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Via Cinthia, 80126 Fuorigrotta, Napoli, Italy

2National Centre for Nuclear Research, ulica Pasteura 7, 02-093 Warsaw, Poland
3Institute for Theoretical Physics, University of Wrocław, plac M. Borna 9, 50-204 Wrocław, Poland

(Received 1 December 2020; revised 10 March 2021; accepted 1 April 2021; published 12 May 2021)

We present a construction of κ-deformed complex scalar field theory with the objective of shedding light
on the way discrete symmetries and CPT invariance are affected by the deformation. Our starting point is
the observation that, in order to have an appropriate action of Lorentz symmetries on antiparticle states,
these should be described by four-momenta living on the complement of the portion of the de Sitter group
manifold to which κ-deformed particle four-momenta belong. Once the equations of motions are properly
worked out from the deformed action, we obtain that the particle and antiparticle are characterized by
different mass-shell constraints, leading to a subtle form of departure from CPT invariance. The remaining
part of our work is dedicated to a detailed description of the action of deformed Poincaré and discrete
symmetries on the complex field.

DOI: 10.1103/PhysRevD.103.106015

I. INTRODUCTION

It is commonly expected that the usual description of
space-time as a smooth manifold is no longer reliable as we
approach the Planck scale when quantum effects of the
geometry can no longer be neglected. Since the prehistory
of research on quantum gravity,1 noncommutativity of
space-time has been advocated as a possible way to
effectively model quantum gravitational effects in regimes
of negligible curvature. Awidely studied incarnation of this
idea suggests that the scale of noncommutativity should
be seen as an observer-independent length scale [3] and
that, in order to accommodate such a fundamental scale,
ordinary relativistic symmetries should be deformed into
nontrivial Hopf algebras which, in the limit of vanishing
noncommutativity, should reproduce the usual Poincaré
algebra.
The κ-Poincaré algebra is an example of such deforma-

tions which has been intensively investigated for almost
30 years. Such algebra was originally derived by

contracting the quantum anti–de Sitter algebra [4,5]. It
was brought to its modern form a few years later in
Refs. [6,7], where, in particular, the role of noncommuta-
tive κ-Minkowski space-time was discovered and inves-
tigated. The deformation parameter κ has dimensions of
mass, and, in light of the possible role of the κ-Poincaré
algebra in describing the symmetries of a flat-space-time
limit of quantum gravity, it is usually identified with the
Planck energy. Such a putative relationship with a semi-
classical limit of quantum gravity renders this model
especially relevant for the search of possible experimental
signatures of Planck-scale physics [8,10]. So far, most of
the proposed observational frameworks having sufficient
sensitivity to capture effects of quantum gravity origin
[9,10] were based on purely kinematical models, like, for
example, the well-known case of measuring the time of
flight of gamma-ray-burst photons of different energies
[11,12]. It has, however, been argued that κ deformations
may have a subtle, and, in principle, measurable, effect
on elementary particles, linked to the deformation of CPT
symmetry [13]. For these reasons, we believe that devel-
oping a comprehensive theory of deformed quantum fields
will be beneficial for better understanding known phenom-
ena related to κ deformation and possibly shed light on
some new ones that might be of phenomenological rel-
evance (besides, of course, its relevance at a purely
theoretical level).
In this series of papers, of which the present one is the

first, we will formulate the theory of a free, complex
κ-deformed scalar field. The next paper in the series will
be devoted to free scalar field propagator and n-point
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1According to Jackiw [1], the idea of noncommuting space-
time coordinates was first suggested by Heisenberg back in the
1930s. He then discussed it with Peierls, who, in turn, told Pauli,
who told Oppenheimer, who asked his student Snyder to work it
out in detail, and, thus, the first paper on noncommutative space-
time was published in 1947 [2].
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functions. We will consider next massive higher-spin
fields and then the quantum deformed Abelian gauge
fields. We will discuss interacting fields in the final, fifth
paper of the series.
The present paper has its roots in the work in Ref. [14],

from which we borrow the notation and most of conven-
tions. However, there are important differences. In particu-
lar, the definition of the scalar field is different here. This
change of definition is a consequence of the assumed nice
behavior of the field with respect to the discrete CPT
transformations and leads to one of the major results of this
paper, that the mass-shell relations of particles and anti-
particles differ from each other, although as a manifold
the mass shell in both cases is the same hyperboloid
in momentum space, as anticipated in Refs. [13,15].
Thanks to this new definition of fields, also the creation-
annihilation operator algebra becomes particularly simple.
In the present paper, we also consistently use the star
product formalism instead of the equivalent formalism of
noncommutative space-time used in Ref. [14].
Various aspects of the theory of κ-deformed fields were

discussed in the past. Here, we mention papers that
influenced us [16–27] in working on this project, but we
stress that the crucial aspects of the present construction,
like the doubling of momentum space and insistence on the
proper action of discrete symmetries, are new.

II. PRELIMINARIES

As is well known, there are two complementary pictures
of κ deformation. One deals with the presence of non-
commutative space-time with Lie-type noncommutativity,
called κ-Minkowski space [6,7], where the commutator of
coordinates x̂μ form the anð3Þ Lie algebra

½x̂0; x̂i� ¼ i
κ
x̂i; ð1Þ

with the parameter κ defining the “strength” of noncom-
mutativity. Another concerns the momentum space picture,
in which the momentum space is curved and is a sub-
manifold of de Sitter space with curvature 1=κ2 [28,29],
which is constructed as follows.
Let us consider the following five-dimensional matrix

representation of the Lie algebra (1):

x̂0 ¼ −
i
κ

0
B@

0 0 1

0 0 0

1 0 0

1
CA; x̂ ¼ −

i
κ

0
B@

0 ϵT 0

ϵ 0 ϵ

0 −ϵT 0

1
CA;

ð2Þ

where bold fonts are used to denote space components of
a 4-vector (with the exception of the central 0, which is a
3 × 3 matrix) and ϵ is a three-dimensional vector with a
single unit entry, e.g., ϵ1 ¼ ð1; 0; 0Þ.

Let us now consider an element êk of the Lie group
ANð3Þ, which, as we will see in a moment, represents a
group-valued momentum:

êk ¼ eikix̂
i
eik0x̂

0

: ð3Þ

In the representation (2), this group element is represented
by a 5 × 5 matrix which acts on five-dimensional
Minkowski space as a linear transformation. One finds

expðik0x̂0Þ ¼

0
BB@

cosh k0
κ 0 sinh k0

κ

0 1 0

sinh k0
κ 0 cosh k0

κ

1
CCA;

expðikix̂iÞ ¼

0
BB@

1þ k2

2κ2
k
κ

k2

2κ2

k
κ 1 k

κ

− k2

2κ2
− k

κ 1 − k2

2κ2

1
CCA;

where 1 is the unit 3 × 3 matrix, and êk can be written in
schematic form

êk ¼

0
BB@

p̄4

κ
k
κ

p0

κ
p
κ 1 p

κ
p̄0

κ − k
κ

p4

κ

1
CCA; ð4Þ

where p0, pi, and p4 are defined below, while p̄0 ¼
κ sinh k0

κ −
k2

2κ and p̄4 ¼ κ cosh k0
κ þ k2

2κ e
k0=κ.

To describe the manifold of the group ANð3Þ, we choose
a point in five-dimensional Minkowski space, which
becomes the momentum space origin O with coordinates
ð0;…; 0; κÞ, and act on it with the matrix êk (4), obtaining

ðp0; pi; p4Þ ¼ êkO:

On the left-hand side, we have coordinates of a point in the
five-dimensional Minkowski space, being in one-to-one
correspondence with the group element êk. The coordinates
ðp0; pi; p4Þ are related to the original parametrization
ðk0; kiÞ of the group element as follows:

p0ðk0;kÞ ¼ κ sinh
k0
κ
þ k2

2κ
ek0=κ;

piðk0;kÞ ¼ kiek0=κ;

p4ðk0;kÞ ¼ κ cosh
k0
κ
−
k2

2κ
ek0=κ: ð5Þ

There is a natural action of the four-dimensional Lorentz
group on the five-dimensional Minkowski space, which
takes the form
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δλp0 ¼ λipi; δλpi ¼ λip0; δλp4 ¼ 0;

δρp0 ¼ 0; δρpi ¼ ϵijkρ
jpk; δρp4 ¼ 0

for infinitesimal boosts and rotation parameters λi and ρi.
Since the Lorentzian momenta components p0 and p,
transform as a vector, p2

0 − p2 is Lorentz invariant and,
as usual, the representations of the Lorentz group, in the
spinless case that we consider here, are labeled by values
of the mass m2 and sign of energy p0. Therefore, the
representations of the Poincaré algebra are characterized by
mass-shell condition p2

0 − p2 ¼ m2.
It is easy to check that2

−p2
0 þ p2 þ p2

4 ¼ κ2; p4 > 0: ð6Þ

It follows that the group ANð3Þ is isomorphic, as a
manifold, to a submanifold of the four-dimensional de
Sitter space. This submanifold is defined by the conditions

p0 þ p4 ¼ κek0=κ > 0; p4 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ p2

0 − p2

q
> 0: ð7Þ

On shell, p2
0 − p2 ¼ m2, and the condition (7) takes the

form

p0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ κ2

p
> 0: ð8Þ

Observe that this condition does not impose any restrictions
on positive energy states but provides a lower bound on the
negative energy ones: 0 > p0 > −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ κ2

p
. This condi-

tion seemed first to be Lorentz invariance violating [30],
because by acting with the Lorentz boost we can make p0

acquire an arbitrary negative value, but was later shown
to preserve Lorentz symmetry in a nontrivial way [31]. To
understand how it comes about, let us introduce the
antipodal map SðpÞ defined as

Sðp0Þ ¼ −p0 þ
p2

p0 þ p4

¼ κ2

p0 þ p4

− p4;

SðpÞ ¼ −
κp

p0 þ p4

; Sðp4Þ ¼ p4: ð9Þ

Notice that on shell SðωpÞ ¼ Sð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
Þ is always

negative.
It is worth mentioning in passing that if p2

0 − p2 ¼ m2,
then Sðp0Þ2 − SðpÞ2 ¼ m2 and vice versa, so the former
serves as an alternative form of mass-shell relation. As we
will see, both these mass-shell conditions will arise in the
theory of a deformed scalar field.

