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We study causal diamonds in Minkowski, Schwarzschild, (anti–)de Sitter, and Schwarzschild–de Sitter
spacetimes using Euclidean methods. The null boundaries of causal diamonds are shown to map to isolated
punctures in the Euclidean continuation of the parent manifold. Boundary terms around these punctures
decrease the Euclidean action by A⋄=4, where A⋄ is the area of the holographic screen around the diamond.
We identify these boundary contributions with the maximal entropy of gravitational degrees of freedom
associated with the diamond.
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I. INTRODUCTION

It has become increasingly clear over the past few years
that the key to understanding how Einstein’s theory of
general relativity fits into the framework of quantum
mechanics is the relationship between quantum informa-
tion and spacetime geometry. Much of the work in this
area has focused on the AdS=CFT correspondence, where
the Ryu-Takayanagi formula [1] connects precise calcu-
lations in quantum field theory (QFT) to the areas of
spacetime submanifolds of the dual geometry. The tensor
network version [2–7] provides a way to extend these
ideas to truly localized regions of spacetime: causal
diamonds of finite area.
A precise relation between particular spacetime geom-

etries and hydrodynamic concepts in a quantum theory of
gravity (such as the entropies of subsystems) is in tension
with the idea that spacetime geometry is a fluctuating
quantum variable. The entropies of large subsystems expe-
rience only small quantum fluctuations, whichmoreover can
be completely reproduced by a classical statistical theory,
such as the Einstein-Smoluchowski explanation ofBrownian
motion, with no trace of the interference effects and asso-
ciated violations of Bayes’ conditional probability rule that
are characteristic of quantum probabilities. Nonetheless,
evidence mounts [8–10] that Euclidean path integrals over
geometries can reproduce features of quantum gravity that
go beyond entropies of subsystems. Thus it is fair to say that
at present the relationship between the Euclidean gravita-
tional path integral and quantum gravity remains deeply

mysterious. The present paper will not resolve these mys-
teries, but it will extend the classes of geometric quantities
that can be given a hydrodynamic interpretation.
We consider finite causal diamonds in various space-

times and define a procedure for computing their maximal
gravitational entropy S⋄ from a Euclidean action. We
consider only spherically symmetric spacetimes, and in
cases lacking translation invariance, we place the center of
the diamond at the center of the spacetime. In all cases our
results amount to

S⋄ ¼ A⋄=4; ð1Þ

where A⋄ is the d − 2 volume in Planck units of the
holographic screen, or the leaf of maximal d − 2 volume in
a null foliation of the boundary of the diamond. [More
precisely, we will see that Eq. (1) holds for ordinary
diamonds in maximally symmetric spacetimes. We will
also define “cored” diamonds surrounding black holes; for
these, we will find an additional contribution from the black
hole horizon, which serves as an inner null boundary of the
diamond.]
The Gibbons-Hawking calculation [11] of particular

black hole entropies via Euclidean path integrals can be
considered evidence for the Bekenstein-Hawking area
formula. Similarly, the results here can be considered
evidence for the covariant entropy principle (CEP)
[12–16]. The CEP states that any causal diamond in any
d-dimensional Lorentzian spacetime is associated with a
Hilbert space whose maximal entropy is one quarter of the
area of the diamond’s holographic screen:

log dimH ¼ A⋄=4: ð2Þ

More primitively, we view our results as an addition to
the list of thus-far perplexing connections between bulk
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gravitational path integrals, volumes of spacetime subma-
nifolds, and precise quantum calculations. As we will see,
the prescription for computing the diamond entropies
involves various choices, including, for example, the
coordinates to be analytically continued and the signs of
normal vectors on diamond boundaries. We will only
motivate these choices; a true understanding of the for-
mulas we obtain would provide a complete justification of
the prescription.
We consider the semiclassical approximation to the

gravitational path integral. The partition function and
Euclidean action are

Z¼
Z

Dge−IE½g�;

IE¼−
1

16π

Z
M
d4x

ffiffiffi
g

p ðR−2ΛÞ− 1

8π

Z
∂M

d3x
ffiffiffi
h

p
K: ð3Þ

Occasionally it is useful to include another term that
depends only on the boundary metric h, but we will not
need to do so here. Our general strategy is as follows. First,
we cover the causal diamond with inextendible “diamond
universe” coordinates. These coordinates are not particu-
larly unique, but we will require that the time coordinate s
has the following properties: the holographic screen lies in
constant time slice s ¼ 0, and ∂s is an instantaneous
timelike Killing vector on that surface. (This is automatic
if s ¼ 0 is a moment of time reflection symmetry.) We then
continue s to Euclidean signature. In all cases we find that
the continuation is in fact the same as the Euclidean
continuation of the entire parent manifold in which the
diamond was embedded, with the exception of isolated
punctures. These punctures are associated with the null
boundaries of the diamond in Lorentzian signature, and we
argue that Gibbons-Hawking-York (GHY) terms [11,17] on
infinitesimal boundaries around the punctures compute the
entropies associated with the diamond horizons. Our
emphasis and point of view is primarily thermodynamic,
but we will also comment on the replica trick.
This work was motivated by the CEP and by a paper of

Jacobson and Visser [18], who showed that a first law can
be ascribed to finite causal diamonds in maximally sym-
metric spacetimes.1 We will restrict our attention to d ¼ 4,
where the holoscreen is the maximal-area 2-surface on the
boundary of the diamond, and give all results in Planck
units. We will find that Euclidean techniques can be used to
recover Eq. (2).
Some of our discussion of boundary terms around punc-

tures was motivated by the Arnowitt-Deser-Misner (ADM)
analysis of Euclidean Schwarzschild–de Sitter in Ref. [21].

InAppendixwe review this technique and show that it can be
used to derive various sum rules between different boundary
terms in various spacetimes. Although our focus is on the
Euclidean path integral, we would also like to note the
interesting fact that one can obtain a boundary contribution to
the Lorentzian action over a finite region bounded by a light
sheet equal toA=4 by careful considerationof the null surface
boundary term [22–24]. The connection of this very general
Lorentzian result to the Euclidean path integral and its
thermodynamic interpretation bears further investigation.

