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The spectrum of bound states of special strongly coupled confining field theories might include a
parametrically light dilaton, associated with the formation of enhanced condensates that break (approxi-
mate) scale invariance spontaneously. It has been suggested in the literature that such a state may arise in
connection with the theory being close to the unitarity bound in holographic models. We extend these ideas
to cases where the background geometry is non-anti-de Sitter, and the gravity description of the dual
confining field theory has a top-down origin in supergravity. We exemplify this program by studying the
circle compactification of Romans six-dimensional half-maximal supergravity. We uncover a rich space of
solutions, many of which were previously unknown in the literature. We compute the bosonic spectrum of
excitations and identify a tachyonic instability in a region of parameter space for a class of regular
background solutions. A tachyon only exists along an energetically disfavored (unphysical) branch of
solutions of the gravity theory; we find evidence of a first-order phase transition that separates this region of
parameter space from the physical one. Along the physical branch of regular solutions, one of the lightest
scalar particles is approximately a dilaton, and it is associated with a condensate in the underlying theory.
Yet, because of the location of the phase transition, its mass is not parametrically small, and it is,
coincidentally, the next-to-lightest scalar bound state, rather than the lightest one.
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I. INTRODUCTION

The Standard Model of particle physics is likely to be
replaced by a more complete theory above some unknown
new physics scale Λ. Yet, the discovery by the LHC
collaborations of the Higgs particle [1,2], with mass
mh ≃ 126 GeV, has not been accompanied by convincing
signals of new phenomena in (direct and indirect) searches,
further pushing the hypothetical scale Λ into the multi-TeV
range. This observation hints at a difficulty in the appli-
cation of effective field theory (EFT) ideas to high-energy
particle physics. If the fundamental theory completing the
Standard Model above Λ plays a role (even indirectly) in
electroweak symmetry breaking (EWSB) and Higgs phys-
ics, it is technically difficult to implement the hierarchy
mh ≪ Λ and justify it inside the general low-energy EFT
paradigm. The resulting low-energy description requires
fine-tuning; in the literature, this tension is referred to as the
little hierarchy problem.

The Higgs particle might emerge at the dynamical scale
Λ from strongly coupled new physics. If one could dial the
effects of explicit breaking of scale invariance to be smaller
than those associated with its spontaneous breaking, the
Higgs boson could be identified with the pseudo-Nambu-
Goldstone boson associated with the spontaneous breaking
of dilatation invariance: the dilaton. If furthermore its mass
mh could be made small enough to yield the hierarchy
mh ≪ Λ, and without fine-tuning, then the little hierarchy
problem would be solved.
The properties of the EFT description of the dilaton are

the subject of a vast body of literature (see for instance
Refs. [3–15]), which includes well-known studies dating
from a long time ago [16,17]. The details of how this idea is
implemented in phenomenologically relevant models of
EWSB are the subject of many studies (see for example
Refs. [18–29]), and some date back to earlier days of
dynamical EWSB symmetry breaking and walking tech-
nicolor [30–32].
The main limitation to the study from first principles of

dilaton dynamics with strongly coupled origin comes from
calculability. For example, lattice studies have started to
uncover evidence that an anomalously light scalar particle
appears in confining gauge theories that are believed to be
close to the edge of the conformal window, namely in
SUð3Þ gauge theories with either Nf ¼ 8 fundamental
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Dirac fermions [33–37] or with Nf ¼ 2 Dirac fermions
transforming in the two-index symmetric representation
[38–43]. It may be premature to conclude that these works
have uncovered firm evidence that the scalar particle is a
dilaton, but EFT-based studies yield encouraging indica-
tions in this direction (see for example Refs. [10,42,44]).
A complementary approach exploits holography and

gauge-gravity correspondences [45–47]. The properties
of some special strongly coupled field theories can be
derived from weakly coupled gravity theories in higher
dimensions (see the introductory review in Ref. [48]). A
systematic prescription exists for calculating correlation
functions and condensates, via holographic renormalization
[49] (see the lecture notes in Refs. [50,51]). The study of
simplified toy models, implementing the Goldberger-Wise
stabilization mechanism [52–58], shows the presence of a
light dilaton in the spectrum. Attempts at constructing
phenomenologically more realistic models, while disre-
garding the fundamental origin of the higher-dimensional
theory (the bottom-up approach to holography) yield
similarly encouraging results [59–67].
Evidence that strong dynamics can lead to the formation

of a light dilaton has been confirmed also in the context of
less realistic, but more rigorous holographic models built
starting from supergravity (top-down approach) [68,69]
(see also Refs. [70–73]). So far, this has been shown to be
true only inside the special framework of a particular five-
dimensional sigma model coupled to gravity, the solutions
of which lift to backgrounds with geometry related to the
conifold [74–79]. These backgrounds are related to con-
fining gauge theories. The known existence of a moduli
space (along the baryonic branch of the Klebanov-Strassler
system), and of a tunable parameter appearing in some of
the condensates of the gauge theory, provide a nontrivial
dynamical explanation for the existence of a light state,
which is tempting to identify with the dilaton.
Along a parallel line of investigation, we are intrigued by

the ideas exposed in Ref. [67] (and in Refs. [80,81]), which
are closely related to the discussions in Ref. [82]. The
present paper is a first step toward transferring these ideas
from the bottom-up context to that of rigorous holographic
models built within the top-down approach, and hence
testing them within known supergravity theories. Within
the bottom-up approach to holography, the authors of
Refs. [67,82] start by identifying the Breitenlohner-
Freedman (BF) unitarity bound [83] as a marker of the
transition between conformal and nonconformal behavior
of the dual gauge theory. The BF bound is related to the
dimension Δ of an operator O in the dual conformal field
theory. In the case of five-dimensional gravity theories, the
BF bound selects Δ ¼ 2, which agrees with the arguments
discussed in the context of the Schwinger-Dyson equations
and their approximation [84], according to which, in gauge
theories with fermion matter field content, the O ¼ ψ̄ψ
operator acquires the nonperturbative dimension Δ ¼ 2

precisely at the edge of the conformal window. In recent
dilaton EFT studies, Δ is measured by fitting the afore-
mentioned SUð3Þ lattice data to yield Δ ≃ 2 [9,10,13].
Reference [67] discusses the dynamics in proximity of

the BF bound, particularly in relation to the dilaton mass.
It adopts a bottom-up simplified model to describe this
scenario and to test it. The spectrum of bound states of the
putative dual theory is then calculated. It is found that,
when dialing the bulk mass to approach the BF bound [67],

‘...the dilaton is always the lightest resonance, although
not parametrically lighter than the others.’

In this paper, we consider a holographic model that
realizes a physical system sharing several core features with
those advocated in Ref. [67], but within the context of top-
down holography. We see this paper as a precursor to a
broad research program of exploration of supergravity
backgrounds. We now describe how we can develop this
program and anticipate our main results for the one model
we focus upon in the body of the paper.
The techniques that we use are applicable to systems for

which the gravity geometry is asymptotically anti-de Sitter
at large values of the holographic direction ρ (correspond-
ing to the UVof the dual field theory). This is best suited for
the application of holographic renormalization, as we want
not only to compute the mass spectrum but also the free
energy of the system, which plays a crucial role in the body
of the paper.
In the bottom-up approach to holography, the mass gap

of the dual theory can be introduced by adding by hand an
end of space to the geometry in what corresponds to the IR
in the dual field theory. The presence of boundaries to the
space provides additional freedom and allows for the mass
gap to emerge in a way that can often be arranged to
preserve (approximate) scale invariance arbitrarily close to
the confinement scale. Hence, the notion of scaling
dimension and the associated BF bound may be well
defined even in close proximity of the end of space in
the geometry. [Notice that the value of the mass to which
one applies the BF bound must be calculated in reference to
the anti-de Sitter (AdS) geometry, or critical point of the
sigma model, that is closest to the end of space of the
geometry along the dual renormalization group (RG) flow.]
This is not the case within the top-down approach. The

backgrounds in the higher-dimensional geometry depart
from AdSD, and in the case when the dual field theory
confines, the geometry closes smoothly. The linear behav-
ior for the quark-antiquark static potential is recovered by
considering open strings in the uplifted ten-dimensional
geometry [85,86] and minimizing the classical action
[87–91]. In all known classical backgrounds that yield
linear confinement in the dual theory in D ¼ 4 dimensions
(see for instance Refs. [75,77,78,92–94] and the general-
izations of these models), the geometry is manifestly quite
different from AdSD in the proximity of its end of space.
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By combining the fact that in supergravity the potential
and mass of the bulk scalar fields are fixed and known, and
cannot be arbitrarily dialed, togetherwith the aforementioned
departure from AdSD of the geometry in the crucial region
near the end of space, we conclude that the whole notion of
proximity to the BF bound (central to Refs. [67,82]) needs to
be generalized. The BF bound in AdSD spaces is a marker of
classical instabilities, taking the formof nonunitary behavior.
Within supergravity, it is possible to consider classical
backgrounds that evolve near the end of space toward regions
of instability. The instability of the RG trajectory in the dual
field theory eventually gives rise to tachyonic behavior for
some of the lower-dimensional classical fluctuations of the
background solutions. We hence replace the notion of
proximity to the BF bound (useful only in approximately
AdSD models, but not applicable to the dual of confining
theories), with the proximity to such tachyonic backgrounds.
We will not dial the parameters in the action (related to the
coefficients in the dual renormalization group equations), but
rather adjust the only allowed freedom: the UV boundary
conditions satisfied by the gravity and scalar fields.
We want to obtain physically meaningful results; hence,

ideally, we should focus on background solutions that are
regular. Nevertheless, we find that in order to explain some
crucial features of the gravity dynamics we are compelled
to include in part of our analysis also singular solutions that
exhibit what Gubser in Ref. [95] called a good singularity,
that is characterized by the fact that the scalar potential of
the supergravity theory, evaluated along the classical
solutions considered, is bounded from above. As we shall
see, some of these solutions exhibit a mild singular
behavior in D ¼ 10 dimensions, that can be detected only
in higher-order curvature invariants, not in the Ricci scalar.
We are pushed even further: we have to include also badly
singular backgrounds in the study of the energetics. We will
clarify these notions eventually, in the body of the paper,
but we anticipate here that the reason why we introduce the
singular solutions in the study of the energetics is not that
we are making use of their field-theory interpretation
(which does not exist) but rather that, for our treatment
of the gravity theory to be self-contained and consistent, we
must treat all the classical solutions on the same grounds, in
order to select what the features of the dynamics are. If it
turns out that a singular solution has free energy lower than
the (known) regular solutions, it is not legitimate to discard
it, as its contribution to the path integral in the gravity
theory is actually dominant. This signals the incomplete-
ness of the gravity description.
So far, we have introduced a quite general program of

research, which can be carried out systematically on the
many known supergravity theories and their consistent
truncations (see for instance Refs. [96,97]). In this paper,
we exemplify this study with one specific class of theories.
We choose this class mostly on the grounds of simplicity—
the model is a simple example of a gravity theory which

provides the dual of a confining field theory, within the top-
down approach to holography. To this end, we broaden the
classes of backgrounds studied in earlier publications about
this same special system [92,93,98,99].
The gravity theory we consider is the half-maximal

N ¼ ð2; 2Þ supergravity in D ¼ 6 dimensions first
described by Romans [100]. It has been studied in great
detail and for many different purposes [92,93,101–120]. Its
beauty lies in its simplicity: the model inD ¼ 6 dimensions
contains only one scalar field ϕ coupled to gravity, with a
known classical action describing also four vectors and one
2-form. We compactify one of the dimensions on a circle.
The backgrounds approach the critical point ϕ ¼ 0 at large
values of the holographic coordinate ρ (corresponding to
the UV of the dual field theory). The physics of confine-
ment is captured by the fact that there are solutions of the
background equations in which the circle shrinks smoothly
to zero size at some finite point in the radial coordinate
[94]. We extend the study with respect to Refs. [92,93] and
[98,99] and look at additional branches of solutions. In
particular, we consider solutions in which the scalar field
assumes positive values, ϕ > 0, for which the potential in
six dimensions is unbounded from below, and an instability
arises in the system. In parts of the study, we also consider
gravity solutions that do not have an interpretation in terms
of four-dimensional confining theories, either because the
dual theory is genuinely five-dimensional at all scales or
because a singularity emerges in the gravity description.
We expect that, as long as ϕ experiences just a small

excursion away from ϕ ¼ 0, the spectrum of fluctuations
should not differ substantially from the one computed
elsewhere [92,93,98,99,121] and resemble qualitatively
that of a generic confining theory. In particular, all the
fluctuations have positive mass squared, and there is no
parametric separation of scales visible in the spectrum. At
the other extreme, if the scalar ϕ explores deep into the
instability region with ϕ > 0, in which the potential of the
six-dimensional gravity theory is unbounded, we expect at
least one of the states of the dual field theory to become
tachyonic. Under the assumption of continuity, somewhere
in between, one expects that the mass squared of one of the
states in the spectrum will cross zero, for some special
choice of background solution. We compute the spectra by
making use of the gauge-invariant formalism developed in
Refs. [122–126] and [99] and verify that all of these
expectations are realized. In close proximity of the afore-
mentioned tuned choice of background, the lightest state is
a scalar, and it can be made parametrically light in
comparison to all other states. Furthermore, we show that
this state can be characterized as an (approximate) dilaton,
by performing a nontrivial test on the spectrum [127] and
by identifying the presence of an enhanced condensate in
the vacuum. We use the term approximate dilaton to refer
to a state that has significant mixing with the dilaton but is
not necessarily light.
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But the attentive reader certainly took notice of the
phrase “assumption of continuity” in the previous para-
graph and realized that this assumption may fail, for
example in the presence of a phase transition. In fact, this
assumption must fail; the very presence of classical
instabilities, as indicated by the existence of a tachyon,
in what is an otherwise perfectly well-defined physical
system (a well-known and established classical super-
gravity), demands the existence of a different branch of
solutions, which must be energetically favored. The light
(approximate) dilaton and the tachyon appear along a
branch of classical solutions that eventually ceases to be
physically realized. We uncover evidence of a first-order
phase transition in the gravity theory and show that the
physically realized solutions do not come immediately
close to the tachyonic ones, undermining the chain of
implications from the previous paragraph. This is illustrated
in Fig. 1, which sketches the free energy as a function of the
source of a relevant deformation in the field theory for two
of the different branches of the classical solutions. As the
source is increased, one encounters a first-order phase
transition between a branch of regular solutions (in solid
black) and a branch of singular solutions (in long-dashed
dark green), which happens before the tachyonic region (in
short-dashed orange) is reached. We will be more specific
and precise in describing these phenomena in the body of
the paper.
The conclusion of this exercise is almost identical to the

one we explicitly quoted earlier on in italics, taken from
Ref. [67]. A distinctive element is that, in the physical part
of parameter space, the state that is approximately a dilaton
is the next-to-lightest state. Furthermore, the connection

with the study of phase transitions bridges between the
physics arguments in Ref. [67] and those exposed in
Refs. [80,81], that are inferred from lower-dimensional
statistical mechanics. The first-order phase transition (to
unphysical gravity configurations) signals the metastability
of the branch of regular solutions along which the dilaton
becomes light, and hence precludes us from creating an
arbitrarily large hierarchy between the mass of said dilaton
and that of the other states along the stable branch.
We think this paper exemplifies and clarifies a few

important general points and opens a new avenue for
exploration. First of all, we confirm in the context of
top-down gauge-gravity dualities that one of the lightest
states arising in this way indeed overlaps significantly with
the dilaton and is not some accidentally light scalar particle
with generic properties. We do so by repeating the
calculation of the spectrum by treating the scalars in the
probe approximation, which ignores the fluctuations of
the five-dimensional metric, and by comparing the results
with the full gauge-invariant results. We expand on this
technical procedure in a different publication [127].
Second, the techniques we adopted can be equally

applied to many other backgrounds that are asymptotically
anti-de Sitter in the far UV and evolve toward a classical
instability. In principle, there are countless such examples
one can build within the known catalog of supergravity
theories. We expect the results we found here to hold
generically: there will be choices of parameters/solutions
that make one of the scalars arbitrarily light. And there will
be a first-order phase transition that prevents such solutions
from being physically realized. Yet, there is no reason to
expect that all phase transitions should be equally strong;
the phase transition might take place in close proximity of
the tachyonic instability. In this case, we would be able—
by exploiting the formalism we are testing in this paper—to
compute whether a nontrivial hierarchy appears in the mass
spectrum, as the dilaton state behaves differently from the
rest of the spectrum. Or, conversely, it might turn out that
our findings are truly universal, so that no hierarchy of scale
can be produced with this mechanism. Even such a negative
result would be an interesting finding.
The paper is organized as follows. In Sec. II, we define

the properties of the model we study. We show the branches
of solutions of interest to our investigation in Sec. III and
produce a classification of nontrivial classical backgrounds
based upon their asymptotic behavior in proximity of the
end of the space in the interior of the geometry. All of the
backgrounds share the same properties at large values of
the radial direction ρ, corresponding to the UVof the dual
theory. Many such solutions had not been identified before
in the literature. In Sec. IV, we present the spectra of
fluctuations, restricting ourselves to the regular gravity
backgrounds, and discuss their interpretation as bound
states in the dual confining theory. Section IV B contains
one of the core parts of the analysis: by comparing the

FIG. 1. Sketch of the free energy as a function of the source, for
two of the different branches of classical solutions, showing the
first-order phase transition at the crossing between the black
(solid) and dark-green (long-dashed) lines, as well as the region
with a tachyonic instability depicted by the orange (short-dashed)
line. The reader should consult Fig. 10, its caption and the text
around it, for more details on the phase transition in the realistic
model described in the main body of the paper.
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results of the probe approximation to those of the full
calculation of the spectrum, we identify states that have an
overlap with the dilaton, and we discuss how this relates to
the magnitude of the condensates in the dual theory. We
discuss the energetics, computing the free energy of the
background configurations in Sec. V. Section VD shows
evidence for the arising of a phase transition. Given the
length of the paper, and the fact that the model we consider
is nontrivial, we find it useful to summarize all our results in
Sec. VI, and we conclude the paper with an outline of
further avenues for future exploration in Sec. VII. We
relegate to the Appendixes some useful technical details.