One checks that this map provides a one-to-one corre-
spondence between the “positive energy” submanifold
p0 > 0 and the negative energy one, satisfying the con-
straint (8). Indeed, take a positive energy state with energy
p0 > 0 and momentum p and apply the antipode to it.
We find

Sðp0Þ þ p4 ¼ −p0 þ
p2

p0 þ p4

þ p4 ¼
κ2

p0 þ p4

> 0:

We define the action of Lorentz symmetry on negative
energy states by applying it to the corresponding positive
energy one and taking the antipode of the result, sche-
matically:

L⊳SðpÞ≡ SðL⊳pÞ; p0 > 0: ð10Þ

With this definition, the orbits of the Lorentz group for both
positive and negative energies belong to the momentum
space. We will describe the Lorentz transformations of the
antipode in Appendix A.
The coordinates pA (5) cover only half of de Sitter

momentum space. It turns out (see below) that, in order
to construct a field with well-defined properties under
discrete space-time symmetries, we have to introduce
another, dual, momentum space defined as an orbit of
ANð3Þ group emanating from the point O� with coordi-
nates ð0;…; 0;−κÞ. These coordinates can be constructed
with the help of a special element z [14] that maps
ð0;…; 0; κÞ to ð0;…; 0;−κÞ:

z ¼ eπκX̂
0 ¼

0
B@

−1 0 0

0 1 0

0 0 −1

1
CA ð11Þ

[or êk in Eq. (3) with ki ¼ 0, k0 ¼ −iπκ].
We define

ê�k ¼ êkz ¼ eikix̂
i
eik0x̂

0

z; ð12Þ

and acting with this group element on ð0;…; 0; κÞ, instead
of Eq. (5) we get

p0
�ðk0;kÞ ¼ −κ sinh

k0
κ
−
k2

2κ
ek0=κ;

p�
i ðk0;kÞ ¼ −kiek0=κ;

p4
�ðk0;kÞ ¼ −κ cosh

k0
κ
þ k2

2κ
ek0=κ ð13Þ

with

p�
0 þ p�

4 ¼ −κek0=κ < 0;

p�
4 ≡ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ ðp�

0Þ2 − ðp�Þ2
q

< 0: ð14Þ
2There are two solutions of the first equation in (6), but, since

the point O for which p4 ¼ 1 belongs to the solution we are
interested in, we choose p4 positive.
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On shell, the condition (14) takes the form

p�
0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ κ2

p
< 0 ð15Þ

so that this time it does not impose any restrictions
on negative energy states but provides an upper bound
on the positive energy ones: 0 < p�

0 <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ κ2

p
. Again,

one solves the apparent problem with Lorentz symmetry
with the help of the antipode, which has the form

Sðp�
0Þ ¼ −p�

0 þ
p�2

p�
0 þ p�

4

¼ κ2

p�
0 þ p�

4

− p�
4;

Sðp�Þ ¼ κp�

p�
0 þ p�

4

; Sðp�
4Þ ¼ p�

4: ð16Þ

On shell, Sðω�
pÞ ¼ Sð−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p�2p

Þ is always positive.
To formulate the field theory, we must first describe the

algebra of plane waves and differential calculus. We start
with the group elements (also called “noncommutative”
plane waves) êk (3) (associated with the submanifold
p0 þ p4 > 0) and ê�k (12) (for the submanifold
p0 þ p4 < 0). We use the five-dimensional Lorentz covar-
iant differential calculus; see Ref. [14] and references
therein for details. To this end, we introduce the space-
time derivatives ∂̂μ and an additional derivative in fourth

direction ∂̂4 defined by their action on the plane waves:

∂̂μêk ¼ ipμðkÞêk; ∂̂4êk ¼ iðκ − p4ðkÞÞêk;
∂̂μê�k ¼ ip�

μðkÞê�k; ∂̂4ê�k ¼ iðκ − p�
4ðkÞÞê�k: ð17Þ

Following Ref. [14], we define the Weyl map3 W that
maps group elements (plane waves on noncommutative
κ-Minkowski space-time) to ordinary plane waves on
commutative space-time manifold with coordinates x, as

Wðêkðx̂ÞÞ ¼ epðxÞ ð18Þ

defined by the action of the derivatives

Wð∂̂μêkÞðx̂Þ ¼ ∂μepðxÞ; Wð∂̂μê�kÞðx̂Þ ¼ ∂μe�pðxÞ ð19Þ

with ∂μ being the standard partial derivative.4 The star
product presented here coincides with the one proposed in
[34] and further discussed in Refs. [35–37]. It follows that

epðxÞ ¼ eipμxμ ¼ e−iðωpt−pxÞ;

e�pðxÞ ¼ eip
�
μxμ ¼ e−iðω�

pt−p�xÞ ð20Þ

with the on-shell relations

ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
; ω�

p ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p�2

q
;

p4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ κ2

p
; p�

4 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ κ2

p
: ð21Þ

The Weyl map makes it possible to construct the star
product of two commuting plane waves from the product of
two group elements:

WðêkêlÞ≡ epðkÞ⋆eqðlÞ ¼ ep⊕q: ð22Þ

In the case of two positive energy plane waves, we have

êkêl ¼ êk⊕l ð23Þ

with

ðk ⊕ lÞ0 ¼ k0 þ l0; ðk ⊕ lÞi ¼ ki þ e−k0=κli: ð24Þ

Then, acting with the group element (23) on the reference
vector ð0;…; 0; κÞ, we get

ðp ⊕ qÞ0 ¼
1

κ
p0ðq0 þ q4Þ þ

pq
p0 þ p4

þ κ

p0 þ p4

q0;

ðp ⊕ qÞi ¼
1

κ
piðq0 þ q4Þ þ qi;

ðp ⊕ qÞ4 ¼
1

κ
p4ðq0 þ q4Þ −

pq
p0 þ p4

−
κ

p0 þ p4

q0:

ð25Þ

Let us use the same construction in the case of the
negative energy plane waves. To this end, we must first
compute the product

zeðp0;pÞ ¼ eðp0;−pÞz: ð26Þ

From

Wðê�kêlÞ≡ e�pðkÞ⋆eqðlÞ ¼ ep�⊕q; ð27Þ

we find

ðp� ⊕ qÞ0 ¼
1

κ
p�
0ðq0 þ q4Þ þ

p�q
p�
0 þp�

4

þ κ

p�
0 þp�

4

q0;

ðp� ⊕ qÞi ¼
1

κ
p�
i ðq0 þ q4Þ þ qi;

ðp� ⊕ qÞ4 ¼
1

κ
p�
4ðq0 þ q4Þ−

p�q
p�
0 þp�

4

−
κ

p�
0 þp�

4

q0: ð28Þ

3Notice that the choice of Weyl map is not unique (see, for
instance, [16] for a different choice and the discussion in
Ref. [32]) and from this choice depend also the star product
structures. In this paper, we choose to adopt the Weyl map
introduced in Ref. [14], mapping “time-to-the-right” ordered
noncommutative plane waves to standard exponentials of
commutative coordinates, expressed in terms of “embedding”
momenta pAðkÞ (A ¼ 0; 1;…; 4).

4An explicit realization of this star product was presented in
Ref. [33].
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[To compute this, one starts with Eq. (25), changes the
overall sign, then changes the sign of p replacing it by p�,
and finally changes the sign of q according to Eq. (26).]
Similarly,

ðp ⊕ q�Þ0 ¼
1

κ
p0ðq�0 þ q�4Þ þ

pq�

p0 þ p4

þ κ

p0 þ p4

q�0;

ðp ⊕ q�Þi ¼
1

κ
piðq�0 þ q�4Þ þ q�i ;

ðp ⊕ q�Þ4 ¼
1

κ
p4ðq�0 þ q�4Þ −

pq�

p0 þ p4

−
κ

p0 þ p4

q�0:

ð29Þ

Finally, we consider the composition of two negative
energy plane waves (in this case, after moving through the
Q plane wave, we get z2 ¼ 1):

ðp� ⊕ q�Þ0 ¼
1

κ
p�
0ðq�0 þ q�4Þ þ

p�q�

p�
0 þ p�

4

þ κ

p�
0 þ p�

4

q�0;

ðp� ⊕ q�Þi ¼
1

κ
p�
i ðq�0 þ q�4Þ þ q�i ;

ðp� ⊕ q�Þ4 ¼
1

κ
p�
4ðq�0 þ q�4Þ −

pq�

p�
0 þ p�

4

−
κ

p�
0 þ p�

4

q�0:

ð30Þ

Notice that, remarkably, all the composition laws (25)–(30)
have exactly the same form, so there is no need to
distinguish between them.
Let us finish this section with the definition of an adjoint

of the plane wave. For the noncommutative plane wave êk,
its adjoint ê†k is defined by the condition

êkê
†
k ¼ ê†kêk ¼ 1; ð31Þ

from which it follows that

ê†k ¼ êSðkÞ: ð32Þ

Accordingly, in the star product formalism, we express
these equations as

ep⋆e†q ¼ e†q⋆ep ¼ 1; ð33Þ

from which it follows that

e†p ¼ eSðpÞ: ð34Þ

The analogous expressions for p�
A coordinates are easy to

obtain.

