
μ independent.
The grand potential Ω is obtained by inserting the

proposed solutions for f and Λ back in the action,

5From the dual gravity perspective, this is reflected in the fact
that in the complexified maximally extended black hole space-
times the time on the left part of the wormhole has an imaginary
part β̃=2.

6Here, we are conventionally setting the period of the thermal
circle to 2π, i.e., τ ∼ τ þ 2π. After reparametrizing τ → fðτÞ, the
period will be given by the β̃ mentioned below.
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Ω=N ¼ αSf02 þ KE2f02 − κf02Δ: ð42Þ

The value of f0 can be determined from the charge Q0

associated to translations or simply by taking f0 as a
variational parameter and finding the value that minimizes
the action [56]. A straightforward calculation shows that

f0 ¼
�

Δκ
αs þ KE2

� 1
2ð1−ΔÞ

: ð43Þ

Since K ¼ 0 in the region for which Q ¼ 0, we recover
the result for the case of Majorana fermions [12],

f0 ¼ ðΔκαs Þ
1

2ð1−ΔÞ.
Finally, let us now find out the prediction for the gap

according to the effective low energy effective action. From
Eqs. (37), GLL, GLR can be approximated for τ ≫ β by

GLL ∼ eiΛðτÞ−EfðτÞ
f0ðτÞΔ

ðsinh fðτÞ
2
Þ2Δ

≈ f0Δe−ðΔf0þEf0Þτ

GLR ∼ ieiΛðτÞ−EfðτÞ
f0ðτÞΔ

ðcosh fðτÞ
2
Þ2Δ

≈ if0Δe−ðΔf0þEf0Þτ: ð44Þ

Numerically, we found in the last section, and in Fig. 11,
that for τ ≫ β

jGLLj ≈ jGLRj ≈ e−ðE0−μÞτ; ð45Þ

where E0 is gap for μ ¼ 0, discussed in detail in Ref. [54]
for a broad range of τ’s. The comparison between numeri-
cal results and analytical predictions predicts E0 ¼ Δf0
and μ ¼ −Ef0. The former is indeed the prediction for
Majorana fermions [12], and the latter is the expression
found for one charged SYK model [56] that agrees with an

explicit numerical calculation carried out in the next
section.
In summary, we have found agreement between

the prediction of the low energy effective action and
numerical results in the limit of low temperatures where
the Uð1Þ global charge Q ¼ 0 vanishes. We now address
the intermediate region of temperatures where Q ≠ 0
but the system does not yet seem to be in the black
hole phase. First, it is unclear whether the low energy
effective action is still applicable or whether it is appli-
cable but the solutions of of the equations of motions
employed in the previous case are still valid. However, it
seems necessary to impose explicitly the periodicity con-
dition on the solutions fðτ þ βphÞ ¼ fðτÞ þ β, (β ¼ f0βph)
and Λðτ þ βÞ ¼ ΛðτÞ where β is the radius of compacti-
fication and βph is the physical temperature. We recall that
numerically this intermediate phase is characterized by a
finite Q which increases approximately linearly with
temperature. Likewise, the gap Eg in this region also
increases with temperature in a similar fashion, though
the fitting is not reliable as the region with an exponential
decay of the Green’s function is rather narrow. Tentatively,
we would expect that if this intermediate phase is still
wormholelike the solutions for f and Λ employed earlier
will still be valid. In that case, the way to proceed is to
determine β from the minimization of the action [12] and
then write f0 as a function of the critical temperature that
can be used to find out the temperature dependence of the
charge of the gap Eg. However, following this procedure,
we have not managed to reproduce the numerical results. It
could be other solutions for f exists that may explain this
intermediate phase or simply that the assumptions made to
derive the effective action are no longer applicable in this
region. We postpone a detailed study of these issues
together with the solution of the associated Liouville
quantum mechanical problem and its derivation from a
gravity dual to a future publication [61].