II. MODEL

In this section, we summarize the action of the six-
dimensional supergravity written by Romans, adopt an
ansatz in which one of the dimensions is a circle, perform
the dimensional reduction of the theory on this circle, and
write the resulting dimensionally reduced action in D ¼ 5
space-time dimensions. Most of the material reported here
can be found in the literature, that we have already cited and
will further refer to throughout the section. Yet, we find it
convenient to collect all the useful background information
in this section, both to make the exposition self-contained,
as well as to fix the notation unambiguously.

A. Action and formalism of the D= 6 model

The six-dimensional (gauged) supergravity constructed
by Romans [100] describes 32 bosonic degrees of freedom
(d.o.f.) (we ignore the fermions). We denote by indices
M̂ ∈ f0; 1; 2; 3; 5; 6g the coordinates inD ¼ 6 dimensions.
The field content (number of d.o.f.) is the following: one
scalar ϕ (1 × 1), one vector AM̂ (1 × 4) transforming as a
singlet under Uð1Þ, three vectors Ai

M̂
(3 × 4) in the 3

representation of SUð2Þ, one 2-form BM̂ N̂ (1 × 6), and the
six-dimensional metric tensor ĝM̂ N̂ (1 × 9). The action is
given by

S6 ¼
Z

d6x
ffiffiffiffiffiffiffiffi
−ĝ6

p �
R6

4
− ĝM̂ N̂∂M̂ϕ∂N̂ϕ − V6ðϕÞ

−
1

4
e−2ϕĝM̂ R̂ĝN̂ Ŝ

X
i

F̂i
M̂ N̂

F̂i
R̂ Ŝ

−
1

4
e−2ϕĝM̂ R̂ĝN̂ ŜĤM̂ N̂ĤR̂ Ŝ

−
1

12
e4ϕĝM̂ R̂ĝN̂ ŜĝT̂ ÛĜM̂ N̂ T̂ĜR̂ Ŝ Û

�
; ð1Þ

where summation over repeated indices is implied. The
tensors are defined as follows:

F̂i
M̂ N̂

≡ ∂M̂A
i
N̂
− ∂N̂A

i
M̂
þ gϵijkAj

M̂
Ak
N̂
; ð2Þ

F̂M̂ N̂ ≡ ∂M̂AN̂ − ∂N̂AM̂; ð3Þ

ĤM̂ N̂ ≡ F̂M̂ N̂ þmBM̂ N̂; ð4Þ

ĜM̂ N̂ T̂ ≡ 3∂ ½M̂BN̂ T̂� ¼ ∂M̂BN̂ T̂ þ ∂N̂BT̂ M̂ þ ∂ T̂BM̂ N̂: ð5Þ

Here, ĝ6 is the determinant of the metric tensor, and R6 ≡
gM̂ N̂RM̂ N̂ is the corresponding Ricci scalar. We return to the
scalar potential V6ðϕÞ and its critical points in Sec. II B.

B. Scalar potential in D= 6 dimensions

The potential for the real scalar field ϕ in the six-
dimensional model is given by1 [105]

V6ðϕÞ ¼
1

9
ðe−6ϕ − 9e2ϕ − 12e−2ϕÞ ð6Þ

and is shown in Fig. 2. It admits two critical points:

ϕUV ¼ 0

�
V6ðϕUVÞ ¼ −

20

9

�
; ð7Þ

and

ϕIR ¼−
logð3Þ

4

�
V6ðϕIRÞ¼−

4ffiffiffi
3

p
�
; ð8Þ

with the former (latter) a global maximum (minimum)
which preserves (breaks) supersymmetry. As we shall see,
there exist numerical solutions to the equations of motion
that interpolate between these two critical points, corre-
sponding to a renormalization group flow between a UV
and IR fixed point in the dual field theory. In previous work
[99], we restricted ϕ to the closed interval ϕ ∈ ½ϕIR;ϕUV�.
For the purposes of this paper, we extend this domain by
allowing positive values of ϕ.

C. Reduction from D= 6 to D= 5 dimensions

We compactify one of the external dimensions
[described by the coordinate η ∈ ½0; 2πÞ] of the Romans
theory on a circle S1 and parametrize the six-dimensional
metric as follows,

ds26¼e−2χds25þe6χðdηþVMdxMÞ2
¼e−2χðe2AðrÞdx21;3þdr2Þþe6χðdηþVMdxMÞ2
¼e−2χðe2AðρÞdx21;3þe2χdρ2Þþe6χðdηþVMdxMÞ2; ð9Þ

where ds25 is the five-dimensional line element so that
detðgMNÞ≡ g5 ¼ −e8AðrÞ, with warp factor AðrÞ, and
we have adopted the “mostly plus” four-dimensional
Minkowski metric signature, ημν¼diagð−;þ;þ;þÞ; indices

1In the language of Ref. [105], we adopted the choice of g ¼ffiffiffi
8

p
and m ¼ 2

ffiffi
2

p
3
, without loss of generality.
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run over μ; ν ∈ f0; 1; 2; 3g and M;N ∈ f0; 1; 2; 3; 5g. The
third equality introduces the convenient redefinition of the
radial coordinate dr≡ eχdρ. In the background solutions
that we will consider, each field of the supergravity model
depends only on the radial coordinate ρ, and additionally
only ϕðρÞ, χðρÞ, and AðρÞ acquire nonzero radial profiles,
thus ensuring Poincaré invariance along the Minkowski xμ

directions. We constrain the holographic coordinate to take

values in the closed interval ρ ∈ ½ρ1; ρ2�, for reasons to be
discussed later, but it is understood that the physical results
that apply to the dual field theory are recovered only after
removing these restrictions.
After decomposing the fields, and some algebra (see

Ref. [99] for details), the action of the reduced five-
dimensional model is given by

S5 ¼
Z

d5x
ffiffiffiffiffiffiffiffi
−g5

p �
R5

4
−
1

2
GabgMN∂MΦa∂NΦb − Vðϕ; χÞ − 1

4
HABgMRgNSFA

MNF
B
RS −

1

4
e2χ−2ϕgMRgNSHMNHRS

−
1

12
e4χþ4ϕgMRgNSgTUGMNTGRSU −

1

2
e−6χ−2ϕgNSH6NH6S −

1

4
e−4χþ4ϕgNSgTUG6NTG6SU

�
; ð10Þ

where the 32 physical degrees of freedom are now carried
by the following five-dimensional field content: six scalars
fϕ; χ; πi; A6g (6 × 1), six vectors fAM;Ai

M; B6N; VMg
(6 × 3), one 2-form BMN (1 × 3), and the metric tensor
gMN (1 × 5) in D ¼ 5 dimensions. The dynamical scalar
field χ parametrizes the size of the compact S1 [see Eq. (9)].
The sigma-model scalars are Φa ¼ fϕ; χ; πig with the
metric Gab ¼ diagð2; 6; e−6χ−2ϕÞ, while the field strengths
fFV; Fig have the metric HAB ¼ diagð1

4
e8χ ; e2χ−2ϕÞ. The

five-dimensional scalar potential appearing in the circle-
reduced model is given by Vðϕ; χÞ ¼ e−2χV6ðϕÞ.

D. Equations of motion

The classical equations of motion can be obtained from
S5, the action for the five-dimensional model, provided in
Eq. (10). We remind the Reader that all of the classical
supergravity background fields are assumed to depend

solely on the holographic coordinate ρ. Hence, the equa-
tions of motion for the background functions are given by

∂2
ρϕþ ð4∂ρA − ∂ρχÞ∂ρϕ ¼ 1

2

∂V6

∂ϕ ; ð11Þ

∂2
ρχ þ ð4∂ρA − ∂ρχÞ∂ρχ ¼ −

V6

3
; ð12Þ

3ð∂ρAÞ2 − ð∂ρϕÞ2 − 3ð∂ρχÞ2 ¼ −V6; ð13Þ

3∂2
ρAþ6ð∂ρAÞ2þ2ð∂ρϕÞ2þ6ð∂ρχÞ2−3∂ρA∂ρχ¼−2V6:

ð14Þ

Only the first three are independent. These equations of
motion can be reformulated using the following convenient
redefinitions,

c≡ 4A − χ; d≡ A − 4χ; ð15Þ

or equivalently

χ ≡ 1

15
ðc − 4dÞ; A≡ 1

15
ð4c − dÞ; ð16Þ

so that we can recast them in the following form:

∂2
ρϕþ ∂ρc∂ρϕ ¼ 1

2

∂V6

∂ϕ ; ð17Þ

∂2
ρcþ ð∂ρcÞ2 ¼ −5V6; ð18Þ

ð∂ρcÞ2 − ð∂ρdÞ2 − 5ð∂ρϕÞ2 ¼ −5V6; ð19Þ

∂2
ρdþ ∂ρc∂ρd ¼ 0: ð20Þ

The last of these four equations can be derived from the
previous three, yet we show it explicitly for a reason wewill

–0.8 –0.6 –0.4 –0.2 0.0 0.2 0.4 0.6

–3.0

–2.5

–2.0

–1.5

–1.0

–0.5

0.0

FIG. 2. The potential V6ðϕÞ of Romans supergravity as a
function of the one scalar ϕ in the sigma model coupled to
gravity inD ¼ 6 dimensions. We highlight the two critical points:
the case ϕ ¼ ϕUV ¼ 0 (blue disk) and the case ϕ ¼ ϕIR ¼
− 1

4
logð3Þ (dark-red triangle), both of which allow for AdS6

background solutions.
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explain shortly. Having solved the coupled equations (17)
and (18) to yield ϕ and c, one can proceed then to solve
Eq. (19) to determine d. Notice that for any given solution d
one finds that −d is also admissible. We observe that
Eq. (20) can be rewritten as a vanishing total derivative, and
hence we obtain the following useful relation,

e4A−χð4∂ρχ − ∂ρAÞ ¼ C; ð21Þ

for some background-dependent integration constant C.
We will make use of this relation later in the paper. Finally,
we also note that by combining Eqs. (18) and (19), one can
derive the inequality

∂2
ρc ≤ 0; ð22Þ

that constrains the RG flows of the dual field theory
admitting a description based on the classical backgrounds.

E. Superpotential formalism

The conventions we are using in writing the action in
Eq. (1) are such that if the potential of the model in D
dimensions VD can be written in terms of a superpotential
W that satisfies the following equation [123]

VD ¼ 1

2
Gϕϕð∂ϕWÞ2 −D − 1

D − 2
W2; ð23Þ

for the metric ansatz

ds2D ¼ e2Adx21;D−2 þ dρ2; ð24Þ

then one finds that the solutions to a special set of first-
order equations are also solutions to the second-order
classical equations. The aforementioned first-order equa-
tions are the following:

∂ρA ¼ −
2

D − 2
W; ð25Þ

∂ρϕ ¼ Gϕϕ∂ϕW: ð26Þ

As we are working with D ¼ 6, and given the potential
V6 of Eq. (6), one finds [110] the superpotentialW ¼ W1,
which together with the corresponding first-order equa-
tions is

W1 ¼ −eϕ −
1

3
e−3ϕ; ð27Þ

∂ρA ¼ −
1

2
W1 ¼

1

2

�
eϕ þ 1

3
e−3ϕ

�
; ð28Þ

∂ρϕ ¼ 1

2
∂ϕW1 ¼

1

2
ð−eϕ þ e−3ϕÞ: ð29Þ

It is straightforward to verify that solutions to the previous
two equations also solve the full equations of motion of the
system, which after imposing the constraint A ¼ 4χ (and
hence A ¼ 3χ) can be rewritten as

4∂2
ρϕþ 15∂ρA∂ρϕ ¼ 2

∂V6

∂ϕ ; ð30Þ

3∂2
ρAþ 4ð∂ρϕÞ2 ¼ 0; ð31Þ

45ð∂ρAÞ2 − 16ð∂ρϕÞ2 ¼ −16V6: ð32Þ

The superpotential W1 yields a system of equations that
admits the solution ϕ ¼ 0 and A ¼ 2

3
ρ. It can be expanded

in powers of small ϕ:

W1ðϕÞ ¼ −
4

3
− 2ϕ2 þ 4

3
ϕ3 −

7

6
ϕ4 þ 2

3
ϕ5 −

61

180
ϕ6

þOðϕ7Þ: ð33Þ

The quadratic term in this expansion shows that the solutions
can be interpreted in terms of the vacuum expectation
value of an operator of dimension Δ ¼ 3 in the dual five-
dimensional strongly coupled field theory [110].
Besides providing a useful solution-generating tech-

nique, the superpotential formalism also plays a role in
defining an unambiguous, covariant, and physically moti-
vated subtraction scheme in the calculation of the free
energy. To this purpose, we notice that the system admits a
second choice of superpotential, that we call W2, and that
can be written as a power expansion for small ϕ:

W2ðϕÞ ¼ −
4

3
−
4

3
ϕ2 þ 16

3
ϕ3 þ 86

3
ϕ4 þ 848

3
ϕ5

þ 988658

315
ϕ6 þOðϕ7Þ: ð34Þ

We are not aware of the existence of a closed form solution
to Eq. (23) that satisfies this expansion. Notice that, while
encompassing the same AdS6 solution of the first-order
system derived from W2, in this case the solutions of the
first-order system correspond to deformations of the dual
field theory by the nontrivial coupling of the same operator
of dimension Δ ¼ 3. As we shall see, by choosing to adopt
W2ðϕÞ as the form of one of the boundary-localized terms
in the complete gravity action, we can provide the counter-
terms in the holographic renormalization procedure and
guarantee that all the divergences are canceled for any
asymptotically AdS6 backgrounds.

III. CLASSES OF SOLUTIONS

In this section, we present the classes of solutions that we
will refer to as supersymmetry (SUSY), IR-conformal,
confining, and skewed, together with their IR expansions.
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We also introduce a few additional, more general, singular
solutions, including ones that preserve five-dimensional
Poincaré invariance. We introduce the relevant UV expan-
sions for the two scalars fϕ; χg and the warp factor A,
which are valid for all these classes of solutions.

A. UV expansions

We present here the large-ρ expansions for ϕ, χ, and A in
terms of a convenient holographic coordinate defined by

z≡ e−2ρ=3. We truncate each expansion at Oðz11Þ. These
expansions are used in the numerical analysis for all classes
of solutions in order to extract values for the set of UV
parameters fϕ2;ϕ3; χ5; χU; AUg that unambiguously iden-
tify each background and to compute the free energy. All
solutions we are interested in have the same formal UV
expansion, as they all correspond to deformations of the
same supersymmetric fixed point. The expansions are given
by the following equations:

ϕðzÞ ¼ ϕ2z2 þ ϕ3z3 − 6ϕ2
2z

4 − 4ðϕ2ϕ3Þz5 þ
�
29ϕ3

2

2
− ϕ2

3

�
z6 þ 339

20
ϕ2
2ϕ3z7

þ
�
77ϕ2ϕ

2
3

10
−
146ϕ4

2

3

�
z8 þ

�
19ϕ3

3

12
−
8497ϕ3

2ϕ3

105

�
z9

þ
�
6752ϕ5

2

35
−
1986ϕ2

2ϕ
2
3

35

�
z10 þ

�
4127161ϕ4

2ϕ3

10080
−
3427ϕ2ϕ

3
3

180

�
z11 þOðz12Þ; ð35Þ

χðzÞ ¼ χU −
logðzÞ
3

−
ϕ2
2z

4

12
þ χ5z5 þ

�
8ϕ3

2

9
−
ϕ2
3

12

�
z6 þ 32

21
ϕ2
2ϕ3z7 þ

�
3ϕ2ϕ

2
3

4
−
77ϕ4

2

16

�
z8

þ
�
−
1072ϕ3

2ϕ3

135
þ 25χ5ϕ

2
2

36
þ 4ϕ3

3

27

�
z9 þ

�
−
15χ25
64

þ 172ϕ5
2

9
−
3181ϕ2

2ϕ
2
3

600
þ 9χ5ϕ2ϕ3

8

�
z10

þ
�
44776ϕ4

2ϕ3

1155
−
200χ5ϕ

3
2

33
−
96ϕ2ϕ

3
3

55
þ 25χ5ϕ

2
3

44

�
z11 þOðz12Þ; ð36Þ

AðzÞ ¼ AU −
4 logðzÞ

3
−
ϕ2
2z

4

3
þ
�
χ5
4
−
3ϕ2ϕ3

5

�
z5 þ

�
32ϕ3

2

9
−
ϕ2
3

3

�
z6 þ 128

21
ϕ2
2ϕ3z7

þ
�
3ϕ2ϕ

2
3 −

77ϕ4
2

4

�
z8 þ 1

2160
ð−69508ϕ3

2ϕ3 þ 375χ5ϕ
2
2 þ 1280ϕ3

3Þz9

þ 1

3600
ð−3375χ25 þ 275200ϕ5

2 − 78936ϕ2
2ϕ

2
3Þz10

þ 1

18480
ð2932864ϕ4

2ϕ3 − 28000χ5ϕ
3
2 − 135324ϕ2ϕ

3
3 þ 2625χ5ϕ

2
3Þz11 þOðz12Þ: ð37Þ

For convenience, we also write explicitly the UV expansions for the two combinations c and d that were introduced in
Sec. II D:

cðzÞ ¼ 4AU − χU − 5 logðzÞ − 5ϕ2
2z

4

4
−
12

5
ϕ2ϕ3z5 þ

�
40ϕ3

2

3
−
5ϕ2

3

4

�
z6 þ 160

7
ϕ2
2ϕ3z7

þ
�
45ϕ2ϕ

2
3

4
−
1155ϕ4

2

16

�
z8 þ

�
20ϕ3

3

9
−
1087ϕ3

2ϕ3

9

�
z9 þ

�
−
225χ25
64

þ 860ϕ5
2

3
−
16481ϕ2

2ϕ
2
3

200
−
9χ5ϕ2ϕ3

8

�
z10

þ
�
45896ϕ4

2ϕ3

77
−
303ϕ2ϕ

3
3

11

�
z11 þOðz12Þ; ð38Þ

dðzÞ ¼ AU − 4χU þ
�
−
15χ5
4

−
3ϕ2ϕ3

5

�
z5 þ

�
−
5ϕ3

2ϕ3

12
−
125χ5ϕ

2
2

48

�
z9 þ

�
−
18

25
ϕ2
2ϕ

2
3 −

9χ5ϕ2ϕ3

2

�
z10

þ
�
40ϕ4

2ϕ3

11
þ 250χ5ϕ

3
2

11
−
15ϕ2ϕ

3
3

44
−
375χ5ϕ

2
3

176

�
z11 þOðz12Þ: ð39Þ
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When computing the free energy for each class of
solutions, we will choose to always set AU ¼ χU ¼ 0.
The constraint A ¼ 4χ ⇔ d ¼ 0 reinstates (locally) five-
dimensional Poincaré invariance. It is required for the
SUSY, IR-conformal and singular domain-wall solutions,
and it constrains the parameters appearing in the UV
expansions.

