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We study anomalous chiral symmetry breaking in two-flavor QCD induced by gravitational and QCD-
instantons within asymptotically safe gravity within the functional renormalization group approach.
Similarly to QCD-instantons, gravitational ones, associated to a K3-surface connected by a wormhole-like
throat in flat spacetime, generate contributions to the ’t Hooft coupling proportional to expð−1=gNÞwith the
dimensionless Newton coupling gN . Hence, in the asymptotically safe gravity scenario with a nonvanishing
fixed point coupling g�N , the induced ’t Hooft coupling is finite at the Planck scale, and its size depends on
the chosen UV-completion. Within this scenario the gravitational effects on anomalous Uð1ÞA-breaking at
the Planck scale may survive at low energy scales. In turn, fermion masses of the order of the Planck scale
cannot be present. This constrains the allowed asymptotically safe UV-completion of the gravity-QCD
system. We map out the parameter regime that is compatible with the existence of light fermions in the
low-energy regime.
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I. INTRODUCTION

One of the longstanding problems in theoretical high-
energy physics is the construction of a well-defined UV-
completion of particle physics including quantum gravity.
Among the promising candidates for such a UV-completion
is the asymptotic safety scenario [1–5]. In asymptotically
safe gravity, the theory approaches a nontrivial interacting
ultraviolet fixed point (Reuter fixed point) for large
momentum scales in contradistinction to the perturbative
free Gaußian fixed point. The physics parameters of such a
gravity-matter system are its UV-relevant and marginal
couplings, including the Newton coupling and cosmologi-
cal constant, whose dimensionless versions approach finite
values. The set of UV-IR trajectories emanating from the
UV-fixed point provide us with the set of potential IR-
scenarios below the Planck scale for asymptotically safe
gravity-matter systems. Evidently, the physics of these
IR-completions crucially depends on the details of the
running of the matter couplings from the UV fixed point
toward below Planck-scale momentum scales. This running

is governed by he gravity-induced anomalous dimensions
of matter interactions.
An investigation of asymptotically safe particle physics

asks for a nonperturbative treatment and most studies are
based on the functional renormalization group (fRG)
approach. The impress progress in the past two decades
enables us to access more intricate questions such as
gravitational catalysis of strong chiral symmetry breaking
discussed in the present paper. For reviews and textbooks
on asymptotically safe gravity and gravity-matter systems,
see, e.g., [6–16].
The non-trivial UV-dynamics of asymptotically safe

gravity-matter systems opens the possibility for the intriguing
possibility of gravitational catalysis of chiral symmetry
breaking. If present, it first of all provides a selection criterion
for viable systemsas the naturalmass scale of gravity-induced
chiral symmetry breaking is the Planck scale. In turn, it may
open the door to signatures for asymptotic safety far below the
Planck scale, being accessible at the LHC and beyond, e.g.,
the FFC. For these reasons gravitational catalysis of chiral
symmetry breaking has been investigated in a series of works
in (Euclidean) flat spacetimes, see, e.g., [17–21]. There it has
been shown, that rather generic four-fermi systems do not
show gravity-induced chiral symmetry breaking for all
flavour numbers. Background-curvature induced chiral sym-
metry breaking has been observed in [22], see also [23–46].
For curvature bounds in asymptotically safe gravity-matter
systems see [47].
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In any case, we expect sizable topology-changing fluctua-
tions in the UV, which can be taken into account within an
expansion about a background spacetime with nontrivial
topology. Such topology-changing processes are induced by
gravitational instantons [48–52] in the semiclassical limit.
Similarly to QCD-instantons, they induce (anomalous)
Uð1ÞA-violating fermionic self-interactions. In particular they
generate contributions to the coupling of the ’t Hooft term
introduced in QCD in [53–55]. Due to the UV fixed-point
scaling the contributions to the ’t Hooft coupling is sizable but
finite in the UV fixed point regimewhile it decouples quickly
in the IR-regime with a classical running of the gravity
coupling: roughly speaking,M−1

pl is an effective IR-cutoff for
the size of gravitational instantons. In addition, the size of the
gravitational instanton is a quasizeromodewhen the instanton
is much smaller than M−1

pl because of the (quantum) scale
invariance of the theory. Therefore the effect is finite even at
an arbitrarily high momentum scale.
In the present work we put forward a novel mechanism

for dynamical breaking of the chiral symmetry. It is
triggered by gravitational instantons in asymptotically safe
gravity-matter systems. Specifically, we consider two-
flavor massless QCD coupled to gravity, and investigate
the RG flow of two four-fermion interactions in a two-
channel approximation: we consider the ’t Hooft vertex and
the scalar–pseudoscalar channel. Divergences at a RG-scale
in the flow of the latter channel indicate resonant inter-
actions and hence signal spontaneous chiral symmetry
breaking. The flow of the ’t Hooft vertex in QCD has
been evaluated in [56]. There it has been shown that the
semiperturbative flow of the ’t Hooft coupling together
with an (semiclassical) initial condition in the UV gives rise
to the right amount of anomalous chiral symmetry breaking
at cutoff scales of about 1 GeV.
In the present work we take a first step toward the

evaluation of gravity-induced Uð1ÞA breaking within a
phenomenological approach similar to the instanton-liquid
in QCD. We derive the RG-equations in the presence of
gravitational instantons, and consider the prefactors of the
respective topological terms as phenomenological input
parameters. This allows us to evaluate not only one-instanton
contributions to the flow, but also an interacting gravitational
instanton-liquid within a phenomenological approach. Such
an instanton-liquid may well be present in the strongly-
correlated UV-sector close to the Reuter fixed point.
Within this setup we analyse the subset of the parameter

space for which chiral symmetry breaking is triggered by
gravitational instantons. The necessity of the occurrence of
light (infrared) fermions allows us to exclude a quite wide
range of the parameter space. In turn, part of the parameter
space is compatible with the observation of standard model
fermions but may lead to signatures beyond the currently
accessible energy range.
The paper is organized as follows: In Sec. II we set up the

two-flavor gravity-QCD system investigated in the present

work. In Secs. III and IV we briefly review gravitational
instantons, and anomalous chiral symmetry breaking due to
gravitational instantons. In Sec. V we compute numerically
the UV-IR flows in the gravity-QCD system in the presence
of gravitational instantons, and investigate the respective
chiral symmetry breaking. Section VI contains discussions
of the results of the present work, and conclusions.