III. ACTION AND FIELD EQUATIONS

Having discussed all the necessary technical tools in the
preceding section, we can now turn to the construction
of the theory of free complex scalar field. As customary
in noncommutative field theories, we define a notion of
integral on noncommutative space-time via the Weyl (or
quantization) map (18). In particular, we set

Ẑ
êkðx̂Þ ≔

Z
R4

d4xWðêkðx̂ÞÞ ¼
Z
R4

d4xeipx: ð35Þ

Fields on κ-Minkowski can be defined in terms of a suitable
“noncommutative” (or, for some authors, quantum group)
Fourier transform [14,32,38–41]. In accordance with our
choice of Weyl map, we adopt the noncommutative Fourier
transform introduced in Ref. [14]:

ϕ̂ðx̂Þ ¼
Z
ANð3Þ

dμðpÞϕ̃ðpÞêkðx̂Þ ð36Þ

and its inverse

ϕ̃ðpÞ ¼
Ẑ

ê†kðx̂Þϕðx̂Þ; ð37Þ

where the measure dμðpÞ is the ANð3Þ left-invariant
measure

dμðpÞ ¼ d4p
p4=κ

����
pþ>0 & p4¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2þp2

0
−p2

p ; ð38Þ

and the coordinates p are intended as the “embedding”
coordinates pðkÞ given by Eq. (5). The definition can be
thus extended to fields of commutative coordinates through
Weyl map

ϕðxÞ ≔ Wðϕ̂ðx̂ÞÞ: ð39Þ

Explicitly,

ϕðxÞ ¼
Z
ANð3Þ

dμðpÞϕ̃ðpÞepðxÞ: ð40Þ

Notice that the ϕðxÞ defined by Eqs. (39) and (40) depend
on the choice of Weyl map. In the explicit expression (40),
the dependence is encoded in both the measure of inte-
gration, expressed in terms of embedding momenta p
restricted to the ANð3Þ manifold, and on the Fourier
“coefficients” ϕ̃ðpÞ.
From Eqs. (22) and (35), it follows that the inverse

noncommutative Fourier transform can be expressed as

ϕ̃ðpÞ ¼
Z
R4

e†pðxÞ⋆ϕðxÞ ð41Þ
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and that the noncommutative product extends to a star
product of fields of commutative coordinates

Wðϕ̂ðx̂Þψ̂ðx̂ÞÞ ¼ ϕðxÞ⋆ψðxÞ: ð42Þ

In particular, we have the following useful identity:

Ẑ
ϕ̂ðx̂Þψ̂ðx̂Þ ¼

Z
R4

ϕðxÞ⋆ψðxÞ: ð43Þ

The star product here coincides with the one defined in
Ref. [34] (generalized to 4D), which can be checked by
calculating that it gives the identical result for the coor-
dinate functions xμ. However, it is not clear if the
construction of the integral or twisted trace presented in
that paper coincides with our definition of the integral.
Using the noncommutative Fourier transform and the

star product, we can formulate the action of free fields on
κ-Minkowski space-time as a standard integral action in
terms of (properly defined as above) fields of commutative
coordinates. In particular, we define the action to be an
integral of the bilinear Hermitian expression, in fields
and derivatives, obtained with the help of the star product.
The integral satisfies the exchange properties for the plane
waves [14]:

Z
R4

d4xe†p⋆eq ¼
Z
R4

d4xe†q⋆ep ð44Þ

and the most general expression for the Hermitian action is

S ¼ 1

2

Z
R4

d4x½ð∂μϕÞ†⋆∂μϕþ ð∂μϕÞ⋆ð∂μϕÞ†

−m2ðϕ†⋆ϕþ ϕ⋆ϕ†Þ�: ð45Þ

In order to compute the variation of the action and to derive
field equations, we have to make use of the ⋆ integration by
parts, which is described in detail in Appendix B. Writing
S ¼ 1

2
ðS1 þ S2Þ, where

S1 ¼
Z
R4

d4xð∂μϕÞ†⋆ð∂μϕÞ −m2ϕ†⋆ϕ ð46Þ

and

S2 ¼
Z
R4

d4xð∂μϕÞ⋆ð∂μϕÞ† −m2ϕ⋆ϕ†; ð47Þ

we find

δS1 ¼
1

2

Z
R4

d4xð∂μδϕÞ†⋆∂μϕþ ð∂μϕÞ†⋆∂μδϕ

−m2δϕ†⋆ϕ −m2ϕ†⋆δϕ; ð48Þ

which can be rewritten as

δS1 ¼
1

2

Z
R4

d4x

�
−
Δþ
κ

½ð∂†
μð∂μÞ† −m2Þϕ†⋆δϕ�

þ ∂AðΠA⋆δϕÞ − κ

Δþ
½δϕ†⋆ð∂μ∂μ −m2Þϕ�

þ ∂†
Aðδϕ†⋆ðΠAÞ†Þ

�
; ð49Þ

where

Π0
1 ¼ ðΠ0Þ1 ¼

1

κ
ðΔþ∂†

0 þ im2Þϕ†; ð50Þ

Πi
1 ¼ −ðΠiÞ1 ¼ ð−∂ið1þ iΔ−1þ ∂0ÞÞϕ†; ð51Þ

Π4
1 ¼ ðΠ4Þ1 ¼ −i

m2ϕ†

κ
ð52Þ

and, analogously,

δS2 ¼
1

2

Z
R4

d4x∂μϕ⋆ð∂μδϕÞ† þ ∂μδϕ⋆ð∂μϕÞ†

−m2ϕ⋆δϕ† −m2δϕ⋆ϕ†; ð53Þ

which can be rewritten as

δS2 ¼
1

2

Z
R4

d4xf−½δϕ⋆ð∂†
μð∂μÞ† −m2Þϕ†� þ ∂Aðδϕ⋆ΠAÞ

− ½ð∂μ∂μ −m2Þϕ⋆δϕ†� þ ∂†
AððΠAÞ†⋆δϕ†Þg; ð54Þ

where

Π0
2 ¼ ðΠ0Þ2 ¼

�
κ

Δþ
∂†
0 þ

i
κ
ð∂†

0Þ2
�
ϕ†; ð55Þ

Πi
2 ¼ −ðΠiÞ2 ¼ −

κ

Δþ
ð∂†

i þ i∂i∂†
0Þϕ†; ð56Þ

Π4
2 ¼ ðΠ4Þ2 ¼ þi

ð∂†
0Þ2
κ

ϕ†: ð57Þ

Therefore, the field equations have the form

ð∂μ∂μ −m2Þϕ ¼ 0; ð∂†
μð∂μÞ† −m2Þϕ† ¼ 0; ð58Þ

which, as we will see below, lead to two nontrivially related
mass-shell conditions, describing the same orbit of the
Lorentz group on the momentum manifold.

IV. THE COMPLEX SCALAR FIELD

Now we are in position to formulate the theory of the
deformed free complex scalar field. In what follows, we
will use the strategy adopted in Ref. [14] of developing
the noncommutative field theory in terms of fields on
commutative Minkowski space-time equipped with a
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noncommutative star product. Using the identity
[cf. (31)–(34)]

e−ipx⋆e−iSðpÞx ¼ e−iSðpÞx⋆e−ipx ¼ 1

to define the adjoint of the plane wave

ðe−ipxÞ† ¼ e−iSðpÞx; ð59Þ

we can write the adjoint field as

ϕ†ðx̂Þ ¼
Z

dμðpðkÞÞϕ̃†ðpÞWðe−iSðpðkÞÞxÞ; ð60Þ

and one can define

ϕ†ðxÞ ¼ W−1ðϕ†ðx̂ÞÞ ¼
Z

dμðpÞϕ̃†ðpÞe−iSðpÞx: ð61Þ

Changing integration variables in the last expression and
using that SðSðpÞÞ ¼ p, we can rewrite it as

ϕ†ðxÞ ¼ κ3
Z

dμðpÞp−3þ ϕ̃†ðSðpÞÞe−ipx; ð62Þ

where we used5

dμðSðpÞÞ ¼ κ3

p3þ
dμðpÞ; ð63Þ

as one can easily check.
It follows, by comparing (62) with (40), that the

condition for ϕðxÞ to be real is6

ϕ̃†ðpÞ ¼ κ−3S3ðpþÞϕ̃ðSðpÞÞ ð64Þ

or, equivalently,

ϕ̃†ðSðpÞÞ ¼ κ−3p3þϕ̃ðpÞ; ð65Þ

where we considered that SðpþÞ ¼ κ2p−1þ . We will discuss
real fields in the forthcoming paper, and here we will
concentrate on the complex fields only.
According to the properties of the momentum space

manifold described in Sec. II [see especially Eq. (7)],
the left-invariant Haar measure on ANð3Þ can be rewritten
as the ordinary Lebesgue measure on a restricted

five-dimensional momentum space with (the factor 2κ here
is included is for dimensional reasons)

dμðpÞ ¼ 2κd5pδðp2
0 − p2 − p2

4 þ κ2ÞθðpþÞθðp4Þ: ð66Þ

Let us now consider a field on the mass shell defined by m,
that we can write as (A ¼ 0; 1;…; 4)

ϕðxÞ ¼
Z

d5p2κδðpApA þ κ2ÞθðpþÞθðp4Þ

× δðpμpμ −m2Þϕ̃ðpÞe−ipx: ð67Þ

One way of splitting the δðpμpμ −m2Þ into “positive and
negative energy” solutions is to rewrite it as

δðpμpμ −m2Þ ¼ δðpμpμ −m2Þθðp0 −mÞ
þ δðpμpμ −m2Þθð−p0 −mÞ: ð68Þ

Using this, we can rewrite the field as

ϕðxÞ ¼ ϕþðxÞ þϕ−ðxÞ

¼
Z

d5p2κδðpApA þ κ2ÞθðpþÞθðp4Þδðpμpμ −m2Þ

× θðp0 −mÞϕ̃ðpÞe−ipx

þ
Z

d5p2κδðpApA þ κ2ÞθðpþÞθðp4Þδðpμpμ −m2Þ

× θð−p0 −mÞϕ̃ðpÞe−ipx; ð69Þ

where ϕþðxÞ and ϕ−ðxÞ denote the positive and negative
energy components, respectively, of the on-shell field.
Consider the negative energy part ϕ−ðxÞ. From the proper-
ties of the antipode map

SðpμÞSðpμÞ ¼ pμpμ;

Sðp4Þ ¼ p4; ð70Þ

that imply also SðpAÞSðpAÞ ¼ pApA, if we change the
integration variables as p → SðpÞ and use that SðSðpÞÞ¼p
and Eq. (63), we can rewrite ϕ−ðxÞ as

ϕ−ðxÞ ¼
Z

d5SðpÞ2κδðSðpAÞSðpAÞ þ κ2Þ

× θðSðpþÞÞθðSðp4ÞÞδðSðpμÞSðpμÞ −m2Þ
× θð−Sðp0Þ −mÞϕ̃ðSðpÞÞe−iSðpÞx

¼
Z

d5p2κδðpApA þ κ2ÞθðpþÞθðp4Þ

× δðpμpμ −m2Þθð−Sðp0Þ −mÞ
× Sðp3þÞϕ̃ðSðpÞÞe−iSðpÞx; ð71Þ

where we take into account the property

5Notice in passing that the rhs of Eq. (63) coincides with the
right invariant on AN3, as one can check from the multiplication
of two group elements. If we denote the left-invariant measure we
are using as dμLðpÞ, one thus has the property that, under
antipode, dμLðSðpÞÞ ¼ dμRðpÞ. This property is indeed a mani-
festation of the fact that the antipode map on the manifold
corresponds to the inversion on the group elements.