B. SUSY solutions

The first-order equations presented in Eqs. (27)–(29) of
Sec. II E can be solved by performing the change of
variable ∂ρ ≡ e−ϕ∂τ, after which one obtains

∂τϕ ¼ − sinhð2ϕÞ; ð40Þ

∂τA ¼ 1

2

�
e2ϕ þ 1

3
e−2ϕ

�
; ð41Þ

which are solved exactly by [110]

ϕðτÞ ¼ arccothðe2ðτ−τoÞÞ; ð42Þ

AðτÞ ¼ Ao þ
1

3
logðsinhð2ðτ − τoÞÞÞ

þ 1

6
logðtanhðτ − τoÞÞÞ; ð43Þ

where Ao and τo are integration constants. These SUSY
solutions evolve ϕ monotonically from the supersymmetric
fixed point toward the good singularity (ϕ → ∞), for which
the potential is bounded from above. We notice that the
flow breaks scale invariance and hence reduces the number
of supersymmetries of the underlying theory to 8 [110]. We
remind the reader that these solutions result from the
formation of a nontrivial condensate in the dual field
theory.
By relating the radial coordinates ρ and τ, one finds that

the SUSY solutions given in Eqs. (42) and (43) have the
following IR expansions,

ϕðρÞ ¼ logð2Þ − logðρ − ρoÞ þ
1

80
ðρ − ρoÞ4 þ…; ð44Þ

χðρÞ ¼ χI þ
1

3
logðρ − ρoÞ þ

1

360
ðρ − ρoÞ4 þ…; ð45Þ

AðρÞ ¼ AI þ
4

3
logðρ − ρoÞ þ

1

90
ðρ − ρoÞ4 þ…; ð46Þ

where χI and AI ¼ 4χI are integration constants and ρo is
the radial position of the singularity in the deep IR region of
the bulk.
In Fig. 3, we illustrate the space of domain-wall

solutions, of which the SUSY solutions are a special case,
through the following procedure. We first solve Eq. (32) for
∂ρA and substitute into Eq. (30) to obtain a second-order

differential equation in terms of ϕ alone, then plot para-
metrically ðϕ; ∂ρϕÞ, and study how the solutions flow away
from the supersymmetric fixed point at the origin. We
observe that the SUSY solutions (gray line) form the
separatrix between numerical solutions which flow to a
bad singularity (ϕ → −∞) and solutions which instead
flow to a good singularity (ϕ → ∞).

C. IR-conformal solutions

A second class of solutions interpolates between the two
known AdS6 solutions of the six-dimensional model,
corresponding in the boundary theory to a renormalization
group flow between two fixed points. The six-dimensional
bulk geometry does not close off for any (finite) value of the
holographic coordinate ρ and the compact dimension
described by η maintains nonzero size for all ρ. Hence,
there does not exist a physical lower limit for the energy
scale at which the field theories dual to this class of
solutions may be probed. The IR expansions for this class

–0.4 –0.2 0.0 0.2 0.4 0.6 0.8 1.0
–2.0

–1.5

–1.0

–0.5

0.0

0.5

1.0

FIG. 3. Parametric plot of ∂ρϕ as a function of ϕ for solutions
which satisfy the domain-wall constraint A ¼ 4

3
A ¼ 4χ. The blue

disk and dark-red triangle, respectively, denote the UV and IR
critical points of the six-dimensional potential V6; the purple
(solid) line represents the class of IR-conformal solutions
introduced in Sec. III C with duals which flow between the
two critical points; and the light-gray (solid) line represents the
analytical supersymmetric solutions obtained by solving the first-
order differential equations (27), (28), and (29). The dark-gray
arrows exhibit the vector field appearing in the first-order
differential equation for ðϕ; ∂ρϕÞ. We also show two examples
of the (good) singular solutions obeying the IR expansion in
Sec. III F, for ϕL ¼ −1=

ffiffiffi
5

p
and ϕI ¼ −0.3, 0.1 (long-dashed

dark-blue lines) and two examples of the domain-wall (badly
singular) solutions from Sec. III G, with ϕ4 ¼ −0.06, 40 (dashed
dark-green lines).
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of solutions are conveniently written in terms of

e−ð5−ΔIRÞ ρ
RIR , which is small in the limit ρ → −∞, and they

are given by

ϕðρÞ ¼ ϕIR þ ðϕI − ϕIRÞe−ð5−ΔIRÞ ρ
RIR þ � � � ; ð47Þ

χðρÞ¼ χIþ
ρ

3RIR
−

1

12
ðϕI −ϕIRÞ2e−2ð5−ΔIRÞ ρ

RIR þ�� � ; ð48Þ

AðρÞ¼AIþ
4ρ

3RIR
−
1

3
ðϕI −ϕIRÞ2e−2ð5−ΔIRÞ ρ

RIR þ�� � ; ð49Þ

where χI and AI are integration constants, R2
IR ≡

−5ðV6ðϕIRÞÞ−1 ¼ 5
4

ffiffiffi
3

p
is the (squared) curvature radius

of the AdS6 geometry, ΔIR ¼ 1
2
ð5þ ffiffiffiffiffi

65
p Þ is the scaling

dimension of the operator in the dual boundary theory that
is related to the IR critical point value of the bulk scalar ϕ,
and we restrict the one free parameter ϕI ≥ − 1

4
logð3Þ. We

observe that d≡ A − 4χ ¼ 0 for all values of ϕI for this
class of solutions. It is also worth noting that the back-
grounds defined by this class of solutions do not preserve
supersymmetry. In the UV expansions, these solutions
require a tuning of ϕ3 against ϕ2, as we will discuss in
Sec. V B.

D. Confining solutions

With some abuse of language, we refer to a third class of
solutions as confining. Here, the compact dimension
(described by the coordinate η) shrinks to a point at some
finite value ρo of the holographic coordinate, and the six-
dimensional bulk geometry closes off smoothly. On the
boundary side of the duality, this smooth tapering property
of the bulk manifold is interpreted as a physical lower limit
on the energy scale that may be probed in the correspond-
ing field theory inD ¼ 5 dimensions. We anticipate that the
IR asymptotic expansion of these solutions is identical to
those studied in Ref. [98] and hence the calculation of the
Wilson loops via the holographic prescription yields the
area law expected from confinement. We will compute
explicitly the spectrum in Sec. IV and show that it is
discrete, generalizing the results of Ref. [99].
As mentioned in previous work [92,93,98,99], there exist

exact analytical solutions of the classical equations of
motion when ϕ is constant,

ϕ ¼ ϕUV ¼ 0; ð50Þ

χðρÞ ¼ χI −
1

5
log

�
cosh

� ffiffiffiffiffiffiffiffiffi
−5v

p

2
ðρ − ρoÞ

��

þ 1

3
log

�
sinh

� ffiffiffiffiffiffiffiffiffi
−5v

p

2
ðρ − ρoÞ

��
; ð51Þ

AðρÞ ¼ AI −
4

15
logð2Þ þ 4

15
log½sinhð

ffiffiffiffiffiffiffiffiffi
−5v

p
ðρ − ρoÞÞ�

þ 1

15
log

�
tanh

� ffiffiffiffiffiffiffiffiffi
−5v

p

2
ðρ − ρoÞ

��
; ð52Þ

with v≡ V6ðϕ ¼ 0Þ as defined in Sec. II B. By direct
substitution of the above analytical solutions, we find

ecðρÞ ¼ e4AðρÞ−χðρÞ ¼ 1

2
e4AI−χI sinh

�
10

3
ðρ − ρoÞ

�
; ð53Þ

edðρÞ ¼ eAðρÞ−4χðρÞ ¼ eAI−4χI coth

�
5

3
ðρ − ρoÞ

�
: ð54Þ

These solutions can be generalized by series expanding for
small ðρ − ρoÞ and allowing for nontrivial values of ϕ for
small ðρ − ρoÞ, to obtain expansions which may be used to
construct a generalized family of numerical solutions.
We obtain the numerical solutions by solving the

classical equations of motion, subject to boundary con-
ditions obtained from the following IR [small ðρ − ρoÞ]
expansions,

ϕðρÞ¼ϕI −
1

12
e−6ϕIð1−4e4ϕI þ3e8ϕIÞðρ−ρoÞ2

−
1

324
e−12ϕIð4−28e4ϕI þ51e8ϕI −27e16ϕIÞðρ−ρoÞ4

þOððρ−ρoÞ6Þ; ð55Þ

χðρÞ ¼ χI þ
1

3
log

�
5

3

�
þ 1

3
logðρ − ρoÞ

−
1

27
e−2ϕIð2þ sinhð4ϕI þ logð3ÞÞÞðρ − ρoÞ2

þ 5

486
e−4ϕIð2þ sinhð4ϕI þ logð3ÞÞÞ2ðρ − ρoÞ4

þOððρ − ρoÞ6Þ; ð56Þ

AðρÞ ¼ AI þ
1

3
log

�
5

3

�
þ 1

3
logðρ − ρoÞ

−
7

324
e−6ϕIð1 − 12e4ϕI − 9e8ϕIÞðρ − ρoÞ2

þ 1

17496
ð108 − 67e−12ϕI þ 636e−8ϕI

− 2124e−4ϕI − 1053e4ϕIÞðρ − ρoÞ4
þOððρ − ρoÞ6Þ; ð57Þ

where χI and AI generalize the integration constants
appearing in the analytical solutions and the third integra-
tion constant ρo may be chosen to fix the point at which the
geometry ends. We will comment on the fourth integration
constant ϕI momentarily. By using these expressions, we
find that
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ecðρÞ ¼ e4AðρÞ−χðρÞ ¼ e4AI−χI fðϕI; ðρ − ρoÞÞ; ð58Þ

edðρÞ ¼ eAðρÞ−4χðρÞ ¼ eAI−4χI gðϕI; ðρ − ρoÞÞ; ð59Þ

where the functions f and g are known for ϕI ¼ 0, and
otherwise can be determined numerically.
The additive integration constant AI may be removed by

a rescaling of the Minkowski coordinates. By contrast,
because η is a periodic coordinate with period 2π, we are
required to fix χI to avoid a conical singularity at ρo. In
proximity of this point, the six-dimensional geometry
resembles a two-dimensional space described by the
following metric,

ds22 ¼ dρ2 þ e6χdη2 ð60Þ

¼ dρ2 −
5

4
ve6χI ðρ − ρoÞ2dη2 þ � � � ; ð61Þ

from which we extract the required constraint:

χI ¼
1

6
log

�
−4
5v

�
¼ −

1

3
log

�
5

3

�
: ð62Þ

The one remaining free parameter of this system is ϕI ,
which we constrain to take values ϕI ≥ − 1

4
logð3Þ, as we

are interested only in solutions that reach back to the trivial
critical point for large ρ (the fact that not all possible
solutions flow to the UV fixed point can be seen for the
domain-wall solutions in Fig. 3).

E. Skewed solutions

There exists another class of analytical solutions with
ϕ ¼ 0 for which the compact coordinate does not shrink to
a point; χðρÞ is a nonmonotonic function which diverges to
∞ at small ρ. We refer to these solutions as skewed. The
solutions are as follows:

ϕ ¼ ϕUV ¼ 0; ð63Þ

χðρÞ ¼ χI þ
1

3
log

�
cosh

� ffiffiffiffiffiffiffiffiffi
−5v

p

2
ðρ − ρoÞ

��

−
1

5
log

�
sinh

� ffiffiffiffiffiffiffiffiffi
−5v

p

2
ðρ − ρoÞ

��
; ð64Þ

AðρÞ ¼ AI −
4

15
logð2Þ þ 4

15
log½sinhð

ffiffiffiffiffiffiffiffiffi
−5v

p
ðρ − ρoÞÞ�

−
1

15
log

�
tanh

� ffiffiffiffiffiffiffiffiffi
−5v

p

2
ðρ − ρoÞ

��
: ð65Þ

As with the confining solutions, we take note of the
following two results obtained by substituting in for the
skewed analytical solutions above,

ecðρÞ ¼ e4AðρÞ−χðρÞ ¼ 1

2
e4AI−χI sinh

�
10

3
ðρ − ρoÞ

�
; ð66Þ

edðρÞ ¼ eAðρÞ−4χðρÞ ¼ eAI−4χI tanh

�
5

3
ðρ − ρoÞ

�
; ð67Þ

which shows that these are indeed the solutions obtained
from the confining ones with ϕ ¼ 0 [see Eqs. (53) and (54)]
by replacing d → −d, as anticipated in Sec. II D.
Just as with the solutions that confine, we can generalize

these analytical solutions to any values of ϕI by series
expanding for small ðρ − ρoÞ. We obtain the following IR
expansions,

ϕðρÞ¼ϕI −
1

12
e−6ϕIð1−4e4ϕI þ3e8ϕIÞðρ−ρoÞ2

−
1

324
e−12ϕIð4−28e4ϕI þ51e8ϕI −27e16ϕIÞðρ−ρoÞ4

þOððρ−ρoÞ6Þ; ð68Þ

χðρÞ ¼ χI −
1

5
log

�
5

3

�
−
1

5
logðρ − ρoÞ

−
1

54
e−6ϕIð1 − 12e4ϕI − 9e8ϕIÞðρ − ρoÞ2

−
1

9720
e−12ϕI ½23þ 3e4ϕIð−88þ 9e4ϕIð38þ 24e4ϕI

þ 21e8ϕIÞÞ�ðρ − ρoÞ4 þOððρ − ρoÞ6Þ; ð69Þ

AðρÞ ¼ AI þ
1

5
log

�
5

3

�
þ 1

5
logðρ − ρoÞ

−
1

36
e−6ϕIð1 − 12e4ϕI − 9e8ϕIÞðρ − ρoÞ2

−
1

29160
e−12ϕI ½131þ 3e4ϕIð−436

þ 3e4ϕI ð508þ 84e4ϕI þ 261e8ϕIÞÞ�ðρ − ρoÞ4
þOððρ − ρoÞ6Þ; ð70Þ

where the integration constants χI and AI are the gener-
alization of the ones appearing in Eqs. (64) and (65) and ϕI
is the free parameter that we vary to generate the family of
solutions. One can solve numerically the classical equa-
tions of motion, subject to boundary conditions derived
from these IR expansions, in order to construct a class of
skewed solutions.
We observe that the following relations hold,

ecðρÞ ¼ e4AðρÞ−χðρÞ ¼ e4AI−χI fðϕI; ðρ − ρoÞÞ; ð71Þ

edðρÞ ¼ eAðρÞ−4χðρÞ ¼ eAI−4χI ½gðϕI; ðρ − ρoÞÞ�−1; ð72Þ

where the functions f and g take exactly the same form as
those in the analogous results for the confining solutions.
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Hence, provided that ϕconf
I ¼ ϕskew

I and ρconfo ¼ ρskewo , one
finds the relation

∂ρdconfðρÞ ¼ −∂ρdskewðρÞ; ð73Þ

where the conf and skew superscripts represent evaluation
using the confining and skewed background solutions,
respectively. In turn, this implies that the relation

χskewðρÞ − AskewðρÞ ¼ −
3

5
ðχconfðρÞ þ AconfðρÞÞ ð74Þ

is satisfied up to an additive integration constant. By
comparing the UV expansions, one then finds the identi-
fications

ϕskew
2 ¼ ϕconf

2 ; ð75Þ

ϕskew
3 ¼ ϕconf

3 ; ð76Þ

χskew5 ¼ −χconf5 −
8

25
ϕconf
2 ϕconf

3 : ð77Þ

We conclude this subsection with an observation which
motivates our choice of the name “skewed” for this class of
solutions. From the six-dimensional metric in Eq. (9), we
can deduce the behavior of the bulk geometry in the deep
IR for these solutions. We notice by substituting for the
small-ðρ − ρoÞ expansions that the size of the Minkowski
directions scales as ðρ − ρoÞ25, while the compact dimension
parametrized by η scales as ðρ − ρoÞ−3

5. Hence, in the
ρ → ρo limit, the four-dimensional Minkowski volume
vanishes, while the volume of the circle diverges. This
contrasts with the small-ðρ − ρoÞ behavior of the geometry
for the confining solutions wherein the Minkowski
directions maintain a fixed nonzero volume in the IR,
while the circle shrinks to a point. The shrinking and
expanding behavior of the various metric components for
this class of solutions motivates our choice of the name
“skewed.” Appendix A is devoted to showing that, while
the confining solutions are regular, the skewed ones are
singular.

F. Generic (singular) solutions

When ϕ diverges at the end of space, all curvature
invariants diverge (see Appendix A). If ϕ approaches
ϕ → þ∞, we find a good singularity. These solutions
are incomplete but capture at least some salient features of
the system. By contrast, in the case in which ϕ → −∞ at
the end of space, the solutions result in a bad singularity,
and we should disregard them as unphysical. Nevertheless,
they play an important technical role in our study, as we
anticipated in the Introduction and as we shall see and
explain in detail in Sec. V.