II. QCD COUPLED TO GRAVITY

In this paper, we consider massless two-flavor QCD
coupled to gravity. Its momentum-cutoff scale dependence
is investigated with the functional renormalization group
(fRG) approach. The flow of correlation functions and
couplings is derived from the master equation for the scale-
dependent (one-particle irreducible) gauge-fixed effective
action Γk, where k is the infrared cutoff scale: momenta
p2 ≲ k2 are suppressed, and hence Γk agrees at k ¼ 0 with
the full quantum 1PI effective action Γ.
Both, the required gauge-fixing and the infrared regu-

lator gravity necessitate the introduction of a background
metric and a respective split of the full metric, for a detailed
discussion see, e.g., [16]. Here we consider a standard
linear split,

gμν ¼ ḡμν þ
ffiffiffiffiffiffiffiffiffiffiffiffi
ZhGN

p
hμν; Aμ ¼ Āμ þ aμ; ð1Þ

where the dimension one fluctuation field hμν carries the
gravity quantum dynamics. The background split for the
gluon is introduced for convenience as it allows for an
expansion of the scale-dependent quantum effective action
Γk about topologically nontrivial configurations, see [56].
Apart from the graviton and gauge fields we also have the
matter fields, the two-flavor quarks q; q̄. Together with the
auxiliary ghost fields introduced within the Faddeev-Popov
quantization of gravity and QCD, the total field content of
gravity coupled to Nf ¼ 2-flavor QCD is given by the
backgrounds ðḡμν; ĀμÞ and the dynamical fluctuation fields

ϕ ¼ ðϕgrav;ϕmatÞ; ð2Þ

with

ϕgrav ¼ ðhμν; cμ; c̄μÞ; ϕmat ¼ ðAμ; c; c̄; q; q̄Þ: ð3Þ

The field ϕ is the fluctuation super field with the gravity
part ϕgrav and the matter part is ϕmat.
The scale dependence of Γk½ḡ; Ā;ϕ� is described by the

Wetterich equation [57–59], for gravity see [4],

∂tΓk ¼
1

2
Tr

�
1

Γð2Þ
k þ Rk

∂tRk

�
; with t ¼ log

k
kref

; ð4Þ

where kref is a reference scale and t is (minus) the RG-time.
The regulator Rkðp2Þ suppresses the infrared propagation
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of modes p2 ≲ k2 and vanishes for the ultraviolet modes.
This regulator function ins multiplied with the full field-

dependent propagator ½Γð2Þ
k þ Rk�−1, which is matrix-

valued in field space. Here, Γð2Þ
k is the second functional

derivative of Γk with respect to fluctuation fields ϕ. The
operator trace in (4) denotes the summation over discrete
and integration of continuous variables such as momenta
and flavor. For Grassmann-valued fields the trace involves
a minus-sign. For reviews on the FRG and the Wetterich
equation, see Refs. [15,60–68].
For interacting theories such as the present gravity-QCD

system, (4) has to be solved within a suitable truncation of
the full effective action. The aim of the current work is the
analysis of a novel mechanism for chiral symmetry break-
ing triggered by asymptotically safe instantons. This
analysis is possible and well-accessible within a simple
truncation in Euclidean spacetime, a more quantitative
analysis is deferred to future work. The full effective action
can be split into its different sectors,

Γk ¼ Γgrav þ Γglue þ Γmat þ Γgh þ Sgf : ð5Þ

In (5), Γgrav stands for the effective action part of the pure
graviton sector, obtained with vanishing matter and gauge
fields as well as vanishing auxiliary ghost fields. Similarly,
the pure glue sector Γglue only contains the gluonic gauge
field and the graviton, while the matter part Γmat vanishes
for qq̄ ¼ 0. Finally, Sgf carries the gauge-fixing terms for
QCD and gravity, while Γgh is the auxiliary ghost sector.
Here we consider the following qualitative truncation

of the full effective action in (5): In Γgrav we consider the
full fluctuating two-point function with a wave function
renormalization Zh and a graviton mass parameter
μh ¼ −2Λ2. Furthermore we consider higher correlation
functions as derived from the Einstein-Hilbert action with
running Newton constantGN and cosmological constant Λ:
the flows are computed from the fluctuation three-point
function with GN ¼ G3 and Λ ¼ Λ3 and all higher cou-
plings are identified with that of the three-point function:
Gn>3 ¼ G3 and Λn ¼ Λ. For more details see e.g., the
recent review [15] and references therein.
For the pure glue part we use a similar, even simpler

approximation: ΓYM has the form of the classical Yang-
Mills action with running gauge coupling gs. This trunca-
tion can be summarized as follows,

Γð2Þ
grav ¼ Zh

�
1

16πGN

Z
d4x

ffiffiffi
g

p ð−μh − RÞ
�ð2Þ

;

Γðn≥3Þ
grav ¼

�
1

16πGN

Z
d4x

ffiffiffi
g

p ð2Λ − RÞ
�ðnÞ

;

Γglue ¼
1

4g2s

Z
d4x

ffiffiffi
g

p
gμρgνσFa

μνFa
ρσ; ð6Þ

where the superscript ðnÞ denotes n-derivatives with respect
to the fluctuation field h. This entails that Γð2Þ

grav does not
depend on GN . In (6),

ffiffiffi
g

p
denotes the squared determinant

of the metric; R is the scalar curvature; Fμν is field strength
of the gauge field Aμ. In pure gravity and for the current
gravity-QCD system the Λn>2 are rather small and can
be safely put to zero, that is, Λ ¼ 0 in Eq. (6). The mass
parameter of the fluctuating graviton is μ�h ≈ −1=2.
While this decreases significantly the fixed point value
of the fixed-point Newton coupling, it does not change the
qualitative behavior. Moreover, the flows depend on the
anomalous dimension of the fluctuating graviton,
ηh ¼ −∂t logZh. Also, the fixed point value η�h ≈ 1=2 is
positive, and vanishes quickly below the Planck scale.
Hence, similarly to μh, the graviton anomalous dimension
only has a quantitative impact on the present analysis. Note,
that this is in contrast to the anomalous dimension of
the Newton coupling, that necessarily tends toward −2 at
the UV fixed point and cannot be dropped. Consequently
we also choose μh ≡ 0 for our explicit computations. In
summary, the numerical solutions in the current work are
computed for μh ¼ 0, Λ ¼ 0 and ηh ¼ 0.
We use the following combined (background) gauge

fixing term

Sgf ¼
Z

d4x
ffiffiffī
g

p
gμν

�
1

2ξ
ðD̄ab

μ Ab
νÞ2 þ

1

α
FμFν

�
: ð7Þ

where D̄ ¼ ∂ − iĀμ is the background-covariant derivative.
The gravity gauge fixing Fμ is given by

Fμ ¼ ḡμν∇̄νhμν −
1þ β

4
∇̄μh; ð8Þ

with the background-metric covariant derivative ∇̄ and the
trace mode h ¼ ḡμνhμν. The ghost-dependent part of the
effective action is approximated by its classical counterpart,

Γgh ¼
Z

d4x
ffiffiffī
g

p
gμνðc̄∂μDμc − c̄μMμνcνÞ; ð9Þ

with

Mμν ¼ ḡμν∇̄2 þ 1 − β

2
∇̄μ∇̄ν þ R̄μν:

It is left to specify the matter part. We resort to a
combination of the classical Dirac action with running
couplings and a two-channel approximation (scalar-
pseudoscalar and Uð1ÞA-breaking channel) of the Fierz-
complete four-quark interactions. Then the matter part of
the effective action reads
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Γmat ¼
Z

d4xjej½q̄i=∇qþ λq½ðq̄qÞ2 − ðq̄γ5τaqÞ2�

þ 2λtop det q̄ð1 − γ5Þqþ H:c:�; ð10Þ

with the Paul matrices τa (a ¼ 1, 2, 3). In (10) we have
suppressed the flavor index: q≡ qi (i ¼ 1, 2), and ∇μ ¼
∂μ − iAμ − 1