6The same result was obtained in Ref. [42] working with the k
parametrization.
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θðSðpþÞÞ ¼ θðp−1þ Þ ¼ θðpþÞ: ð72Þ

Now, notice that (accordingly to the discussion of Sec. II)

if p4 > 0 & pþ > 0 & pμpμ ¼ m2;

⇒ SðpÞ0 < −m ⇔ p0 > m: ð73Þ

The proof is straightforward, since, on the mass shell,

SðpÞ0 ¼
−p2

0 þ p2 − p0p4

pþ
¼ −m2 − p0p4

pþ
ð74Þ

and, thus,

SðpÞ0 < −m ⇒ −m2 − p0p4 < −mpþ ¼ −mðp0 þ p4Þ
⇒ p0 > m: ð75Þ

The proof that p0 > m implies SðpÞ0 < −m is also
straightforward. This shows that, for pþ > 0 and
p4 > 0, i.e., on the ANð3Þ submanifold we are interested

in [i.e., on that section of the de Sitter hyperboloid selected
by the measure dμðpÞ], the antipode acts indeed as a
bijective map that splits the positive and negative energy
parts of the manifold belonging to the same mass shell, as
argued in Sec. II and in agreement with the observations
reported in Ref. [31]. Since the map is bijective (one to
one), we can then interchange the θð−SðpÞ0 −mÞ with the
θðp0 −mÞ in the integral and rewrite finally ϕ−ðxÞ as

ϕ−ðxÞ ¼ κ−3
Z

d5p2κδðpApA þ κ2ÞθðpþÞθðp4Þ

× δðpμpμ −m2Þθðp0 −mÞSðp3þÞϕ̃ðSðpÞÞe−iSðpÞx:
ð76Þ

If the field is real, condition (65) holds, and we have
obtained the following result: On the ANð3Þ measure, the
on-shellness condition naturally splits the field into positive
and negative energy components that are conjugate with
each other, with the antipode playing the role of conjuga-
tion for the plane wave, i.e.,

ϕðxÞ ¼
Z

dμðpÞδðpμpμ −m2Þθðp0 −mÞ½ϕ̃ðpÞe−ipx þ ϕ̃†ðpÞe−iSðpÞx�

¼
Z

d3p
2ωpp4=κ

½ϕ̃ðωp;pÞe−iðωpt−p·xÞ þ ϕ̃†ðωp;pÞe−iðSðωpÞt−SðpÞ·xÞ�; ð77Þ

where in the last row p4 is “on shell”: p4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ κ2

p
.

For a complex field, it will be convenient to define the antiparticle states, i.e., the ones associated to the negative energy
part of the field, as the ones associated to the dual (starred) copy of momentum space. We first substitute, for ϕ−ðxÞ,
p → −p ¼ p�, so that [since Sðp�Þ ¼ Sð−pÞ ¼ −SðpÞ] it becomes

ϕ−ðxÞ ¼ κ−3
Z

d5p�2κδðp�
Ap

A� þ κ2Þθð−p�þÞθð−p�
4Þ × δðp�

μp
μ
� −m2Þθð−p�

0 −mÞ½−Sðp�3þ Þϕ̃ð−Sðp�ÞÞ�eiSðp�Þx

¼ κ−3
Z

d3p
2jω�

pjp�
4=κ

Sðp�3þ Þϕ̃ð−Sðω�
pÞ;−Sðp�ÞÞeiðSðω�

pÞt−Sðp�Þ·xÞ; ð78Þ

where p�
4 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ κ2

p
. Thus, using Eq. (69), we have the expansion

ϕðxÞ ¼
Z

d3p
2ωpp4=κ

ϕ̃ðωp;pÞe−iðωpt−p·xÞ þ κ−3
Z

d3p
2jω�

pjp�
4=κ

Sðp�3þ Þϕ̃ð−Sðω�
pÞ;−Sðp�ÞÞeiðSðω�

pÞt−Sðp�Þ·xÞ: ð79Þ

Since the mass-shell condition

p2
0 − p2 ¼ m2 or Sðp0Þ2 − SðpÞ2 ¼ m2 ð80Þ

has the standard classical form, we would like to define
the Fourier components of the complex field as close as
possible as the classical expression [43] in terms of creation
and annihilation operators

ϕþðxÞ ∼
Z

d3pffiffiffiffiffiffiffiffi
2ωp

p ape−iðωpt−pxÞ;

ϕ−ðxÞ ∼
Z

d3pffiffiffiffiffiffiffiffi
2ωp

p b†peiðωpt−pxÞ: ð81Þ

We postulate
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ap ¼ ξ−1ðpÞffiffiffiffiffiffiffiffi
2ωp

p
p4=κ

ϕ̃ðωp;pÞ;

bp� ¼ κ−2
ξ−1ðp�Þffiffiffiffiffiffiffiffiffiffiffi
2jωpj

p
p�
4

Sðp�3þ Þϕ̃†ð−Sðω�
pÞ;−Sðp�ÞÞ; ð82Þ

where we include an additional factor (pþ has to be
considered on shell: pþ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þm2

p
)

ξðpÞ ¼
�
1þ jpþj3

κ3

�−1=2
; ð83Þ

that makes the form of the momentum space action, which
we will make use of later, particularly simple.
Finally, we have, for the on-shell complex field and its

adjoint, the expansions

ϕðxÞ ¼
Z

d3pffiffiffiffiffiffiffiffi
2ωp

p
�
1þ jpþj3

κ3

	−1=2
ape−iðωpt−pxÞ

þ
Z

d3p�ffiffiffiffiffiffiffiffiffiffiffi
2jω�

pj
p

�
1þ jp�þj3

κ3

	−1=2
b†p�eiðSðω

�
pÞt−Sðp�ÞxÞ

≡ ϕðþÞðxÞ þ ϕð−ÞðxÞ; ð84Þ

ϕ†ðxÞ ¼
Z

d3pffiffiffiffiffiffiffiffi
2ωp

p
�
1þ jpþj3

κ3

	−1=2
a†pe−iðSðωpÞt−SðpÞxÞ

þ
Z

d3p�ffiffiffiffiffiffiffiffiffiffiffi
2jω�

pj
p

�
1þ jp�þj3

κ3

	−1=2
bp�eiðω�

pt−p�xÞ

≡ ϕ†
ðþÞðxÞ þ ϕ†

ð−ÞðxÞ: ð85Þ

Since ωp > 0 and Sðω�
pÞ > 0, the field (84) is a combina-

tion of positive energy particle states and negative energy
antiparticle ones, while in Eq. (85) we have the opposite
arrangement, as it should be. This particular definition of
the field and its adjoint, contrary to earlier approaches
where to define the field and its adjoint only one portion
of de Sitter space was used, allows for simple action of
discrete symmetries; see Sec. VI below for the details.
From Eq. (49), one sees that the equations of motion

(EOM) for the field ϕ are indeed the expected ones.
Furthermore, one can get the EOM also for the ap, a

†
p,

bp� , and b†p� by applying the EOM to the fields in Eqs. (84)
and (85). We get

ð∂μ∂μ −m2Þϕ ¼
Z

d3pffiffiffiffiffiffiffiffi
2ωp

p
�
1þ jpþj3

κ3

	−1=2
ðpμpμ −m2Þape−iðωpt−pxÞ ð86Þ

þ
Z

d3p�ffiffiffiffiffiffiffiffiffiffiffi
2jω�

pj
p

�
1þ jpþj3

κ3

	−1=2
ðSðpÞμSðpÞμ −m2Þb†p�eiðSðω

�
pÞt−Sðp�ÞxÞ; ð87Þ

ð∂†
μð∂μÞ† −m2Þϕ† ¼

Z
d3pffiffiffiffiffiffiffiffi
2ωp

p
�
1þ jpþj3

κ3

	−1=2
ðSðSðpÞÞμSðSðpÞÞμ −m2Þa†pe−iðSðωpÞt−SðpÞxÞ ð88Þ

þ
Z

d3p�ffiffiffiffiffiffiffiffiffiffiffi
2jω�

pj
p

�
1þ jpþj3

κ3

	−1=2
ðSðp�ÞμSðp�Þμ −m2Þbp�eiðω�

pt−p�xÞ: ð89Þ

Notice that Eq. (86) is equivalent to Eq. (88) because
one can show that SðSðpÞÞμSðSðpÞÞμ ¼ pμpμ, and analo-
gously Eq. (89) is equivalent to Eq. (87) because
Sðp�Þμ ¼ −SðpÞμ.
We find that with the definition of the fields (84) and (85)

the particle, characterized by creation (annihilation) oper-
ator ap (a†p), has the mass-shell condition p2 −m2 ¼ 0,
while the antiparticle characterized by creation (annihila-
tion) operator bp (b†p) follows the mass-shell condition
SðpÞ2 −m2 ¼ 0. These mass shells are identical, so that
both the particle and the antiparticle have the same rest

mass, and the mass-shell manifold is in both cases the
same, but when we apply a Lorentz boost to a particle and
an antiparticle at rest with the same boost parameter, they
would end up carrying different momenta and energies.
This leads to subtle deformation of CPT symmetry,
discussed in Refs. [13,15].