C. Numerical evaluation of E

In order to gain further insight about the low energy
effective action (40), we carry out the numerical evaluation
of the parameter E by fitting the numerical Green’s function
(36). We restrict ourselves to the wormhole and intermedi-
ate phase as this ansatz will work only for sufficiently low
temperatures.
In the wormhole phase, we have found that, with great

accuracy, Ef0 ≈ −μ, which implies that Eg defined in the
previous section to characterize the energy gap between the
ground state and first excited state in the cold wormhole
phase has a simple relation with μ, Eg ¼ E0 − μ where
E0 > μ only depends on κ and J and therefore it is a more
accurate indicator of the wormhole phase. In Fig. 11, we
depict the result of the μ dependence of Eg that confirm this
simple relation.
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FIG. 11. The gap Eg in the low temperature limit as a function
of μ for different κ’s. The fitting Eg ¼ E0ðκÞ − μ is in excellent
agreement with the numerical results.
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In the intermediate phase, a similar fitting of the Green’s
function to the ansatz mentioned above points to a relation
−Ef0 ∼ bþ cQμ with b ∼ μ and c a numerical factor of
order 1. However, due to the relatively narrow window of
parameters, our results are less reliable than those in the
cold wormhole phase, so this expression for E must be
considered more like a conjecture that requires further
verification.
In any case, it seems that, as in the canonical ensemble,

there is a close relation between E and the charge Q. The
presence of a finite chemical potential and charge will
reduce the gap induced by the coupling of left and right
SYKs but provided that E0ðκÞ is finite and the total gap Eg

does not vanish, which suggests that the wormhole phase
may still exist. In other words, in the intermediate region,
the charge jumps to a finite value and then increases
linearly with temperature, so this renormalization becomes
increasingly important and eventually will destabilize the
wormhole phase for sufficiently large μ or higher temper-
ature. However, if the increase of Q is sufficiently small at
the transition, the gap is finite, and the wormhole phase
may survive.
Another path to show the existence of the two transitions

comes from a qualitative estimation of the critical temper-
atures from the effective low energy grand potential. At the
critical temperature, the grand potential of the two phases
must be the same. The black hole high temperature phase is
approximately given by two times (35), and the low
temperature wormhole phase is given by Eg. In the
intermediate phase, a finite but smaller Eg may survive;
Q jumps at the two transitions and becomes linear in
temperature in between. For the intermediate phase to be a
charged wormhole, the zero temperature entropy SðEÞmust
remain zero. Therefore, for the intermediate phase to be
some kind of charged wormhole, we would suggest that
the critical temperature of the two phase transitions can be
estimated by

jEgj ∼ 4πQEf0=T; 4πQEf0=T ∼ 2SðEÞ: ð46Þ

D. Large-q analysis

We conclude this section with a large-q analytical
analysis of the thermodynamic properties of the system
that confirms the existence of the wormhole phase in the
low temperature limit. Regarding the intermediate phase,
we found solutions with a finite charge and a finite gap, at
finite temperature not related to the black hole phase.
However, they are observed in a regime where we cannot
trust some of the assumptions of the calculation. Therefore,
a full analytical characterization of this phase must still be
considered an open problem.
The large-q analysis involves the analytical solution of

the SD equations by proposing solutions based on an
expansion around the free limit q → ∞ keeping only

leading 1=q corrections. There is ample evidence
[12,32,39] that most of the interesting properties of the
SYK model for q ¼ 4 are also present in the large-q limit.
For the case of a two-site SYK with Majorana fermions,
related to traversable wormholes, the large-q expansion is
worked out in detail in Ref. [39]. We will adapt this
calculation to our two-site complex fermion SYK model
with a finite chemical potential. For the sake of simplicity,
we will focus on the wormhole region which corresponds to
a specific scaling of q with temperature, β ∼ q log q in the
traversable wormhole case [12].
The strategy of the calculation [12] is to find solutions

of the SD equations for small-τ ≪ q and large-τ ≫ 1
Euclidean time, both in the large-q limit. These solutions
will depend on some unknown parameters that will be fixed
by both imposing boundary conditions and matching the
solutions at a finite τ. Let us start with the large-q solution
in the τ ≪ q limit. Taking into account that we are
interested in the wormhole region, we propose the follow-
ing large-q ansatz:

8<
:

GLLðτÞ ¼ G0
LLe

1
qgLL ¼ G0

LL

	
1þ 1

q gLL þ � � �



GLRðτÞ ¼ G0
LRe

1
qgLR ¼ G0

LR

	
1þ 1

q gLR þ � � �


:

