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Loop quantum gravity envisions a small scale structure of spacetime that is markedly different from that
of the classical spacetime continuum. This has ramifications for the excitation of matter fields and for their
coupling to gravity. There is a general understanding of how to formulate scalar fields, spin 1

2
fields, and

gauge fields in the framework of loop quantum gravity. The goal of the present work is to investigate
kinematical aspects of this coupling. We will study implications of the Gauß and diffeomorphism
constraints for the quantum theory: We define and study a less ambiguous variant of the Baez-Krasnov path
observables, and we investigate symmetry properties of spin network states imposed by diffeomorphism
group averaging. We will do this in a setting which allows for matter excitations of spin 1

2
and higher. In the

case of spin 1
2
, we will also discuss extensions of it by introducing an electromagnetic field and antiparticles.

We finally discuss how far the picture with matter excitations of higher spin can be obtained from classical
actions for higher spin fields.

DOI: 10.1103/PhysRevD.103.106010

I. INTRODUCTION

The understanding of quantum matter fields combined
with a theory of quantum gravity is an important step
toward a grand unified theory. On the one hand, matter
fields yield access to verifying the theory of quantum
gravity. On the other hand, quantum gravity can act as a
natural regulator of quantum matter which solves concep-
tual problems in quantum field theory.
Loop quantum gravity uses a formulation of general

relativity as a constrained gauge theory, with a Gauß
constraint encoding SU(2) gauge invariance (invariance
under spatial frame rotations). It was realized early on [1–3]
that, to solve the Gauss constraint, gravity and fermionic
excitations have to be coupled. A very compelling solution
was first suggested in [1,2] and later expanded on in [3]: the
fermions sit at the open ends of gravitational spin networks.
It was then realized that to consistently deal with adjoint-
ness relations, the density weight between the fermionic
canonical variables has to be balanced [4]. Detailed
derivations from classical actions have been considered
[5–7]. More recently, the coupling of fermion states to
gravity has been investigated also from the perspective of
spin foam models for loop quantum gravity [8,9]. The
coupled gravity-fermion states we are considering here are
precisely the boundary states in the spin foam formalism.
In the present work we expand on this in two ways. On

the one hand, the picture of spin 1
2
matter immediately

suggests a generalization to point excitations of spin other
than 1

2
. We will use this general picture in most of the work,

and also begin a discussion of how it could be derived from
classical actions for fields of higher spin. On the other hand,
we investigate the consequences of Gauß and diffeomor-
phism constraints by studying various examples of quan-
tum states and by general considerations.
In Sec. II we generalize the matter Hilbert space of [4] to

excitations with arbitrary spin quantum numbers and use
well-known methods to implement gauge invariance [1–3].
In particular, we combine the idea of the gauge invariant
path observables of [3] with the quantum theory of [4] to
obtain simpler gauge invariant observables. In Sec. III we
discuss the implementation [10–12] of symmetry under
spatial diffeomorphisms in detail. For the case of spin 1

2
we

make sure that we can remove gauge transformations from
the diffeomorphism constraint locally, to obtain a constraint
that generates exclusively local spatial diffeomorphisms.
We then discuss symmetry properties of the quantum states
imposed by the diffeomorphism constraint and the statistics
of the matter fields in examples. It turns out that assuming
the spin statistics connection from quantum field theory,
simple rules can be formulated for certain symmetric states
to vanish with the implementation of the diffeomorphism
constraint.
In Sec. IV we suggest candidates for the classical actions

describing the semiclassical limits of the considered quan-
tum theory. A Hamiltonian formulation yields contributions
to Gauß, diffeomorphism, and Hamilton constraints from
the matter action, but also new constraints. We make some
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simple observations about this constrained Hamiltonian
formulation, but also point out thorny issues that makes
those classical theories quite complicated.
In Sec. V, an embedding of a U(1) gauge symmetry into

the theory for Dirac fermions is considered. The theory of
electromagnetism is already well understood within the
context of vacuum loop quantum gravity [13], and the
coupling to fermions is contained in [5]. Our discussion
leads to a formulation of positive and negative electromag-
netic charges or particles and antiparticles, respectively.
Throughout the paper, we use the signature ð−þþþÞ

for the metric. The spatial slice the canonical theory will be
based on is denoted by Σ. Four-dimensional spacetime
indices are denoted by lowercase Greek letters
μ; ν; ρ;… ∈ f0;…; 3g. Spatial indices are denoted by
lowercase letters a; b; c;… ∈ f1; 2; 3g.
Indices which correspond to a spin 1