We find that a broad, generic class of classical solutions
can be parametrized by the following expansion near the
end of space at ρ ¼ ρo,

ϕ ¼ ϕI þ ϕL logðρ − ρoÞ

þ
X∞
n¼1

X2n
j¼0

cnjðρ − ρoÞ2nþ2nϕL−4jϕL ; ð78Þ

where the coefficients cnj depend on the free parameters ϕI

and ϕL. Some useful details are provided in Appendix B,
while we exhibit here only the leading-order terms of this
expansion, ignoring all the power-law corrections:

ϕðρÞ ¼ ϕI þ ϕL logðρ − ρoÞ þ � � � ; ð79Þ

χðρÞ¼ χIþ
1

15

�
4ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−5ϕ2

L

q
þ1

�
logðρ−ρoÞþ �� � ; ð80Þ

AðρÞ¼AIþ
1

15

�
ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−5ϕ2

L

q
þ4

�
logðρ−ρoÞþ �� � : ð81Þ

The five integration constants are ϕI, χI , AI , ϕL, and ρo,
supplemented by the discrete choice ζ ¼ �1. We notice
that for ϕL ¼ 0 and ζ ¼ þ1 we recover the confining
solutions, while for ϕL ¼ 0 and ζ ¼ −1, we recover the
skewed solutions. For ϕL ≠ 0, one obtains either solutions
with a good singularity (ϕL < 0) or with a bad singular-
ity (ϕL > 0).
The integration constant in front of the logarithm is

constrained to take values within the range

−
1ffiffiffi
5

p ≤ ϕL <
1

3
: ð82Þ

The lower bound ϕL ≥ − 1ffiffi
5

p arises from the requirements

that both χ and A be real. For a choice that saturates this
lower bound, and for AI ¼ 4χI, the solutions satisfy the
condition A ¼ 4χ required by domain-wall solutions. This
parametrization then encompasses all of the aforemen-
tioned solutions, with the exception of the IR-conformal
and SUSY solutions.
The upper bound in Eq. (82) emerges from the require-

ment that all powers in Eq. (78) be positive. As for positive
ϕL the worst power appearing at any given n is
2nð1 − 3ϕLÞ, in order for all the powers to be positive,
and that hence the IR divergence be logarithmic in ðρ − ρoÞ,
we must require that ϕL < 1=3. (The same line of argu-
ments for negative ϕL would be controlled by the j ¼ 0
power, in which case one would find the constraint
ϕL > −1.) This requirement is more stringent than requir-
ing that A and χ be real, which would yield ϕL ≤ 1ffiffi

5
p .

The limit ϕL → 1
3
is such that the series expansion cannot

be truncated nor resummed; at all infinitely many levels
of n, one finds additive contributions proportional to
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ðρ − ρoÞ0, to ðρ − ρoÞ4=3 and so on. We discuss a related
class of solutions in the next subsection.

G. Badly singular domain-wall solutions

Finally, we also found another class of singular domain-
wall solutions, for which the IR expansion is the following:

ϕðρÞ ¼ 1

6
log

�
9

4

�
þ logðρ − ρoÞ

3
þ ϕ4ðρ − ρoÞ4=9

þ
X∞
j¼2

fjðρ − ρoÞ
4j
9 ; ð83Þ

χðρÞ ¼ χI þ
1

27
logðρ − ρoÞ þ

2

5
ϕ4ðρ − ρoÞ4=9

þ
X∞
j¼2

gjðρ − ρoÞ
4j
9 : ð84Þ

Some more details about this expansion, truncated at the
order of ðρ − ρoÞ4, are presented in Appendix C. Together
with the domain-wall constraint A ¼ 4χ, this expansion
identifies a class of solutions that depend on the trivial
parameter χI and two additional parameters: the position ρo
of the end of space and the integration constant ϕ4. The
coefficients fj and gj are polynomial functions of ϕ4. This
family of solutions is the (nontrivial) limiting case of
the solutions in Sec. III F obtained when ϕL → 1=3. The
freedom in choosing ϕI in the generic singular solutions is
replaced here by the freedom in ϕ4. We verified explicitly
that the singularity is not removed by the lift to D ¼ 10
dimensions (see Appendix D).
Although we cannot exclude a priori the existence of

additional singular backgrounds with more exotic IR
behaviors, our exploration of the space of solutions that
connect to the trivial (ϕ ¼ 0) fixed point for large ρ,
performed by perturbative generation of IR asymptotic
expansions and evolution toward larger values of ρ, was
confirmed by the result of scanning numerically the five-
dimensional space of perturbations of the ϕ ¼ 0 critical
point and evolving the solutions backward, toward small ρ.
We did not find any indications that additional solutions
with asymptotic UV behavior in Sec. III A exist outside of
the classes discussed in this section.

H. Scale setting

To facilitate comparison between all classes of solutions,
we choose to set AU ¼ 0 and χU ¼ 0 in all cases; the former
assignment is permitted since the classical equations of
motion are invariant under an additive shift of AðρÞ, while
the latter can be achieved by a rescaling of the radial
coordinate z → ze3χU . We are hence left with the UV
parameters fϕ2;ϕ3; χ5g.
Moreover, we find it useful to introduce a quantity that

we use to set the scale in the observables deduced from the

free energy (see later, in Sec. V) and that we conveniently
define as the time a massless particle takes to reach the end
of space from the UV boundary, following Ref. [128],

Λ−1 ≡
Z

∞

ro

dr̃e−Aðr̃Þ ¼
Z

∞

ρo

dρ̃eχðρ̃Þ−Aðρ̃Þ; ð85Þ

where A and χ are evaluated on the backgrounds. When a
dual field-theory interpretation exists, Λ can be thought of
as a characteristic energy scale, which governs, among
other things, the mass gap of the theory.
We notice, by looking at the metric, that a trivial rigid

rescaling of the coordinates xμ → λxμ and η → λη is
equivalent to a rigid shift of A and χ as A→Aþ4

3
logðλÞ

and χ → χ þ 1
3
logðλÞ. This is to be accompanied by a shift

ρ → ρ − 3
2
logðλÞ such that χU and AU remain equal to zero.

Under such a rigid shift, one can see that Λ → λΛ, and
ϕ2 → λ2ϕ2. It hence becomes evident that ϕ̂2 ≡ ϕ2Λ−2 is
an invariant (dimensionless) quantity, which we denote by
the hat. In the following, we often express our results in
terms of such dimensionless quantities, by which we mean
that we are measuring in units of Λ.
In order to appreciate the need for a scale setting

procedure in the comparison of different classes of sol-
utions, consider that the space of free parameters has
different dimensionality for the confining and skewed
solutions; for the confining solutions, the IR parameter
χI is fixed by the requirement of avoiding a conical
singularity in the small ρ region of the bulk geometry,
but no such constraint exists for the skewed solutions, in
which the space does not smoothly shrink to a point.2 To
ensure that we can properly compare these two classes of
solutions when plotting the free energy, we measure all
quantities in units of Λ, effectively reducing by 1 the
dimension of the parameter space for the skewed solutions.
We apply the same procedure to all other solutions as well,
thus enabling us to compare the different branches of
solutions in a consistent manner.

IV. MASS SPECTRA, A TACHYON,
AND A DILATON

Applying the dictionary of gauge-gravity dualities, the
spectrum of small fluctuations around an asymptotically
AdS supergravity background can be interpreted in terms of
the spectrum of bound states of the strongly coupled dual
field theory. All classes of solutions that we introduced in
Sec. III have the same asymptotically AdS expansion for
large ρ, but only the third class of geometries (those which
we referred to as confining) have a regular end of space.

2In constructing the skewed solutions numerically, we exploit
the fact that, as discussed in Sec. III E, they can be obtained
(up to a trivial additive integration constant) from the confining
solutions by making the substitution d → −d.
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We hence restrict our attention to this class of solutions in
this section, as they are the only candidates for admitting an
interpretation in terms of confining field theories.
We devote this section of the paper to two calculations.

We first compute the mass spectra for the full set of bosonic
field excitations of the dimensionally reduced model
presented in Sec. II C. We then repeat the computation
for the scalar excitations implementing the probe approxi-
mation, according to the prescription described in
Ref. [127]. The former exercise will reveal the existence
of a tachyonic spin-0 state in a certain region of parameter
space for the class of confining solutions. The latter will
show that, in proximity of this region, one scalar state is not
only parametrically light but also an (approximate) dilaton.

A. Mass spectra

We present in this subsection the mass spectra of
fluctuations of the various bosonic supergravity fields of
the sigma model coupled to five-dimensional gravity. We
interpret the states as glueballs with spin 0, 1, or 2 in the
dual confining field theory in four dimensions. In order to
conduct this numerical analysis, we employ the convenient
gauge-invariant formalism developed in Refs. [122–126].
The equations satisfied by the scalar fluctuations aa ¼
aaðM; ρÞ are given by

0 ¼ ½eχDρðe−χDρÞ þ ð4∂ρAÞDρ þ e2χ−2AM2�aa
− e2χXa

cac; ð86Þ

where M is the mass of the composite states in the dual
theory and where

Xa
c ¼ −e−2χRa

bcd∂ρΦb∂ρΦd þDc

�
Gab ∂V

∂Φb

�

þ 4

3∂ρA

�
∂ρΦa ∂V

∂Φc þ Gab ∂V
∂Φb ∂ρΦdGdc

�

þ 16V
9ð∂ρAÞ2

∂ρΦa∂ρΦbGbc: ð87Þ

In all these expressions, the quantities χ, A, Φ, and V are
evaluated on the background. Moreover, given a field Xa,
we defined the sigma-model-covariant as well as the
background-covariant derivatives by DbXa ¼ ∂bXa þ
Ga

bcXc and DρXa ¼ ∂ρXa þ Ga
bc∂ρΦbXc with the con-

nection Ga
bc ¼ 1

2
Gadð∂bGcd þ ∂cGdb − ∂dGbcÞ, while the

sigma-model Riemann tensor is given by Ra
bcd ¼∂cGa

bd − ∂dGa
bc þ Ga

ceGe
bd − Ga

deGe
bc. We impose the

following boundary conditions3:

e−2χ∂ρΦc∂ρΦdGdbDρab
				
ρi

¼−
�
3∂ρA

2
e−2AM2δcb−∂ρΦc

�
4V
3∂ρA

∂ρΦdGdbþ
∂V
∂Φb

��
ab
				
ρi

: ð88Þ

To compute numerically the mass spectra for the fluctua-
tions of the fields, it is necessary to introduce regulators in
the form of radial coordinate cutoffs; ρ1 is a (nonphysical)
infrared regulator chosen so that ρo < ρ1, and ρ2 is chosen as
the end point of the backgrounds in the far UVat large ρ. The
physical results are obtained by removing the two holo-
graphic regulators, i.e., by taking the limits ρ1 → ρo and
ρ2 → þ∞. For a comprehensive explanation of this pro-
cedure (and our notation and conventions), and details not
immediately important for the purposes of this paper, see
Refs. [98,99,126]. In our numerical study of the spectrum,
we chose ρ1 and ρ2 to be sufficiently close to the end of space
and to the boundary, respectively, that both cutoff effects are
negligible—we estimate that the numerical precision is
accurate to within a few percent.
The fluctuations of the pseudoscalars πi satisfy the

same equation as the scalar fluctuations above, with
Gππ ¼ e−6χ−2ϕ, while the equations of motion for all the
other fluctuations are the following [99],

0 ¼ ½∂2
ρ þ ð4∂ρA − ∂ρχÞ∂ρ þ e2χ−2AM2�eμν ; ð89Þ

0 ¼ Pμν½e−χ∂ρðe2Aþ7χ∂ρVνÞ þM2e8χVν�; ð90Þ

0 ¼ Pμν½e−χ∂ρðe2Aþχ−2ϕ∂ρAi
νÞ þM2e2χ−2ϕAi

ν�; ð91Þ

0 ¼ ∂2
ρX þ ð5∂ρχ − 2∂ρAþ 2∂ρϕÞ∂ρX

þ
�
M2e−2Aþ2χ −

8

9
e−6ϕ

�
X; ð92Þ

0 ¼
�
M2 þ e3χ−4ϕ∂ρðe2A−5χþ4ϕ∂ρÞ −

8

9
e2A−2χ−6ϕ

�
PμνB6ν;

ð93Þ

0 ¼ Pμν

�
∂ρðe−χ∂ρXνÞ − e−χð2∂ρχ − 2∂ρϕÞ∂ρXν

þ eχ
�
e−2AM2 −

8

9
e−2χ−6ϕ

�
Xν

�
; ð94Þ

0¼PμρPνσ

�
M2e−2Aþe−5χ−4ϕ∂ρðe3χþ4ϕ∂ρÞ−

8

9
e−2χ−6ϕ

�
Bρσ;

ð95Þ
3In practice, the equivalent form of the boundary conditions

given in Eq. (14) of Ref. [73] turns out to be especially convenient
in the numerical implementation.
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where Pμν ≡ ημν − qμqν

q2 . The fluctuations X and Xμ obey

generalized boundary conditions, that reduce to Dirichlet in
the limit of interest to this paper [see Eqs. (B41) and (B.42)
of Ref. [99] for detailed technical explanations]. All other
fluctuations obey Neumann boundary conditions.
The confining solutions are characterized by the constant

ϕI ≥ − 1
4
logð3Þ, where the lower bound would correspond

to the IR fixed point of the dual five-dimensional quantum
field theory (in the sense that it results in a constant solution
for the scalar field ϕ ¼ ϕIR). Conversely, ϕI ¼ ϕUV ¼ 0
corresponds to the UV fixed point of the dual five-dimen-
sional field theory. While the background solutions and
spectra for − 1

4
logð3Þ ≤ ϕI ≤ 0 have been presented in

Ref. [99], the results for ϕI > 0 are new to this work.
We show the results for the computation of the mass

spectrum in Figs. 4 and 5. In Appendix E, we also show the
same numerical results, but normalized with the scale
setting parameter Λ defined in Eq. (85). For the region
− 1

4
logð3Þ ≤ ϕI ≤ 0, each plot is in agreement with our

previous computation in Ref. [99]; of more interest are the
observations that for large enough ϕI one of the states in the
scalar spectrum becomes tachyonic and that the lightest

massive states in two of the other towers (B6μ and Bμν)
appear to become massless in the limit of large ϕI .

B. Probe scalars and dilaton mixing

This is one of the central subsections to the paper. We
analyze the composition of the scalar particles in the
spectrum in terms of fluctuations of the background fields,
in order to establish whether any of them can, at least
approximately, be identified with the dilaton. The magni-
tude of the condensates in the underlying dynamics, as
evinced from the parameters ϕ3 and χ5 (see Appendix F),
changes along the branch of confining solutions, providing
a natural interpretation for the emergence of a dilaton and
its properties. We will further return to this point, later in
the paper.
The spin-0 mass spectrum presented in the previous

subsection represents the solutions to the scalar fluctuation
equation for the gauge-invariant combination (see
Refs. [122–127]) given by

aaðM; ρÞ ¼ φaðM; ρÞ − ∂ρΦaðρÞ
6∂ρAðρÞ

hðM; ρÞ; ð96Þ
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FIG. 4. The spectra of masses M, as a function of the one free parameter ϕI characterizing the confining solutions and normalized in
units of the lightest tensor mass, computed with ρ1 ¼ 10−4 and ρ2 ¼ 12. From top to bottom, left to right: the spectra of fluctuations of
the tensors eμν (red), the graviphoton Vμ (green), and the two scalars ϕ and χ (blue). The orange points in the plot of the scalar mass
spectrum represent values of M2 < 0 and hence denote a tachyonic state. We also show by means of the vertical dashed lines the case
ϕI ¼ ϕc

I > 0, the critical value that is introduced and discussed in Sec. V.
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where φaðM; ρÞ are the first-order fluctuations of the scalar
fields about their respective background solutions ΦaðρÞ,
while hðM; ρÞ describes small perturbations of the trace of
the four-dimensional tensor component of the Arnowitt-
Deser-Misner decomposed five-dimensional metric tensor.
In terms of the dual field theory, φa are associated with
generic scalar operators that define the theory, while h is
associated to the dilatation operator.
We are interested in determining to what extent any of

the scalar particles is a dilaton, i.e., whether mixing effects
between φa and h are important. To this end, in this
subsection, we repeat the computation of the mass spec-
trum in the spin-0 sector, by using the probe approximation;

we neglect the contribution of the metric perturbation h in
Eq. (96), effectively removing any backreaction the scalar
fluctuations may have on the bulk geometry (for details, see
Ref. [127]). We then check how well the resulting spectrum
computed with aajh¼0 agrees with the correct computation
making use of aa. If we find that the two calculations yield
results that are in good agreement, then we may infer that
the contribution of the metric perturbation is negligible and
hence the spin-0 state is not a dilaton; if, by contrast, the
two results disagree, then this is a clear indication of
the fact that the metric perturbation affects significantly the
spectrum and hence the scalar state has a significant dilaton
component.
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FIG. 5. The spectra of massesM as a function of the scale parameter ϕI, normalized in units of the lightest tensor. From top to bottom,
left to right: the spectra of fluctuations of the pseudoscalars πi forming a triplet 3 of SUð2Þ (pink), vectors Ai

μ forming a triplet 3 of SUð2Þ
(brown), Uð1Þ pseudoscalar X (gray), Uð1Þ transverse vector B6μ (purple), Uð1Þ transverse vector Xμ (black), and the massive U(1) 2-
form Bμν (cyan). The spectrum was computed using the regulators ρ1 ¼ 10−4 and ρ2 ¼ 12 with the exception of the Uð1Þ pseudoscalar
X for which we used ρ1 ¼ 10−7 in order to minimize the cutoff effects present for the very lightest state at large values of ϕI . We also
show by means of the vertical dashed lines the case ϕI ¼ ϕc

I > 0, the critical value that is introduced and discussed in Sec. V.
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As can be seen in Figs. 6 and 7, the probe approximation
is not accurate, and for all values of ϕI, at least one of the
lightest states is not well captured. This state is the lightest
scalar for large, negative ϕI and becomes the next-to-
lightest state for ϕI close to zero. This is a mixed state
that has a significant overlap with the dilatation operator.