II. MINKOWSKI

We start with a causal diamond in Minkowski space. We
work in spherical coordinates ðt; r; θ;ϕÞ and center a
diamond of proper time τ on the origin. It is convenient
to cover the diamond in inextendible coordinates intro-
duced by Jacobson and Visser [18],

r ¼ τ

2

�
sinh x

cosh xþ cosh s

�
;

t ¼ τ

2

�
sinh s

cosh xþ cosh s

�
: ð4Þ

We will refer to these as “diamond universe” coordinates,
and we will use variations on them throughout this work. s
is a time coordinate running from −∞ to þ∞ and x is a
radial coordinate running from 0 to ∞. These coordinates
cover the diamond, and any constant x trajectory reaches
the tips of the diamond at infinite s. A sketch is shown in
Fig. 1. These coordinates were also used in [25] to study the
entropy of causal diamonds in a conformal field
theory (CFT).
The line element is

dl2 ¼ C2ð−ds2 þ dx2 þ sinh2ðxÞdΩ2Þ;

C ¼ τ=2
coshðsÞ þ coshðxÞ : ð5Þ

Since the metric is an even function of s, ∂s is an
instantaneous timelike Killing vector on the maximal slice
of the diamond. The Euclidean continuation s → −isE is

dl2E ¼ C2
Eðds2E þ dx2 þ sinh2ðxÞdΩ2Þ;

CE ¼ τ=2
cosðsEÞ þ coshðxÞ : ð6Þ

We can take sE to be periodic with period 2π.
It is instructive to compare the analytic continuation of

the finite diamond to the continuation of all of Minkowski
space. What patch of R4 is covered by the continuation of
the diamond?
We define a map to ðtE; r; θ;ϕÞ by the continuation

of Eq. (4),

1Wewould also like to mention the interesting work of [19,20],
where it is argued that fluctuations in the degrees of freedom
associated with a causal diamond horizon might be large enough
to be detected in interferometry experiments.
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r ¼ τ

2

�
sinh x

cosh xþ cos sE

�
;

tE ¼ τ

2

�
sin sE

cosh xþ cos sE

�
: ð7Þ

Remarkably, the continuation of the finite diamond covers
nearly all of R4. Only the point at x → ∞ is missing,
corresponding to an infinitesimal tubelike boundary of
topology S1 × S2 around ðr; tEÞ ¼ ðτ=2; 0Þ. The map (7) is
sketched in Fig. 2.
The metric (6) also has a singularity at ðx; sEÞ ¼ ð0; πÞ.

Equation (7) maps this singularity to r ¼ ∞ in R4: the
singularity is in fact equivalent to the ordinary large-radius
boundary in the continuation of all of Minkowski space.
Thus, the only difference between the continuation of the

finite diamond and the continuation of Minkowski space-
time is the presence of an infinitesimal boundary of
topology S1 × S2 around ðr; tEÞ ¼ ðτ=2; 0Þ. This point
corresponds to x → ∞ in diamond universe coordinates,
or the horizon of the diamond in Lorentzian signature. It is
therefore natural to identify the Euclidean action of the
diamond with a GHY term on this boundary.
This identification may appear unusual and it is worth

dwelling on it for a moment. Ordinarily, the thermody-
namics properties of horizons are not computed in this way,
by the insertion of a boundary term at the Euclidean

continuation of the horizon. For example, in Euclidean
Schwarzschild the free energy is usually computed from a
boundary term at infinity, rather than at r ¼ 2M. In
Euclidean de Sitter, the entropy is computed from the bulk
Einstein-Hilbert term, rather than a boundary term at the
cosmological horizon r ¼ L. However, both the black hole
and cosmological horizon entropies can also be computed
from the GHY term on infinitesimal boundaries at r ¼ 2M
and r ¼ L, respectively, with outward normal pointing
toward the bulk. This result can be derived from the ADM
formulation of the action [21,26], which we review in
Appendix. In this light, our prescription to compute the
entropy of the diamond horizon from a boundary term at
the continuation of the horizon is not so unprecedented.
In which direction is the boundary surface oriented? The

map to R4 compels us to orient the surface outward from
the puncture at ðr; tEÞ ¼ ðτ=2; 0Þ, so that its orientation
matches the orientation of the usual boundary at infinity.
This is also consistent with the prescription for computing
black hole and cosmological horizon entropies described in
the previous paragraph. More covariantly, we compute the
full gravitational action in a small neighborhood in R4

around the point ðr; tEÞ ¼ ðτ=2; 0Þ: the Einstein-Hilbert
term vanishes in the infinitesimal limit, leaving the out-
ward-directed GHY term. In diamond universe coordinates,
this corresponds to an inward pointing boundary at x → ∞,
pointing toward smaller x.

FIG. 2. Contours of constant x (red) and sE (blue) coordinates
on coordinates ðr; TEÞ for R4 (with an S2 suppressed). In this
example τ ¼ 2. The continuation of the finite diamond covers
almost all of R4. The boundary x → ∞ corresponds to a
boundary of topology S1 × S2 around ðr; tEÞ ¼ ðτ=2; 0Þ. The
singularity at ðx; sEÞ ¼ ð0; πÞ maps to ∞.

FIG. 1. A sketch of the diamond universe coordinates in
Eq. (4). Contours of constant x (red) and s (blue) cover the
Minkowski space diamond (an S2 is suppressed).
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The boundary term is easy to compute in either static or
diamond universe coordinates; we will use the latter. We
obtain

ffiffiffi
h

p
K¼−τ2 sinðθÞsinhðxÞ

×

�
2coshðxÞðcosðsÞþcoshðxÞÞ−3sinh2ðxÞ

4ðcosðsÞþcoshðxÞÞ3
�
; ð8Þ

and the limiting behavior at large x is

ffiffiffi
h

p
K →

1

4
τ2 sinðθÞ as x → ∞: ð9Þ

Thus the boundary action is

IGHY ¼ −
�
1

4
τ2
�

1

8π

Z
2π

0

dsE

Z
dΩ

¼ −
1

4
πτ2

¼ −A⋄=4; ð10Þ

where A⋄ ¼ 4πðτ=2Þ2 is the area of the holographic screen,
the boundary of the maximal slice. This result can also be
obtained from the Gauss-Bonnet theorem without explicit
computation of the extrinsic curvature: the action is the
product of the area of the sphere, a 1=8π factor, and the one-
dimensional boundary term for a flat disk. The latter is 2π
times the Euler characteristic of the disk, which is 1, so we
arrive again at A=4.
We interpret this result as the free energy β⋄F⋄ ¼

β⋄E⋄ − S⋄ ¼ −S⋄ of the quantum gravitational degrees
of freedom in the causal diamond,2

S⋄ ¼ −IEuclidean ¼ A⋄=4; ð11Þ

consistent with the CEP. The identification of the free
energy and the entropy is a consequence of the fact that at
x ¼ ∞ the radius of the thermal circle is zero: the temper-
ature is infinite, and the partition function simply counts all
of the states in the Hilbert space.3 This is reminiscent of the
derivation of the CEP following Jacobson [12], where the
entropy and energy that are used to relate Einstein’s
equations and the first law of thermodynamics are those
appropriate to an infinite temperature Unruh trajectory.