2
ωμabJab is the (full) covariant derivative in

curved space. Here ωμab is the spin connection, Jab ¼
1
4
½γa; γb� is the generator of the Lorentz transformation

based on SO(4), and eaμ is the vierbein field. This leads us
to =∇ ¼ γaeaμ∇μ, and we have used jej for the determinant
of the vierbein field. The two four-quark terms in (10) take
into account the scalar-pseudoscalar channel (pions and
sigma mode) and the axial Uð1ÞA-breaking ’t Hooft
interaction [53–55] induced by instantons.
The approximation (10) does only take into account two

channels of the Fierz-complete basis with ten channels in
two-flavor QCD. Now we shall argue that this is already
sufficient for the present purpose, and indeed constitutes
already a semiquantitative approximation:
In QCD in flat spacetime, these (and other) four-quark

interactions are generated at high scales by quark-gluon
box (flow) diagrams proportional to α2sðpÞ. Indeed, the flow
will generate all four-quark interactions with tensor struc-
tures that are compatible with the symmetry of the Dirac
action, if the regulator is not breaking these symmetries
explicitly. Due to the chiral symmetry of the Dirac term the
respective four-quark interactions are invariant under the
chiral SUð2ÞR × SUð2ÞL symmetry:

qR → URqR; qL → ULqL; ð11Þ

where UR=L ∈ SUð2ÞR=L, and the right- and left-handed
quarks are defined with qR=L ¼ ð1� γ5Þ=2q.
While the axial Uð1ÞA-symmetry is a symmetry of the

Dirac term, it is broken by the axial anomaly in the
quantization. Accordingly, the resulting four-quark terms
are not necessarily invariant under Uð1ÞA-transformations

q → eiθγ5q; q̄ → q̄eiθγ5 : ð12Þ

Indeed, both terms in (10) are invariant under SUð2ÞR ×
SUð2ÞL transformations, (11), but are not invariant under
Uð1ÞA-transformations, (12).
Due to asymptotic freedom the QCD-contributions to the

four-quark interactions decay rapidly in the UV. In turn,
toward the infrared for momenta p2 ≲ 1–2 GeV, the quark-
gluon box diagrams increase rapidly with α2sðpÞ. Moreover,
for p2 ≲ 1 GeV the scalar-pseudoscalar channel is getting
resonant and the coupling λq diverges, tantamount to strong
spontaneous chiral symmetry breaking. In this regime it is
convenient to introduce low energy effective mesonic
degrees of freedom, in particular the pion for the scalar-
pseudoscalar channel. This infrared dominance of the

scalar-pseudoscalar channel is working very efficiently,
and while a Fierz-complete basis in two-flavor QCD
contains ten tensor structures, only the scalar-pseudoscalar
one with the coupling λq is driving the chiral dynamics.
For a quantitative study in quenched and unquenched QCD
see [69–71], for a recent overview including the relevant
literature see [68].
Even though the dynamics is dominantly driven by the

scalar-pseudoscalar channel, the axial Uð1ÞA-breaking
’t Hooft interaction [53–55] is also important. While it
does not drive the chiral dynamics, it is responsible for the
anomalously large η- mass in two-flavor QCD, in 2þ 1
flavor QCD is triggers the anomalously large η0-mass via
QCD-instanton effects, see e.g., [72,73]. Consequently, the
two-channel approximation used here is already semi-
quantitative, as the contributions of the other eight tensor
structures are subleading in the vacuum, and can be safely
dropped.
In summary this leaves us with an approximation for the

with Nf ¼ 2 gravity-QCD system, that is described by the
dimensionless couplings

gN ¼ GNk2; gs; λ̄q ¼ λqk2; λ̄top ¼ λtopk2:

ð13Þ

As discussed above, this is the minimal approximation
which suffices to analyse the anomalous gravitational
catalysis of chiral symmetry breaking.
In QCD, the ’t Hooft interaction is generated from

nontrivial topological (self-dual) gauge field configura-
tions, the QCD-instantons. In the gravity-QCD system
studied in the present work, we have additional contribu-
tions from gravitational topological configurations (gravi-
tational instantons), a brief introduction to the latter is given
in the next Sec. III, and the topological contributions both
from QCD and gravity are discussed in Sec. IV. Here we
first restrict ourselves to the gravity-QCD system in the
topologically trivial sector. The flows for the minimal set of
dimensionless couplings in (13) is given by that of the
dynamical Newton coupling, taken from [74–77],

∂tgN ¼ 2gN −
�
833

15
þ 133

30
ðN2

c − 1Þ þ 3599

600
Nf

�
g2N
19π

;

ð14Þ

with the pure gravity part and the contributions from the
gluon loops proportional to the number of gluons, N2

c − 1,
and quark loops proportional to the number of flavors. The
flow of the strong coupling receives gravity contributions
apart from the universal QCD β-function, both leading to
asymptotic freedom in the UV, taken from [77,78],

∂tgs ¼ −
�
11

3
Nc −

2Nf

3

�
g3s

16π2
−
gsgN
4π

; ð15Þ
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For the flows of the four-quark interactions we restrict
ourselves to Nf ¼ 2. For respective flows in QCD and the
Standard model see, e.g., [67,69–71,79,80], for gravity
contributions see, e.g., [17]. In summary this leads us to

∂tλ̄q ¼
�
2 −

N2
c − 1

8π2
3

Nc
g2s þ

29

15π
gN

�
λ̄q −

9N2
c − 24

256π2
3

Nc
g4s

−
5

16
g2N −

1þ 2Nc

2π2
λ̄2q −

2ð1þ NcÞ
π2

ðλ̄q þ λ̄topÞλ̄top:
ð16Þ

The first line provides the dimensional running of λq
including its anomalous deformation due to mixed λq–
gluon and λq–graviton exchange diagram. The second line
in (16) stems from the quark-gluon and quark-graviton
exchange diagrams that generate the four-quark inter-
actions from quark-gravity and quark-gluon interactions.
The last line stems from the four-quark self-interactions and
is also present in the respective NJL-type four-quark model.
Finally, the flow of the dimensionless ’t Hooft coupling

λ̄top takes a form similar to that of λ̄q. In comparison, the
gluon and graviton box diagrams and mixed terms are
missing, as the Dirac action has chiral symmetry, and
cannot generate the Uð1ÞA-violating coupling. Such terms
are present for nonvanishing quark masses and are propor-
tional to the latter. This leaves us with the dimensional
running and the self-interaction terms also present in the
respective NJL-type four-quark model. The flow reads, see
[17,67,69–71,79,80].