We have already discussed the case ϕ ≤ 0 elsewhere [127],
and we will not return to the details of that discussion here.
Interestingly, for ϕI ∼ 0.25, starting from the region in
close proximity of (but before) the appearance of the
tachyon, the discrepancy between the probe approximation
and the mass of the lightest physical scalar becomes much

0.0 0.5 1.0 1.5 2.0

–1

0

1

2

3

FIG. 6. The spectra of scalar massesM as a function of the parameter ϕI along the confining branch of solutions, normalized in units of
the lightest tensor mass, computed with ρ1 ¼ 10−4 and ρ2 ¼ 12. As in Fig. 4, the blue disks represent the two scalars of the model ϕ and
χ, while the orange disks denote the tachyon. We additionally include the results of our mass spectrum computation using the probe
approximation for M2 > 0 (black triangles) and M2 < 0 (orange triangles); note that these do not represent additional states. We also
show by means of the vertical dashed line the case ϕI ¼ ϕc

I > 0, the critical value that is introduced and discussed in Sec. V. The shaded
gray region indicates the metastable region of parameter space.
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FIG. 7. A magnification of the plot shown in Fig. 6. We normalized the masses M in units of the lightest tensor mass and computed
with ρ1 ¼ 10−9 and ρ2 ¼ 15. We focus in particular on the lightest state of the spectrum, in the plot region where the tachyonic states
first appear. The dashed red box is intended to enclose an important feature of the full spectrum in Fig. 6, namely a region of ϕI
parameter space wherein the probe approximation completely disagrees with the full gauge-invariant scalar computation. We see that
there exists a finite range of values of the IR parameter ϕI for which the squared masses M2 of the physical scalars ab and the probes
abjh¼0 differ by a minus sign, and hence the probe approximation unambiguously fails.
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more pronounced (see Fig. 7). In this region of parameter
space, the lightest scalar particle can be rendered para-
metrically light with respect to all other states, and it is
legitimate to interpret it as an approximate dilaton. It is to
be noticed that the next-to-lightest state is still not well
captured by the probe approximation, due to mixing effects.
Let us now discuss the confining solutions with large

values of ϕI . In the limit ϕI → þ∞, the plots in Appendix F
show that ϕ̂2 → 0 and ϕ̂3 → þ∞, as in the SUSY solution.
Since ϕ̂2 is connected to the explicit breaking of scale
invariance, while ϕ̂3 encodes its spontaneous breaking, in
this limit, one expects the emergence of an exact dilaton.
This is confirmed by the fact that the mass squared of the
tachyon approaches zero from below, as can be seen in
Fig. 6.While these solutions are unphysical, this observation
nevertheless provides a nontrivial check of our analysis. We
further note that as ϕI is increased the probe approximation
results in additional heavier states becoming lighter and
eventually tachyonic. This reinforces the fact that it is not
only the tachyon and the lightest scalar that mix with the
dilaton but some of the heavier states as well. We finally
notice that, besides a small number of light, discrete states,
the spectrum of heavy particles in four dimensions becomes
densely packed, eventually degenerating into a gapped
continuum. Early evidence of this phenomenon can be seen
in all themass spectra, in Figs. 4 and 5. This final observation
is reminiscent of the features that emerge in proximity of the
Chamseddine-Volkov-Maldacena-Nunez solution [75,78]
along the baryonic branch of the Klebanov-Strassler system
[68,69]—see alsoRefs. [129,130] that study the gravity dual
of the Coulomb branch of N ¼ 4 super-Yang-Mills.
We conclude this section by summarizing our results for

the spectrum and interpreting them in terms of the dual field
theory. We consider only the regular (confining) solutions,
and we start from the region of parameter space in
proximity of the backgrounds with ϕ ¼ 0. The dual field
theory is given by a supersymmetric fixed point in D ¼ 5
dimensions, that admits two deformations. One corre-
sponds to the insertion of an operator of dimension
Δ ¼ 3, the source for which is encoded in the boundary
value of the field ϕ, via the coefficient ϕ2, and the response
function, which is related to the coefficient ϕ3. The other is
the compactification on a circle of one of the spacelike
dimensions, which is encoded in the gravity theory by the
marginal deformation corresponding to χ—by the coeffi-
cient χ5. The gravity solutions all correspond to dual
theories that confine, in the usual sense typical of strongly
coupled gauge theories in four dimensions.
Scale symmetry is both spontaneously and explicitly

broken. The spectrum of bound states in proximity of
ϕ ¼ 0 contains two almost degenerate scalar bound states.
The lightest of them is well captured by the probe
approximation, and it corresponds to fluctuations sourced
by the operator of dimension Δ ¼ 3. Its overlap with the
dilaton is negligible. The other state, conversely, can be

identified with an approximate dilaton (in the sense that it
would couple to the dilatation operator as a dilaton does),
and its dynamical origin is the unsuppressed vacuum
expectation value of the marginal operator. We highlight
the fact that ϕ3 vanishes when ϕ2 → 0, but this is not the
case for χ5 (see the plots in Appendix F). This region of
parameter space resembles generic Yang-Mills theories;
there is no sense in which the explicit breaking of scale
invariance is parametrically small compared to the scale of
spontaneous breaking, and hence while one of the scalar
bound states inherits some of the properties of an approxi-
mate dilaton, it is not parametrically light. We further
discuss the regime in which ϕ3 is large in Sec. V E, where
we return to the results of the exercise performed in the
current subsection.

V. FREE ENERGY AND A PHASE TRANSITION

In this section, we discuss the stability of backgrounds
belonging to all the distinct classes of solutions introduced
earlier on. To this end, we compute the free energy density
of the system, by applying a prescription that allows us to
compare to one another the free energies associated with
solutions belonging to different classes.

A. General action and formalism

Our first step is to derive the free energy of the solutions
from the truncated action of the scalar field ϕ coupled to
gravity in D ¼ 6 dimensions—while setting equal to zero
all other fields. We include a boundary at ρ ¼ ρ2 as a
regulator, with the understanding that the physical field-
theory results will be recovered at the end of the calcu-
lations by taking the limit ρ2 → þ∞. We also need to
introduce a regulator in the IR: despite the fact that some of
the solutions we consider are completely smooth, the
physical space is bounded by ρ1 < ρ < ρ2. It is understood
that eventually we will take ρ1 → ρo, with ρo the physical
end of the geometry. The presence of boundaries requires
on general grounds adding to the action the Gibbons-
Hawking-York (GHY) terms SGHY;i and boundary-
localized potentials Spot;i, for i ¼ 1, 2. We hence write
the action as follows.

S ¼ Sbulk þ
X
i¼1;2

ðSGHY;i þ Spot;iÞ

¼
Z

d4xdηdρ
ffiffiffiffiffiffiffiffi
−ĝ6

p �
R6

4
− ĝM̂ N̂∂M̂ϕ∂N̂ϕ − V6ðϕÞ

�

þ
X

i¼1;2
ð−Þi

Z
d4xdη

ffiffiffiffiffiffi
− ˜̂g

q �
K
2
þ λi

�				
ρ¼ρi

; ð97Þ

where ĝM̂ N̂ is the metric tensor for the six-dimensional line
element in Eq. (9) for VM ¼ 0, ĝ6 is its determinant, R6 is
the corresponding Ricci scalar, and ˜̂gM̂ N̂ is the metric
induced on each boundary.
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In order to define the induced metric, we introduce the
six-vector nM̂ ¼ ð0; 0; 0; 0; 1; 0Þ, that satisfies the defining
relations:

1 ¼ ĝM̂ N̂n
M̂nN̂ ¼ nM̂nM̂; ð98Þ

0 ¼ nM̂ðĝM̂ N̂ − nM̂nN̂Þ: ð99Þ

The covariant derivative is written in terms of the con-
nection as

∇M̂fN̂ ≡ ∂M̂fN̂ − ΓQ̂
M̂ N̂

fQ̂; ð100Þ

ΓP̂
M̂ N̂

≡ 1

2
ĝP̂ Q̂ð∂M̂ĝN̂ Q̂ þ ∂N̂ ĝQ̂ M̂ − ∂Q̂ĝM̂ N̂Þ: ð101Þ

We can now define the induced metric tensor ˜̂gM̂ N̂ and the
extrinsic curvature K as follows,

˜̂gM̂ N̂ ≡ ĝM̂ N̂ − nM̂nN̂; ð102Þ

K ≡ ĝM̂ N̂KM̂ N̂ ¼ ĝM̂ N̂∇M̂nN̂; ð103Þ

so that with our conventions we find that

K ¼ −ĝM̂ N̂Γ5
M̂ N̂

¼ 4∂ρA − ∂ρχ ¼ ∂ρc: ð104Þ

In order to calculate the free energy, one needs to
evaluate the action on shell. The bulk part of the action
then has two components: one proportional to the equations
of motion themselves, that hence vanishes when evaluated
on any classical background solution, and a second part that
reduces to a total derivative. We can use Eq. (20) from
Sec. II D to rewrite the bulk action as

Sbulk ¼ Sbulk;1 þ Sbulk;2

¼ −
3

8

Z
ρ2

ρ1

d4xdηdρ∂ρðe4A−χ∂ρAÞ: ð105Þ

Explicit evaluation shows that the boundary-localized
contributions, evaluated on shell, yield

SGHY;1 ¼ −
Z

d4xdηe4A−χ
�
2∂ρA −

1

2
∂ρχ

�				
ρ¼ρ1

; ð106Þ

Spot;1 ¼ −
Z

d4xdηe4A−χðλ1Þ
				
ρ¼ρ1

; ð107Þ

SGHY;2 ¼
Z

d4xdηe4A−χ
�
2∂ρA −

1

2
∂ρχ

�				
ρ¼ρ2

; ð108Þ

Spot;2 ¼
Z

d4xdηe4A−χðλ2Þ
				
ρ¼ρ2

: ð109Þ

The free energy F and the free-energy density F are
defined as

F≡ − lim
ρ1→ρo

lim
ρ2→þ∞

S ≡
Z

d4xdηF ; ð110Þ

which yields the general result

F ¼ lim
ρ1→ρo

1

8
e4A−χð13∂ρA− 4∂ρχþ 8λ1Þ

			
ρ1

− lim
ρ2→þ∞

1

8
e4A−χð13∂ρA− 4∂ρχþ 8λ2Þ

			
ρ2
: ð111Þ

In the body of the calculations, we adopt the following
prescription. We choose λ1 ¼ − 3

2
∂ρA and λ2 ¼ W2 (it is

sufficient to know the form ofW2 up to quadratic order in ϕ
in order to extract the divergent and finite parts), and as a
result, the free energy density is

F ¼ lim
ρ1→ρo

1

8
e4A−χð∂ρA − 4∂ρχÞ

				
ρ1

− lim
ρ2→þ∞

1

8
e4A−χð13∂ρA − 4∂ρχ þ 8W2Þ

				
ρ2

: ð112Þ

The choice of λ1 is dictated by the requirement that the
variational principle be well defined, and the variation of the
bulk action supplemented by the IR boundary action yields
the bulk equations of motion and boundary conditions at
ρ ¼ ρ1.

4 We find that with this choice

SGHY;1 þ Spot;1

¼ −
1

2

Z
d4xdηðe4A−χð∂ρA − ∂ρχÞÞ

				
ρ1

; ð113Þ

and by looking at the IR expansions of the regular solutions,
we find that the boundary-localized action does not con-
tribute to their free energy in the ρ1 → ρo limit. Hence, in the
case in which the geometry closes smoothly in the IR, the
presence of the regulator is unnecessary and has no physical
effect. We are now in a position to apply this prescription to
all other solutions as well.
The choice of λ2 is dictated by covariance, locality, and

the requirement that all divergences cancel [49–51]. In the
case at hand, in general, one expects two types of UV
divergences: one driven by the bulk cosmological constant
and one driven by the (square of the) mass deformation ϕ2

2.
Because of these two divergences, F and its second
derivative with respect to the source ϕ2 are scheme

4This leads to the requirement that λ1jρ1 ¼ − 3
2
∂ρAjρ1 evaluated

at the IR boundary, hence explaining the aforementioned
choice. Note, however, that we do not need to know the explicit
functional dependence of λ1 on ϕ in order to perform our
calculation of the free energy.
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dependent. This is a generic feature, commonly appearing
in many holographic free energy calculations, and has been
observed in other contexts (see for instance the discussions
in Ref. [131]). For our purposes, it has one important
implication: the classical statistical mechanics concavity

theorems do not trivially apply to our results for the free
energy, the minima of which will not exhibit a concavity
with definite sign. With our choice of λ2, dictated by
holographic renormalization, and by making use of the UV
expansions and of the relation ∂ρ ¼ − 2

3
z∂z, we find that

SGHY;2 ¼
Z

d4xdη
e4AU−χU

z5

�
5

3
−

5

12
ϕ2
2z

4 þ 0 × z5 þ � � �
�				

ρ2

;

ð114Þ

Spot;2 ¼
Z

d4xdη
e4AU−χU

z5

�
−
4

3
þ 1

3
ϕ2
2z

4 þ 8

15
ϕ2ϕ3z5 þ � � �

�				
ρ2

; ð115Þ

Sbulk;2 ¼
Z

d4xdη
e4AU−χU

z5

�
−
1

3
þ 1

12
ϕ2
2z

4 þ 1

80
ð4ϕ2ϕ3 þ 25χ5Þz5 þ � � �

�				
ρ2

: ð116Þ

The divergences exactly cancel, leaving a finite contribu-
tion to the free energy.
We observe that the contribution to the free energy

coming from evaluation at the IR boundary ρ1 in Eq. (113)
happens to be proportional to the combination appearing in
Eq. (21). This contribution hence coincides with a con-
served quantity, that we can evaluate at any value of the
coordinate ρ. It is convenient to evaluate it at the UV
boundary, where we notice that (as expected) it gives a
finite contribution. By substituting the general UV expan-
sions, we hence obtain the following final result for the free
energy density,

F ¼ 1

16
e4AU−χUð4ϕ2ϕ3 þ 25χ5Þ

−
1

48
e4AU−χUð28ϕ2ϕ3 þ 15χ5Þ ð117Þ

¼ − lim
ρ2→þ∞

e4A−χ
�
3

2
∂ρAþW2

�				
ρ2

ð118Þ

¼ −
1

12
e4AU−χUð4ϕ2ϕ3 − 15χ5Þ; ð119Þ

where in the first line the first term comes from the
ρ1 → þ∞ limit evaluation of the first term in Eq. (112)
and the second comes from the ρ2 limit evaluation. The
second line is a general combination of all the contribu-
tions. The third line is our main result, and we will return to
it when we discuss each individual class of solutions, in the
subsections to follow. For completeness, and to elucidate
some subtle differences, we repeat this calculation in the
five-dimensional language, in Appendix G, with identical
results.

B. Domain-wall solutions

If we impose the (domain-wall) constraint A ¼ 4χ, this
introduces two additional constraints on the five UV
parameters:

AU ¼ 4χU; ð120Þ

χ5 ¼ −
4

25
ϕ2ϕ3: ð121Þ

From these two relations, we may deduce the values of χ5
and χU given the other three parameters. We notice that the
above constraint on χ5 causes the first term of Eq. (117) to
vanish exactly, and we hence obtain the following expres-
sion for the free energy of the domain-wall (DW) solutions,
which include, among others, the SUSY as well as the
IR-conformal solutions:

F ðDWÞ ¼ −
8

15
e4AU−χUϕ2ϕ3: ð122Þ

In the case of the IR-conformal solutions (IRC), one
numerical background may be used to generate any other
by an additive shift of the holographic coordinate. The
following ratio is an invariant:

κ≡ jϕ3j
jϕ2j32

: ð123Þ

We find numerically that κ ≃ 2.87979, so that the final
result for the free energy is

F ðIRCÞ ¼ −
8

15
κϕ2jϕ2j32 ≃ −

8

15
ð2.87979Þϕ2jϕ2j32: ð124Þ

ELANDER, PIAI, and ROUGHLEY PHYS. REV. D 103, 106018 (2021)

106018-20



C. Numerical implementation

The general result for the free-energy density for all
solutions is in Eq. (119):

F ¼ −
1

12
e4AU−χUð4ϕ2ϕ3 − 15χ5Þ:

All the classes of solutions we discuss are known
numerically and are obtained by exploiting the IR
expansions we reported in Sec. III. We implement a
numerical routine to extract a table of UV parameter
values fϕ2;ϕ3; χ5g for solutions of each class, having
set AU ¼ χU ¼ 0. To this end, we do the following:
(1) For each given choice of IR expansion, we numeri-

cally solve the background equations of motion for
ϕðρÞ, χðρÞ, and AðρÞ, having chosen the end of space
to be at ρo ¼ 0 with the boundary conditions set up
at a small ρ.

(2) Starting from these solutions, we generate new ones
by shifting the radial coordinate together with χ and
A such that the combined effect is to set AU¼χU¼0
as required.

(3) We match each numerical solution and its derivatives
with the UV expansions and extract ϕ2, ϕ3, and χ5.

In the third step, one needs to choose a value of the radial
coordinate ρ ¼ ρm at which to do the matching. This choice
is dictated by the requirement to minimize the effect of the
numerical noise, while at the same time ensuring that ρm is
large enough that the solutions have reached the region in
proximity of the ϕ ¼ 0 critical point. We do not report the
details of this laborious process but only report our main
results.
We checked that the numerical determination of the UV

parameters can be used to set up the boundary conditions in
the UV, and by solving again the equations of motion
toward small ρ, we recover the original backgrounds. The
reader should be alerted of the fact that the nonlinear nature
of the equations is such that this second process does not
allow one to reproduce accurately the region of the

geometry in proximity of the end of space at small ρ, a
region that is essential in the calculation of the scale-setting
parameter Λ. Indeed, this is the reason why, for the purpose
of numerical studies, it is preferable to construct the
solutions by choosing the boundary conditions close to
the end of space in the geometry and evolving the differ-
ential equations toward large values of the holographic
coordinate ρ. We estimate the numerical precision of our
calculation of the free energy and of the parameters relevant
to the energetics study to be accurate within a few percent.
Singular solutions are treated in exactly the same way as

the confining solutions, thanks to the introduction of the
regulator at ρ1 and to the prescription we discussed earlier
in this section. A practical simplification of the procedure is
given by the observation that the free energy of the skewed
solutions is formally identical to that for the confining
solutions, except for the replacements in Eqs. (75), (76),
and (77).
In Table I, we summarize some basic properties of the

various classes of solutions relevant to the analysis that
follows. We repeat here some important and subtle points.
The scale-setting procedure for the SUSY and IR-con-
formal solutions is treated in a different way, for specific
reasons that we describe in the next subsection. In the case
of confining solutions, ϕ3 and χ5 are constrained by the
requirement of eliminating curvature and conical singular-
ities, respectively. For the skewed solutions, these require-
ments are replaced by the fact that skewed solutions can be
obtained from confining solutions by changing the sign of
the background function d.
From here on, we find it convenient to define the

following notation. We rescale all the physical quantities
by the appropriate power of the scale Λ defined in
Eq. (85) as

F̂ ≡ FΛ−5; ð125Þ

ϕ̂2 ≡ ϕ2Λ−2; ð126Þ

TABLE I. Parametrization, constraints, and scale setting procedure of each class of solutions considered in the text and in Figs. 8 and
9. The scale Λ is defined in Eq. (85) and has been used to restore physical units in F and ϕ2 in the energetics. In the case of the IR-
conformal solutions and of the SUSY solutions, no scale setting is used, because F ¼ 0 in the former, and F ¼ − 8

15
κϕ2jϕ2j3=2 in the

latter, but Λ is not defined. The SUSY singular solutions are represented by a point in Figs. 8 and 9; the IR conformal, confining,
skewed, and singular DW solutions are represented by lines; and finally the generic (good as well as bad) singular solutions cover a two-
dimensional portion of the ðϕ̂2; F̂ Þ plane (see Figs. 8 and 9).