III. dE SITTER

Next we consider causal diamonds in the other max-
imally symmetric spacetimes, beginning with de Sitter
(dS). The static patch metric is

dl2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2;

fðrÞ ¼ 1 −
�
r
L

�
2

; ð12Þ

and we introduce a radial tortoise coordinate

r ¼ L tanhðr�=LÞ: ð13Þ

We denote the tortoise coordinate radius of the holographic
screen as R�. Its area radius is R ¼ L tanhðR�=LÞ and the
area is A⋄ ¼ 4πR2.
For variety, we will use a different set of diamond

universe coordinates in this case. These coordinates were
also introduced by Jacobson and Visser in the study of
conformal Killing vectors preserving causal diamonds [18].
However, this property is inessential; in particular, there is
no conformal Killing vector preserving the causal diamond
studied in the Schwarzschild case below, and we will use a
different set of coordinates in the anti–de Sitter (AdS) case.
The transformation from the finite diamond to the s, x

variables defined in [18] is given in terms of light cone
coordinates u ¼ t − r�, v ¼ tþ r�, ū ¼ s − x, v̄ ¼ sþ x:

eu=L ¼ cosh½ðR�=Lþ ūÞ=2�
cosh½ðR�=L − ūÞ=2� ;

ev=L ¼ cosh½ðR�=Lþ v̄Þ=2�
cosh½ðR�=L − v̄Þ=2� : ð14Þ

Here x runs from zero to infinity.
The metric in s, x coordinates is

dl2 ¼ C2ð−ds2 þ dx2 þ sinh2ðxÞdΩ2Þ;

C ¼ L sinhðR�=LÞ
coshðsÞ þ coshðxÞ coshðR�=LÞ

: ð15Þ

It can be checked that in the limit R� → ∞, making the
substitution r ¼ L tanh x recovers the ordinary dS static
patch with time s.
The Euclidean continuation s → −isE is

dl2E ¼ C2
Eðds2E þ dx2 þ sinh2ðxÞdΩ2Þ;

CE ¼ L sinhðR�=LÞ
cosðsEÞ þ coshðxÞ coshðR�=LÞ

: ð16Þ

Again we can take sE to be periodic with period 2π. The
Euclidean continuation of the original time coordinate,
t → −itE, is related to x, sE by

2These are not to be confused with quantum field theoretic
degrees of freedom associated with the gravitational field.
They are the as-yet-undetermined underlying variables of a
general quantum theory of gravity. We are uncovering only their
hydrodynamic properties.

3To interpret the GHY term as the free energy of an
equilibrium thermodynamic system, we have to specify coor-
dinates for which the time coordinate is periodic on the boundary
around the puncture. This requirement is satisfied by the x, sE
coordinates, and the temperature is infinite because the proper
periodicity is zero at the puncture.
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tanðtE=LÞ ¼
sinðsEÞ sinhðR�=LÞ

cosðsEÞ coshðR�=LÞ þ coshðxÞ : ð17Þ

We can make the right-hand side arbitrarily small by tuning
sE close to zero, or arbitrarily large by taking x larger than
R�=L and tuning cosðsEÞ close to coshðxÞ= coshðR�=LÞ.
Therefore, tE=L is an ordinary angle. This is also what is
found in the usual analysis of Euclidean dS, requiring the
absence of a conical singularity at r ¼ L. The tortoise
coordinate satisfies

r� ¼
L
2
log

�
cosðsEÞ þ coshðxþ R�=LÞ
cosðsEÞ þ coshðx − R�=LÞ

�
: ð18Þ

For any sE, we can make r� arbitrarily negative or positive
by tuning x.
Therefore, as in the Minkowski case, the x, sE coor-

dinates cover the entire Euclidean dS manifold with the
exception of the surface at x → ∞, which is the null
boundary of the diamond in Lorentzian signature. In
Euclidean static patch tortoise coordinates, this boundary
maps to the point tE ¼ 0, r� ¼ R�.
We associate the puncture with the null boundary of the

diamond, and to compute the free energy we place an
infinitesimal outward-pointing boundary around the punc-
ture (corresponding in the diamond universe coordinates to
a boundary at x → ∞ pointing toward smaller x). The
limiting behavior of the associated GHY term is

ffiffiffi
h

p
K → R2 sinðθÞ as x → ∞; ð19Þ

so it contributes

IGHY ¼ −A⋄=4: ð20Þ

Again we interpret this result as logðZÞ at infinite temper-
ature, counting the quantum gravitational degrees of free-
dom associated with a finite causal diamond, S⋄ ¼ A⋄=4.
dS has a maximal causal diamond, R� → ∞. In this

limit the diamond radius in ordinary static patch coordi-
nates is r ¼ L, filling the spacetime. We see that we
recover the entropy of the cosmological horizon in this
limit, SdS ¼ AdS=4.
Ordinarily, the dS horizon entropy is computed from a

Euclidean bulk Einstein-Hilbert term, and it is said that
there are no boundaries, since Euclidean dS is topologically
S4. Here we obtained the dS entropy purely from a
boundary term around the “point” at r ¼ L. This suggests
an interesting bulk-boundary sum rule. As mentioned
above, this is not an accident, and is one of a family of
sum rules that can be derived by equating the ADM
calculation of the action to the Einstein-Hilbert calculation.
We derive this relationship in Appendix.

IV. ANTI–dE SITTER

We compute the maximal entropy of the AdS diamond
using diamond universe coordinates similar to those in the
Minkowski case, which for AdS are not adapted to the
timelike conformal Killing vector. Indeed, any coordinates
that agree with the ones we use near the boundaries of the
diamond would work just as well. In AdS we start in global
coordinates, for which the Euclidean AdS metric is

dl2 ¼ 1

cos2ðρ=LÞ ðdt
2
E þ dρ2 þ L2sin2ðρ=LÞdΩ2Þ; ð21Þ

where 0 ≤ ρ ≤ πL=2. For a causal diamond with coordi-
nate radius ρ ¼ ρd on the holographic screen, we define the
diamond universe coordinates in a manner similar to the flat
space expressions in Eq. (4), substituting r → ρ, τ → 2ρd.
The analytically continued diamond and global coordinates
are related by

ρ ¼ ρd

�
sinh x

cosh xþ cos sE

�
;

τE ¼ ρd

�
sin sE

cosh xþ cos sE

�
: ð22Þ

sE is bounded for small x by cos sE > − cosh xþ 2ρd
πL sinh x,

which maps to the boundary of Euclidean AdS at
ρ ¼ πL=2. Again, the continuation of the finite diamond
covers nearly all of Euclidean AdS. Only the surface at
x → ∞ is missing, corresponding to an infinitesimal tube
around ðρ; τEÞ ¼ ðρd; 0Þ.
As before, we compute the GHY term from an inward-

pointing boundary at x → ∞. The limiting behavior is

ffiffiffi
h

p
K → L2tan2ðρd=LÞ sinðθÞ as x → ∞: ð23Þ

L tanðρd=LÞ is the area radius of the holographic screen
(the radius r defined by setting the proper area equal to
4πr2), so we find that this new boundary has Euclidean
action

IGHY ¼ −A⋄=4; ð24Þ

with a similar interpretation to the previous cases.