ð47Þ

In the free q → ∞ limit, the solution is given by

G0
LLðτÞ ¼

�
Aeμτ; τ > 0

−Beμτ; τ < 0
ð48Þ

and

G0
LR ¼ iCeμτ ð49Þ

where A, B, and C are constants with Aþ B ¼ 1 and
κ̂ ¼ qκ, as in the Majorana SYK case, and μ̂ ¼ qμ. We note
that, since Gabð−τÞ ¼ −Gabðβ − τÞ, the above relation also
applies in the τ → β limit. Moreover, as a consequence of
the equation of motion, GLL ¼ GRR and GLR ¼ −GRL.
A straightforward calculation shows that gab verifies the

same equations of motion as in the Majorana case [12],

∂2gLLðτÞ ¼ 2J 2e
1
2
ðgLLðτÞþgLLð−τÞÞ

∂2gLRðτÞ ¼ −2J 2bq−2e
1
2
ðgLRðτÞþgLRð−τÞÞ −

κ̂

C
δðτÞ; ð50Þ

with boundary conditions [12],

gLLð0þÞ ¼ gLLð0−Þ ¼ 0;

∂τgLRð0þÞ − ∂τgLRð0−Þ ¼ −
κ̂

C
ð51Þ

and
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gLLðτÞ − gLRðτÞ → 0; τ → 0; ð52Þ

with parameters

J 2 ¼ q
2
J2ðABÞq2−1; b ¼ Cffiffiffiffiffiffiffi

AB
p : ð53Þ

In the large-q limit, we expect b ¼ 1, i.e., C ¼ ffiffiffiffiffiffiffi
AB

p
.

Therefore, the solutions of (50) are similar to those of the
Majorana SYK case [12],

e
1
2
ðgLLðτÞþgLLð−τÞÞ ¼ α2

J 2sinh2ðαjτj þ γÞ ;

e
1
2
ðgLRðτÞþgLRð−τÞÞ ¼ α̃2

J 2cosh2ðα̃jτj þ γ̃Þ ; ð54Þ

which implies

egLL ¼ α2eχðτÞ

J 2sinh2ðαjτj þ γÞ ; egLR ¼ α̃2eχðτÞ

J 2cosh2ðα̃jτj þ γ̃Þ ;

ð55Þ

where χð−τÞ ¼ −χðτÞ.

We follow Ref. [12] and assume χ ¼ 0 in the wormhole
phase, so

egLL ¼ α2

J 2sinh2ðαjτj þ γÞ ; egLR ¼ α̃2

J 2cosh2ðα̃jτj þ γ̃Þ
ð56Þ

The constant of integrations are partially determined by the
boundary conditions (51) and (52):

α ¼ J sinh γ; 4α̃ tanh γ̃ ¼ κ̂

C
: ð57Þ

It is important to stress that these results assume χðτÞ ¼ 0
and therefore are only valid in the wormhole low temper-
ature region [39]. We cannot rule out that solutions with
χðτÞ ≠ 0, that may be related to the intermediate phase,
could exist, but we were unable to find them.
We now study the solutions in the opposite infrared limit

τ ≫ 1. In the low temperature region, ΣLR entering in the
SD equations can be approximated [12] by

ΣLRðτÞ ∼ −iνδðτÞ; ð58Þ

so

ν ¼ i
Z

dτΣLRðτÞ

¼ 4C
q

�
α̃þ μα̃

2α̃ − μ 2F1

�
1; 1 −

μ

2α̃
; 2 −

μ

2α̃
;−e−2γ̃Þ

�
−

μα̃

2α̃þ μ 2F1

�
1; 1þ μ

2α̃
; 2þ μ

2α̃
;−e−2γ̃Þ

��

¼ 4C
q

α̃þO

�
μ̂2

q3

�
; ð59Þ

where we have employed the small-τ expansion of ΣLR to
compute ν.
The SD equations are simplified in this limit to

ð∂τ − μÞGLL þ iνGRL ¼ 0; ð∂τ − μÞGLR þ iνGRR ¼ 0:

ð60Þ

The solutions are given by

GLLðτÞ ¼ De−ðν−μÞτ þ Ee−ðνþμÞðβ−τÞ

GLRðτÞ ¼ Fe−ðν−μÞτ −Ge−ðνþμÞðβ−τÞ: ð61Þ

The constants of integrations can be partially fixed by
noticing that in low temperature limit

GLL;GLR ∼ eμτe�ντ; ð62Þ

which together with the KMS condition GabðτÞ ¼
−Gabðτ þ βÞ, leads to D ≈ F, E ≈G.
Additional relations are obtained by matching the long

and short τ expansion. In the q → ∞ limit, C ≈ F ≈G,
A ≈D, B ≈ E.