Class AU χU ϕ2 ϕ3 χ5 Scale setting

SUSY 0 0 0 Free A ¼ 4χ None
IR-conformal 0 0 <0 ϕ3 ¼ κϕ2jϕ2j1=2 A ¼ 4χ None
Confining 0 0 Free Curvature singularity Conical singularity Λ
Skewed 0 0 Free cskew ¼ cconf dskew ¼ −dconf Λ
Good Singular 0 0 Free Free Free Λ
Bad Singular 0 0 Free Free Free Λ
DW Singular 0 0 Free Free A ¼ 4χ Λ
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ϕ̂3 ≡ ϕ3Λ−3; ð127Þ

and so on for all possible physical quantities. By doing so,
as we will show explicitly, we can legitimately compare
solutions belonging to any of the different classes described
in this paper.

D. Free energy density and the phase structure

In order to investigate the energetics along all the
branches of solutions, we employed a numerical routine
to compute their free energy by extracting physical values of
the five UV parameters; we present here the results of this
numerical analysis. In particular, we show how the free
energy density F behaves as a function of ϕ2, the deforma-
tion of the theory corresponding to the aforementioned
operator of dimensionΔ ¼ 3. We repeat that we normalized
the two quantities by the appropriate power of the scaleΛ, in
order to be able to compare different solutions. As the plots
are rather busy, showing a large amount of information, we
first devote some space to explaining how to read them, and
then we analyze the physical results, by treating separately
the ϕ̂2 < 0 and ϕ̂2 > 0 cases.
In Fig. 8, we show five of the seven classes of solutions

listed in Table I:
(i) The SUSY solutions all have ϕ2 ¼ 0, and because

they satisfy the domain-wall constraint A ¼ 4χ, by
virtue of Eq. (122), which descends from Eq. (121),
also F ¼ 0. The integral defining Λ in Eq. (85)
diverges (Λ → 0). These solutions are represented
by the gray disk at the origin.

(ii) The IR-conformal solutions exist only for ϕ2 < 0.
The integral defining Λ in Eq. (85) diverges also in
this class of solutions (Λ → 0). Yet, because of scale
invariance, we find that F scales as a power of ϕ2,
and we represent these solutions with the longest-
dashed purple line in Fig. 8. This line represents
what would be the result of using any other possible
scale-setting process for the IR-conformal solutions.

(iii) The confining solutions are rendered in solid black
and short-dashed orange. They form a line, as we
generate the solutions by varying the parameter ϕI.
We notice the existence of a maximum value of ϕ̂2.
For graphical illustration, we rendered in short-
dashed orange the part of the curve obtained with
confining solutions for which one of the scalar states
has a negative mass squared (see Figs. 6 and 7). Part
of this tachyonic portion of the branch of solutions
has free energy F̂ lower than the solutions with the
same value of ϕ̂2 located along the regular portion of
the confining branch, and the short-dashed orange
and solid black curves cross nontrivially. This
observation by itself would be proof that a phase
transition takes place, were it not for the undesirable
feature that the tachyonic backgrounds would be

minimizing the free energy over a portion of param-
eter space.

(iv) The skewed solutions are rendered in dashed red. We
obtained these solutions by changing the sign of
d → −d from the confining solutions, which implies
the relations in Eqs. (75)–(77). Also in this case,
there exists a maximum value of ϕ̂2.

(v) The generic solutions with good singularity are
depicted by thin blue lines. We choose a number
of representative values for the parameter ϕL < 0
and discuss both choices of ζ ¼ �1 (see Sec. III F).
For ϕL → 0, the thin blue lines approximate the
confining (for ζ ¼ þ1) and skewed (for ζ ¼ −1)
solutions, as expected. For ϕL → − 1ffiffi

5
p , one finds the

special case of domain-wall solutions with good
singularity (in this case the choice ζ ¼ �1 is
immaterial), and we denote this line, which appears
just above the longest-dashed purple one, with a
darker shade of blue.

We notice one very important fact: thanks to the
rescaling that defines F̂ and ϕ̂2, all branches of solutions
depicted in Fig. 8 (and this holds true also in the subsequent

–1.0 - 0.5 0.0 0.5
–5

0

5

10

FIG. 8. The free energy density F̂ as a function of the
deformation parameter ϕ̂2 for the IR-conformal solutions
(longest-dashed purple line), the confining solutions (solid black
line), and the skewed solutions (dashed red line), compared
to a few representative choices of (good) singular solutions
(thin blue lines). For the latter, we generated the numerical
solutions from the IR expansions, by setting ðϕL; ζÞ ¼
ð−0.02;−1Þ, ð−0.04;−1Þ, ð−0.08;−1Þ, ð−0.15;−1Þ, ð−0.2;−1Þ,
ð−0.25;−1Þ, ð−0.3;−1Þ, ð−0.35;−1Þ, ð−0.35; 1Þ, ð−0.3; 1Þ,
ð−0.25; 1Þ, ð−0.2; 1Þ, ð−0.15; 1Þ, ð−0.04; 1Þ, and ð−0.02; 1Þ,
respectively (top blue line to bottom blue line), and varied the
value of ϕI . The darker blue line, separating the cases ζ ¼ �1,
corresponds to the domain-wall solutions obtained with ϕL ¼
−1=

ffiffiffi
5

p
and varying ϕI . The SUSY solutions are represented by a

gray point at the origin. The short-dashed orange line shows the
region along the branch of confining solutions in which the
tachyonic state appears in the scalar mass spectrum. (Note that
the very top thin blue line crosses the dashed red one for large
negative values of ϕ̂2. We expect this to be a purely numerical
artifact that could be removed with higher numerical precision.)
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Fig. 9) connect to the origin of the diagram, with F̂ ¼ 0

and ϕ̂2 ¼ 0. This observation makes it explicitly clear that,
despite the semiclassical nature of the calculations we
performed, the free energy density F̂ is defined in a
consistent way that allows for the comparison of all
possible solutions along all the branches we identified,
given that effectively they all share one common point.
All the thin blue lines are entirely contained within the

region of the plot delimited by the solid black, short-dashed
orange, and dashed red lines. Varying within this class of
solutions, for all available choices of parameters, the
confining solutions minimize F̂ , while the skewed solu-
tions maximize it. The solutions with good singularity do
not resolve either of the two problematic features of the
confining class: they do not extend the plot beyond the
maximum value for ϕ̂2; nor do they give us solutions with
energy lower than the tachyonic sub-branch of the confin-
ing solutions. Finally, we highlight how not only are the
solutions fully contained inside the region delimited by the
solid black, short-dashed orange, and dashed red curves but
also that, by varying ϕL, we can span the entirety of this
region.
In Fig. 9, we add to the set of solutions on display several

representative choices of badly singular solutions (in thin
light green), chosen by varying ϕL and ζ, as well as the

domain-wall ones discussed in Sec. III G (in long-dashed
dark green). We replace the solutions with a good singu-
larity by shading in light blue the whole region of the plane
ðϕ̂2; F̂ Þ delimited by the confining and skewed solutions.
We notice two important features: for some choices of
parameters, badly singular solutions exist that exceed the
upper bound on ϕ̂2 that we identified when discussing the
confining solutions, and furthermore there are domain-
wall, badly singular solutions with free energy lower than
those along the tachyonic portion of the confining branch of
solutions.
The plot in Fig. 9 clearly displays the features expected

in the presence of a phase transition, and we will return to it
shortly. Figure 10 is a detail of Fig. 9, in which we retained
only the confining solutions (solid black and short-dashed
orange lines) and the badly singular domain-wall solutions
(in the long-dashed dark green). We highlight the region in
proximity of the intersection between the two lines, which
identifies a critical value ϕ̂c

2 of the deformation parameter
ϕ̂2. The minimum of the free energy density is given by
confining solutions for ϕ̂2 < ϕ̂c

2 and by badly singular
domain-wall solutions for ϕ̂2 > ϕ̂c

2. The tachyonic section
of the confining branch is never a minimum of the free
energy at fixed ϕ̂2.
We now discuss the physics lessons we learn from the

combination of Figs. 8–10. For negative values of ϕ̂2, we
find that all classical solutions identified in the body of the
paper have finite free energy density F̂, and this is bounded
from below by the confining solutions and from above by
the skewed solutions. All other solutions have free energy
somewhere in between—they include the SUSY solutions,
the IR-conformal solutions, and all the generic solutions
discussed in Secs. III F and III G. If we were to restrict
attention to ϕ ≤ 0 (as done for example in Refs. [98,99]),
there would be no benefit from the study of solutions other
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FIG. 9. The free energy density F̂ as a function of the
deformation parameter ϕ̂2 for the IR-conformal solutions (lon-
gest-dashed purple line), the confining solutions (solid black
line), and the skewed solutions (dashed red line), compared to a
few representative choices of (badly) singular solutions. For the
latter, we generated the numerical solutions from the IR ex-
pansions, by setting ðϕL; ζÞ ¼ ð0.05;−1Þ, ð0.1;−1Þ, ð0.15;−1Þ,
ð0.2;−1Þ, ð0.25;−1Þ, (0.25, 1), (0.2, 1), (0.15, 1), (0.1, 1), and
(0.05, 1), respectively (thin light-green lines), and varied the
value of ϕI . The long-dashed dark-green line represents the
domain-wall (badly) singular solutions, obtained by varying
the parameter ϕ4 in the IR expansion in Sec. III G. The SUSY
solutions are represented by a gray point at the origin. The short-
dashed orange line shows the region along the branch of
confining solutions in which the tachyonic state appears in the
scalar mass spectrum. We shaded in light blue the region covered
by the good singular solutions (see Fig. 8).
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FIG. 10. The free energy density F̂ as a function of the
deformation parameter ϕ̂2 for the confining solutions (solid
black and short-dashed orange lines) and the domain-wall (badly)
singular solutions, obtained by varying the parameter ϕ4 in the IR
expansion in Sec. III G (long-dashed dark-green line).
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than the confining ones, which already minimize the free
energy, have no curvature nor conical singularities, and
admit a sensible field-theory interpretation. Furthermore,
the spectrum of the small fluctuations around the confining
solutions can be interpreted in terms of the discrete mass
spectrum of bound states of the dual field theory.
When we analyze the region with ϕ̂2 > 0, we find the

existence of a critical choice ϕ̂c
2 for which a phase transition

takes place, with the physically realized background
minimizing the free energy density being given by con-
fining solutions when ϕ̂2 < ϕ̂c

2, and singular domain-wall
solutions for ϕ̂2 > ϕ̂c

2. Interestingly, while the spontaneous
compactification of one of the space-time dimensions of the
theory is energetically favored in the confined phase,
beyond the critical point, the theory prefers to preserve
(locally) the full five-dimensional Poincaré invariance. The
critical parameters at the transition are extracted from the
numerical study, and we find

ϕ̂c
2 ≃ 0.169; ð128Þ

ϕc
I ≃ 0.027; ð129Þ

ϕc
4 ≃ 98.9; ð130Þ

F̂ c ≃ −3.893: ð131Þ

We also find that the UV parameters in the gravity analysis
show a sharp discontinuity in the values assumed in the
phase with a shrinking circle (denoted by the subscript <)
and in the domain-wall phase (denoted by the subscript >):

ϕ̂c
3< ≃ −0.092; ϕ̂c

3> ≃ 43.2; ð132Þ

χ̂c5< ≃ −3.12; χ̂c5> ≃ −1.17: ð133Þ

In particular, we notice the enhancement of ϕ̂c
3>.

E. Properties of the phase transition

Having established the existence of a first-order phase
transition, we devote this subsection to characterizing it. We
also return to its relation with the physical spectrum of the
bound states of the dual theory along the confining branch.
As repeatedly stated, two nontrivial operators are present

in the dual field theory. We identify the source for the
operator of dimension Δ ¼ 3 with the leading-order coef-
ficient ϕ2 in the UVexpansion exhibited at the beginning of
Sec. III. We can express this statement by adopting the
following definition,

ϕ2 ≡ lim
ρ2→þ∞

e2A−2χϕðρ2Þ; ð134Þ

which is manifestly consistent with the UV expansion. In
the study we performed of the free energy density F, we

kept the source of the other nontrivial operator fixed (we set
AU ¼ 0 ¼ χU) and studied how F varies as a function of
the source ϕ2. Moreover, in order to facilitate the com-
parison of different branches, we implemented a scale-
setting procedure by defining the energy scale Λ, allowing
us to compare dimensionless quantities.
We now define two dynamical quantities that play a role

similar to that of order parameters and study them as we
cross from one side to the other of the phase transition. In
analogy with the magnetization of a system in thermody-
namics, the first such parameter is defined as the variation
of the free energy density with respect to the source ϕ2

(holding AU ¼ 0 ¼ χU andΛ fixed) measured in units ofΛ:

M̂≡ Λ−3 ∂
∂ϕ2

F ðϕ2;ΛÞ ¼
∂

∂ϕ̂2

F̂ ðϕ̂2Þ: ð135Þ

We cannot write this in closed form, as it requires
expressing explicitly the coefficients ϕ̂3ðϕ̂2Þ and χ̂5ðϕ̂2Þ,
appearing in the expression for the free energy density, in
terms of ϕ̂2. But we can evaluate the derivative numerically.
From Figs. 8 and 9, we see that M̂ is a well-defined
quantity for the confining, skewed, IR-conformal, and
singular domain-wall solutions. In the more general sin-
gular solutions (represented by the thin blue and lighter
green lines in Figs. 8 and 9), an additional parameter
remains undetermined in terms of ϕ̂2 (see Table I), and
therefore the variation with respect to ϕ̂2 is ambiguous.
The second parameter that we define measures how

much Poincaré invariance in D ¼ 5 dimensions is broken
and is given by

Δ̂DW ≡ χ̂5 þ
4

25
ϕ̂2ϕ̂3: ð136Þ

As can be seen from the leading-order parameter appearing
in the UV expansion of the combination d ¼ A − 4χ in
Eq. (39), Δ̂DW vanishes for the domain-wall background
solutions, for which d ¼ 0.
In Fig. 11, we show a detail of the functions F̂ and M̂≡

∂F̂
∂ϕ̂2

in the vicinity of the phase transition. The derivative has

been evaluated numerically. The plots show clear evidence
of a strong first-order phase transition: while the free energy
is continuous, its derivative with respect to the deformation
parameter is not. The two bottom panels of Fig. 11 show that
in the physical phase in which the confining solutions are
realized, the order parameter Δ̂DW is large, while ϕ̂3 is
negligible, and vice versa ϕ̂3 is large along the singular
domain-wall solutions for which Δ̂DW ¼ 0.
Along the branch of confining solutions, the dynamics

captured by the gravity theory favors the shrinking to zero
size of the compact dimension spanned by η, which in field-
theory terms corresponds to confinement of the dimen-
sionally reduced dual theory. Conversely, along the branch
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of singular domain-wall solutions, the theory is preserving
(locally) the higher-dimensional Poincaré invariance, with
the formation of a condensate for the dimension-3 operator
O3 associated with ϕ, whose magnitude is related to the
coefficient ϕ3 of the subleading term in the UV expansion
of ϕ. In Fig. 12, we show ϕ̂3 as a function of ϕ̂2 for a few of
the branches of solutions. The confining, skewed, and
singular domain-wall branches all share the feature that ϕ̂3

diverges as ϕ̂2 → 0. This reflects the fact that in this limit
they all approach the solution we called SUSY, in which
both ϕ2 and χ5 vanish, but the combination ϕ̂3 ¼ ϕ3Λ−3

diverges. The regions in parameter space for which ϕ̂3

diverges are never energetically favored. Moreover, while
ϕ̂3 ≫ 1 on the singular domain-wall branch close to the
phase transition, the singular nature of this class of
solutions makes a field-theory interpretation problematic,
and it is unknown whether this feature would remain in a
more complete treatment of the gravity description.
We can now return to the discussion of the spectrum of

bound states along the branch of confining solutions, that
we started in Sec. IV B. The behavior of ϕ3 and χ5 is related
to the nature of the approximate dilaton state. In particular,
the region of parameter space in which ϕ3 is large

compared to the dynamical scale Λ of the theory is the
region of large and positive ϕI , for which we see in the
spectrum the appearance first of a parametrically light
(approximate) dilaton state that eventually becomes
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FIG. 11. The free energy density F̂ (top left) and its derivative M̂≡ ∂F̂
∂ϕ̂2

(top right), as a function of the deformation parameter ϕ̂2,
for solutions within the confining (solid black) and singular domain-wall (long-dashed dark-green) classes. The bottom panels show
the order parameter Δ̂DW (bottom left) and ϕ̂3 (bottom right), for the same solutions.
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FIG. 12. The UV parameter ϕ̂3 as a function of the deformation
parameter ϕ̂2, for the confining (solid black and short-dashed
orange), skewed (dashed red), IR-conformal (longest-dashed
purple), and singular domain-wall (long-dashed dark-green)
classes of background solutions.
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tachyonic. This region of parameter space is not physically
realized, as the confining solutions are energetically dis-
favored, compared to the singular domain-wall solutions.
Some of the metastable configurations leading to a very
light dilaton might be long lived, but exploring this
possibility would require a detailed study of the bubble
rate of the phase transition, which goes far beyond our
current purposes (see Ref. [132] for a recent study in this
direction). Nevertheless, it is reassuring to notice how the
(failure of the) probe approximation captures correctly
the existence of a region of parameter space in which
the condensate hO3i is parametrically enhanced.
Some degree of complication in interpreting the spec-

trum of scalar bound states along the physical, confining
branch of solutions arises because of the interplay between
the two possible operators developing vacuum expectation
values (VEVs). This is particularly subtle in the region with
positive, large values of ϕI . As can be seen in Figs. 18–21
in Appendix F, by following the solid black and short-
dashed orange lines, in the limit in which ϕI → þ∞, one
ultimately drives toward suppressing the explicit symmetry
breaking parameter ϕ̂2 → 0. One of the condensates van-
ishes in this unphysical limit, as χ̂5 → 0, yet scale invari-
ance is broken spontaneously by the divergence of the other
condensate, signaled by the fact that ϕ̂3 → þ∞. Albeit
unphysical (because of the tachyon and the presence of a
phase transition), the analysis of this region of parameter
space is quite interesting as a way to test our theoretical
tools. The reason why the mass of the lightest scalar
fluctuation in the system shows significant discrepancy
with the probe approximation is the emergence of this
divergently large condensate. At finite, small values of ϕI ,
the effects of explicit symmetry breaking are not small, and
the mixing effects between the two scalar particles sourced
by both the operators developing VEVs are not negligible,
either.
We finally notice that the critical value of ϕc