2
representation

of SU(2) are denoted by capital letters A;B;C ∈ f1; 2g.
Spin 1 representations are denoted by lowercase letters
starting with i; j; k;… ∈ f1; 2; 3g, and four-dimensional
spin 1

2
(Dirac) representations are denoted by capital letters

starting with I; J; K;… ∈ f0; 1; 2; 3g. Higher spin repre-
sentations are built by the symmetrized direct sum of
Dirac representations and are indexed by the multi-
indices denoted by capital script letters A;ℬ;C;… ∈
fA; i; ðA1A2A3Þ;…g.

II. LOOP QUANTUM GRAVITY
WITH MATTER FIELDS

In this section, we will sketch the construction of an
unconstrained Hilbert space for gravity and matter of
arbitrary spin, and the implementation of the Gauss con-
straint. This is a natural generalization of the construction
of [4]. We also consider the generalization of natural
observables first suggested in [1,2] and later studied in
[3]. Using creation and annihilation operators, which both
act pointwise, enables us to reduce an ambiguity of these
path observables [3].
Let us start with matter-free loop quantum gravity. The

gravitational observables act on cylindrical functions which
form the Ashtekar-Lewandowski Hilbert space,

HAL ¼ L2ðA; dμALÞ; ð2:1Þ
via multiplication of holonomies and the action of the
derivation XS, respectively [14],

πjðhÞeΨ½A� ¼ πjðhÞe½A�Ψ½A�; ð2:2ÞZ
S
EiΨ½A� ¼ iðXi

SΨÞ½A�: ð2:3Þ

The matter degrees of freedom are described by a Fock
space based on pointlike excitations. The total uncon-
strained Hilbert space can hence be described by the tensor
product

H ¼ HAL ⊗ F�ðhðjÞÞ; ð2:4Þ

whereF� denotes the (anti)symmetric Fock space over the
one particle Hilbert space

hðjÞ ¼ ⨁
x∈Σ

C2jþ1: ð2:5Þ

This can be equivalently written as

hðjÞ ¼ ff∶ Σ ⟶ C2jþ1jfðxÞ ≠ 0 for finitely many xg;
ð2:6Þ

hfjf0i ¼
X
x∈Σ

fðxÞ f0ðxÞ: ð2:7Þ

The matter Fock space comes with creation and annihila-
tion operators satisfying the canonical (anti)commutation
relations,

½θðxÞA; θ†ðyÞℬ�� ¼ δAℬδx;y; ð2:8Þ

½θðxÞA; θðyÞℬ�� ¼ 0; ð2:9Þ

½θ†ðxÞA; θ†ðyÞℬ�� ¼ 0; ð2:10Þ

where we denoted the indices ranging over the spin j
representation space by the script letters A;ℬ. These can
be constructed by 2j many symmetrized Weyl spinor
indices. x and y are points in the spatial slice Σ. Note that
the creation and annihilation operators can be constructed
to act as a spacetime scalar and hence pointwise [4].
On the way toward a physical Hilbert space, we need to

implement the Gauss constraint. For this, we only regard
quantum states lying in the kernel of the quantum Gauss
constraint operator, or equivalently states that are invariant
with respect to the unitary action Ug of gauge trans-
formations generated by the Gauss constraint operator.
The action of Ug reads1

UgπjðheÞU−1
g ¼ gðsðeÞÞ · πjðheÞ · g−1ðtðeÞÞ; ð2:11Þ

UgθðxÞU−1
g ¼ gðxÞ · θðxÞ; ð2:12Þ

Ugθ
†ðxÞU−1

g ¼ θ†ðxÞ · g−1ðxÞ: ð2:13Þ

When implementing the Gauss constraint, we arrive at the
Hilbert space of SU(2) invariant states. One suitable basis is
given by a generalization of spin network states, which also
admit spin representations of matter fields at the vertices of

1Note that we are using the convention that the first index of he
transforms at sðeÞ and the second one at tðeÞ. At the same time,
we are using the convention for e∘f, which is used in [15], such
that he · hf ¼ he∘f holds.
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the underlying spin network graph. We want to characterize
these in the following subsection.