∂tλ̄top ¼
�
2þ 17

6π
gN

�
λ̄top þ

ð2Nc þ 3ÞNc − 1

2Ncπ
2

λ̄2top

þ Nc − 1

4Ncπ
2
ð4λ̄top þ λ̄qÞλ̄q: ð17Þ

The RG flows of gNðkÞ and gsðkÞ solving the flow
equations (17) and (14) are shown by Fig. 1.
In the NJL-type model, spontaneous chiral symmetry

breaking is related to a divergence of the coupling λq. This
is easily understood within the bosonized version of the
model: There, the mass squared m2

ϕ for the composite
bosonic field ϕ ∼ ðq̄qÞ is related to the four-quark coupling,
λq ∼ 1=m2

ϕ. At m2
ϕ < 0 the effective potential of the

composite field develops nontrivial minima. Hence, at
m2

ϕ ¼ 0, the theory goes from the symmetric into the
broken phase. A quantitative evaluation of spontaneous
chiral symmetry breaking requires more refined
approaches. Such a refined analysis can be performed,
e.g., with the weak RG method [81–83] or within dynami-
cal bosonization [69,70,84–91].

III. GRAVITATIONAL INSTANTON

We here give a brief review on gravitational instantons,
for more comprehensive reviews, see Refs. [92,93].
They are (anti-) self-dual solutions of the vacuum
Einstein equations: R̃μν ¼ �Rμν with R̃μν ≡ ϵμνλρRλρ.
Gravitational instantons are Ricci flat, Rμν ¼ 0, and pro-
vide spacetime manifolds with nontrivial topology, char-
acterized by the signature τ,

τ½M� ¼ −
1

96π2

Z
d4x

ffiffiffi
g

p
ϵμνλρRμν

αβRλραβ; ð18Þ

with the 2-form curvature R,

ðRÞμν ¼
1

2
Rαβμ

νdxαdxβ: ð19Þ

The Dirac index I½M� is defined by the difference between
the numbers of the positive and negative chirality

FIG. 1. IR-UV RG-flow of gNðkÞ and gsðkÞ. The flow is initiated close to the electroweak scale at the initial scale kIR ¼ 102 GeV, and
the initial conditions for gN and αs ¼ g2s=ð4πÞ are the physical ones, gN ¼ 6.71 × 10−35, and αs ¼ 0.118. The flow of gN approaches the
UV-fixed point value g�N ≃ 1.15907 and αs tends toward zero. Below the Planck scale,Mpl ≃ 1.22 × 1019 GeV, the Newton coupling has
a classical running, gN ∝ k2, above the Planck scale it is rapidly approaching the fixed point value. The strong coupling runs
perturbatively below the Planck scale and decays rapidly due to the gravity corrections above the Planck scale.
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eigenmodes of the Dirac operator =D on a background
spacetime M,

I½M�≡ nþ − n−: ð20Þ

The Atiyah-Patodi-Singer (APS) index theorem [94–96]
states that the analytic Dirac index is related to topological
invariants,

I½M� ¼ 1

8
τ½M� þ 1

2
ηD½∂M�; ð21Þ

where the signature τ has been given in (18), and ηD½∂M�
is the eta-invariant defined on the boundary ∂M, for recent
work see [97,98]. The first term on the right-hand side of
Eq. (21) is a contribution from the bulk, while the second
one is that from the boundary ∂M. For manifolds without
boundaries, the latter vanishes and thus the equation
reduces to the Atiyah-Singer index theorem [99,100],

I½M� ¼ −
1

768π2

Z
d4x

ffiffiffi
g

p
ϵμνλρRμν

αβRλραβ: ð22Þ

Manifolds M with nonvanishing index ½M� sustain chiral
zero-modes of the Dirac operator, that trigger anomalous
chiral symmetry breaking via the chiral anomaly.
We now discuss three examples for gravitational instan-

tons: the Eguchi-Hanson metric [50], the Taub-NUT metric
[48,51] and the K3-surface. The first two metrics describe
noncompact manifolds that approach locally flat Euclidean
spaces for asymptotically large distances. They have the
vanishing index I½M� because their boundary contribution
1
2
ηD½∂M� cancels the bulk contribution 1

8
τ in Eq. (21).

On the other hand, The K3-surface is the only closed and
compact manifold that satisfies the self-dual condition.
Unfortunately the explicit form of its metric is still
unknown. It is known nevertheless that K3 surface has
the nonzero index I ¼ 2, and thus the Dirac operator has
two chiral zero-modes. Therefore, it is a promising candi-
date for a manifold inducing chiral-symmetry breaking
effects.
However, the K3-surface itself is not suitable to our

argument because it is a compact manifold with a typical
size of 1=Mpl. Hence it cannot be regarded as a localized
object in our universe. An alternative choice is a manifold
where the K3-surface and the flat Euclidean space R4 are
connected by the wormholelike throat (Fig. 2), as intro-
duced in [52]. This manifold has the same index as the
K3-surface, because its boundary is S3, which has a
vanishing eta invariant, ηD½S3� ¼ 0 (one can always make
the configuration compact by adding a single point at
infinity). Note, that this whole spacetime is neither a self-
dual manifold nor is it a solution of the vacuum Einstein
equation due to the wormhole throat. Accordingly it is not a
saddle point of the classical action, which suggests that it is

strongly suppressed in the path integral. In the next Sec. IV
we will argue that this is not the case, and we can resort to
semiclassical arguments.

IV. TOPOLOGICAL CONTRIBUTIONS
TO THE ’t Hooft COUPLING

The classical Uð1ÞA-symmetry of the massless gravity-
QCD system is broken by quantum effects induced by both,
QCD and gravitational instantons. These breaking effects
originate from the integration of fermionic zero-modes
localized around the instantons. In the present section we
derive the QCD and gravitational instanton contributions to
the four-quark flows. While the derivation of the QCD-
instanton contribution simply reminds on the derivation
done in [56], the derivation of the latter is new, and is done
in analogy of the QCD-case.

A. Instanton-effects in the dilute gas approximation

In the dilute gas approximation with localized and dilute
instantons they leads within a semiclassical expansion to
the ’t Hooft interaction in (10) with the coupling λtop. In the
semiclassical approximation for the present gravity-QCD
system the coupling receives additive contributions from
QCD and gravitational instantons,

λtop ≃ λðglueÞtop þ λðgravÞtop : ð23Þ

The contribution from an QCD-instanton with size ρ in the
dilute gas approximation is given by [54,55],

λðglueÞtop ∼ ρ3Nf−4 exp

�
−

8π2

g2sð1=ρÞ
�
: ð24Þ

In the present fRG-approach with an infrared cutoff scale

the QCD-instanton contributions λðglueÞtop have been studied
in [56] within an expansion about background instantons.
In [56] it has been shown that the semiclassical analysis
including the relevance and effects of chiral zero modes
holds true in the presence of an infrared cutoff. The cutoff

FIG. 2. The K3-surface connected by a wormhole-like throat
with the flat spacetime, as discussed in [52]. The typical size of
the wormhole is given by ρ.
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scale k serves as an infrared cutoff for the instanton size
with ρ≲ 1=k and the flow integrates out instantons with the
size ρ ∝ 1=k. The latter fact is already reflected in the
running coupling g2sð1=ρÞ evaluated at the momentum scale
1=ρ. This leads us to the flow of the dimensionless four-

quark coupling λ̄ðglueÞtop ¼ k2λðglueÞtop for Nf ¼ 2 with

∂tλ̄
ðglueÞ
top ∝ ∂t

h
e
− 8π2

g2s ðkÞ
i
¼ 8π2βg2s

g2sðkÞ
e
− 8π2

g2s ðkÞ; ð25Þ

with βg2s ¼ ∂t log g2s . This prefactor arises from the
t-derivative of (24) with ρ ∝ 1=k.
We use these results to also estimate the magnitude of