I that sets the
upper limit to the reach of the field-theory interpretation of
the confining solutions is comparatively small with respect
to the value at which the tachyon emerges. By examining
Fig. 6, one sees that in immediate proximity of this value of
ϕI the lightest scalar is not a dilaton, and neither is it
appreciably much lighter than the other states of the system.
The next-to-lightest state, though, shows significant dis-
crepancy with the probe approximation, and it should be
interpreted as an approximate (not so light) dilaton, which
exists because Δ̂DW ≠ 0, signaling the presence of a
condensate.
Furthermore, our estimate of ϕ̂c

2 is likely an overestimate:
the domain-wall, badly singular solutions cannot be the
ones realized physically, and in a more complete gravity
theory, other solutions must take over the dynamics beyond
a new critical point ϕ̂cc

2 ≤ ϕ̂c
2. Potentially, this might

happen at ϕ̂cc
2 ¼ 0 (see Sec. V F for a complementary

discussion). This might make the phase transition even

stronger, but we do not have the quantitative elements to
support this suggestion.
We must close this discussion by repeating the obser-

vation that two pathologies are still present: we could not
find any solutions, neither regular nor singular, correspond-
ing to arbitrarily large values of ϕ̂2, and furthermore the
phase transition we identified seems to indicate that the
energetically favored solutions for ϕ̂2 > ϕ̂c

2 are singular
and hence do not admit a sensible physical interpretation in
terms of dual field-theory quantities. Our interpretation of
these results is that there is an upper bound to the choice of
ϕ̂2 < ϕ̂c

2 for which the gravity description at our disposal
admits a holographic field-theory interpretation. The other
phase exists only as a phase of the gravity theory, regulated
by putting boundaries ρ1 < ρ < ρ2 on the radial (holo-
graphic) direction. This unusual feature resembles what
happens in the presence of bulk phase transitions in the
study of lattice field theories. We will explore this obser-
vation further in Sec. V F.
We are forced to conclude that large (positive) defor-

mations of the field theory due to the dimension-3 operator
O3 dual to the scalar ϕ cannot be captured by this gravity
model. Whether or not extensions of the gravity theory can
overcome this limitation is unknown; given that Romans
supergravity does not contain other scalar fields, such
extensions either might involve allowing for nontrivial
behaviors of the fields removed by the reduction on S4

of massive type-IIA or might require the inclusion of
extended objects that are not captured by the supergravity
approximation. We leave this challenging problem open to
future exploration.

F. Alternative approach to the free energy density

In the previous subsections, we introduced appropriate
regulators ρ1 and ρ2, as well as a suitably defined set of
boundary-localized terms, chosen according to a prescrip-
tion that allows one to remove all divergences and to
compare to one another the free energy density F of
different, independent background configurations. In par-
ticular, we derived Eq. (118), which we reproduce here for
convenience:

F ¼ − lim
ρ2→þ∞

e4A−χ
�
3

2
∂ρAþW2

�				
ρ2

:

For the same purpose, we repeat the definition of the scale
Λ, taken from Eq. (85):

Λ−1 ≡ lim
ρ2→þ∞

Z
ρ2

ρo

dρ̃eχðρ̃Þ−Aðρ̃Þ:

We also studied the energetics as a function of the leading-
order coefficient ϕ2 in the UV expansion exhibited at the
beginning of Sec. III, and that we can write by copying
Eq. (134):
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ϕ2 ≡ lim
ρ2→þ∞

e2A−2χϕðρ2Þ:

The strategy we followed in the previous subsections
consisted of first taking the ρ2 → þ∞ limit in these three
expressions and then studying the resulting phase structure
for the theory. There is another possible way to perform this
study, and we explore it in this section. We can first hold
fixed Δρ≡ ρ2 − ρo and study the phase structure encoded
in the dependence of F̂ ≡ FΛ−5 on ϕ̂2 ≡ ϕ2Λ−2, and only
afterward take the limit ρ2 → þ∞ by looking at how the
phase structure evolves in the limit in which the boundary
of the gravity theory is removed. We hence introduce the
following quantities,

F̃ ðρ2Þ≡−e4A−χ
�
3

2
∂ρAþWf

2

�				
ρ2

; Wf
2 ≡−

4

3
−
4

3
ϕ2;

ð137Þ

Λ̃−1ðρ2Þ≡
Z

ρ2

ρo

dρ̃eχðρ̃Þ−Aðρ̃Þ; ϕ̃2ðρ2Þ≡ e2A−2χϕðρ2Þ;

ð138Þ

which are the finite-ρ2 analogs of their infinite-ρ2 limits.
We will study them at finite Δρ, perform the minimization
of F̃ Λ̃−5, and identify possible phase transitions, and only
afterward take ρ2 → þ∞. Notice that in defining Wf

2 we
chose to retain only the terms of W2 that give divergent
and finite-order contributions to the free energy in the
ρ2 → þ∞ limit; this corresponds to a particular choice of
subtraction scheme.
This alternative approach is closely related to what is

normally done on the lattice, where one first performs a
rough scan of the lattice parameter space, to identify
possible artificial phase transitions of the lattice theory,
and then restricts the lattice studies to the region connected
with the field theory, before taking the continuum limit, in

FIG. 13. The regulated free energy F̃ Λ̃−5 of the confining solutions, as a function of the regulated deformation ϕ̃2Λ̃−2 (dashed blue
lines), for various choices of Δρ ¼ 3; 4; 5; 6; 7; 8; 9; 10; 11 (top to bottom, left to right). The solid black and short-dashed orange lines
depict the renormalized free energy F̂ in Figs. 8–10. The green dot marks the location of crossing between the branch of regular
solutions and the branch of singular domain-wall solutions. The gray dot denotes the SUSY solutions.
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this way avoiding completely unphysical regions of param-
eter space. In this section, we perform this study, restricting
our attention to the confining solutions. We will show that
the procedure yields the same results as those discussed in
the bulk of the paper, in the physical region. The existence
of spurious phase transitions in the gravity side of the
gauge-gravity correspondence has been observed before,
though in a different context, dealing with the treatment in
the probe approximation of extended object embedded in
curved backgrounds [133]. We stress that the phase
transition is not a feature of the field theory but rather
of the regulated gravity dual (although it should be possible
to interpret our results in terms of a finite cutoff in the field
theory).
The results of this analysis are shown in Fig. 13. We

display the results for the confining solutions only, by
comparing the regulated free energy F̃ Λ̃−5, for various
choices of 3 ≤ Δρ ≤ 11, to the result of the renormalized
analysis. For Δρ≳ 5, the signature of a phase transition
appears, and moreover there is no maximum allowed value
of ϕ̃2Λ̃−2.
The branch that takes over the dynamics at large Δρ, at

least for large positive values of ϕ̃2Λ̃−2, has no genuine
field-theory dual interpretation, as it exists only when we
retain the finite UV cutoff ρ2 when minimizing the free
energy. We notice that this rather rough analysis seems to
suggest that the phase transition takes place at smaller
(positive) values of the deformation parameter ϕ̃2Λ̃−2,
when compared with the analysis conducted in the bulk
of the paper. We also notice that the comparison is not
rigorous, as it is affected by the presence of arbitrary
scheme dependences. This dependence on the order of
limits, on the scheme, and the fact that the energetics of the
dominant solution is dominated by spurious cutoff effects
are typical of what in the lattice literature are called bulk
phase transitions.

VI. SUMMARY

We presented a first realization, within top-down holog-
raphy, of one particular strategy for building a dilaton
scenario, which is inspired by the ideas in Refs. [67,82].
In this scenario, a parametrically light dilaton would emerge
as a light scalar particle for choices of the parameters that
bring the theory in close proximity of a dynamical instability
(and in the presence of enhanced condensates). However,
we also found direct evidence of a phase transition,
effectively preventing the dynamics from approaching
arbitrarily close to the aforementioned instability, and hence
none of the scalar particles can be made arbitrarily light
along the physical branch of solutions. Nevertheless, the
lightest particle can be dialed to have arbitrarily small mass
along the metastable solutions of the same branch.
This approach represents an appealing, alternative

search strategy for dynamical realizations of the dilaton,

in contrast to starting by establishing first the existence of a
moduli space in the field theory.5 This study complements
the work done by other authors, either guided by consid-
erations emerging from lower-dimensional statistical-
mechanics systems [80,81] or by holographic models built
within the bottom-up approach to holography [67]. The
primary difference is that we proposed and studied a
calculable model built within top-down holography.
The example we considered is the six-dimensional half-

maximal supergravity written by Romans [100], dimen-
sionally reduced on a circle. The lift of the solutions to
D ¼ 10 massive Type-IIA is known [101–103] (alternative
lifts in Type IIB exist as well [104,105]). The equations of
motion admit a special solution with AdS6 geometry and
trivial ϕ ¼ 0. This solution can be interpreted as the dual of
a strongly coupled fixed point in the large-N limit of a class
of supersymmetric field theories in D ¼ 5 dimensions that
has been studied extensively in the literature [134–138]
(see also Refs. [139–142] and references therein and the
discussion in Ref. [102]).
The scalar ϕ in the gravity theory corresponds to an

operator of dimension Δ ¼ 3 in the dual five-dimensional
theory. Its coupling and condensate are related to the
coefficients ϕ2 and ϕ3 in the asymptotic expansion of
background gravity solutions. It is known that by tuning ϕ2

and ϕ3 one can build the gravity dual of the field-theory
renormalization group flow toward what can be interpreted
as a second, nonsupersymmetric, perturbatively stable fixed
point [110]—although it is not known that this fixed point
exists in the dual field theory.
The field theory admits compactification of one spatial

direction of the geometry on a circle, hence breaking five-
dimensional Poincaré invariance. The size of the circle in
the gravity theory is a function of ρ, controlled by the field
χ, and in particular by the coefficient χ5 appearing in its
asymptotic (UV) expansion. When the circle shrinks, the
resulting strongly coupled four-dimensional dual theory
confines. The gravity description hence provides a com-
paratively simple description of confinement in four
dimensions, along the lines suggested by Witten [94],
but in a somewhat simpler environment [92,93].
The simultaneous combination of these two deforma-

tions had been studied so far only for values of ϕ ≤ 0
[98,99]. In this paper, we extended our study by first
allowing ϕ > 0 and secondly by complementing the
calculation of the spectrum with the study of the free
energy density F. Furthermore, we considered several new
general classes of background gravity solutions, all of
which approach the aforementioned AdS6 geometry for
large values of the radial direction ρ. Some are regular and

5Top-down holographic realizations of the latter approach
already exist, though for limited and quite nontrivial systems,
for example along the baryonic branch of the Klebanov-Strassler
system [68,69].
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are the main subject of our attention; some have a good
singularity, in the sense defined by Gubser [95]; and some
have a bad singularity.

(i) We called SUSY the solutions that satisfy the first-
order equations for the system inD ¼ 6 dimensions.
These solutions are supersymmetric, exhibit a good
singularity, and preserve five-dimensional Poincaré
invariance—in the gravity language, this last prop-
erty corresponds to the constraint d ¼ A − 4χ ¼ 0,
with A the warp factor in the metric, as discussed in
the main body of the paper.

(ii) The IR-conformal solutions correspond to the
aforementioned flows between the two fixed
points. They preserve five-dimensional Poincaré
invariance but break supersymmetry. These solu-
tions are regular.

(iii) With some abuse of language, we called confining
solutions the regular ones in which Poincaré
invariance is reduced to four dimensions and in
which the compact circle shrinks smoothly to
zero size at a finite value of the radial direction
ρ → ρo. The holographic interpretation of such
backgrounds involves both the compactification
of the dual five-dimensional theory on a circle
and then linear confinement of the resulting dimen-
sionally reduced four-dimensional strongly coupled
theory.

(iv) A related class of gravity solutions can be obtained
from the confining ones by changing the sign of the
function d ¼ A − 4χ. These solutions have the same
symmetries as the confining ones, but the size of the
circle diverges for ρ → ρo, and as a result, the
geometry has a (good) naked singularity. We called
these solutions skewed.

(v) We also included in our survey three other classes of
singular solutions. We found that they can either
result in good singular solutions or in bad singular
solutions. (The constraint A ¼ 4χ yields the subclass
of singular domain-wall solutions.) While not rep-
resentative of dual field-theory configurations, we
found that the badly singular domain-wall solutions
play an important role in the energetics of the gravity
theory.

We summarized in Table I all these classes of solutions
and how we chose to parametrize them. We introduced a
scale setting procedure via the function Λ defined in
Eq. (85) and showed the dimensionality of the resulting
space of solutions. We plotted the free energy in Figs. 8
and 9.
Our first new finding is that the regular, confining

solutions exist also for positive values of ϕ > 0. We hence
extended the one-parameter family of solutions studied in
earlier publications [98,99]. We computed the spectrum of
fluctuations of all the 32 bosonic degrees of freedom of the
five-dimensional theory obtained by dimensional reduction

on the circle. Our second new result is the mass spectrum,
that can be seen in Figs. 4–7.
The salient feature of the mass spectrum is what brings

this work in contact with the line of arguments in
Refs. [67,80–82]. While the confining solutions are regular,
by moving along the one-parameter class labeled by ϕI, the
mass squared of the lightest scalar glueball becomes
progressively smaller (in units of the mass of the tensor,
which we use to set the scale in the spectrum), until it
becomes tachyonic at some finite, positive value of ϕI . This
instability is our third new result. The reason why this is
interesting is that, if interpreted naively, this system would
yield an example of a theory in which by tuning the
parameter ϕI one could dynamically produce a hierarchy of
scales between the mass of the lightest scalar particle and
the rest of the spectrum. By making use of the probe
approximation (as suggested in Ref. [127]), we also
showed that in the region of parameter space in which
the lightest scalar has a parametrically suppressed mass—in
proximity to the region in which a tachyon emerges—the
associated particle is indeed an approximate dilaton (see
Fig. 7), which is our fourth original result. In connection
with this, we also noted the divergent behavior of the
parameter ϕ̂3 in the limit of ϕI → þ∞.
Unfortunately, though, the naive interpretation contained

in the previous paragraph has to be used with caution. To
show why, we studied the energetics of the classical
solutions and found another additional result. The
tachyonic instability appears for values of the deforming
parameter ϕ̂2 for which the solution has free energy F̂ that
is higher than that of other solutions. This is the typical
feature expected in the presence of a first-order phase
transition. It is hence not possible to dial the boundary
parameter to approach arbitrarily close to the massless case,
as this would require exploring a branch of metastable and
unstable solutions, well past a phase transition.
We could only identify two branches of solutions within

the confining class, by varying ϕ2. Furthermore, a maxi-
mum value of the parameter ϕ̂2 emerged, further confirm-
ing the incompleteness of the energetics discussion when
restricted to the confining solutions only. The picture
became more clear once we included in the discussion
also singular solutions. For arbitrarily large ϕ̂2 > 0, we
could not find a ground state solution (within the restric-
tions defining our ansatz for the background metric)—free
of gravity singularities—that admits a trustable field-theory
interpretation. Yet, for values of ϕ̂2 > ϕ̂c

2, we showed that
there exist singular solutions with free energy lower than
that of the regular, confining solutions. Conversely, for
negative ϕ̂2 < 0, the singular solutions have free energy
higher than the confining ones. Hence, the phase transition
takes place at ϕ̂2 ¼ ϕ̂cc

2 (with 0 ≤ ϕ̂cc
2 ≤ ϕ̂c

2), and all the
solutions with ϕ̂2 > ϕ̂cc

2 along the confining branch are
either metastable or unstable. In particular, there is not a
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parametrically light dilaton near the transition; although the
lightest bound state is a scalar, and its mass is slightly
smaller than in other regions of the physical portion of
parameter space, it does not show the properties expected
by an approximate dilaton, and its mass is not parametri-
cally, nor numerically, small. The next-to-lightest state,
though, is at least approximately a dilaton, but it is heavier,
and its mass does not show any special features in the
region of parameter space immediately adjacent to the
phase transition.
We repeat again that the phase transition we find is not a

field-theory feature, but rather it exists only in the gravity
theory. As discussed in Sec. V F, this is not contradictory, as
gauge/gravity dualities relate only physical objects in the
physically related phase of the theory, and the gravity
theory (with finite radial direction ρ1 < ρ < ρ2) may
exhibit a more general phase structure. Nevertheless, it
is interesting to notice how the physical properties of the
bound states in the region of parameter space that admits a
field-theory interpretation are influenced by the phenomena
taking place past the phase transition.

VII. CONCLUSION AND OUTLOOK

Along a new branch of regular solutions of Romans
supergravity, we found a tachyonic instability by studying
the mass spectrum of the fluctuations of the sigma model
coupled to gravity. By approaching this instability in the
space of parameters, we found that the lightest scalar state
in the spectrum turns into a tunably light approximate
dilaton, which could be realized in a metastable configu-
ration of the system. A condensate is enhanced when
moving along this branch of solutions, spontaneously
breaking (approximate) scale invariance. But we also found
that the instability is hidden away by a strong first-order
phase transition, so that the lightest scalar state along the
stable phase is not parametrically light, and it is the next-to-
lightest scalar state that behaves as an approximate dilaton
(in association with an enhancement of one of the con-
densates). We hence uncovered a concrete realization
within top-down holography of arguments closely resem-
bling those of Refs. [67,80,81], although in a general-
ized form.
Our study admits a clear (though not simple) interpre-

tation, and our action is taken from the established catalog
of rigorously defined supergravity theories. We also tested
the formal tools that would be needed to perform this type
of analysis in other supergravity theories. This paper
establishes the basis for the development of a systematic
future research program, encompassing the exploration of
the vast catalog of known supergravity theories—possibly
encompassing the technically more challenging cases in
which one does not recover an AdS geometry asymptoti-
cally far in the UV.