A. Generalized spin network states

The kinematic Hilbert space is spanned by the tensor
products of spin network states with Fock states. To
implement the Gauss constraint, one can follow either
refined algebraic quantization [11,16] or a reduced phase
space quantization both yielding the same result.
We have to filter for all states which are invariant under

gauge transformations [1,5] leaving only certain combina-
tions of holonomies, intertwiners, and matter fields where
the gauge transformation cancels. Given a graph γ and a set
of matter fields θp1

;…; θpN
, together with (2.11)–(2.13) we

can now deduce the characteristics of the quantum states in
the Hilbert space HG of gauge invariant states with the
following characteristics:

(i) The matter field θ has to be attached to a vertex of
the underlying graph γ. This might also be a 2-valent
vertex, although we do not consider them in the
vacuum theory.

(ii) For an n-valent vertex with a single matter field θ of
spin j attached, only intertwiners of the form

ι∶ j1 ⊗ � � � ⊗ jn → j ð2:14Þ
can be gauge invariantly coupled with θ. In particu-
lar, the set of spin quantum numbers ðj1;…; jnÞ is
restricted by the Clebsch-Gordan rules for spin
coupling.

(iii) For an n-valent vertex with an arbitrary number N of
particles, only intertwiners of the form

ι∶ j1 ⊗ � � � ⊗ jn → k ð2:15Þ
can be gauge invariantly coupled. Again, the set of
spin quantum numbers ðj1;…; jnÞ is restricted by
the theory of spin coupling. Here k denotes a spin
quantum number the N particles can couple to. k is
restricted by the Clebsch-Gordan theory to be in
the set

k ∈ f0; 1;…; N · jg; ð2:16Þ

or k ∈
�
1

2
;
3

2
;…; N · j

�
: ð2:17Þ

The second set is valid only for N odd and j half-
integral. If we assume anticommutation relations, as
known as fermionic quantization, then the total spin
is further bounded by a total number of 2jþ 1

particles or equivalently k ≤ jþ 1
2
− N

2
. This encodes

the finiteness of the antisymmetrized Fock space at
any point.
In particular, N ¼ 0 reduces to the vacuum spin

network case. Furthermore, we can generalize this

for mixing different types (spins) of particles at one
and the same point. Then, we would get the tensor
product of coupled spin variables k1;…; kl each
corresponding to one specific type. The intertwiner
then has the form

ι∶ j1 ⊗ � � � ⊗ jn → k1 ⊗ � � � ⊗ kl: ð2:18Þ

(iv) One-valent vertices, i.e., single starting or end points
of holonomies, are compatible with matter fields
attached. As the corresponding intertwiner has to
couple to 0, only a spin k representation of the said
holonomy qualifies for a gauge invariant spin net-
work state.

The total Hilbert space of gauge invariant states is then
spanned by the states described above. Another way to
describe the gauge invariant states is that they are obtained
by a pairing (summation over the free indices) of a
generalized spin network as defined in [14] with a suitable
matter state with particle excitations at the nongauge
invariant vertices.
We complete the discussion on the implementation of the

Gauss constraint by discussing an example of such a
generalized spin network state shown in Fig. 1. There,
we can see a graph with spin 1

2
particles denoted by stars,

which lie at the vertices. The black dots, on the other hand,
denote vertices without matter. We might have also
sketched a pair of spin 1

2
particles, but they will have no

effect to the state. Single particles do influence the spin
quantum numbers of the adjacent holonomies as they have
to couple to j ¼ 1

2
in order to yield a gauge invariant state in

total. The generalized spin networks can be formulated
with arbitrary particle types with an adequate pictorial
notation. To keep the example simple, we leave it by
inserting spin 1