V. SCHWARZSCHILD

Now we consider cases where there is a black hole at the
center of the spatial slices in the diamond. We will not
include the interior of the black hole in the diamond, and in
this sense the diamond is “cored.” This introduces a new
complication, a second null boundary in Lorentzian sig-
nature, lying on the black hole horizon. We will see that
both horizons are mapped to punctures under Euclidean
continuation of the inextensible coordinates.
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First we consider a diamond surrounding a Schwarzschild
black hole. It is convenient to start from the Kruskal-
Szekeres (KS) coordinates,

dl2 ¼ 32M3

r
e−r=2Mð−dT2 þ dX2Þ þ r2dΩ2;

T2 − X2 ¼ ð1 − r=2MÞer=2M: ð25Þ
The second equation gives an implicit definition of r. The
region outside the black hole is X > 0, T2 − X2 < 0.
Therefore, while a causal diamond in flat space looks like
half a diamond on a (radius, time) plot (because r > 0), a
causal diamond with a black hole at the center, in Kruskal-
Szekeres coordinates and with coordinate radius ΔX ¼ τ=2
on the maximal slice, looks like a full diamond offset to the
right on a plot in ðX; TÞ coordinates. This is shown in the left
panel of Fig. 3.
The radius of the diamond rτ=2 satisfies the equation

above with X ¼ τ=2 and T ¼ 0, i.e.,

−τ2=4 ¼ ð1 − rτ=2=2MÞerτ=2=2M: ð26Þ

We can introduce the diamond universe coordinates in a
manner similar to the previous case,

X −
τ

4
¼ τ

4

�
sinh x

cosh xþ cosh s

�
;

T ¼ τ

4

�
sinh s

cosh xþ cosh s

�
: ð27Þ

s still runs from −∞ to þ∞, but x now runs from −∞ to
þ∞ as well. In these coordinates,

dl2 ¼ C2ð−ds2 þ dx2Þ þ r2dΩ2;

C ¼
�

τ=4
coshðsÞ þ coshðxÞ

��
32M3

r
e−r=2M

�
1=2

−
τ2ex

8ðcoshðsÞ þ coshðxÞÞ ¼ ð1 − r=2MÞer=2M: ð28Þ

Since the metric is an even function of s, ∂s is again an
instantaneous timelike Killing vector on the maximal slice.
The Euclidean continuation s → −isE is

dl2 ¼ C2
Eðds2E þ dx2Þ þ r2dΩ2;

CE ¼
�

τ=4
cosðsEÞ þ coshðxÞ

��
32M3

r
e−r=2M

�
1=2

−
τ2ex

8ðcosðsEÞ þ coshðxÞÞ ¼ ð1 − r=2MÞer=2M: ð29Þ

Again we can take sE to be periodic with period 2π.
We can also define Euclidean Kruskal-Szekeres coor-

dinates by the continuation T → −iTE. This continuation
specifies the periodicity of the Euclidean Schwarzschild
coordinate time tE: tanðtE=4MÞ ¼ TE=X, so if we fix
T2
E þ X2, we see that tE=4M is an ordinary angle. This

produces the correct periodicity to avoid a conical singu-
larity at r ¼ 2M.

FIG. 3. Left: Causal diamond surrounding a Schwarzschild black hole in Kruskal-Szekeres coordinates (with an S2 suppressed).
Right: Contours of constant x (red) and sE (blue) coordinates, which define the Euclidean continuation of the finite diamond around the
black hole, on Euclidean Kruskal-Szekeres coordinates. In this example τ ¼ 2. The Euclideanized diamond covers almost all of
Euclidean Schwarzschild, except for the points ðX; TEÞ ¼ ðτ=2; 0Þ and (0, 0), corresponding to x ¼ �∞. The singularity at ðx; sEÞ ¼
ð0; πÞ maps to r ¼ ∞, where r is the usual Schwarzschild coordinate, a function of X2 þ T2

E.
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The natural map between the Euclidean diamond
coordinates and the Euclidean Kruskal-Szekeres coordi-
nates is

X ¼ τ

4

�
1þ sinh x

cos sE þ cosh x

�
;

TE ¼ τ

4

�
sin sE

cos sE þ cosh x

�
: ð30Þ

As in the previous cases, the Euclidean diamond corre-
sponds to almost all of Euclidean Schwarzschild. The
surfaces at x → �∞ correspond to infinitesimal tubes of
topology S1 × S2 around ðX; TEÞ ¼ ðτ=2; 0Þ and (0,0),
respectively. Figure 3 shows an example of the map.

The map is again singular at ðx; sEÞ ¼ ð0; πÞ, which maps
to infinity in the ðX; TEÞ plane, corresponding to the
asymptotic boundary of Euclidean Schwarzschild.
We place GHY terms around the points at x → �∞ and

interpret them as the free energy seen by an observer
skirting the diamond horizon. The x → ∞ boundary
ðX; TEÞ ¼ ðτ=2; 0Þ is computed as before: we interpret
the point as representing the outer null boundary of the
diamond, and we choose the orientation of the boundary so
that it points toward radial infinity in Kruskal-Szekeres
coordinates. This corresponds to an outward-pointing
boundary around ðX; TEÞ ¼ ðτ=2; 0Þ. We can obtain the
results either by the Gauss-Bonnet theorem or explicit
computation. In the latter case, we have

ffiffiffi
h

p
K ¼ −

ffiffiffi
h

p
ffiffiffi
g

p ∂xð
ffiffiffi
g

p
C−1
E Þjx

¼ −
sinðθÞðMτ2e−

r
2Mð6M − rÞðex cosðsEÞ þ 1Þ − 8r2 sinhðxÞðcosðsEÞ þ coshðxÞÞÞ

8ðcosðsEÞ þ coshðxÞÞ2
→ r2τ=2 sinðθÞ as x → ∞: ð31Þ

Now we consider the boundary at x → −∞. This
corresponds to the null black hole horizon, so this horizon
maps to ðX; TEÞ ¼ ð0; 0Þ under Euclidean continuation. We
draw an infinitesimal disk around the point, compute the
outward-pointing (positive x-directed) GHY term, and add
it to (31). We can reuse the above computation of

ffiffiffi
h

p
K, and

the limiting behavior is

ffiffiffi
h

p
K → ð2MÞ2 sinðθÞ as x → −∞: ð32Þ

Putting the two boundary terms together, we obtain the
action

IGHY ¼ −
1

8π

Z
2π

0

dϕ
Z

π

0

dθ
Z

2π

0

dsEððr2τ=2 þ 4M2Þ sin θÞ

¼ −πðr2τ=2 þ 4M2Þ
¼ −ðA⋄ þ ABHÞ=4: ð33Þ

The entropy is ðA⋄ þ ABHÞ=4. We interpret this result as
counting the total maximal entropy associated with both the
inner and the outer diamond horizons. This will also
reproduce the expected result for the maximal diamond
in the Schwarzschild–de Sitter case considered below.
In a sense there is a term “missing” from the above

calculation, which one might have expected from expe-
rience with black holes in dS space. Insertion of a
black hole into empty dS space causes the cosmological
horizon area to shrink by an amount larger than the black
hole entropy, so that the total entropy decreases. In the

calculation above, we have used the fact that Minkowski
space with or without a black hole has causal diamonds of
arbitrarily large area, computing the entropy of a cored
diamond of fixed area. Verlinde [27] has shown how to
obtain the shrinkage of the area of a Minkowski diamond
when a black hole is inserted in it from a direct Lorentzian
computation. We have not attempted a Euclidean version
of his calculation.