Including leading 1=q corrections, A ¼ 1
2
− c

q, B ¼ 1−

A ¼ 1
2
þ c

q, and C ¼
ffiffiffiffiffiffiffiffiffiffiffi
1
4
− c2

q2

q
¼ 1

2
− c2

q2 þ � � � ≈ 1
2
.

Finally, the explicit matching of the short τ and long τ
expansion yields α ¼ α̃ and D ¼ E ¼ F ¼ G ¼ 1

2
, as

well as σ − c ¼ qe−βðνþμÞ and σ þ c ¼ qe−βðν−μÞ from
τ > 0 and τ < 0 regions, respectively. Therefore, we have
σ ¼ qe−βν coshðβμÞ and c ¼ qe−βν sinhðβμÞ, which for
μ → 0 agrees with the two-site Majorana SYK case.
Interestingly, the relation between σ and c imposes the
restriction σ ≥ c.
From the relations (57) and (59), together with α ¼ α̃

from the matching condition above, we obtain

PHASE DIAGRAM OF A TWO-SITE COUPLED COMPLEX SYK … PHYS. REV. D 103, 106023 (2021)

106023-17



2J sinh γ tanh γ̃ ¼ κ̂

2C
≈ κ̂;

log
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2 − c2
p ¼ βν ¼ βκ

tanh γ̃
;

c
σ
¼ tanh βμ: ð63Þ

Following closely the procedure of Ref. [12] for
Majorana fermions, we get the grand potential

βΩ ¼
tanh γ̃ log qffiffiffiffiffiffiffiffiffi

σ2−c2
p

q

�
−

1

tanh γ tanh γ̃
þ 1 −

q
2

− log
sinh γ
cosh γ̃

�
−
σ

q

�
1þ log

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − c2

p
�

ð64Þ

and also the total charge and the energy gap,

Q ¼ c
q
; Eg ¼

2α

q
− μ: ð65Þ

We study these quantities as a function of temperature for
fixed μ̂ and κ̂. In the low temperature limit, the results,
depicted in Figs. 12–14, are fully consistent with the
theoretical expectation and previous numerical results for
the wormhole phase. The grand potential Ω and the gap Eg

are finite and temperature independent, and the charge Q
vanishes. The employed approximations are only valid in
this region of very low temperature. For higher temperatures,
we observe that, for a given temperature, there are different
solutions of the equations. Some of these solutions lead to a
finite value of the charge, a sharp drop in the energy gap
and a first order transition in the grand potential. These
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FIG. 12. Left: grand potentialΩ (64) as a function of temperature for q ¼ 56, κ̂ ¼ 0.2, J ¼ 1 and different μ̂0s. In the low temperature
limit, Ω is constant, in agreement with previous numerical results. Right: the same for a different κ̂ ¼ 0.1.
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expectation, and previous numerical results, Eg is almost constant in the low temperature limit, the effect of μ is a small shift of the gap,
and the associated critical temperature though the large-q result breaks down close to the transition. Right: the same for κ̂ ¼ 0.1.
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are features expected in the intermediate phase, which in
principle cannot be related to the black hole phase because
this requires a different scaling of q with temperature [12].
However, we believe that they do not represent physical
solutions that would require for instance a nonvanishing
χðτÞ partially suppressing the exponential decay of the
Green’s functions related to the sharp drop of the gap in
the intermediate phase. Moreover, according to the numeri-
cal results, the approximation for ΣLR in (58) breaks down
already in this range of temperatures. A new ansatz in place
of (58) would modify the effective differential equations in
the τ ≫ 1 limit, which would lead to further changes in the
Green’s functions. In summary, in the large-q limit, we have
shown analytically the existence of the wormhole phase in
the low temperature limit. Further research is needed to
clarify whether a genuine wormhole phase can exists at
higher temperatures.