2
particles only. Furthermore note that we did

not depict the directions of the edges in Fig. 1 for the sake
of clarity. The direction can indicate index positions of
holonomies and intertwiners. However, using the respective
(pseudo)metric, we can arbitrarily lower and raise the

FIG. 1. Exemplary generalized spin network state. Vertices
with a spin 1

2
particle are depicted by stars and vertices without

matter by dots. The spin 1
2
particles couple to the star intertwiner

gauge invariantly. For the sake of clarity, arrows depicting the
direction of the edges are omitted.
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indices and therefore change the directions of the edges,
anyway.

B. Path observables

After we have introduced the Hilbert spaceHG of gauge
invariant generalized spin network states, we will now face
the natural question of how to create and annihilate
particles. Obviously, it is not possible to create or annihilate
a single spin 1

2
particle without leavingHG. Instead, we can

introduce operators which are coupled gauge invariantly.
References [1,2] suggest to couple creators and annihi-

lators by holonomies. The idea was continued by [3].
However, there the annihilation operator is a density of
weight one. Therefore, every appearing annihilation oper-
ator has to be smeared gauge covariantly, i.e., with a
holonomy with a variable end point lying within an open
subset ℛ ⊂ Σ whose closure is compact. To do this in a
well-defined manner, an arbitrary but fixed rule of how to
construct the edge epp0 and therefore the holonomy hepp0
with fixed starting point p and variable end point p0 has to
be applied. This is necessary since there are a priori
infinitely many different edges with specific starting and
end points when integrating over the end point of the
holonomy hepp0 .
In our case, using the scalar creation and annihilation

operators of [4], this complication is bypassed. A gauge
invariant creation operator of two different chiral compo-
nents may take the form

ð2:19Þ

where p; q ∈ Σ and eð0Þ ¼ p, eð1Þ ¼ q, and we depicted
this so-called path observable also by a graph with the stars
indicating creation of, in this case, two Weyl spinors. The
direction of e is again implicitly encoded in the starting and
end points p, q. The order of the action of the operators
follows the convention that the symbol on the right acts first
(just as in the algebraic formulas).
The operator (2.19) acts on a generalized spin network

state by generating a matter field at the point p, a spin 1
2

holonomy along the edge e, and a matter field at the point
q. The resulting state can be written again as a linear
combination of spin network states now corresponding to a
potentially larger graph.

If we wanted to define an operator which annihilates a
particle at one or both end points of the holonomy, we have
to be careful whether one already uses the smeared version
of the annihilation operator or the version of [1] of the
annihilation operator. With the smeared version θ̂†A, we can
define, for instance,

ð2:20Þ

where we depicted the annihilation operator by an empty
circle. The operator (2.20) now annihilates a particle at the
point p, creates a holonomy along e, and creates a particle
at the end point q of the holonomy. Since the particles θ are
indistinguishable, this operator effectively transports a
particle lying at p along e to q.
For the sake of completion, we also show the last variant

of the path observables including two spin 1
2
fermions and

one holonomy

ð2:21Þ

Given a particle of higher spin, we can define the creation
two matter fields, for instance,

θ̂Ap ϵAℬπjðheÞℬCθ̂
C
q ; ð2:22Þ

which creates two spin j particles at the points p, q ∈ Σ and
a spin j holonomy in between.
The last operator we want to draw attention to can be

obtained as a special case of (2.20) by choosing a trivial
edge and p ¼ q and consequently also a trivial holonomy
π1

2
ðheÞ ¼ 1. We end up with the operator

ð2:23Þ

which creates and afterwards annihilates a particle θ at the
point p. This operator is related to the well known number
operator N̂ in quantum field theory. It can also be shown
[17] that the (anti)commutator of the path observables
(2.19)–(2.21) and (2.23) form again path observables if the
holonomies meet at end points. This statement still holds
when using the scalar creation and annihilation operators.
For two edges eð0Þ ¼ p, eð1Þ ¼ fð0Þ ¼ q, fð1Þ ¼ r, for
example, we find