V. SYMMETRIES OF THE ACTION

Let us now check that the above-defined fields transform
properly under Poincaré and discrete symmetries, rendering
the action (45) invariant.
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A. Poincaré symmetry of the action

In order to check the Poincaré invariance of the complex
scalar field action7 (45), it is convenient to rewrite it in the
momentum space where such invariance can be easily
checked. As for the space-time action, the procedure is
much more involved, and it is reported in Appendix C.
Let us note that, in order to turn the space-time action

(45) to a momentum space one, we cannot use the on-shell
field decomposition (84) and (85), because the resulting
momentum space action would contain the mass-shell
conditions as coefficients, which will make the action
identically equal to zero. Therefore, we use as a starting
point the off-shell field decomposition

ϕoffðxÞ ¼
Z
Jþ

d4p
p4=κ

ξðpÞape−iðp0t−pxÞ

þ
Z
J−

d4p�

jp�
4j=κ

ξðp�Þb†p�eiðSðp
�
0
Þt−Sðp�ÞxÞ; ð90Þ

where we include the additional factor (83) to make the
momentum space action as simple as possible. In Eq. (90),
we used the left-invariant measure (38) on the group
manifold ANð3Þ, and we restricted the range of integration
in the first term to the positive energy p0 > 0 subspace Jþ
and to the energy p�

0 < 0 subspace J− in the second term.
This arrangement is analogous to the introduction of the θ’s
in Eq. (69) but without the mass-shell restriction. The
decomposition (90) can be further simplified observing that
since p� is a dummy variable we can instead use the
variables p ¼ −p� in the second integral, so that we have

ϕoffðxÞ ¼
Z
Jþ

d4p
p4=κ

�
1þ

�jpþj
κ

�
3
�

−1=2

× ðape−iðp0t−pxÞ þ b†−pe−iðSðp0Þt−SðpÞxÞÞ: ð91Þ

The adjoint field has the form

ðϕoffÞ†ðxÞ ¼
Z
Jþ

d4p
p4=κ

�
1þ

�jpþj
κ

�
3
�

−1=2

× ða†pe−iðSðp0Þt−SðpÞxÞ þ b−pe−iðp0t−pxÞÞ: ð92Þ

Plugging these expressions to the action integral (45)
after tedious computations, adjusting the free functions,
we obtain the momentum space action in the form

S ¼ 1

2

Z
Jþ

d4p
p4=κ

ðpμpμ −m2Þa†pap

þ ðSðpÞμSðpÞμ −m2Þbpb†p: ð93Þ

It is clear from the action in the form (93) above that the mass
shell of the “particle” is p2 ¼ m2, while for the “antiparticle”
it has the form SðpÞ2 ¼ m2, as discussed above.
Moreover, it is straightforward to check its Poincaré

invariance. The translations act on ap and bp as phases; for
the translation parameter ε, we have

ap ↦ eiεpap; bp ↦ eiεpbp: ð94Þ

Next, the action is clearly rotational invariant, if we
assume that ap and bp are scalar functions of the spacial
momenta p. It therefore remains to check the Lorentz
invariance of the action. But since the action (93) has the
form of the standard undeformed momentum space
action, the transformation properties of the creation and
annihilation “operators” are just the standard ones
ap ↦ UðΛÞapU−1ðΛÞ ¼ aΛp, where Λp is the Lorentz
transformed four-vector p. Indeed,

UðΛÞSU−1ðΛÞ

¼ 1

2

Z
Jþ

d4pðpμpμ −m2ÞUðΛÞa†papU−1ðΛÞ

þ 1

2

Z
Jþ

d4pðSðpÞμSðpÞμ −m2ÞUðΛÞb†pbpU−1ðΛÞ

¼ 1

2

Z
Jþ

d4ðΛpÞððΛpÞμðΛpÞμ −m2Þa†ΛpaΛp

þ 1

2

Z
Jþ

d4ðΛpÞðSðΛpÞμSðΛpÞμ −m2Þb†ΛpbΛp
¼ S:

This completes the proof of Poincaré invariance of the
action (93).

VI. DISCRETE SYMMETRIES

There are three discrete symmetries: parity P, time
reversal T , and charge conjugation C. In each case, we
will first shortly recall their action on the undeformed field
with decomposition

ϕðt;xÞ ¼
Z

d3pffiffiffiffiffiffiffiffi
2ωp

p ape−iðωpt−ipxÞ þ b†peiðωpt−pxÞ ð95Þ

and then generalize it to the case of the deformed fields (84)
and (85). For parity and time reversal, we have space-time
concepts to guide us, and, therefore, we consider these
two first.

7Reference [34] provides a general abstract proof of Poincaré
invariance of the κ-deformed complex scalar field action in two
space-time dimensions; here, we show explicitly that the same
holds in the particular of the theory considered here, in four
dimensions.
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A. Parity

The parity operator P acts on space coordinates as an
inversion x ¼ ðt;xÞ → x0 ¼ ðt;−xÞ. For the complex sca-
lar quantum field, we define the parity operator as

Pϕðt;xÞP−1 ¼
Z

d3pffiffiffiffiffiffiffiffi
2ωp

p PapP−1e−iðωpt−pxÞ

þ Pb†pP−1eiðωpt−pxÞ ≡ ϕðt;−xÞ; ð96Þ

and using (95) we see that for the creation or annihilation
operators8

PapP−1 ¼ a−p; PbpP−1 ¼ b−p: ð97Þ

Turning to the deformed case, we notice first that the
space-time transformation x̂ ↦ −x̂ leaves the defining
commutator (1) invariant and, therefore, is compatible with
the form of κ-Minkowski noncommutativity. Furthermore,
the positive and negative energy fields ϕð�ÞðxÞ can be
considered separately. For the positive energy part, we can
use exactly the same considerations as in the case of the
undeformed field above. Since

Sðp0;−pÞ0 ¼ Sðp0;pÞ0; Sðp0;−pÞi ¼ −Sðp0;pÞi;

this is also true for the negative energy fields, and, thus, we
can readily define

PapP−1 ¼ a−p; Pbp�P−1 ¼ b−p� ð98Þ

and

Pa†pP−1 ¼ a†−p; Pb†p�P−1 ¼ b†−p� : ð99Þ

B. Time reversal

Next, we consider the time reversal T , which changes
the time direction x ¼ ðt;xÞ → x0 ¼ ð−t;xÞ and

T ϕðt;xÞT −1 ¼ ϕð−t;xÞ: ð100Þ

It should be remembered that the operator T is anti-
Hermitian T iT −1 ¼ −i, and we have

T ϕðt;xÞT −1 ¼
Z

d3pffiffiffiffiffiffiffiffi
2ωp

p T ape−iðωpt−ipxÞT −1

þ T b†peiðωpt−pxÞT −1

¼
Z

d3pffiffiffiffiffiffiffiffi
2ωp

p T apT −1eiðωpt−ipxÞ

þ T b†pT −1e−iðωpt−pxÞ ¼ ϕð−t;xÞ: ð101Þ

We find that

T apT −1 ¼ a−p; T bpT −1 ¼ b−p: ð102Þ

Let us now discuss the deformed case. We start by
noticing that as a consequence of anti-Hermiticity of T the
defining algebra (1) is again invariant, so that we see that
κ-Minkowski space is both parity and time reversal
invariant. Turning to fields, we again see that the classical
reasoning can be verbatim repeated in the case of time
reversal as well, and we end up with

T apT −1 ¼ a−p; T bp�T −1 ¼ b−p� ð103Þ

and

T a†pT −1 ¼ a†−p; T b†p�T −1 ¼ b†−p� : ð104Þ

C. Charge conjugation

The symmetry that exchanges particles with antiparticles
does not have any space-time counterparts, and since it
changes the charge it is called charge conjugation. The
charge conjugation operator C acting on the field produces
its conjugation

Cϕðt;xÞC−1 ¼ ϕ†ðt;xÞ ð105Þ

and, therefore,

Cϕðt;xÞC−1 ¼
Z

d3pffiffiffiffiffiffiffiffi
2ωp

p CapC−1e−iðωpt−ipxÞ

þ Cb†pC−1eiðωpt−pxÞ ¼ ϕ†ðt;xÞ; ð106Þ

and we have

CapC−1 ¼ bp: ð107Þ

Let us now consider the deformed field. Take the ϕðþÞ
component first:

CϕðþÞðt;xÞC−1

¼
Z

d3pffiffiffiffiffiffiffiffi
2ωp

p
�
1þjpþj3

κ3

	−1=2
CapC−1e−iðωpt−ipxÞ: ð108Þ8Here and below, we ignore a possible phase factor that may be

present in the definition.
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On the other hand, we have

ϕ†
ð−ÞðxÞ ¼

Z
d3p�ffiffiffiffiffiffiffiffiffiffiffi
2jω�

pj
p

�
1þ jpþj3

κ3

	−1=2
bp�eiðω�

pt−p�xÞ;

ð109Þ

so that we can conclude that

CapC−1 ¼ bp� : ð110Þ

Analogously, for the ϕð−Þ component, we have

Cϕð−ÞðxÞC−1

¼
Z

d3p�ffiffiffiffiffiffiffiffiffiffiffi
2jω�

pj
p

�
1þ jpþj3

κ3

	−1=2
Cb†p�C−1eiðSðω

�
pÞt−Sðp�ÞxÞ

ð111Þ

and

ϕ†
ðþÞðxÞ ¼

Z
d3pffiffiffiffiffiffiffiffi
2ωp

p
�
1þ jpþj3

κ3

	−1=2
a†pe−iðSðωpÞt−SðpÞxÞ

ð112Þ

so that

Cb†p�C−1 ¼ a†p: ð113Þ

It should be stressed that this simple transformation rule
of the field ϕ with respect to charge conjugation is a result
of the use of the second (starred) copy of momentum
space and of the particular arrangement of the components
ϕð�ÞðxÞ and ϕ†

ð�ÞðxÞ. In particular, the field constructed in

Ref. [14] and many other papers on this topic does not
transform nicely under charge conjugation. It should be
added also that the deformed action of discrete symmetries
P, T , and C leads to the form of the CPT operator Θ
anticipated in Ref. [13], although the action of parity and
time reversal differ from that proposed in Ref. [44].