VI. SCHWARZSCHILD–dE SITTER

We conclude with the Schwarzschild–de Sitter (SdS)
spacetime. SdS is a thermodynamically interesting system,
exhibiting two temperatures Tb, Tc and two entropies Sb,
Sc associated with the black hole and cosmological
horizons, respectively. It has been argued that SdS should
be thought of as a constrained state of the empty dS
ensemble [28–30]. This interpretation is supported by the
behavior of the total entropy, Stot ¼ Sb þ Sc ∼ SdS −
M=TdS for small M and fixed cosmological constant,
and by various other thermodynamic properties [31–34].
The nonequilibrium nature of SdS is reflected in the
Euclidean continuation by the fact that we can remove
the conical singularity at the black hole horizon r ¼ rb, or
at the cosmological horizon r ¼ rc, but not both. The other
point must be omitted, introducing an additional boundary
[21]. The choice is fixed by taking β ¼ 1=Tb or 1=Tc,
corresponding to the thermodynamic ensembles associated
with the black hole horizon and the cosmological horizon,
respectively.
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It will turn out that for the Euclidean analysis of
causal diamonds in SdS, we will not need to specify β,
but we will recover the total entropy Sb þ Sc for the
maximal diamond. This simplification is related to the
divergence of the Unruh temperatures on trajectories
around the diamond boundaries.
The SdS static patch metric is

dl2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2;

fðrÞ ¼ 1 − 2M=r − ðr=LÞ2: ð34Þ

The tortoise coordinate satisfies

dr� ¼
dr
fðrÞ ð35Þ

or

r� ¼
L2

3

�
rb logðr− rbÞ
L2=3− r2b

þ rc logðr− rcÞ
L2=3− r2c

þ rn logðr−rnÞ
L2=3− r2n

�
:

ð36Þ

Here rb;c are the black hole and cosmological horizon radii
and rn ¼ −rb − rc. These radii are related to the mass and
de Sitter radius as

m ¼ rbrcðrb þ rcÞ
2ðr2b þ rbrc þ r2cÞ

;

L2 ¼ r2b þ rbrc þ r2c: ð37Þ

In the tortoise coordinate, the metric is

dl2 ¼ fðrÞð−dt2 þ dr2�Þ þ r2dΩ2 ð38Þ

with r and r� related as above. Now we change to Kruskal-
type coordinates T, X. In terms of the light cone tortoise
coordinates u ¼ t − r�, v ¼ tþ r� we introduce

U ¼ −e−2πu=β; V ¼ e2πv=β;

T ¼ U þ V
2

; X ¼ V −U
2

: ð39Þ

β is a parameter related to the periodicity of the Euclidean
continuation of the original time coordinate, tE. We have

T2 − X2 ¼ UV ¼ −e4πr�=β; ð40Þ

and the metric is

dl2 ¼ β2

4π2
fðrÞe−4πr�=βð−dT2 þ dX2Þ þ r2dΩ2: ð41Þ

The future horizon is located along T ¼ X, and the exterior
of the black hole is X > 0, T2 − X2 < 0.
Now we consider a causal diamond centered on the black

hole, as in the Schwarzschild case, with coordinate radius
ΔX ¼ τ=2 on the maximal slice. We introduce the same
diamond coordinates,

X −
τ

4
¼ τ

4

�
sinh x

cosh xþ cosh s

�
;

T ¼ τ

4

�
sinh s

cosh xþ cosh s

�
: ð42Þ

s and x run from −∞ to þ∞. The Euclidean continuation
s → −isE yields the metric

dl2 ¼ C2
Eðds2E þ dx2Þ þ r2dΩ2;

CE ¼
�

τ=4
cosðsEÞ þ coshðxÞ

��
β2

4π2
fðrÞe−4πr�=β

�
1=2

;

e4πr�=β ¼ τ2ex

8ðcosðsEÞ þ coshðxÞÞ : ð43Þ

sE is periodic with period 2π. Since TE=X¼ tanð2πtE=βÞ→
tanðsEÞ at rb, and sE is an ordinary angle, we have
tE ∼ tE þ β.
As in the asymptotically flat Schwarzschild case, the

Euclidean diamond coordinates map to Euclidean KS
coordinates via

X −
τ

4
¼ τ

4

�
sinh x

cos sE þ cosh x

�
;

TE ¼ τ

4

�
sin sE

cos sE þ cosh x

�
: ð44Þ

The continued diamond again covers all of Euclidean SdS,
apart x → ∞, corresponding to ðX; TEÞ ¼ ðτ=2; 0Þ, and
x → −∞, corresponding to ðX; TEÞ ¼ ð0; 0Þ. We identify
these points with the diamond horizons and compute their
entropies from GHY terms on infinitesimal boundaries
around the points, choosing the orientations as in the
Schwarzschild case. For the first boundary, the normal
points toward smaller x, corresponding to an outward
normal around the point ðτ=2; 0Þ in Euclidean KS coor-
dinates, in the same direction as the ordinary boundary at
radial infinity. The second boundary also has an outward
pointing normal around (0,0) in Euclidean KS coordinates.
The GHY integrand is
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ffiffiffi
h

p
K ¼ −

r sin θðτ2π e−
4πr�
β ðex cos sE þ 1Þð4βf þ βrf0 − 4πrÞ − 64r sinh xðcos sE þ cosh xÞÞ

64ðcos sE þ cosh xÞ2 ð45Þ

with limiting behavior

ffiffiffi
h

p
K → r2τ=2 sin θ as x → ∞;ffiffiffi

h
p

K → r2b sin θ as x → −∞: ð46Þ

Thus we obtain

I⋄ ¼ −ðA⋄ þ AbÞ=4; ð47Þ

or a total entropy equal to 1=4 the sum of the outer diamond
horizon area and the black hole horizon area. We see that
we did not actually have to specify β to derive the maximal
diamond entropy. As x → �∞, the proper size of the sE
thermal circle goes to zero, corresponding to an infinite
temperature observer.
Let us compare Eq. (47) to the total entropy of SdS,

reviewing the Euclidean computation of the latter. We can
start with the ensemble associated with the cosmological
horizon, setting β ¼ 1=Tc. The Euclidean action receives a
bulk Einstein-Hilbert contribution and a boundary contri-
bution from r → rb, where a point is deleted to remove a
conical singularity. The bulk term is

ðΔIEÞbulk¼−
1

16π

Z ffiffiffi
g

p ðR−2ΛÞ¼ 1

Tc

�
r3b− r3c
2L2

�
: ð48Þ

The horizon temperatures are T ¼ jf0ðrÞj=4π, or

Tb¼
ðrc−rbÞð2rbþrcÞ

4πL2rb
; Tc¼

ðrc−rbÞð2rcþrbÞ
4πL2rc

: ð49Þ

The boundary term is

ffiffiffi
h

p
K ¼ ð3r3=L2 þ 3M − 2rÞ sin θ;

ðΔIEÞrb ¼ π
rbrcð2rb þ rcÞ

rb þ 2rc
; ð50Þ

using the expressions for L and M as a function of the
horizon radii. So the total is

ðΔIEÞbulk þ ðΔIEÞrb ¼ −πr2c; ð51Þ

precisely the expectation for the cosmological horizon
entropy, βF ¼ −Sc ¼ −Ac=4. The puncture at rb has
removed the contribution of the black hole. A similar
analysis with β ¼ 1=Tb shows that the black hole has the
usual entropy −πr2b. So the total entropy is

Stot ¼ ðAc þ AbÞ=4: ð52Þ

Thus, as the diamond radius approaches the cosmologi-
cal horizon (the maximal causal diamond limit) the
maximal diamond entropy ðA⋄ þ AbÞ=4 converges to the
total SdS entropy in Eq. (52).