λtop as well as ∂tλtop induced from gravitational instantons.
In particular, we consider the spacetime consisting of
the K3 surface and the flat spacetime connected by the
wormhole, see Fig. 2. For a given typical size ρ of the
wormhole ρ, we can estimate its effect based on the naive
dimensional analysis as

λðgravÞtop ∼ ρ3Nf−4e−S½M�: ð26Þ
The classical action S½M� of this geometry is roughly
given by

S½M� ∼ ðSflat þ SK3 þ SwormholeÞ ∼M2
plρ

2 ∼
ρ2

GN
; ð27Þ

where we have used that the Planck mass squared is the
inverse Newton gravitational constant M2

pl ¼ 1=ð8πGNÞ.
Moreover, Sflat ¼ SK3 ¼ 0, as the K3-surface is Ricci flat.
Here, a few comments are in order. First, (27) is obtained

from an instanton configuration which is not a solution to
the equation of motion. Nonetheless, such a configuration,
(27), contributes to the path integral, and an expansion
about it provides a lower bound for the respective effects.
Second, one could also consider the K3 surface connected
to a curved spacetime. Then, (27) has to be modified.
Again, while this changes the size of the effects, the present
computation with a flat spacetime suffices for the qualita-
tive picture.
In analogy to the QCD-analysis, the infrared cutoff term

for gravity restricts the size of gravitational instantons to
those with ρ≲ 1=k. The Newton constant GN should be
identified with the running effective coupling constant at
the scale k, GNðkÞ ¼ gNðkÞ=k2. Similarly to the contribu-
tions of QCD-instantons we now can derive the flow of the

dimensionless coupling λ̄ðgravÞtop ¼ k2λðgravÞtop for Nf ¼ 2. The
t-derivative hits the exponent in (26) and we arrive at

∂tλ̄
ðgravÞ
top ∝ ∂t½e−

1
gN ðkÞ� ¼ βgN

g2NðkÞ
e−

1
gN ðkÞ: ð28Þ

with βgN ¼ ∂t log gN . Not surprisingly, the instanton con-
tributions both from QCD, (25), and gravitational

instantons, (28), have the same form. However, they differ
qualitatively by the qualitatively different scale-dependence
of the strong coupling and the Newton coupling:
The QCD-coupling constant gs is asymptotically free,

i.e., approaches to the Gaußian fixed point gs� ¼ 0 in the
UV limit. Accordingly, the QCD contributions of small-
size instantons are strongly suppressed while those from
large-size ones are not suppressed due to the growing
coupling.
In turn, in asymptotically safe gravity-matter systems,

the running Newton constant gNðkÞ approaches to a non-
trivial fixed point gN� ≠ 0 above the Planck scale with
k=Mpl → ∞. Consequently, the effects of small-size gravi-
tational instantons with ρ ≪ M−1

pl (ρ ∼ 1=k) are indepen-
dent of ρ and hence not suppressed. In the infrared with
k ≪ Mpl, the dimensionless Newton constant gNðkÞ ∼ k2.
Accordingly, the contributions from gravitational instan-
tons decay exponentially below the Planck scale. In
summary, the size of the gravitational instantons have an
effective IR cutoff: ρ≲M−1

pl .

B. Flow of the ’t Hooft coupling

The two estimates for the instanton contributions in the
dilute-gas approximation to the flow of the dimensionless
’t Hooft coupling, (25) (QCD-instantons) and (28) (gravi-
tational instantons) allows us to analyze gravitational
catalysis of anomalous chiral symmetry breaking in the
gravity-QCD system. While the qualitative scale-
dependences are also present in a fully nonperturbative
setup, the nonperturbative quantitative determination of
the prefactor is rather difficult: First, due to its topological
nature it is difficult (even though possible) to devise a reliable
approximation to the full system, whose flow incorporates
the generation of the topological flows, and in particular that
of the 1=gN-prefactor. This intricacy is already well-known
from and studied in QCD-flows. Second, the dynamics of
space-timemay strengthen orweaken the topological effects.
This global dynamics of space-time is an additional com-
plication not present in QCD.
In combination this suggests a phenomenological

approach, which allows to analyse the respective parameter
ranges of the prefactors and its impact on spontaneous
symmetry breaking. This is very similar to instanton-liquid
considerations in QCD, for a review see [101]. Hence, in
the current work we will consider the instanton contribu-

tions (25) and (26) with free prefactors γð1Þglue=grav that
parameterize the topological dynamics. This leads us to

the instanton contributions ∂tλ̄
ðInstÞ
top the flow of λ̄top with

∂tλ̄
ðInstÞ
top ¼

�
γð1Þgrav

βgN
g2NðkÞ

þ γð2Þgravλ̄top

�
e−

1
gN ðkÞ

þ
�
γð1Þglue

8π2βg2s
g2sðkÞ

þ γð2Þglueλ̄top

�
e
− 8π2

g2s ðkÞ: ð29Þ
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In (29), the term proportional to the β-functions of the
Newton coupling and the QCD coupling originates from
the dynamics of the exponential factor e−S that depends on
the running couplings. The terms proportional to λ̄top are
generated from interactions between the instanton and λ̄top.
They are absent for vanishing Uð1ÞA-breaking with
λ̄top ¼ 0. Equation (29) allows us to evaluate the phenom-
enological consequences of different scenarios by scanning
though the γð1Þ; γð2Þ parameter space: the latter parameter
parameterise the dynamics of the topological sector of the
theory, and in particular the nontrivial interactions of
instantons. In turn, the exponential factors in (29) carry
the fluctuation dynamics of QCD and gravity. Although
these contributions are not derived analytically and are
certainly modified by additional nonperturbative effects,
these factors qualitatively capture the instanton effects.
As a showcase example we depict their scale-

dependence in Fig. 3 for the IR-UV flows already shown
in Fig. 1, the respective flow is initiated at k ¼ 102 GeV
close to the electroweak scale with the physical values of
Newton coupling, gN ¼ 6.71 × 10−35, and strong coupling,
αs ¼ 0.118.
In combination, the topological part of the flow and the

flow in the absence of topological effects, (17), provide the
full flow equation of λ̄top,

∂tλ̄top ¼
�
2þ 17

6π
gN

�
λ̄topþ ∂tλ̄

ðInstÞ
top þð2Ncþ 3ÞNc− 1

2Ncπ
2

λ̄2top

þNc− 1

4Ncπ
2
ð4λ̄topþ λ̄qÞλ̄q; ð30Þ

with ∂tλ̄
ðInstÞ
top in (29). We are now in the position to discuss

the generation of chiral symmetry breaking at trans-
Planckian scales. To begin with, the QCD-instanton con-
tributions are negligible in this momentum regime: for
k≳Mpl a conservative estimate gives gsðMplÞ ≲ 1=2. This
leads to an exponential factor

exp

�
−
8π

g2s

�
∼ e−100; ð31Þ

and the QCD-terms are negligible unless γð1Þglue or γ
ð2Þ
glueλ̄top

are of the order e100. Another option for increasing the
QCD contributions are finite quark masses. Then, chiral
symmetry is explicitly broken and ∂tλ̄top receives contri-
butions proportional to the quark mass. However, we have
checked, that as long as the quark masses are far smaller
thanMpl, the suppression of QCD-contributions beyond the
Planck scale holds true. This leaves us with the parameter

set ðγð1Þgrav; γ
ð2Þ
gravÞ, which controls the size of Uð1ÞA-breaking

as well as the phase structure in the trans-Planckian regime.