VII. CONSERVED CHARGES AND SYMPLECTIC
STRUCTURE

In this section, we derive the conserved charges and
symplectic structure associated with our free complex
scalar field theory defined by the action

S ¼ 1

2
ðS1 þ S2Þ ¼

1

2

Z
R4

d4xð∂μϕÞ†⋆ð∂μϕÞ −m2ϕ†⋆ϕ

þ 1

2

Z
R4

d4xð∂μϕÞ⋆ð∂μϕÞ† −m2ϕ⋆ϕ†:

ð114Þ

Both are given in terms of the appropriate boundary
integrals and reflect, respectively, the symmetries of the
theory (charges) and its kinematics (symplectic structure).
Our starting point here will be the variations of the actions
computed above, Eqs. (48)–(57). Assuming field equations
in the bulk, these variations are just the boundary terms,
which become conserved charges in the case of field
variations corresponding to symmetries of the action and
Liouville form, for generic variations.

A. Conserved charges

On shell, the variation of the action reduces to the
boundary term, and we define the conserved charges
associated with the field transformation that leaves the
action invariant δSϕ, δSϕ† as usual as an integral over the
constant time surface

PS ¼
1

2

Z
d3xΠ0

1⋆δSϕþ δSϕ
†⋆ðΠ0

1Þ†

þ δSϕ⋆Π0
2 þ ðΠ0

2Þ†⋆δSϕ†: ð115Þ
In the case of translational symmetry, for which

δSϕ ¼ dϕ ¼ ϵA∂Aϕ; ð116Þ
we find

PA ¼ 1

2

Z
d3xT1

0
A þ T2

0
A; ð117Þ

where the relevant components of the energy-momentum
tensor are

T1
0
A ¼ −∂AΠ0

1⋆ϕþ ∂Aϕ
†⋆Π†

1
0 ð118Þ

and

T2
0
A ¼ −ϕ⋆∂AΠ0

2 þ Π†
2
0⋆∂Aϕ

†: ð119Þ
Nowwe use the field decomposition (84) and (85) to find

the expression for conserved translational charges PA (117)
in momentum space. After tedious computation, one finds
that the time-dependent terms cancel as they should and the
conserved charges have the form

P0 ¼ −
1

2

Z
d3pa†papSðωpÞ

�
1 −

ξðpÞ2p2

ωppþ

	
p4

κ

− bp�b†p�ωp

�
1 −

ξðpÞ2p2

ωppþ

	
p4

κ
; ð120Þ

Pi ¼
1

2

Z
d3pa†papSðpÞi

�
1 −

ξðpÞ2p2

ωppþ

	
p4

κ

− bp�b†p�pi

�
1 −

ξðpÞ2p2

ωppþ

	
p4

κ
; ð121Þ
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P4 ¼ −
1

2

Z
d3pðp4 − κÞ

�
a†pap

�
1 −

ξðpÞ2p2

ωppþ

	
p4

κ

− bp�b†p�

�
1 −

ξðpÞ2p2

ωppþ

	
p4

κ

�
: ð122Þ

B. Symplectic structure

To compute the symplectic structure of our theory we use
the covariant phase space approach [45–47], which makes
it possible to straightforwardly derive it from the action
preserving all the relevant symmetries. To compute the
symplectic structure, we must return to Eqs. (49) and (54).
Defining the Liouville form θ as a boundary term in the
variation of the action on shell, for generic variation of the
field δϕ, δϕ† we find

θ ¼ θ1 þ θ2 ¼ −
1

2

Z
R3

d3xðΠ0
1⋆δϕþ δϕ†⋆ðΠ0

1Þ†

þ δϕ⋆Π0
2 þ ðΠ0

2Þ†⋆δϕ†Þ: ð123Þ

To find the symplectic form, which will lead to the Poisson
bracket of field coefficients a and b and, in turn, to the
creation and annihilation operator commutators, we have to
compute δθ and express the result using the momentum
space decomposition (84) and (85). We find

δθ1 þ δθ2 ¼ −
i
2

Z
d3pap ∧ a†p

�
1 −

ξðpÞ2p2

ωppþ

	
p4

κ

− ξðpÞ2b†p� ∧ bp�

�
1 −

ξðpÞ2p2

ωppþ

	
p4

κ
; ð124Þ

which implies the following Poisson brackets:

fap; a†qg ¼ i
κ

p4

2

1 − ξðpÞ2p2

ωppþ

δðp − qÞ; ð125Þ

fbp� ; b†q�g ¼ i
κ

p4

2

1 − ξðpÞ2p2

ωppþ

δðp − qÞ: ð126Þ

VIII. TOWARD QUANTUM THEORY

In this section, we will construct the one-particle states
in quantum field theory. At this stage, we cannot go any
further; in particular, we cannot construct many-particle
states and investigate their properties, because this would
require knowing details of the coproduct properties of
creation and annihilation operators, i.e., how they act on
tensor product of states.
In quantum theory, the Poisson brackets (125) and (126)

become commutators (from now on, we stop distinguishing
p from p�):

½ap; a†q� ¼
κ

p4

2

1 − ξðpÞ2p2

ωppþ

δðp − qÞ; ð127Þ

½bp; b†q� ¼
κ

p4

2

1 − ξðpÞ2p2

ωppþ

δðp − qÞ: ð128Þ

We define the vacuum j0i that satisfies the condition

apj0i ¼ bpj0i ¼ 0: ð129Þ

Then we define the one-particle and one-antiparticle states

jpia ≡ a†pj0i; ð130Þ

jpib ≡ b†pj0i: ð131Þ

Now we are ready to present the most important result of
this investigations. Consider the state jpia [Eq. (130)]. Its
momentum can be computed by acting with the momentum
operator Pi [Eq. (121)] on it. Using the commutational
relation (127), we find

Pijpia ¼ −SðpÞijpia: ð132Þ

Analogously, for the one-antiparticle state jpib [Eq. (130)],
using the commutational (128) we get

Pijpib ¼ pijpib: ð133Þ

In exactly the same manner, we can use the Hamiltonian
(120) to compute the energy of the one-particle states,
obtaining

P0jpia ¼ −SðωpÞjpia ð134Þ

and

P0jpib ¼ ωpjpib: ð135Þ

Therefore, one-particle and one-antiparticle states belong to
the same mass-shell manifold, since

ω2
p − p2 ¼ m2 ¼ SðωpÞ2 − SðpÞ2; ð136Þ

but p and SðpÞ are, in general, different points on this
manifold, with a single exception being the case p ¼
SðpÞ ¼ 0, ωp ¼ −SðωpÞ ¼ m.
Finally, the momentum P4 measures, essentially, the

deformed charge of the state

P4jpia ¼

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ2 þm2
p

− κ
�
jpia ð137Þ

and
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P4jpib ¼ −ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þm2

p
− κÞjpib: ð138Þ

Therefore, the one-particle state carries the momentum
−SðpÞi, while the one-antiparticle state has the momentum
pi. But according to Eq. (113) the latter is the C (and also
CPT ) of the former

Cjpib ¼ Cb†pC−1Cj0i ¼ Cb†pC−1j0i ¼ a†pj0i ¼ jpia: ð139Þ

Therefore, as anticipated in Sec. IV, the charge conjugation
(and CPT ) transforms a particle into an antiparticle with
different momentum. This transformation has the remarkable
property that the rest mass of the particle and antiparticle is
the same. The phenomenological consequences of this have
been recently discussed in Refs. [13,15].

IX. SUMMARY AND CONCLUSIONS

We laid down the basic ingredients for the construction
of a complex field theory on κ-Minkowski space covariant
under the action of deformed relativistic symmetries
described by the κ-Poincaré algebra. The guiding principle
which we followed in the definition of the field and its
action was the requirement of an appropriate transforma-
tion of the former under the action of discrete symmetries.
The main upshot of our construction is that the four-
momenta of particle and antiparticles states related by
charge conjugation C are not identical and given by
Eqs. (132)–(138). After deriving the equations of motions
from the deformed action, we worked the action of
Poincaré symmetries on the field from both a coordinate
and momentum space perspective and then moved onto the
description of the action of discrete symmetries. The last
part of our work was devoted to the analysis of the
symplectic structure of the theory, which allowed us to
derive the conserved charges associated to the deformed
translation symmetries. This also made it possible to write
down the Poisson brackets of the expansion coefficients
of the field which upon quantization become creation
and annihilation operators. With these, we were able to
characterize the energy and momentum of one-particle and
-antiparticle states and write down the action of discrete
symmetries on them which showed that the CPT operator
maps particle states into antiparticle states with a different
momentum. This important result could have nontrivial
phenomenological consequences which might be relevant
for experimental searches of Planck-scale effects [13,15].
There are several open issues that we are going to

address in the future publications. First, it does seem that
the particle state and its associated charge conjugated
antiparticle one have different momenta, and it is not trivial
to define the real scalar field. We will return to it in the
forthcoming publications. The main open issue at the
quantum level concerns the construction of a Fock space
on which the commutators that we derived for creation and

annihilation operators can act, mapping multiparticle states
given by appropriately symmetrized tensor products of one-
particle states consistent with the nontrivial coproduct and
covariant under the action of the κ-Poincaré algebra. This is
notoriously a thorny issue which has not yet found a
satisfactory answer [18,21,24,48–50] and which we hope
we will be able to successfully address within the approach
to field theory proposed in this work. The satisfactory
solution of this problem is the major prerequisite for the
construction of the interacting κ-deformed quantum field
theory and κ-deformed standard model, which is our
ultimate goal in the research project of which the present
paper is the first step.
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APPENDIX A: LORENTZ TRANSFORMATIONS
OF ANTIPODE