ð2:24Þ
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which is a direct consequence of the canonical (anti)
commutation relations of θ, θ†, and he. One can read
(2.24) such that stars and open circles can be linked to a
longer holonomy. Indeed [3,17], this rule applies to all
possible combinations of path observables. If there are
multiple possibilities to link stars and circles, we will be left
with a linear combination of those links. On the other hand,
if there is no such possibility, then the (anti)commutator
vanishes. (Anti)Commutators involving the number oper-
ator also behave in the same way, for instance,

ð2:25Þ

With the operators introduced in this section we have found
an intuitive formulation of creation and annihilation of parts
of generalized spin network states including matter fields.
As a next step, we want to take a look at the diffeo-
morphism constraint and its effect on the quantum states.

III. DIFFEOMORPHISM SYMMETRY

On the way to a quantum theoretical formulation of
matter fields, we need to understand the symmetries of the
theory. The generators of these symmetries are besides the
Gauss constraint—on a kinematical level—also the diffeo-
morphism constraint. In this section, we will discuss the
action of the diffeomorphism constraint in the quantum
theory, and the symmetry properties it imposes upon states.
We refer to Appendix A for a review of the standard
derivation of the diffeomorphism constraint for vacuum
loop quantum gravity [10,15]. There we extend it by the
contribution from the Dirac theory of spin 1

2
particles [5,6]

and discuss details of the separation of gauge and diffeo-
morphism symmetry.

A. Diffeomorphism invariant spin network states
with matter fields

In generally covariant theories, the diffeomorphism
symmetry ensures that physical information may only be
extracted from the equivalence classes of diffeomorphism
invariant states. In particular, the absolute point inside the
spatial hypersurface p ∈ Σ has no physical relevance;
rather we can deform Σ by semianalytic diffeomorphisms,
and we do not change any physical observable. In matter-
free loop quantum gravity, states fulfilling the diffeomor-
phism constraint are obtained via an averaging method
[10,12,18] yielding equivalence classes of deformed states.
It will make a significant difference what conditions are

imposed on the diffeomorphisms that constitute the diffeo-
morphism symmetry. This has been discussed already in
previous work [10,19]. We will work in the semianalytic
category [20].

In the following, we will be particularly interested in the
interplay between the (anti)symmetrization imposed on
quantum states that are based on graphs with symmetries
by the diffeomorphism constraint on the one hand, and
the (anti)symmetrization of the state due to the statistics of
the matter field on the other hand. The fact that (anti)
symmetry is imposed in some cases due to the diffeo-
morphism constraint is a novel feature in loop quantum
gravity.
The spin network decomposition of the Hilbert space

HG contains all the spin network states that admit matter
fields at the vertices of γ such that they are lying in the
kernel of the Gauss constraint. Let DiffðΣÞ denote the
group of semianalytic diffeomorphisms. We will consider
the following subgroups:

Diffγ ¼ fϕ ∈ DiffðΣÞjϕðγÞ ¼ γg; ð3:1Þ

TDiffγ ¼ fϕ ∈ DiffγjϕðeÞ ¼ e and ϕðvÞ ¼ v

∀ e ∈ EðγÞ; v ∈ VðγÞg; ð3:2Þ

GSγ ¼ Diffγ=TDiffγ: ð3:3Þ

The group Diffγ consists of those diffeomorphisms which
map the graph γ onto itself, while TDiffγ maps the graph
trivially onto itself; i.e., it maps every edge e ∈ EðγÞ and
every vertex v ∈ VðγÞ onto itself. Note that this also
ensures that all fermions are mapped along with the
vertex they are attached to in the first place, as the
diffeomorphism constraint can be reduced to spatial diffeo-
morphisms. The quotient of Diffγ and TDiffγ again forms a
group whose elements we call graph symmetries ϕ ∈ GSγ .
These describe the permutations of edges and vertices
within the graph γ, which can be achieved by a semianalytic
diffeomorphism. In particular, the number of graph sym-
metries #GSγ is finite.
We define the diffeomorphism invariant states by aver-

aging over all the diffeomorphisms ϕ ∈ DiffðΣÞ taking two
steps. First we define the action of a projection operator P̂γ

on a spin network state Ψγ corresponding to the graph γ,

P̂γΨγ ≔
1

#GSγ

X
ϕ∈GSγ

ÛϕΨγ: ð3:4Þ

Here, Ûϕ acts on the spin network state by mapping edges
of holonomies and vertices of intertwiner as well as the
vertices where a matter field is attached:

Ûϕhe ¼ hϕðeÞ; Ûϕι ¼ ι; Ûϕθp ¼ θϕðpÞ: ð3:5Þ

In the second step, we average over the rest of the
diffeomorphism group, namely the diffeomorphisms
ϕ ∈ DiffðΣÞ=Diffγ , which move the graph γ. This group,
however, has infinite cardinality, such that we have to
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define the state ðηðΨγÞj in the dual space H�
G with the

following action on a spin network state Φα ∈ H,

ðηðΨγÞjΦαi ¼
X
ϕ∈Tγ

hÛϕP̂γΨγjΦαi: ð3:6Þ

In the literature, η is called the rigging map [10,18]. Note
that as Φα has a convergent norm, also the sum in (3.6) will
be convergent such that ðηðΨγÞj is well-defined.
We want to understand the behavior of spin network

states under diffeomorphism symmetry. We want to discuss
a condition under which a spin network state will be
mapped to 0. This way, it is possible to identify states that
do not appear in nature as they are annihilated by diffeo-
morphism symmetry. We want to discuss one sufficient
condition such that given a spin network state Ψγ the group
averaged state ðηðΨγÞj vanishes.2
Lemma III.1: Let γ be a spin network graph and Ψγ a

spin network state. If there exists a graph symmetry ψ ∈
GSγ such that ÛψΨγ ¼ −Ψγ , then the diffeomorphism
averaged state vanishes. In other words,

ðηðΨγÞj ¼ 0: ð3:7Þ

Proof.—We prove the hypothesis by proving that the
projection P̂γΨγ vanishes. As GSγ is a group with finitely
many elements, we can rearrange the averaging sum in the
following way:

P̂γΨγ ¼
1

#GSγ

X
ϕ∈GSγ

ÛϕΨγ

¼ 1

2#GSγ

� X
ϕ∈GSγ

ÛϕΨγ þ
X
ϕ∈GSγ

Ûϕ∘ψΨγ

�

¼ 1

2#GSγ

� X
ϕ∈GSγ

ÛϕΨγ þ
X
ϕ∈GSγ

ÛϕÛψΨγ

�

¼ 1

2#GSγ

� X
ϕ∈GSγ

ÛϕΨγ −
X
ϕ∈GSγ

ÛϕΨγ

�
¼ 0; ð3:8Þ

where we used the group homomorphism property
Ûψ∘ϕ ¼ Ûψ Ûϕ, which becomes apparent from the defini-
tion of Û. In the first step, we permuted the finitely many
addends of the second sum adequately. It follows that
also ðηðΨγÞj ¼ 0. ▪
In order to identify states which get annihilated due to

the diffeomorphism symmetry, it suffices to find one graph
symmetry which maps the spin network state Ψγ onto its
own negative. As we require physical states to be invariant
under diffeomorphism symmetry, we may call the states

which satisfy the condition of Lemma III.1 unphysical.
Note, however, that this condition might not be necessary
for having an unphysical state, as we can also imagine
multiple addends canceling only in the ensemble but not
two terms alone. In the following, we will focus on the
condition characterized by Lemma III.1.

B. A specific spin network graph

If we consider the spin-statistics theorem known from
quantum field theory on curved spacetime [22] as a guiding
principle, we can study the behavior of spin network states
under the exchange of fermions or bosons by permuting the
respective vertices via a graph symmetry. The exchange of
the particles as well as the permutation of edges on the
graph will yield signs which may lead to the condition
needed for Lemma III.1. As spin network graphs can, in
general, be very asymmetric, i.e., there might be only a few
or no nontrivial graph symmetries, we can hardly make
statements about the physicality of general spin network
states. Because of this, we start with the simplest spin
network state admitting two fermions. In Appendix B, we
consider a more general class of spin network states. Let us
consider a state which consists of an edge ewith a vertex at
the starting and end points each,

ð3:9Þ

Here, θA creates a spin 1
2
fermion in theWeyl representation.