Note that the number density of QCD-instantons is linked
to gluon condensation, see, e.g., [102].

V. ANOMALOUS GRAVITATIONAL CATALYSIS
OF CHIRAL SYMMETRY BREAKING

In this section we evaluate the anomalous gravitational
catalysis of chiral symmetry breaking in the gravity-QCD
system within the approximation detailed in the previous
sections (Sec. II, Sec. III, Sec. IV). This approximation led
to the set of flow equations in (14), (15), (16), and (30).
Within this setup we evaluate spontaneous chiral sym-

metry breaking triggered by gravitational topological con-

tributions, whose strength is parametrized by γð1Þgrav and γ
ð2Þ
grav.

Chiral symmetry breaking with the order parameter
hq̄qi ≠ 0, the chiral condensate, is tantamount to a diver-
gence of the scalar-pseudoscalar coupling λ̄q at a finite
cutoff or momentum scale kχ . As the contribution of the
gravitational-instanton term is strongly peaked at k ∼Mpl,
see Fig. 3 the chiral symmetry breaking scale kχ has to be
proportional to the Planck mass. Consequently, we can
restrict ourselves to this regime: k≳Mpl.

A. Benchmark case: Setup

As a benchmark case we consider a set of parameters
that triggers spontaneous chiral symmetry breaking rather
generically,

ðγð1Þgrav; γ
ð2Þ
gravÞ ¼ ð30; 1Þ: ð32Þ

FIG. 3. Scale dependence of the topological terms in Eq. (30).
The Newton coupling gNðkÞ is obtained from the IR-UV flow in
Fig. 1, that is initiated at k ¼ 102 GeV close to the electroweak
scale, and the initial conditions for gN and αs ¼ g2s=ð4πÞ are the
physical ones, gN ¼ 6.71 × 10−35, and αs ¼ 0.118. The first term
(blue line) generates the running of gN in the exponents e−S of the
topological terms. It is proportional to βgN and is strongly peaked
at k ∼Mpl. The second term (yellow line) is related to the
integrated first contribution, and originates from instanton–four-
quark interactions.
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For this case we show constant gN-slices of the phase
structure in Fig. 4. The different gN are obtained for
different cutoff scales k ∼Mpl: Blue lines and arrows in
Fig. 4 represent the RG flows for λ̄grav and λ̄q, and the
arrows indicates flows from the UV toward the IR. Then,
gravity-induced chiral symmetry breaking is discussed at
the example of a specific UV-IR trajectory, depicted by the
orange lines in the plots in Fig. 4: this RG-trajectory of
ðλ̄topðkÞ; λ̄qðkÞÞ is initiated in the vicinity of the non-
Gaußian fixed point (blue square). The full initial condition
is given by

ðλ̄top; λ̄q; gN; gsÞ ¼ ð−0.2864; 8.1135; 1.1589; 0.2722Þ;
ð33Þ

at k ¼ 102Mpl. The respective UV-IR flows ends in the
chiral-symmetry broken regime below the Planck scale.
Before we enter the discussion of the specific trajectory,

we evaluate the general phase structure with the snapshots
in Fig. 4: at large cutoff values, k ≫ Mpl, the topological
terms are absent in the flow, and we encounter four fixed
points (top-left panel). One is the (slightly shifted) Gaußian
fixed point, denoted by the red dot. The other, non-
Gaußian, fixed points are denoted by the red square, the
blue dot and the blue square. As the cutoff scale k
approaches the Planck mass Mpl, the blue and red fixed
point pairs approach (top-right panel), and finally merge
and annihilate each other. For a cutoff scale regime about
the Planck mass, k ≈Mpl, this leaves us with a situation
without IR-attractive fixed points (bottom-left panel), as
expected. In the infrared, for ΛQCD ≪ k ≪ Mpl, the fixed
point structure is similar to that in the UV, since the
gravitational topological contributions are decaying rapidly
(bottom-right panel). In the deep infrared for scales
k≲ ΛQCD we approach the regime of chiral symmetry
breaking in QCD not discussed any further here.
This pattern already allows for chiral symmetry breaking

with an underlying mechanism, that is very similar but yet
very different to that in spontaneous symmetry breaking in
QCD triggered by the intermediate rise of the strong
coupling, see, e.g., the reviews [67,68]: For this discussion
we briefly recall the QCD situation by inspecting the flow
of the scalar-pseudoscalar coupling (16). In QCD the
gravity contributions are absent and for small gauge
coupling gs the β-function βλ̄q ¼ ∂tλ̄q resembles that of
an NJL-type model. This entails that for large enough
coupling λ̄q the flow is negative, which then triggers chiral
symmetry breaking in the infrared. For rising gauge
coupling gs the negative contribution from quark-gluon
box diagrams, the term proportional to g4s in (16), shifts
βλ̄q ¼ ∂tλ̄q down, and beyond a critical coupling the
β-function is negative for all λq, and chiral symmetry
breaking is guaranteed. This shift is accompanied by a

reduction of the canonical running 2λ̄q by a term propor-
tional to −g2s λ̄q that stems from the mixed quark-gluon
exchange–λ̄q diagram. This reduction of the canonical
running supports the shift of the β-function, but it does
not constitute the driving mechanism. In the deep infrared
the quark-gluon exchange coupling drops again due to
the QCD mass-gap, and the β-function βλ̄q returns to the
NJL-type form. Consequently, the accumulated strength of
chiral symmetry breaking comes from a rather subtle
interplay between the rise of the strong coupling at low
momenta and the dynamical generation of the QCD mass-
gap, for a detailed discussion see [68].
Within gravity-induced chiral symmetry breaking in the

gravity-QCD system the rôle of the gauge-coupling terms is
not taken over by the analogue graviton contributions
proportional to g2N (box diagrams) and gN (quark-
graviton–λ̄q diagram). It has been shown in e.g., [17–21],
that this potential QCD-type mechanism of gravity-induced
chiral symmetry breaking does not work in flat space-
times.
Instead, the shift and deformation part is taken over by

the last term in the right-hand side of (16): the role of the
shift contribution (box diagrams) is taken over by the four-
quark term (fish diagram) with two Uð1ÞA-violating cou-
plings proportional to λ̄2top, and the deformation part is taken
over by the mixed four-quark fish diagram proportional to
λ̄topλ̄q. In short, the role of g2s in QCD is taken over by λ̄top.
In both cases chiral symmetry breaking is triggered by
the rise of the respective couplings. However, while the rise
of the strong gauge coupling gs toward lower momentum
scales is driven by the standard dynamics of the
SU(3)-gauge theory, in the present system the rise of the
Uð1ÞA-violating coupling λ̄top is dominantly triggered by
gravitational instantons, see (30) with (29).
This situation is summarized in Fig. 5, the β-function βλ̄q

shown there are snapshots along the RG-trajectory depicted
by the orange lines in the single plots in Fig. 4:
For small or vanishing λ̄top the β-function of the scalar-

pseudoscalar coupling λ̄q resembles that of an NJL-type
model. Moreover, as the initial four-quark couplings are
below the critical values and in particular λ̄q < λ̄�q with
βqðλ̄�qÞ ¼ 0, the four-quark couplings are driven toward the
Gaußian fixed point.