The antipodes were defined in Eq. (9) and are given by
the following expressions:

Sðp0Þ ¼ −p0 þ
p2

p0 þ p4

¼ κ2

p0 þ p4

− p4;

SðpÞ ¼ −
κp

p0 þ p4

; Sðp4Þ ¼ p4 ðA1Þ

The action of Lorentz boost transformation on the antipode
is defined as [Eq. (10)]

L⊳SðpÞ≡ SðL⊳pÞ; p0 > 0: ðA2Þ

Let us investigate properties of this transformation in
the case of a infinitesimal Lorentz transformation with
parameter ξi:

δξpi ¼ ξip0; δξp0 ¼ ξipi: ðA3Þ

Remembering that p4 is Lorentz invariant using Eq. (A2),
we find

δξSðp0Þ ¼ −ξipi þ
2ξipip0

p0 þ p4

−
p2

ðp0 þ p4Þ2
ξipi ¼ ζiSðpiÞ;

ðA4Þ

where we introduce a momentum-dependent infinitesimal
parameter

ζi ¼ ξi
κ

p0 þ p4

: ðA5Þ
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Thus, the Lorentz transformation of the zero component of
the antipode is an ordinary Lorentz transformation, with
parameter ζi.
For the spatial component, we have a more complicated

expression:

δξSðpiÞ ¼ −
κξip0

p0 þ p4

þ κpi

ðp0 þ p4Þ2
ξjpj

¼ ζiSðp0Þ þ
κ

ðp0 þ p4Þ2
ðpiξ

jpj − ξip2Þ: ðA6Þ

The first term here is again the standard Lorentz trans-
formation with parameter ζi. The second term is an
infinitesimal rotation of SðpiÞ with the parameter

ρj ¼ ϵjklξ
kpl

so that, finally,

δξSðpiÞ ¼ ζiSðp0Þ þ ϵi
jkρjSðpkÞ: ðA7Þ

Since under Lorentz boost transformation of momenta the
components of the antipode transform under a combination
of boost and rotation, it is clear that the components of the
antipode satisfy the same mass-shell condition as the
components of the original momenta.

APPENDIX B: INTEGRATION BY PARTS

In this Appendix, we derive the ⋆ integration by parts
formula, which is necessary do derive field equations from
the action (45).
The starting point is provided by the coproduct rules

for the κ-Poincaré algebra in the classical basis
ðp0; pi; p4Þ [14,51]:

Δpi ¼
1

κ
pi ⊗ ðp0 þ p4Þ þ 1 ⊗ pi; ðB1Þ

Δp0 ¼
1

κ
p0 ⊗ ðp0 þ p4Þ þ

X
pkðp0 þ p4Þ−1

⊗ pk þ κðp0 þ p4Þ−1 ⊗ p0; ðB2Þ

Δp4 ¼
1

κ
p4 ⊗ ðp0 þ p4Þ −

X
pkðp0 þ p4Þ−1

⊗ pk − κðp0 þ p4Þ−1 ⊗ p0: ðB3Þ

Notice that the coproduct relations are an immediate
consequence of Eq. (25). The coproducts tell us how the
momentum operators act on star products of two functions.
Since momenta are space-time derivatives p0 ¼ i∂0

and pi ¼ i∂i, these equations tell us how derivatives act
on the star products of functions on Minkowski space,
defining in this way the modified Leibniz rules. In the
calculation below, we use the shorthand notation

pþ → Δþ ¼ i∂0 þ p4 ¼ i∂0 þ ðκ þ i∂4Þ, where the non-
local operator p4 is expressed in terms of the corresponding
derivatives as p4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − ∂2

0 þ ∂2
i

p
. Equations (B1)–(B3)

then imply

∂0ðϕ⋆ψÞ ¼ 1

κ
ð∂0ϕÞ⋆ðΔþψÞ þ κðΔ−1þ ϕÞ⋆ð∂0ψÞ

þ iðΔ−1þ ∂iϕÞ⋆ð∂iψÞ; ðB4Þ

∂iðϕ⋆ψÞ ¼ 1

κ
ð∂iϕÞ⋆ðΔþψÞ þ ϕ⋆ð∂iψÞ; ðB5Þ

Δþðϕ⋆ψÞ ¼ 1

κ
ðΔþϕÞ⋆ðΔþψÞ: ðB6Þ

Furthermore, defining the adjoint derivative

ð∂AϕÞ† ≡ ∂†
Aϕ

†; A ¼ ðμ; 4;þÞ ðB7Þ

and using Eq. (9), we have

∂†
i ¼ κΔ−1þ ∂i; ∂†

0 ¼ ∂0 − iΔ−1þ ∂2;

∂†
4 ¼ −∂4; Δ†

þ ¼ κ2Δ−1þ : ðB8Þ

We now use Eqs. (B4)–(B6) and (B8) to obtain the
expressions needed for the integration by parts of expres-
sions of the form ð∂μϕÞ†⋆∂μψ and ð∂μψÞ⋆ð∂μϕÞ†. With
some algebra, we find

ð∂iϕÞ†⋆ð∂iψÞ ¼ ∂i½ð∂iϕÞ†⋆ψ � − Δþ
κ

½ð∂2ϕÞ†⋆ψ �: ðB9Þ

Similarly,

ð∂0ϕÞ†⋆ð∂0ψÞ ¼
∂0

κ
½ðΔþð∂0ϕÞ†Þ⋆ψ �

− i∂i½ðΔ−1þ ∂i∂0ϕÞ†⋆ψ �
−
Δþ
κ

½ð∂2
0ϕÞ†⋆ψ �: ðB10Þ

Notice that, using this convention, Eqs. (B9) and (B10) are
still fine substituting ϕ† with any other quantity (because
the above derivations do not use in any way the presence
of the † over ϕ) and, therefore, can be used regardless of the
combination of fields to which they can be applied.
The Hermitian conjugates of Eqs. (B9) and (B10) take

the form

ð∂iψÞ†⋆ð∂iϕÞ ¼ ∂†
i ½ψ†⋆ð∂iϕÞ� −

κ

Δþ
½ψ†⋆ð∂2ϕÞ�; ðB11Þ

ð∂0ψÞ†⋆ð∂0ϕÞ¼∂†
0½ψ†⋆ðκΔ−1þ ∂0ϕÞ�þi∂†

i ½ψ†⋆ðΔ−1þ ∂i∂0ϕÞ�
−

κ

Δþ
½ψ⋆ð∂2

0ϕÞ�: ðB12Þ
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Finally, we will also need the following identity:

m2ϕ†⋆ψ ¼ −
�
Δþ
κ

− 1

�
ðm2ϕ†⋆ψÞ þ Δþ

κ
ðm2ϕ†⋆ψÞ

¼ −
i∂0

κ
ðm2ϕ†⋆ψÞ − i∂4

κ
ðm2ϕ†⋆ψÞ

þ Δþ
κ

ðm2ϕ†⋆ψÞ ðB13Þ

and its Hermitian conjugate

m2ψ†⋆ϕ ¼ þ i∂†
0

κ
ðm2ψ†⋆ϕÞ þ i∂†

4

κ
ðm2ψ†⋆ϕÞ

þ κ

Δþ
ðm2ψ†⋆ϕÞ: ðB14Þ

For the opposite ordering, we have instead

ð∂iψÞ⋆ð∂iϕÞ† ¼ κ∂iðψ⋆½Δ−1þ ð∂iϕÞ†�Þ − ψ⋆ð∂2ϕÞ†;
ðB15Þ

ð∂0ψÞ⋆ð∂0ϕÞ† ¼ ∂0ðψ⋆½κΔ−1þ ð∂0ϕÞ†�Þ
− i∂iðψ⋆½Δ−1þ ∂ið∂0ϕÞ†�Þ − ½ψ⋆ð∂2

0ϕÞ†�

þ
�
i
κ
∂0 þ i

∂4

κ

�
½ψ⋆ð∂2

0ϕÞ†�: ðB16Þ

APPENDIX C: POINCARÉ SYMMETRY OF THE
ACTION—SPACE-TIME APPROACH

We want to discuss the invariance of the action (45)
under κ-Poincaré transformations. As a first step, let us
notice that it is equivalent to

S ¼ −
1

2

Z
R4

d4x½ϕ†⋆∂μ∂μϕþ ϕ⋆ð∂μ∂μϕÞ†

þm2ðϕ†⋆ϕþ ϕ⋆ϕ†Þ�: ðC1Þ

This is easy to see using Eqs. (B15) and (B16) for integrating
by parts the second term, and Eqs. (B11) and (B12) for the
first term, in the action (45), since the Lagrangians are the
same up to a total divergence. Let us consider infinitesimal
transformations. The basic assumption is that a scalar field
transforms as

0 ¼ ϕ0ðx0Þ − ϕðxÞ ¼ ½ϕ0ðx0Þ − ϕðx0Þ� þ ½ϕðx0Þ − ϕðxÞ�
≃ δϕðxÞ þ dϕðxÞ; ðC2Þ

where d is the differential operator corresponding to
κ-Poincaré transformations. In order to show the invariance
of the Lagrangian appearing in Eq. (C1), it is enough to
prove that