The stateΨe contains two fermions at two distinct points p,
q ∈ Σ. Up to a constant C, which is determined by
normalization of the intertwiner, we can depict the alge-
braic formula of the spin network state by a spin network
graph. The fermions sitting at the intertwiners at p and q are
depicted by a star. Although, this graphical notation is very
similar to the notation in [3], there is a subtle difference
between (3.9), which is a state, and (2.19), which is an
operator, having the same graphical representation. When
being applied to the vacuum state,3 the operator (2.19)
yields the state (3.9). Thus, the similarity in the notation is
justified.
The state (3.9) can be generalized to a system of two spin

j ∈ N0

2
particles with a suitable gravitational interaction in

between

ð3:10Þ

2This was pointed out to one of the authors by Lewandowski
[21] in the context of loop quantum gravity without matter.

3The vacuum state is the Ashtekar-Lewandowski vacuum in
the gravitational sector and the Fock vacuum in the matter sector.
The former is uniquely fixed by spatial diffeomorphism invari-
ance; see [20,23].
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where now πjðheÞAℬ is a spin j representation of SU(2),
ι∶ j ⊗ j → 0 is the intertwining operator, and θ is a vector
in the spin j representation space of SU(2). The stateΨe has
one graph symmetry ϕ∶ Σ → Σ, which maps

ϕ∶ p ↦ q; ϕ∶ q ↦ p; ϕ∶ e ↦ e−1: ð3:11Þ

The diffeomorphism ϕ exchanges the two particles and
hence is a good candidate for fulfilling the conditions of
Lemma III.1. Also here, the state (3.10) can be read in
two different ways, as a creation operator or as the state
per se. In the following, we will think about it as creation
operators, albeit it will not make a difference taking the
opposite perspective. If Ψ̂ creates the state Ψ, then the
action of the Rigging map η on Ψ̂ can be expressed via
the action on Ψ in the following way:

ηðΨ̂j0iÞ ¼ ηðjΨiÞ; ð3:12Þ

where j0i denotes the vacuum state. Let us apply the
diffeomorphism ϕ to (3.10) and get

ÛϕΨe ¼ θAϕðpÞðιϕðpÞÞAℬπjðhϕðeÞÞℬCθ
C
ϕðqÞ

¼ θAq ðιqÞAℬπjðh−1e ÞℬCθ
C
p : ð3:13Þ

In order to convert this expression into something compa-
rable to (3.10), we have to better understand the intertwiner
ιAℬ which couples two general spin j holonomies. To do
this, we can use the fundamental representation of SU(2) to
build up any other irreducible representation. In particular,
we find the following lemma.
Lemma III.2: Let ι∶ j ⊗ j → 0, j ∈ N0

2
be a gauge

invariant intertwiner of SU(2). It holds

ιAℬ ¼ ð−1Þ2jιℬA; ð3:14Þ

i.e., the intertwiner is symmetric for integral spin and
antisymmetric for half-integral spin.
Proof.—We will prove this by giving an explicit con-

struction of ι. At first, note that the subspace of the gauge
invariant intertwiner, which couple

j ⊗ j ≅ 0 ⊕ 1 ⊕ � � � ⊕ 2j; ð3:15Þ

is one-dimensional. If we therefore find one gauge-invari-
ant intertwiner ι as described above, it will be unique up to
normalization.
We rewrite the indices μν as a number of 2j symmetrized

spin 1
2
indices and make the educated guess

ιðA1���A2jÞðB1���B2jÞ ¼ ϵðA1jðB1j � � � ϵjA2jÞjB2jÞ; ð3:16Þ

where we denote the symmetrization grouping by a vertical
line j. Hence, Eq. (3.16) is symmetric in A1;…; A2j as well

as in B1;…; B2j. To prove the intertwining property, we
will successively use the intertwining property of ϵ,