VII. ENTANGLEMENT ENTROPY AND
REPLICA METHODS

Above, we have given arguments that the thermody-
namic, infinite temperature entropy of a causal diamond is
computed by certain boundary terms in the action of a
solution to the Einstein equations. It is interesting to ask
whether the same results can be obtained using replica
methods to compute the entanglement entropy between the
diamond and its exterior.
We think of the Euclidean gravitational path integral as

computing the trace of the unnormalized density matrix ρ
defined by sE time evolution,

ρ ¼ T e−
R

dsEHðsEÞ: ð53Þ

The Hamiltonian is time dependent because ∂=∂sE is
not a Killing vector. Nonetheless, ρ has a von Neumann
entropy, and in some cases it can be computed using the
same replica methods as in the case of a true isometry [35].
In essence, this is because as we have seen above, ∂=∂sE
has a fixed point (codimension-2 surface) where the
size of the Euclidean time circle goes to zero. We can
make this point a fixed point of a Zn replica symmetry for
integer n and continue to noninteger n. The entropy is
S ¼ −n∂nðlogZðnÞ − n logZð1ÞÞjn¼1, where − logZðnÞ is
the Euclidean action of a completely smooth solution with
the same asymptotic boundary data repeated n times as sE
goes from 0 to 2πn. The importance of having a smooth
solution is discussed in [35,36].
The question is whether an appropriate sequence of

solutions to the Einstein equations exists. If we require that
the n → 1 limit reproduces the geometries we have con-
sidered above, the answer is no. In [35], it is proved that at
first order in a nonzero deficit angle, replica solutions to the
vacuum Einstein equations exist only if the entangling
surface is extremal. The surfaces we are discussing are not
generally extremal, so the contrapositive is that there are no
replica solutions to the vacuum Einstein equations. Since
we have focused on cases of spherical symmetry, we can
also arrive at this conclusion by appeal to generalizations of
Birkhoff’s theorem.

PATH INTEGRALS FOR CAUSAL DIAMONDS AND THE … PHYS. REV. D 103, 106022 (2021)

106022-9



There are various possibilities. First, it may be that
replica methods simply cannot be employed. Second, it
may be that replica methods can be used, but we have to
relax the requirement that we recover the diamond universe
in the n → 1 limit, or we have to introduce singular matter.
In the latter case a generalization of the cosmic branes
discussed in [37] would be interesting to explore further,
but would have to extend off of the entangling surface.
Third, it might be that replica methods could be adapted
using the edge term techniques of [38]. We defer analyses
of these possibilities to future work.
Instead, we emphasize that the methods described in this

paper provide an alternative computation of the entropy
similar to the old techniques of [11,21]. Apart from our
discussion of replicas in this section, all of the geometries
considered in this paper are solutions to the Einstein
equations. The action is given by various boundary terms,
and they correspond to areas of nonextremal surfaces.
These surfaces are instead distinguished by being the
continuations of Lorentzian horizons. The action computes
the entropy because the thermal circle is small: a near-
horizon observer is highly accelerated.

VIII. DISCUSSION

We have demonstrated that the covariant entropy prin-
ciple, relating the number of degrees of freedom associated
with a finite causal diamond to the area of its holographic
screen, can be obtained from a Euclidean path integral over
the gravitational field. The interesting technical feature is
that the null boundaries of diamonds are mapped to
punctures in the Euclideanization of the spacetime in which
the diamond is embedded. The maximal entropy is asso-
ciated with boundary terms around the punctures.
This result joins a long list of computations in which the

“low energy effective field theory” seems to know more
about the microstates of quantum gravity than one might
have expected. A derivation of the CEP from effective field
theory is particularly surprising because any quantum field
theory calculation of the entropy of a diamond by summing
over states gives an infinite answer. The more general
puzzle, of which this is only an example, is that the
relations we derive from such Euclidean computations
relate particular spacetime geometries to coarse grained
properties of microstates: the entropies of large subsystems.
In the quantum field theory approach to gravity one would
imagine that these entropies are related to “sums over
microstate geometries,” rather than a single geometry.
We believe that the most promising explanation for all of

these results is the relation between geometry and hydro-
dynamics, exposed most clearly by Jacobson [12] and
subsequent works [39–41]. Hydrodynamics is often
invoked as a paradigm for effective field theory in peda-
gogic presentations of the renormalization group. This is
both correct and misleading. If we have a large system with
a nondegenerate ground state, the low energy long

wavelength excitations of the system are usually described
by variables parametrizing conserved currents. These
variables are treated as quantized fields with a cutoff,
and the physics is extracted by doing perturbation theory
around a classical solution of the field equations represent-
ing either the ground state or the state created by some
single high energy excitation.4 This is the traditional realm
of effective field theory in high energy physics, as well as
quasiparticle physics in condensed matter theory.
On the other hand, when we study the nonequilibrium

physics in a band of states with a very dense energy
spectrum, we use the same current conservation equations
as hydrodynamics, even far above the energy scale where
the effective field theory of the previous paragraph loses
validity. A very similar dichotomous use of Einstein’s
equations is familiar to practitioners of AdS=CFT. We
use the (super)gravity Lagrangian as a quantized field
theory to compute Witten diagrams for correlators of small
numbers of CFT operators in the unique ground state of the
CFT. On the other hand, we can understand the hydro-
dynamics of the strongly coupled CFT by solving the
classical supergravity equations using the membrane para-
digm on the stretched horizon of a black hole. In this
second context, it would be incorrect to calculate the
quantum corrections to those equations and expect them
to correctly describe the fluctuation corrections to hydro-
dynamics. The microstates on the black hole horizon are
not well-described in terms of gravitons or other
Bogomolnyi-Prasad-Sommerfield particles in the bulk.
A recent derivation by Banks and Lucas [42] of hydro-

dynamic equations from the microscopic quantum mechan-
ics of a large class of quantum lattice systems sheds some
light on this issue. It turns out that the hydrodynamic
variables are the mutually commuting sub-Hamiltonians
HðXÞ of regions X containing V ≫ 1 lattice points. The
terms in the Hamiltonian coupling different regions are a
small perturbation of