L½ϕ0ðx0Þ� − L½ϕðxÞ� ≃ δL½ϕðxÞ� þ dL½ϕðxÞ� ¼ 0; ðC3Þ

where δL is the functional variation L½ϕþ δϕ� − L½ϕ�.
The invariance of the Lagrangian is ensured if the

differential satisfies the Leibniz rule with respect to the
⋆ product,

dðϕðxÞ⋆ψðxÞÞ ¼ ðdϕðxÞÞ⋆ψðxÞ þ ϕðxÞ⋆dψðxÞ; ðC4Þ

which is a standard requirement for the definition of a
differential calculus. Two different prescriptions have been
proposed in the literature [14,17,52,53]. We adopt here the
one proposed in Ref. [14] that is based on a differential
calculus that satisfies the “bicovariance” property [54].
In this case, the differential d̂, generating infinitesimal
κ-Poincaré transformations in κ-Minkowski space-time,
takes the form

d̂ ¼ iðϵ̂APA þ ω̂μνLμνÞ⊳; ðC5Þ

where PA and Lμν are, respectively, the κ-Poincaré trans-
lation and Lorentz generators (in classical basis). These
are defined through their action on noncommutative plane
waves as PA ≡ −i∂̂A and Lμν ≡ − i

2
x̂½μ∂̂ν� κ

P0þP4
, respec-

tively. It can be proved, however (see [14]), that the action
of the Lorentz generator on the field, through the Weyl
map (18), reduces to the standard action

Lμν⊳ϕðxÞ ¼ W−1ðLμν⊳ϕðx̂ÞÞ ¼ −
1

2
x½μ⋆∂ν�

κ

∂0 þ ∂4

ϕðxÞ

¼ −
i
2
x½μ∂ν�ϕðxÞ: ðC6Þ

The parameters ϵ̂A and ω̂μν must obey commutation
relations with x̂μ so that d̂ satisfies the Leibniz rule in
Minkowski space-time

d̂ðϕðx̂Þψðx̂ÞÞ ¼ d̂ϕðx̂Þψðx̂Þ þ ϕðx̂Þd̂ψðx̂Þ: ðC7Þ

The commutation properties of ϵ̂A and ω̂μν are reported in
Appendix D, and the corresponding relations (D3) and
(D4) between the images of the parameters underWeyl map
and the associate ⋆ product lead to

ϕðxÞ⋆ϵA ¼ ϵBKA
Bð∂Þ⋆ϕðxÞ ðC8Þ

and

ϕðxÞ⋆ωμν ¼ Ωμν
ρσð∂Þωρσ⋆ϕðxÞ; ðC9Þ

where the matrices K and Ω are also defined in
Appendix D.
Two additional properties of the transformation param-

eters (see [14]) are that
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∂Aϵ
B ¼ ∂Aω

μν ¼ 0 ðC10Þ

and that

ðdϕÞ† ¼ dϕ†: ðC11Þ

We can now write the image of d̂ under the Weyl map as

dϕðxÞ ¼ ϵA⋆∂AϕðxÞ þ
1

2
ωμν⋆x½μ∂ν�ϕðxÞ: ðC12Þ

Using relations (C8) and (C9), the Lorentz action (C6),
and relations (B4)–(B6) and (B8), one can prove that the
Leibniz rule (C4) is satisfied.
We can now prove the invariance of the Lagrangian for

Eq. (C1). Considering that from Eq. (C2) δϕðxÞ ¼ −dϕðxÞ,
the functional variation of the Lagrangian gives

δL½ϕðxÞ� ¼ −ðdϕðxÞÞ†⋆∂μ∂μϕðxÞ − ϕ†ðxÞ⋆∂μ∂μdϕðxÞ
− ðdϕðxÞÞ⋆ð∂μ∂μϕðxÞÞ† − ϕðxÞ⋆ð∂μ∂μdϕðxÞÞ†
þm2½ðdϕðxÞÞ†⋆ϕðxÞ þ ϕ†ðxÞ⋆dϕðxÞ�
þm2½ðdϕðxÞÞ⋆ϕ†ðxÞ þ ϕðxÞ⋆ðdϕðxÞÞ†�:

ðC13Þ

Given that the action (C6) of Lμν is the same as the standard
one, and (C10), it is straightforward to prove that
½∂μ∂μ; d� ¼ 0. Indeed, the only part of d on which the
derivatives act is the standard Lorentz term ∝ x½ρ∂σ�, so that
the derivation is the same as in the standard case:

∂μ∂μdϕðxÞ ¼ ϵA⋆∂A∂μ∂μϕðxÞ þ 1

2
ωρσ⋆∂μ∂μx½ρ∂σ�ϕðxÞ

¼ ϵA⋆∂A∂μ∂μϕðxÞ þ 1

2
ωρσ⋆x½ρ∂σ�∂μ∂μϕðxÞ

þ ωρσ⋆∂ ½ρ∂σ�ϕðxÞ
¼ d∂μ∂μϕðxÞ: ðC14Þ

Then, using the properties (C11) and (C4), it follows
immediately that δL½ϕðxÞ� ¼ −dL½ϕðxÞ�. We show as an
example the derivation for the second row of Eq. (C13).
Using the result (C14), we rewrite it first as

−ðdϕðxÞÞ⋆ð∂μ∂μϕðxÞÞ† − ϕðxÞ⋆ðd∂μ∂μϕðxÞÞ†:

We now use properties (C11) and (C4) to rewrite it as

− ðdϕðxÞÞ⋆ð∂μ∂μϕðxÞÞ† − ϕðxÞ⋆dð∂μ∂μϕðxÞÞ†
¼ −d½ϕðxÞ⋆ð∂μ∂μϕðxÞÞ†�:

We have thus shown under which hypotheses the action
is κ-Poincaré invariant. To conclude, let us discuss briefly
what the condition (C2) implies for the transformation of
the field. If we consider the Fourier transform of the field
generically as

ϕðxÞ ¼
Z

dμðpÞϕ̃ðpÞe−ip·x; ðC15Þ

then

dϕðxÞ ¼ ϵA⋆
Z

dμðpÞϕ̃ðpÞ∂Ae−ip·x þ
1

2
ωμν⋆

Z
dμðpÞϕ̃ðpÞx½μ∂ν�e−ip·x

¼ −iϵA⋆
Z

dμðpÞϕ̃ðpÞpAe−ip·x −
1

2
ωμν⋆

Z
dμðpÞϕ̃ðpÞp½μ

∂
∂pν� e

−ip·x

¼
Z

dμðpÞ
�
−ipAϕ̃ðpÞϵA þ 1

2
p½μ

∂
∂pν� ϕ̃ðpÞωμν

�
⋆e−ip·x:

The field variation δϕ ¼ −dϕ implies that formally we can state

δϕ̃ðpÞ ¼
�
iϵApAϕ̃ðpÞ −

1

2
ωμνp½μ

∂
∂pν� ϕ̃ðpÞ

�
⋆: ðC16Þ

The last relation is very similar to its classical analog, which is given by9

U−1ðΛ; aÞϕ̃ðpÞUðΛ; aÞ ¼ eiðΛ−1aÞ·pϕ̃ðΛ−1pÞ ≃ ϕ̃ðpÞ þ iϵμpμϕ̃ðpÞ −
1

2
ωμνp½μ

∂
∂pν� ϕ̃ðpÞ: ðC17Þ

9We are here using notations such that for a finite Poincaré transformation ϕ0ðx0Þ ¼ U−1ðΛ; aÞϕðΛxþ aÞUðΛ; aÞ≃
ϕðxÞ þ δϕðxÞ þ dϕðxÞ, so that U−1ðΛ; aÞϕðxÞUðΛ; aÞ ≃ δϕðxÞ ¼ −dϕðxÞ.
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APPENDIX D: PROPERTIES OF THE
NONCOMMUTATIVE PARAMETERS ϵA AND ωμν

The properties of the noncommutative parameters are
derived in Ref. [14]. For the translation parameter, they
amount to

½x̂μ; ϵ̂A� ¼ ðXμÞABϵ̂B;

where

X̂0 ¼ −
i
κ

0
B@

0 0T 1

0 03×3 0

1 0T 0

1
CA; X̂ ¼ i

κ

0
B@

0 nT 0

n 03×3 n

0 −nT 0

1
CA;

where n is a unit vector in standard basis. In terms of plane
waves, they satisfy the relation

êkϵ̂Aê−1k ¼ ϵ̂BKA
BðpðkÞÞ; ðD1Þ

with

KðpÞ ¼ 1

κ

0
BB@

p4 þ p2

p0þp4
− κ

p0þp4
pT p0

−p κ13×3 −p

p0 −
p2

p0þp4

κ
p0þp4

pT p4

1
CCA;

K−1ðpÞ ¼ 1

κ

0
BB@

p4 þ p2

p0þp4
pT −p0 þ p2

p0þp4

κ
p0þp4

p κ13×3 κ
p0þp4

p

−p0 −pT p4

1
CCA:

Notice that X̂μ andKðpðkÞÞmatrices coincide, respectively,
with the 5D representations of x̂μ and êk given in Eqs. (2)
and (4), in agreement with the fact that ϵ̂A form a
representation of κ-Minkowski algebra. For the Lorentz
parameter, the commutation properties are given by

êkω̂μνê−1k ¼ ω̂ρσΩμν
ρσðpðkÞÞ; ðD2Þ

with

Ωμν
ρσðpÞ ¼ δμ½ρτ

ν
σ�ðpÞ

and

τðpÞ ¼
�
2 κ
p0þp4

− 1 −2 p
p0þp4

0 1

�
:

Using the (inverse) Weyl map (22) with Eqs. (D1) and
(D2), we obtain the corresponding properties for the ⋆
product between the parameters and the plane waves:

ep⋆ϵA ¼ KA
BðpÞϵB⋆ep;

ϵA⋆ep ¼ ðK−1ÞABðpÞep⋆ϵB ðD3Þ

and

ep⋆ωμν ¼ Ωμν
ρσðpÞωρσ⋆ep;

ωμν⋆ep ¼ ðΩ−1ÞμνρσðpÞep⋆ωρσ: ðD4Þ
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