B. Benchmark case: Results

Now we discuss the specific trajectory in Fig. 4, as it
evolved from the ultraviolet initial condition (33) to the
infrared regime with spontaneous chiral symmetry break-
ing. We shall argue, that within our benchmark case with
the parameters (32) the specific trajectory already covers
generic initial conditions, in particular including those in
the vicinity of the Gaußian fixed point. The discussion will

GRAVITATIONAL INSTANTONS AND ANOMALOUS CHIRAL … PHYS. REV. D 103, 106016 (2021)

106016-9



FIG. 4. We show snapshots of the phase structure of the gravity-QCD system given by (14), (15), (16), and (30). The coefficients in the

flow equation γð1Þgrav, γ
ð2Þ
grav are taken as ðγð1Þgrav; γ

ð2Þ
gravÞ ¼ ð30; 1Þ. Blue lines and arrows represent the RG flow for λ̄top and λ̄q. For k ¼ 10Mpl,

there are four fixed points. The (slightly shifted) Gaußian fixed point is denoted by the red dot. The other fixed points are denoted by red
square, blue dot and blue square. For k ∼Mpl, the red dot and the red square collide and annihilate as do the blue dot and square. In this
regime there are no IR-attractive fixed points. The orange line represents the UV-IR RG-trajectory of ðλ̄topðkÞ; λ̄qðkÞÞ. The flow is
initiated close to the non-Gaußian UV-fixed point with the initial condition (33) at k ¼ 102Mpl. The initial values of the four-quark
couplings in (33) are ðλ̄top; λ̄qÞ ¼ ð−0.2864; 8.1135Þ and the flow is directed toward the Gaußian one for k ≳ 3Mpl. In the regime with
k ∼Mpl the flow is pushed toward larger λ̄q and −λtop as a consequence of the fixed point annihilation, and runs into the regime with
chiral symmetry breaking. In the present setup the scalar-pseudoscalar coupling λ̄q diverges at k ∼ 0.1Mpl.
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be carried out in terms of the single plots in Fig. 4 and the
respective β-functions in Fig. 5:

(i) k ¼ 10Mpl, Fig. 4, upper left panel: For asymptoti-
cally large momentum (cutoff) scales λ̄top is rather
small, both in the vicinity of the Gaußian and
the non-Gaußian fixed point. Accordingly, the
β-function λ̄top resembles that of an NJL-model,
see Fig. 5 (straight (ultra-)violet line).

(ii) k ¼ 3Mpl, Fig. 4, upper right panel: Moving down
toward the Planck scale regime, the contributions
from gravitational instantons deform the fixed point
structure and the blue-red pairs of fixed points
moved toward each other. The topological contri-
butions push down λ̄top, see Fig. 5 (dashed blue line).

(iii) k ¼ Mpl, Fig. 4, lower left panel: For cutoff scales
about the Planck scale, k ∝ Mpl, the fixed points first
annihilate, and then are absent for a short momen-
tum range 0.5Mpl ≲ k≲ 0.97Mpl. In this regime the
gravitational-instanton contributions trigger the
rapid (negative) growth of the axial Uð1ÞA-violating
coupling λ̄top. Accordingly, βλ̄q is shifted down and

deformed. In Fig. 5 this is shown for k ¼ 0.97Mpl

(dashed-dotted orange line) and k ¼ 0.9Mpl (dotted
red line). Hence, in the cutoff scale regime k ∼Mpl

both couplings, λ̄q and −λ̄top grow large.
(iv) k ¼ 0.1Mpl, Fig. 4, lower right panel: Far below the

Planck scale, k ≪ Mpl, the contributions from gravi-
tational instantons decay rapidly. Also, the standard
(nontopological) gravity contributions decay and
we are left with the QCD-β-function. However, in
contrast to QCD the initial four-quark couplings,
and in particular λ̄top, are large. Accordingly, the
β-function resembles the NJL-type β-function as for
k=Mpl → ∞, but λ̄q > λ̄�q, the UV-fixed point of the
β-function. Hence, spontaneous chiral symmetry
breaking is triggered: The scale-dependence of
λ̄grav and λ̄q for the orange UV-IR trajectory in Fig. 4
is shown by Fig. 6. The couplings λ̄q and conse-
quently also λ̄grav diverge at finite momentum scale
kχ ∼ 0.1Mpl. As stated before, this divergence is
tantamount to chiral symmetry breaking, hq̄qi ≠ 0.
In the case discussed here, it is induced by the
topological contributions from gravitational instan-
tons. We call this phenomenon anomalous gravita-
tional catalysis for chiral symmetry breaking.

This closes our discussion of the generic case with
spontaneous chiral symmetry breaking with initial con-
ditions close to the non-Gaußian fixed point. However, for
Mpl ≲ k≲ 3Mpl the coupling λ̄top is close to the Gaußian
fixed point. This entails that we may as well have started
at the Gaußian fixed point with our specific trajectory.

FIG. 6. Scale-dependence of λ̄q and λ̄top for the UV-IR flow

with the initial conditions (33) and ðγð1Þgrav; γ
ð2Þ
gravÞ ¼ ð30; 1Þ, the

flow trajectory is the orange line in Fig. 4. Both four-quark
couplings diverge at a finite momentum scale k ∼ 0.1Mpl, which
indicates that the chiral symmetry is spontaneously broken at a
momentum scale much higher than the QCD scale ΛQCD leading
to Planck mass current quark masses.