P
X HðXÞ. To leading order in this

perturbation theory, the diagonal matrix elements of the
density matrix in the basis of common eigenstates of all
the HðXÞ satisfy a Fokker-Planck equation, which is
equivalent to a stochastic hydrodynamic equation for the
time dependence of EðX; tÞ. This is a classical statistical
equation, showing no violation of Bayes’ conditional
probability rule. It is expected that this is true to all orders
in perturbation theory in powers of 1=V. The form of the
equation will change but it will still obey Bayes’ rule.
The entropy SðXÞ of the subsystem restricted to region X

appears explicitly in the Fokker-Planck equation, along
with averaged squares of transition matrix elements
between HðXÞ eigenstates due to the terms in the full
Hamiltonian that couple different regions. The derivations
in [42] are very general and apply to any system where that

4Solitons or soft pion emission in baryon scattering are
examples of nonground state uses of effective field theory.
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can be broken up into large subsystems with couplings
between them that are small compared to each subsystem
Hamiltonian. In quasilocal theories, the hierarchy of
Hamiltonians kHðXÞk ≫ kHðX; YÞk is a consequence of
the scaling of surface versus volume in spatial geometries
with non-negative curvature, but this is not the only way to
obtain such a hierarchy.
The point of this digression was to emphasize that

hydrodynamic equations contain information about the
entropies of large, weakly interacting subsystems, which
is just the sort of information that has been extracted from
Euclidean gravitational path integrals. We do not yet have
an elegant derivation of this connection, but we believe it
will be an important part of the final understanding of the
“unreasonable effectiveness of Euclidean path integrals
over metrics in the theory of quantum gravity.”
Among the unfinished tasks along the lines of the current

paper are a Euclidean rederivation of Verlinde’s argument
[27] for the entropy deficit of causal diamonds containing
black holes in Minkowski space, and an investigation of
Jackiw-Teitelboim gravity, which would enable us to
isolate degrees of freedom associated with finite causal
diamonds. We hope to return to these problems in
future work.
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APPENDIX: SUM RULES FROM THE ADM AND
EINSTEIN-HILBERT ACTIONS

The total ADM action with all boundary terms included
is equivalent to the sum of the Einstein-Hilbert action and
all GHY terms. However, the separation of bulk and
boundary contributions in the two calculations do not need
to agree. Various bulk-boundary sum rules can be obtained
by comparing the two actions.

1. ADM action

Here we follow the pedagogical discussion of [43] to
summarize the boundary terms in the ADM action. The
sign of the action used in [43] differs from the sign used
here [Eq. (3)], so we have adjusted the signs below
accordingly.
Let the boundary include two spacelike hypersurfaces Σ,

and in between them define a foliation Σt. Let Nα be a
vector field normal to the foliation satisfying NαNα ¼ ϵ.
[ϵ ¼ −ðþÞ1 for spacelike (timelike) Σt, respectively.]
There can also be boundaries B which intersect the
hypersurface foliation on two-dimensional (2D) boundaries
St. There are two new boundary terms in the second-order

ADM action associated with B: a Gauss-Codazzi boundary
term that is not a GHY term, and a GHY term.
The terms associated with B combine in such a way that

they can be written as a boundary term on St integrated over
time. In the Hamiltonian there is a third boundary term
involving the shift, which would also contribute to the first
order form of the action. Including all boundary terms,

IADM ¼ −
1

16π

Z
dt

�Z
Σt

ffiffiffi
h

p
NðR̄þ KabKab − K2Þ

þ 2

Z
St

d2x
ffiffiffi
s

p
NkS

�
;

HADM ¼ −
1

16π

Z
Σt

d3xðNHþN aHaÞ þ
1

8π

Z
St

ffiffiffi
s

p
d2xNkS

−
1

8π

Z
St

d2xN aπ
abrb: ðA1Þ

kS ¼ sab∇arb is the extrinsic curvature on St and sab ¼
gab þ NaNb − rarb is the induced metric on St. We have
also assumed B and Σt are orthogonal, Nara ¼ 0. IADM is
the same as the action computed with covariant methods,

IADM ¼ IEH þ IGHY;Σ þ IGHY;B: ðA2Þ

On the constraint surface,

IADM →
Z

dtd3xπab _hab −
1

8π

Z
St

d2x
ffiffiffi
s

p
NkS;

HADM →
1

8π

Z
St

d2xð ffiffiffi
s

p
NkS −N aπ

abrbÞ: ðA3Þ

So we have

IADM ¼
Z

dt

��Z
Σt

d3xπab _hab

�
−HADM

−
1

8π

Z
St

d2xN aπ
abrb

�
; ðA4Þ

where HADM is just the boundary terms in the preceding
equation summed over all boundaries St. In many cases
of interest the last term in IADM vanishes because the
shift is zero, and the first term vanishes because _hab ¼ 0.
So IADM ¼ −

R
dtHADM ¼ − 1

8π

R
dt

R
St
d2x

ffiffiffi
s

p
NkS in these

circumstances.
Here we have left off regulators. In SchwarzschildHADM

at radial infinity is divergent. It can be canceled by a
subtraction similar to what is done for GHY terms.
Most of the preceding discussion carries over to

Euclidean signature. However, in cases where the continu-
ation of the timelike Killing vector has a fixed point, it is
especially convenient to define radial time slices on the
Euclidean manifold. Then we have to contend with the fact
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that the time slices intersect at the point. To handle this
case, we use the method of Refs. [21,26]. We excise a small
disk of radius ϵ around the point of convergence and use the
Lagrangian action inside the disk, retaining the ADM
action outside. Since the two actions are equal, this surgery
makes no difference to the total result. The procedure
introduces two boundary terms on the disk: an outward-
pointing GHY term, and an inward-pointing ADM boun-
dary term.

2. Schwarzschild

Now we compute the ADM action of Euclidean
Schwarzschild, taking β ¼ 1=ð8πMÞ to remove the
conical singularity at 2M. Our foliation is adapted to the
static coordinates, so that the normal to the time slices is
Na ∝ ∂t. The lapse is N ¼ ffiffiffi

f
p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2M=r
p

, the shifts
are zero, and the induced metric on the time slices
is habdxadxb ¼ f−1=2dr2 þ r2dΩ2.
The time slices intersect at r ¼ 2M, so we will use

the excision technique there. Then there are two ADM
boundary terms: one at infinity pointing outward, and
one on the disk pointing inward. There are no ADM
bulk terms. There is a GHY term on the disk pointing
outward and no Einstein-Hilbert bulk term inside
the disk.
The ADM boundary terms are of the form −

R
Hdt, with

the Hamiltonian boundary terms evaluated on St’s that are
2-spheres with the induced metric sabdxadxb ¼ r2dΩ2.
The unit normal to the St surfaces that is orthogonal toNa is
ra ¼ � ffiffiffi

f
p ∂r. We obtain

kS ¼ � 1ffiffiffi
h

p ∂rð
ffiffiffi
h

p ffiffiffi
f

p
Þ ¼ � 2

r

ffiffiffi
f

p
;