V. CONCLUSIONS

We have studied a coupled two-site SYK model with
Dirac fermions. Many of the features of this model are
qualitatively similar to the analogous model with Majorana
fermions. For sufficiently small chemical potential, the
ground state is gapped with a value that decreases with the
chemical potential. It is likely dual to an eternal traversable
with zero charge wormhole despite the presence of a finite
chemical potential. As temperature increases, and for a
small coupling between the two SYKs, eventually we
observe a first order transition from the wormhole phase
to likely the black hole phase. As the coupling increases,
the first order transition eventually becomes a sharp
crossover.
As the chemical potential increases, we have found there

is an important qualitative difference with respect to the
Majorana case: we have identified a range of weak
couplings and not too small chemical potentials for which

an intermediate phase, tentatively termed the charged
wormhole phase, occurs. There is still a gap in the spec-
trum though the charge, which was zero in the wormhole
phase, becomes suddenly finite. It is separated from the
black hole phase by a first order transition at higher
temperature. At this second critical temperature, the charge
undergoes an additional abrupt increase. These transitions
become crossovers for sufficiently large chemical potential
or strong coupling between the left and right complex
SYKs. The thermodynamic features of the model, obtained
from the numerical solution of the SD equations, are in
qualitative agreement with results obtained from a low
energy effective model based on the approximate con-
formal symmetry of the ground state, close to a charged
TFD state. This effective model is a generalized coupled
Schwarzian action with extended SLð2; RÞ × Uð1Þ sym-
metry that reflects the additional charge degree of freedom.
Finally, we enumerate a few natural extensions of this
work. A detailed study of the gravity dual of this model
could shed additional light on the nature of the intermediate
phase. More specifically, it would be interesting to derive
the low energy effective action and the associated Liouville
quantum mechanical problem starting from the gravity dual
or to extend the novel boundary conditions in AdS2 [62],
dual to a single complex SYK, to our coupled complex
SYK model. It would also be worthwhile to compute
transport properties such as the conductivity in order to
further characterize the field theory dual of the wormhole
phase. For that, it would also be necessary to generalize
the model to higher spatial dimensions. That could bring
closer an experimental realization of the physics of the
SYK model and its gravity dual. Other venues for further
research include the extension of these results to super-
symmetric SYK models, nonrandom SYK models, and a
detailed description of the real-time formation of a travers-
able wormhole [18,63].

0.4 0.6 0.8 1 1.2 1.4 1.6

10-3

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

2 3 4 5 6 7 8 9 10 11

10-4

-0.01

0

0.01

0.02

0.03

0.04

0.05

FIG. 14. Left: total charge Q (65) as a function of temperature for q ¼ 56, κ̂ ¼ 0.2, J ¼ 1 and different μ̂ ¼ 0, 0.05, 0.1. In the low
temperature region, Q vanishes as is expected in the wormhole phase. Right: the same for κ̂ ¼ 0.1.
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intermediate phase, termed the small black hole phase, was
found in a related model. For related work on this model,
see also the recent papers [64,65].

APPENDIX: PLAUSIBILITY OF THE
ANSATZ f L = f R AND ΛL =ΛR

Applying an infinitesimal transformation on fa as
in Ref. [12]

δfL ¼ ϵ0 þ ϵþeifL þ ϵ−e−ifL ;

δfR ¼ ϵ0 − ϵþeifR − ϵ−e−ifR ðA1Þ

and the transformation for Λa,

δΛa ¼ −iEδfa; ðA2Þ

similar to the one copy, the effective action is invariant, and
the corresponding Noether charge will be