FIG. 5. β-function λ̄q of the scalar-pseudoscalar four-quark
coupling λ̄q for different cutoff values on the RG-trajectory
(orange line) in Fig. 4. The values of the coupling and the β-
function is signaled by respective blobs on the β-functions. Close
to the UV-fixed point (violet straight line), the β-function
resembles that of an NJL-type model: It has a finite UV-attractive
fixed point λ�q ≠ 0. It has a (close) Gaußian infrared-attractive
fixed point at vanishing coupling without chiral symmetry

breaking, which is approached for initial couplings λðinÞq < λ�q.
Finally, it features the chiral-symmetry breaking singularity, if the

flow toward the infrared is initiated with λðinÞq > λ�q. In the cutoff
scale regime k ∼Mpl, the βλ̄q is shifted down by the Uð1ÞA-
violating coupling λ̄top generated from the gravitational instantons
(dashed blue line and dashed-dotted orange line). In the regime
0.5Mpl ≲ k≲ 0.97Mpl, the β-function is negative for all λ̄q and
drives λ̄q toward the chiral symmetry breaking singularity. We
have displayed the critical β-function at k ¼ 0.97Mpl (black
straight line) and an exemplary one in this regime for k ¼ 0.9Mpl

(dotted red line). For k ≪ Mpl the contributions from gravita-
tional instantons decay exponentially, but the β-function stays in
the negative regime due to the large Uð1ÞA-breaking coupling.
Then, the β-function again resembles that of an NJL-type model,
but it is not displayed here.
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This statement holds true generically for parameter pairs

ðγð1Þgrav; γ
ð2Þ
gravÞ that lead to spontaneous chiral symmetry

breaking, if initiated close the non-Gaußian fixed point.
This leaves us with the following scenario: chiral

symmetry breaking via anomalous gravitational catalysis
takes place at about the Planck scale Mpl. Hence, quarks
acquire dynamical masses of the order of Mpl, which is at
odds with the observed values. This allows us to put
phenomenological constraints on the parameter space of

ðγð1Þgrav; γ
ð2Þ
gravÞ, the coefficients of anomalous gravitational

catalysis for chiral symmetry breaking.

C. Parameter range of anomalous spontaneous
chiral symmetry breaking

With the analysis in the last section we can map out the
parameter regimes with and without anomalous gravita-
tional catalysis of spontaneous chiral symmetry breaking.

In Fig. 7 we show results for the parameter range for −50 ≤
γð1Þgrav ≤ 50 and 0 ≤ γð2Þgrav ≤ 50: the blue dots represent the
parameter set leading to the fixed point annihilation
discussed in the benchmark case. Note in this context, that
the fixed point annihilation is a necessary condition but not
sufficient for the chiral symmetry breaking: the RG-flow
can safely come back to the Gaußian fixed point if the fixed
point annihilation only holds true for a very short flow-
time. However, this discrepancy between FP-annihilation
and chiral symmetry breaking is only present within a
very small parameter regime in the border between the
blue-dotted area and the white one in Fig. 7, and is
insignificant in the present qualitative analysis. Thus,
the blue-dotted area in Fig. 7 is the parameter set leading

to the gravitational catalysis and hence this region excluded
by experiment.
In the vicinity of the boundary between the regimes with

and without chiral symmetry breaking the generic analysis
in the last section falls short. For parameter pairs in this
boundary regime we expect, that anomalous gravitational
catalysis shows some dependence on the choice of the
initial condition. Then, a more quantitative analysis is
required. Such a quantitative computation of the parameters

ðγð1Þgrav; γ
ð2Þ
gravÞ in asymptotically safe gravity-matter systems

is also mandatory for deriving phenomenologically viable
constrains of the physically allowed area of UV-IR flows.
This analysis and the evaluation of its phenomenological
consequences is left to future work.

VI. CONCLUSIONS

Whether asymptotically safe gravity-matter systems
admit light fermions is a good probe for the observational
validity of the theory. In the present work, we have
investigated anomalous gravitational catalysis of chiral
symmetry breaking, triggered by gravitational instantons in
asymptotically safe gravity: contributions from the latter
topological configurations can deform the running of the
four-quark interactions such, that anomalous spontaneous
breaking of chiral symmetry is triggered at the Planck scale,
k ∼Mpl. In this case, anomalous gravitational catalysis of
chiral symmetry breaking generates quark or more gen-
erally fermion masses of the order of the Planck scale,
which is at odds with the experimental observations.
We have performed a phenomenological analysis rem-

iniscent to instanton-liquid considerations in QCD, see
Sec. IV B: we have derived the flows of the gravity-QCD

FIG. 7. Spontaneous chiral symmetry breaking by anomalous gravitational catalysis, triggered by gravitational instantons in the

ðγð1Þgrav; γ
ð2Þ
gravÞ plane. We have tested a large range of discrete parameter pairs for −50 < γð1Þgrav < 50 and 0 < γð2Þgrav < 50 (left panel).

Parameter pairs with chiral symmetry breaking are labeled with blue dots. We find that large values of jγð1Þgravj favor chiral symmetry

breaking. The right panel zooms into the region bounded by the red dashed lines in the left panel: −20 < γð1Þgrav < 20 and 0 < γð2Þgrav < 10.

In this regime anomalous gravitational catalysis does not take place (for jγð1Þgravj ≲ 14). Hence, it is the physically viable regime.
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system in the presence of gravitational and QCD-instan-
tons, see (14), (15), (16), and (30). The prefactors of the

gravitational topological contributions ðγð1Þgrav; γ
ð2Þ
gravÞ are

taken as free parameters similar to that in the instanton-
liquid in QCD. We have shown for an exemplary bench-
mark case, (32), how anomalous gravitational catalysis of
chiral symmetry breaking occurs in the system. Snapshots
of the phase structure of this case are found in Fig. 4,
together with the respective snapshots of the β-function of
the scalar-pseudoscalar coupling λ̄q in Fig. 5, and the scale-
dependence of the couplings ðλ̄q; λ̄topÞ in Fig. 6. A detailed
discussion is provided in Sec. V B.
In summary this allowed us to determine the part of the

parameter space in which spontaneous chiral symmetry
breaking via anomalous gravitational catalysis takes place.
We have found, that this effects is triggered in a quite large
regime of the parameter space, resulting in heavy (Planck-
mass) fermions, see Fig. 7: The blue-dotted regime signals
chiral symmetry breaking via anomalous gravitational cataly-
sis. This regime is excluded by experimental observations.
The present work constitutes a first step toward a full

quantitative analysis of gravitational anomalous chiral
symmetry breaking within asymptotically safe gravity-
matter systems. This quest for quantitative precision
necessitates either bosonization, e.g., [84], or dynamical
hadronization techniques, e.g., [63,69,70,85–91,103].
Moreover, for a reliable grip on the symmetry-breaking
pattern, the potential competing order effects as well as
covering the large orders of magnitudes we also have to
employ advanced numerical techniques such as the weak-
RG [81,82], pseudospectral techniques, [104,105] or the
discontinuous Galerkin methods [83].
In terms of physics the first extension concerns the

determination of the flows beyond the present

instanton-liquid–type approximation. This concerns both

the diagrammatic determination of the pair ðγð1Þgrav; γ
ð2Þ
gravÞ as

well as the global dynamics of space-time.
Moreover, the quantitative determination of the dynami-

cally generated fermion masses and chiral condensate
requires an extension of the approximation beyond the
present four-fermi flows. in particular, for small values of

ðγð1Þgrav; γ
ð2Þ
gravÞ, chiral symmetry breaking induced by anoma-

lous gravitational catalysis may be postponed to lower
momentum scales. Then, anomalous chiral symmetry
breaking induced by the nontrivial topology in QCD of
the Yang-Mills gauge field may still show the imprint of a
small relic from gravitational instanton effects. This could
affect the dynamical quark masses and the chiral conden-
sate, which may be tractable by precision high energy
accelerator measurements.
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