ΔIE ¼ −
1

8π

Z
Hdt

¼
�
−

1

8π

�
ð4πÞðβÞ½−r2NjkSjjr→2Mþ þ r2NjkSjjr→∞− �

¼ −β½rfjr→2Mþ þ rfjr→∞− �
¼ −β½0þ ðr −MÞjr→∞�
→ βM: ðA5Þ

In the last line we have subtracted the same boundary term
from flat space to regularize the divergence. In this case it
amounts to subtracting the same computation with M ¼ 0.
We also see that the Hamiltonian boundary term at 2M
vanishes since it is proportional to f.
The GHY term on the disk is the same as one we already

computed for the Schwarzschild diamond, but with oppo-
site sign because the normal points to larger r on the disk.
We get

ffiffiffi
h

p
Kjr→2M ¼

ffiffiffi
h

p
ffiffiffi
g

p ∂rð
ffiffiffi
g

p ffiffiffi
f

p
Þjr¼2M

¼ ð2r − 3MÞr¼2M sinðθÞ;

ΔIE ¼ −
1

8π
ð4πÞðβÞðMÞ

¼ −
βM
2

¼ −
ABH

4
: ðA6Þ

Adding the pieces up, we get

IE ¼ βM
2

¼ ABH

4
; ðA7Þ

which is the expected value in the canonical ensem-
ble, IE ¼ βF ¼ βM − S ¼ A=4.
One advantage of the ADM formalism is it makes it

clear how to transition to the microcanonical ensemble of
the horizon degrees of freedom: we just drop the boundary
terms at infinity, which contributed ΔIE ¼ þβM. Then
we find

logðZÞmicro ¼ þS ¼ þABH=4 ðA8Þ

computed entirely by the outward-pointing GHY term in
the infinitesimal disk around r ¼ 2M [26].

3. dS

Euclidean dS is topologically a sphere, with no boun-
daries. In the usual computation, the free energy is saturated
by the Einstein-Hilbert term. However, it can also be
obtained purely from a boundary term, as can be seen
from the ADM form of the action.
We take static patch coordinates. The time coordinate is

periodic, with period set to β ¼ 2πL to remove the conical
singularity at r ¼ L. Again we take our foliation to be
constant-t slices, so that the normal to the spatial slices is
Na ∝ ∂t, the lapse is N ¼ ffiffiffi

f
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2=L2

p
, the shifts

are zero, and the induced metric on the spatial slices
is habdxadxb ¼ f−1=2dr2 þ r2dΩ2.
As in the Schwarzschild case, the slices intersect at a

point, in this case r → L. Employing the excision tech-
nique, there is one ADM boundary term on the disk
pointing outward toward r ¼ L, and no ADM bulk terms.
There is a GHY term on the disk pointing away from the
disk toward smaller L, and the Einstein-Hilbert bulk term
inside the disk in the limit that its size goes to zero.
The ADM boundary terms are of the form −

R
Hdt, with

the Hamiltonian boundary terms evaluated on St’s that are
2-spheres with the induced metric sabdxadxb ¼ r2dΩ2.
The unit normal to the St surfaces that is orthogonal toNa is
ra ¼ ffiffiffi

f
p ∂r. We get
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kS ¼
1ffiffiffi
h

p ∂rð
ffiffiffi
h

p ffiffiffi
f

p
Þ ¼ 2

r

ffiffiffi
f

p
;

ΔIE ¼ −
1

8π

Z
Hdt ¼

�
−

1

8π

�
ð4πÞðβÞðr2NjkSjjr→LÞ

¼ 0: ðA9Þ

The Hamiltonian boundary term at L vanishes since it is
proportional to f.
The GHY term on the disk can be obtained from the

maximal causal diamond computation in Sec. III. We get

ΔIE ¼ −
AdS

4
: ðA10Þ

Adding the pieces up,

IE ¼ 0 −
AdS

4
¼ −

AdS

4
; ðA11Þ

which is the expected value in the canonical ensem-
ble, IE ¼ βF ¼ −S ¼ −A=4.
We see that the equivalence between the ADM and

Lagrangian forms of the action results in a sum rule for
Euclidean dS,

IGHY;r¼L ¼ IEH: ðA12Þ

4. SdS

Euclidean SdS is similar to dS, but it has at least one
conical singularity, and we have to delete that point. The
deleted point is treated differently in the Lagrangian and
ADM analyses of the action. In a Lagrangian analysis, we
put a GHY boundary around the deleted point, and it will
be nonzero. In an ADM analysis, we can choose the time
slicing so that the deleted point is one of two places where
the time slices intersect. Reference [21] generalized the
prescription of [26] to this case: we are instructed to draw a
disk around the conical singularity, delete the whole
interior, and finally take the disk radius to zero. The result
of this is we have no action contribution from the interior of
the disk, bulk or boundary. We have only the inward-
pointing Hamiltonian boundary term from the exterior of
the disk.
At the other point in SdS where the ADM time slices

intersect, the manifold is smooth. There we have to do the
same analysis as in the previous sections.
We already did the Lagrangian analysis above for the

case β ¼ 1=Tc, and the case β ¼ 1=Tb is similar. If we

choose β ¼ 1=TcðbÞ, the total action is IE ¼ −πr2cðbÞ. The
extrinsic curvature on surfaces at generic constant r (that
we will also need for the ADM analysis in the prescription
of [21]) is

ffiffiffi
h

p
K ¼ −ð3r3=L2 þ 3M − 2rÞ sin θ ðA13Þ

with normal pointing to larger r.
In the ADM analysis, the bulk term is always zero since

we have static coordinates and we satisfy the constraints.
Furthermore, the Einstein-Hilbert bulk terms inside the
disks go to zero smoothly in the limit that the disk radius
goes to zero. Thus we have only boundary terms to
evaluate: two ADM boundary terms at rb;c and one
GHY boundary term from the disk around whichever
of these two points is not deleted. The ADM boundary
terms vanish for the same reason they do in the
Schwarzschild case at r ¼ 2M:

R
Hdt is proportional to

f ¼ 1–2M=r − r2=L2, which vanishes at both rb and rc.
All that is left is the outward-pointing GHY boundary
term from the disk located at whichever horizon is
smooth. We have

IE ¼ −
1

8π
ð4πÞð1=TbÞð−ð3r3b=L2 þ 3M − 2rbÞÞ

¼ −πr2b ðT ¼ TbÞ;

IE ¼ −
1

8π
ð4πÞð1=TcÞðþð3r3c=L2 þ 3M − 2rcÞÞ

¼ −πr2c ðT ¼ TcÞ; ðA14Þ

matching exactly the Lagrangian analysis.
The ADM analysis explains why putting outward

pointing GHY boundaries at rb and rc and adding to the
bulk Einstein-Hilbert action gives zero. The ADM and
Lagrangian actions amount to the sum rule

IEH þ IGHY;rb þ IGHY;rc ¼ 0: ðA15Þ

These results show that IE is computing −Shorizon for
both choices of T. F=Tc ¼ −Sc anyways for the cosmo-
logical horizon, but for the black hole, it only makes sense
if −IE is computing the log of the partition function for the
microcanonical ensemble. The ADM calculation clarifies
why this is so. In the large L limit, the ADM analysis with
T ¼ Tb maps onto the microcanonical computation in the
asymptotically flat Schwarzschild case, where we remove
βM (i.e., we drop the ADM boundary term at infinity).
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