While we found a strong first-order phase transition,
there may be other models realizing this mechanism, and it
is not known a priori how strong the first-order phase
transitions should be in general. They might be very weak.
There are well-known examples in physics of systems in
which first-order phase transitions sit along critical lines (in
parameter space) that have an end point. If one could
identify a supergravity theory realizing this type of critical
behavior, then it would be interesting to repeat our analysis
in more detail within such a system. A direct calculation
could establish whether the phase transition takes place in
the proximity of the end point of the critical line. We might
find that the whole spectrum scales without producing a
hierarchy and hence asymptotically reproduces the scaling
behaviors expected in the presence of explicitly broken
scale invariance. Conversely, one might discover that the
spectrum still behaves as in Figs. 6 and 7 and a light dilaton
emerges. If so, its existence would be connected to the
enhancement of nontrivial condensates in the vacuum,
which can be checked explicitly. This possibility, if
realized, would have important theoretical and phenom-
enological implications and hence motivates us to further
pursue our program in the future.
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APPENDIX A: A FEW GRAVITATIONAL
(CURVATURE) INVARIANTS

In this Appendix, we find it useful to present and discuss
the results for some of the curvature invariants of the
theory in D ¼ 6 dimensions—the Ricci scalar R ¼ R6, the
Ricci tensor squared R2

2 ≡ RM̂ N̂R
M̂ N̂ , and the Riemann

tensor squared R2
4 ≡ RM̂ N̂ R̂ ŜR

M̂ N̂ R̂ Ŝ. We adopt the six-
dimensional metric ansatz in Eq. (9). After using the
equations of motion presented in Sec. II D, we find that

ELANDER, PIAI, and ROUGHLEY PHYS. REV. D 103, 106018 (2021)

106018-30



0 1 2 3 4 5 6 7 8
–20

–15

–10

–5

0

0 1 2 3 4 5 6 7 8
0

10

20

30

40

0 1 2 3 4 5 6 7 8
0

20

40

60

80

FIG. 15. Gravitational invariants computed using the analytic skewed solutions with ϕ ¼ 0, shown in Eqs. (51) and (52). From top to
bottom, left to right: R≡ gM̂ N̂RM̂ N̂ , R

2
2 ≡ RM̂ N̂R

M̂ N̂ , and R2
4 ≡ RM̂ N̂ R̂ ŜR
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0 1 2 3 4 5 6 7 8
–20

–15

–10

–5

0

0 1 2 3 4 5 6 7 8
0

10

20

30

40

0 1 2 3 4 5 6 7 8
0

20

40

60

80

ρ

FIG. 14. Gravitational invariants computed using the analytic confining solutions with ϕ ¼ 0, shown in Eqs. (51) and (52). From top
to bottom, left to right: R≡ gM̂ N̂RM̂ N̂ , R

2
2 ≡ RM̂ N̂R

M̂ N̂ , and R2
4 ≡ RM̂ N̂ R̂ ŜR
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R ¼ 6V6 þ 4ð∂ρϕÞ2;
R2
2 ¼ 6V2

6 þ 8V6ð∂ρϕÞ2 þ 16ð∂ρϕÞ4;

R2
4 ¼

1

250
ð32ð∂ρdÞ2

�
4∂ρd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36ð∂ρdÞ2 þ 15

ffiffiffi
5

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6R2

2 − R2

q
− 30R

r
þ 24ð∂ρdÞ2

þ 5
ffiffiffi
5

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6R2

2 − R2

q
− 10R

�
− 25ðR2 − 10R2

2ÞÞ; ðA1Þ

where in deriving the expression for R2
4, we made use of the

fact that for our solutions ∂ρc > 0 [see Eq. (22)].
From these expressions, and from the knowledge of the

smooth potential V6 in Eq. (6), one sees that as long as ϕ
does not diverge, both the Ricci scalar and the square of the
Ricci tensor remain finite. This is the case for the regular
solutions that we called “confining,” but it also holds true
for the “skewed” solutions, for which the singularity
manifests itself only at the level of the square of the
Riemann tensor. In Figs. 14 and 15, we plot the curvature
invariants for representative examples of solutions belong-
ing to these two classes, which we chose to be the analytical

backgrounds with ϕ ¼ 0, corresponding to the confining
and skewed solutions, respectively.

APPENDIX B: IR EXPANSIONS OF THE
GENERIC SINGULAR SOLUTIONS IN SEC. III F

This Appendix complements the discussion in Sec. III F.
Explicit evaluation of the first terms in the series expansion
performed near the end of the geometry, which would
correspond to the deep IR of the field theory, including all
terms with n ≤ 2, yields the following:

ϕðρÞ ¼ ϕI þ ϕL logðρ − ρoÞ −
e2ϕIð7ϕL þ 3Þ

4ðϕL þ 1Þ2ð2ϕL þ 3Þ ðρ − ρoÞ2ϕLþ2

þ e−2ϕIð7ϕL − 3Þ
3ðϕL − 1Þ2ð2ϕL − 3Þ ðρ − ρoÞ2−2ϕL þ e−6ϕIð9 − 23ϕLÞ
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þ e4ϕIðϕLðϕLð79ϕL þ 197Þ þ 144Þ þ 30Þ
8ðϕL þ 1Þ4ð2ϕL þ 3Þ2ð4ϕL þ 5Þ ðρ − ρoÞ4ϕLþ4 þ −

ϕLð12ϕ4
L þ 19ϕ2

L þ 9Þ
6ðϕ2
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In the numerical studies included in the body of the paper (e.g., in the calculations illustrated by Fig. 8), we retained a few
additional higher-order terms in these expressions in order to minimize noise and improve convergence of the numerical
studies.

APPENDIX C: IR EXPANSIONS OF THE SINGULAR DOMAIN-WALL SOLUTIONS IN SEC. III G

In this Appendix, we show explicitly some of the terms in the series expansion around the end of space of the geometry,
for the solutions discussed in Sec. III G. For convenience, we truncate the expansion at the orderOððρ − ρoÞ4Þ, although we
retained also a few additional higher-order terms in some of the numerical calculations described in the main body of the
paper,
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2

3
p

32=3ϕ2
4

þ −1921139818985605118175 × 22=3
ffiffiffi
3

3
p

ϕ5
4 − 43318844111573477101952ϕ8

4g

þ ðρ − ρoÞ4
3509143352151215625000

f14718312628622578125
þ 18585357769872307035000

ffiffiffi
2

3
p

32=3ϕ3
4

þ 744000468587964720553300 × 22=3
ffiffiffi
3

3
p

ϕ6
4

þ 14846531094788772880019552ϕ9
4g þ � � � : ðC2Þ

The domain-wall condition A ¼ 4χ restores (locally)
Poincaré invariance in D ¼ 5 dimensions.

APPENDIX D: SINGULAR DOMAIN-WALL
SOLUTIONS—LIFT TO D= 10 DIMENSIONS

This Appendix discusses the lift of the solutions to
massive type-IIA supergravity in D ¼ 10 dimensions. We
focus on the ten-dimensional metric, which in the Einstein
frame is given by

ds210 ¼ ðsinðξÞÞ1=12X1=8Δ3=8ðds26 þ dΩ̃2
4Þ; ðD1Þ

where

X ¼ eϕ; ðD2Þ

Δ ¼ X−3 sin2ðξÞ þ X cos2ðξÞ; ðD3Þ

dΩ̃2
4 ¼ X2dξ2 þ X−1Δ−1 cos2ðξÞ 1

4
½dθ2 þ sin2ðθÞdφ2

þ ðdψ þ cosðθÞdφÞ2�; ðD4Þ

and the ranges of the angles, describing the internal
4-sphere, are

0 ≤ θ ≤ π; 0 ≤ φ < 2π;

0 ≤ ψ < 4π; −
π

2
≤ ξ ≤

π

2
: ðD5Þ

The detailed expressions for the remaining nonzero back-
ground fields, the dilaton and the Ramond-Ramond 4-form,
can be found in Refs. [103,105].6

Because of the factor sinðξÞ1=12 in the ten-dimensional
metric, all the solutions we consider are singular at ξ ¼ 0.
For nonzero values of ξ, the behavior of the curvature
invariants differs depending on the different classes con-
sidered in the body of this paper, as we shall now see. For
simplicity, consider the ten-dimensional Ricci scalar evalu-
ated at ξ ¼ π=2, given by

Rð10Þjξ¼π
2
¼ 6e−ϕþ9e3ϕ

þ1

2
eϕð12V6ðϕÞþ∂ϕV6ðϕÞþ4ð∂ρϕÞ2Þ: ðD6Þ

6Our conventions are such that they agree with Sec. 3.1.3 of
Ref. [98] putting g ¼ 1.
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As can be seen, Rð10Þjξ¼π
2
remains finite as long as ϕ remains

finite as a function of ρ. This is the case for the confining
and skewed solutions. The class of badly singular domain-
wall solutions introduced in Sec. III G plays a prominent
role in our analysis, being the energetically favored branch
for ϕ̂2 > ϕ̂c

2. Using the IR expansion given in Eq. (83), we
obtain that

Rð10Þjξ¼π
2
¼ 5ð2

3
Þ2=3
9

ρ−5=3 þ ð2
3
Þ2=3ϕ4

9
ρ−11=9

þOðρ−7=9Þ; ðD7Þ

confirming the singular nature of these solutions also in
D ¼ 10 dimensions (even away from ξ ¼ 0).

APPENDIX E: MASS SPECTRA IN UNITS OF Λ

In this Appendix, we show the mass spectra normalized
in units of the scale Λ, in order to facilitate the comparison
with the results of Sec. V. The results are depicted in
Figs. 16 and 17. The only purpose of these plots is to allow
the reader to easily relate the scale setting procedures we
used in the calculaton of the spectrum and of the phase
structure.

APPENDIX F: A FEW PARAMETERIC PLOTS

In this Appendix, we show some additional details of the
numerical results we obtained by studying the confining
and skewed solutions and their approach to the trivial
critical point for large values ρ of the radial direction. In the
main body of the text, we focused most of our attention on
the values of the parameter ϕ2 and on the free-energy
densityF along the various branches of solutions. We show
here how the other parameters, ϕ3, χ5, and ϕI , evolve along
the two special branches of solutions that we called
“confining,” “skewed,” and “IR-conformal.” These param-
eters are extracted by following the procedure outlined in
Sec. V C, and correspond to the values obtained in step 3 of
the list describing the numerical implementation.
The main qualitative features that emerge from

Figs. 18–21 are similar to what we have already described
in the main text. We notice that when studying ϕ2, ϕ3, and
χ5 as a function of ϕI two different regimes emerge. For
negative values of ϕI, all the physically interesting UV
parameters show a monotonic, unbounded dependence on
ϕI itself. When ϕI > 0, the fact that a maximum value of ϕ2

is reached at finite ϕI gives rise to the nontrivial shape of
the curves shown in the three figures. We find it useful to
show also the results along the IR-conformal branch of
solutions where appropriate.
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FIG. 16. The spectra of massesM, as a function of the one free parameter ϕI characterizing the confining solutions and normalized in
units of Λ, computed with ρ1 ¼ 10−4 and ρ2 ¼ 12. From top to bottom, left to right, the spectra of fluctuations of the tensors eμν (red), the
graviphoton Vμ (green), and the two scalars ϕ and χ (blue). The orange points in the plot of the scalar mass spectrum represent values of
M2 < 0 and hence denote a tachyonic state. We also show by means of the vertical dashed lines the case ϕI ¼ ϕc

I > 0, the critical value
that is introduced and discussed in Sec. V.
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FIG. 17. The spectra of masses M as a function of the scale parameter ϕI, normalized in units of Λ. From top to bottom, left to right,
the spectra of fluctuations of the pseudoscalars πi forming a triplet 3 of SUð2Þ (pink), vectors Ai

μ forming a triplet 3 of SUð2Þ (brown),
Uð1Þ pseudoscalar X (gray), Uð1Þ transverse vector B6μ (purple), Uð1Þ transverse vector Xμ (black), and the massive U(1) 2-form Bμν

(cyan). The spectrum was computed using the regulators ρ1 ¼ 10−4 and ρ2 ¼ 12 with the exception of the Uð1Þ pseudoscalar X for
which we used ρ1 ¼ 10−7 in order to minimize the cutoff effects present for the very lightest state at large values of ϕI . We also show by
means of the vertical dashed lines the case ϕI ¼ ϕc

I > 0, the critical value that is introduced and discussed in Sec. V.
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FIG. 18. Plots showing the relationship between the UV expansion parameter ϕ2 and the IR parameter ϕI, in the solutions we called
“confining” (solid black and short-dashed orange lines) and “skewed” (dashed red line). The left plot shows the bare parameters
extracted: the solid black and dashed red lines agree, as with ϕconf

2 ¼ ϕskew
2 , ϕconf

I ¼ ϕskew
I . The right plot shows the same parameters

after rescaling with the appropriate powers of Λ.
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FIG. 19. Plots showing the relationship between the two UVexpansion parameters ϕ2 and ϕ3 for solutions belonging to the confining
(solid black and short-dashed orange lines), skewed (dashed red line), and IR-conformal (longest-dashed purple line) classes. The left
plot shows the base parameters extracted by matching to the UV expansions, with ϕconf

2 ¼ ϕskew
2 , ϕconf

3 ¼ ϕskew
3 . The right panel shows

the same parameters after rescaling with the appropriate powers of Λ. (For ϕ2 ≤ 0, although the confining, skewed, and IR-conformal
classes are not in complete agreement, they are close enough that in these plots the solid black and dashed red lines are hidden behind the
longest-dashed purple one.)
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FIG. 20. Plots showing the relationship between the two UVexpansion parameters ϕ2 and χ5 for solutions within the confining (solid
black and short-dashed orange lines), skewed (dashed red line), and IR-conformal (longest-dashed purple line) classes. The left plot
shows the parameters extracted by matching to the UVexpansions, with ϕconf

2 ¼ ϕskew
2 , ϕconf

3 ¼ ϕskew
3 , and χskew5 ¼−χconf5 − 8

25
ϕconf
2 ϕconf

3 .
The right panel shows the same parameters after rescaling with the appropriate powers of Λ.

–0.4 –0.3 –0.2 –0.1 0.0

–0.010

–0.005

0.000

0.005

0.010

–3 –2 –1 0 1
–4

–2

0

2

4

6

8

10

FIG. 21. The coefficient χ5 þ 4
25
ϕ2ϕ3 ≡ ΔDW appearing in the expansion of the function d in Eq. (39), for solutions within the

confining (solid black and short-dashed orange lines), skewed (dashed red line), and IR-conformal (longest-dashed purple line) classes.
The left plot shows the parameters extracted by matching to the UV expansions. The right panel shows the same parameters after
rescaling with the appropriate powers of Λ.
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APPENDIX G: FORMULATION OF THE FREE
ENERGY IN D= 5 DIMENSIONS

In this Appendix, we rewrite the same system of Sec. VA
in the language of a sigma model of two scalars ϕ and χ in
D ¼ 5 dimensions. We remind the reader that this is
derived by assuming that none of the background fields
depends on η and then performing dimensional reduction of
the system. As detailed elsewhere [99], for the bulk action,
one finds that

Sbulk ¼
Z

dη



S̃bulk þ

1

2

Z
d4xdr∂Mð

ffiffiffiffiffiffiffiffi
−g5

p
gMN∂NχÞ

�
;

ðG1Þ
with

S̃bulk ¼
Z

d4xdr
ffiffiffiffiffiffiffiffi
−g5

p

×

�
R5

4
−
1

2
GabgMN∂MΦa∂NΦb−Vðϕ;χÞ

�
; ðG2Þ

where the sigma-model metric is Gab ¼ diagð2; 6Þ in the
basis fϕ; χg, and the potential is V ¼ e−2χV6.
Hence, by just replacing the equations of motion, we find

S̃bulk ¼ −
3

8

Z
ρ2

ρ1

d4xdρ∂ρðe4A−χ∂ρAÞ

−
1

2

Z
ρ2

ρ1

d4xdρ∂ρðe4A−χ∂ρχÞ: ðG3Þ

The boundary-localized Gibbons-Hawking-York (GHY)
term at ρ ¼ ρ2 now reads7

S̃GHY;2 ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p K̃
2

				
ρ2

¼ 2

Z
d4xe4A−χ∂ρA

				
ρ2

: ðG4Þ

The boundary-localized potential term at ρ ¼ ρ2 reads

S̃pot;2 ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p
ðλ̃2Þ

				
ρ2

¼
Z

d4xe4Aðλ̃2Þ
				
ρ2

; ðG5Þ

which by comparing to Eq. (109) implies that we must
choose λ̃2 ≡ e−χλ2.
In the five-dimensional language, even regular solutions

in six dimensions may be singular—in the sense that the
curvature singularity in D ¼ 5 dimensions is resolved by
the lift to D ¼ 6 dimensions, which makes it more trans-
parent to understand why we need to introduce the
boundary at ρ ¼ ρ1. The resulting contributions to the
action are

S̃GHY;1 ¼ −
Z

d4x
ffiffiffiffiffiffi
−g̃

p K̃
2

				
ρ1

¼ −2
Z

d4xe4A−χ∂ρA

				
ρ1

;

ðG6Þ

S̃pot;1 ¼ −
Z

d4x
ffiffiffiffiffiffi
−g̃

p
ðλ̃1Þ

				
ρ1

¼ −
Z

d4xe4Aðλ̃1Þ
				
ρ1

; ðG7Þ

which again implies that λ̃1 ≡ e−χλ1.
We notice how the GHY terms in the description in

D ¼ 5 dimensions combine with the total derivative dis-
tinguishing Sbulk and S̃bulk to yield exactly the GHY term of
the formulation in D ¼ 6 dimensions. Hence, we have now
shown that we can match the two formulations of the
theory:

Sbulk þ
X
i¼1;2

SGHY;i þ Spot;i

¼
Z

dη
�
S̃bulk þ

X
i¼1;2

ðS̃GHY;i þ S̃pot;iÞ
�
: ðG8Þ

Note that matching the formulations in D ¼ 6 and D ¼ 5
dimensions as in Eq. (G8) does not require making use of
the equations of motion.
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