Q0=N ¼ Q0ðfL;ΛLÞ þQ0ðfR;ΛRÞ þ
�

1

f0L
þ 1

f0R

�
IC

ðA3Þ

Qþ=N ¼ QþðfL;ΛLÞ −QþðfR;ΛRÞ þ
�
eifL

f0L
−
eifR

f0R

�
IC

ðA4Þ

Q−=N ¼ Q−ðfL;ΛLÞ −Q−ðfR;ΛRÞ þ
�
e−ifL

f0L
−
e−ifR

f0R

�
IC

ðA5Þ
with

Q0ðf;ΛÞ ¼ −αS
�
f0 þ f000

f02
−
f002

f03

�
ðA6Þ

Qþðf;ΛÞ ¼ −αS
�
−i

f00

f0
þ f000

f02
−
f002

f03

�
ðA7Þ

Q−ðf;ΛÞ ¼ −αS
�
i
f00

f0
þ f000

f02
−
f002

f03

�
ðA8Þ

IC ¼ 2Δκ
�

f0LðuÞf0RðuÞ
cos2 fLðuÞ−fRðuÞ

2

�
Δ
e−EðfLðuÞ−fRðuÞÞ

× cosðΛLðuÞ − ΛRðuÞÞ; ðA9Þ

whereQ0,Qþ, andQ− correspond to variations with ϵ0, ϵþ,
and ϵ−, respectively. So, the zero charge condition Qþ ¼ 0
andQ− ¼ 0will be satisfied if fL ¼ fR. However, it cannot
give the constraint on the relation between ΛL and ΛR since
the variation of Λa is not independent. And we need to see
whether there is another way to impose the variation to give
the constraint.
Assuming fL ¼ fR, the invariance of the action under

the transformation of fa and Λa requires

δ
X
a

ðΛ0
aðτÞ þ iEf0aðτÞÞ2

¼ 2
X
a

ðΛ0
aðτÞ þ iEf0aðτÞÞðδΛ0

aðτÞ þ þiEδf0aðτÞÞ ¼ 0

ðA10Þ

δ cos ðΛLðτÞ − ΛRðτÞÞ
¼ − sin ðΛLðτÞ − ΛRðτÞÞδðΛLðτÞ − ΛRðτÞÞ ¼ 0: ðA11Þ

These two equation would be satisfied if ΛL ¼ ΛR and
δΛL ¼ −δΛR ¼ ϵðτÞ where ϵðτÞ is an arbitrary infinitesi-
mal function. We also need to check whether these relations
are consistent with the zero charge condition. As we can see
in the former equation above, the charge given by the
variation δΛL ¼ −δΛR ¼ ϵðτÞ will be zero trivially, but we
still need to check the charge from δf.
To check the self-consistency of those relation, now we

impose the variation

δfL ¼ ϵ0 þ ϵþeifL þ ϵ−e−ifL ;

δfR ¼ ϵ0 − ϵþeifR − ϵ−e−ifR δΛL ¼ −δΛR ¼ ϵðτÞ;
ðA12Þ

then, the charge will become

Qg=N ¼ K½ðΛ0
L − Λ0

RÞ þ iEðf0L − f0RÞ� ðA13Þ

Q0=N ¼ Q0ðfL;ΛLÞ þQ0ðfR;ΛRÞ þ
�

1

f0L
þ 1

f0R

�
IC

ðA14Þ

Qþ=N ¼ QþðfL;ΛLÞ −QþðfR;ΛRÞ þ
�
eifL

f0L
−
eifR

f0R

�
IC

ðA15Þ
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Q−=N ¼ Q−ðfL;ΛLÞ −Q−ðfR;ΛRÞ þ
�
e−ifL

f0L
−
e−ifR

f0R

�
IC

ðA16Þ

with

Q0ðf;ΛÞ ¼ iKEðΛ0 þ iEf0Þ − αS

�
f0 þ f000

f02
−
f002

f03

�

ðA17Þ

Qþðf;ΛÞ ¼ eif
�
iKEðΛ0 þ iEf0Þ−αS

�
−i

f00

f0
þ f000

f02
−
f002

f03

��

ðA18Þ

Q−ðf;ΛÞ ¼ e−if
�
iKEðΛ0 þ iEf0Þ− αS

�
i
f00

f0
þ f000

f02
−
f002

f03

��

ðA19Þ

IC ¼ 2Δκ
�

f0LðuÞf0RðuÞ
cos2 fLðuÞ−fRðuÞ

2

�
Δ
e−EðfLðuÞ−fRðuÞÞ

× cosðΛLðuÞ − ΛRðuÞÞ; ðA20Þ

where Qg, Q0, Qþ, and Q− correspond to variations with
ϵðτÞ, ϵ0, ϵþ, and ϵ−, respectively. Obviously, tL ¼ tR, and
ΛL ¼ ΛR is satisfied if imposingQg ¼ Qþ ¼ Q− ¼ 0. The
condition Q0 ¼ 0 is just a consequence that no additional
matter is considered in our case [12].
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