π1
2
ðgÞACπ1

2
ðgÞBDϵAB ¼ ϵCD; ð3:17Þ

with an arbitrary element g ∈ SUð2Þ. If we now build πjðgÞ
from π1

2
ðgÞ analogously, we end up with the desired

intertwining property

ιðA1���A2jÞðB1���B2jÞπ1
2
ðgÞA1

C1
π1

2
ðgÞB1

D1
� � �

× � � � π1
2
ðgÞA2j

C2j
π1

2
ðgÞB2j

D2j
¼ ιðC1���C2jÞðD1���D2jÞ

⇔ ιAℬπjðgÞACπjðgÞℬD ¼ ιCD; ð3:18Þ

which proves (3.16). Finally, we can read off

ιðA1���A2jÞðB1���B2jÞ ¼ ð−1Þ2jιðB1���B2jÞðA1���A2jÞ;

ιAℬ ¼ ð−1Þ2jιℬA; ð3:19Þ

yielding a sign factor −1 for each of the ϵ in (3.16). ▪
We are now ready to take a closer look at (3.13) and

compare it to (3.10),

ÛϕΨe ¼ ðιqÞAℬπjðh−1e ÞℬCðθAq θCp Þ
¼ πjðheÞℬAðιqÞℬCðð−1Þ2jθCp θAq Þ
¼ ð−1Þ4jπjðheÞℬAðιqÞCℬθCpθ

A
q

¼ Ψe; ð3:20Þ

where we used the (anti)commutation relations of θ in the
first step, the intertwining property in the second step, and
Lemma 3.2 in the last step. From (3.20) we deduce that the
simple spin network graph survives the diffeomorphism
group averaging. However, if we were to choose the
opposite statistics, the state would lie inside the kernel
of the rigging map η. Note that the above considerations
also hold true for any disjoint union of an arbitrary spin
network state with a pair of particles (3.10).

C. Behavior of general spin network states

It quickly becomes apparent that we cannot ensure that
there always exists a diffeomorphism which performs the
desired exchange of particles. A counterexample can be
constructed from (3.10) just by gauge invariantly coupling
a spin network on one of the star vertices but not on the
other one. This state can be written as

ð3:21Þ

where FD denotes a spin network graph which couples to
the rest gauge invariantly. As we can see, there is no way to
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exchange the two particles without changing the topology
of the graph. Still, we can study the behavior on more
general spin network graphs, which do admit a graph
symmetry exchanging two particles. In Appendix B, we
challenge this idea and construct the most general spin
network states admitting two particles and a graph sym-
metry which exchanges the two.
There, we found rules for the detailed construction of

states which survive the diffeomorphism constraint. Given
a generic spin network state with graph symmetry, we can
decompose the intertwiner on the symmetry axis into the
Wigner basis and deduce from the statistics of the particles
which components will survive or vanish after group
averaging. Specifically, fermions will let those components
survive which gather a total minus sign, and bosons will let
those components survive which are invariant under the
diffeomorphism ϕgeneral.

IV. CLASSICAL ACTIONS

As we have seen, quantum matter fields can be naturally
coupled to holonomies which represent the fundamental
building blocks of quantum geometry and are built from
representations of SU(2). To embed the discussions of the
previous sections into a more complete picture, we want to
discuss the corresponding classical theory from where we
would start a canonical quantization in the first place.
For the classical theory of spin 1

2
fields, we will review

the work [4–6]. Subsequently, we generalize the idea to
spin 0 as well as higher spin fields. For this, we follow the
same steps of the canonical quantization program as in the
vacuum theory but now for an action

S ¼ SGravity þ SMatter: ð4:1Þ

For spin 1
2
there is the well-known Dirac action, and the

action for higher spin fields was already investigated early
on [24,25].
Note that the experimentally confirmed theories of integral

spin particles are actually Yang-Mills theories of connection
1-forms. This puts us into a dilemma of choosing between a
Fock quantization of integral spin creators and annihilators
or a loop quantization of the holonomies defined by path
ordered exponentials of connections (analogous to gravity
degrees of freedom), which would be a natural choice within
the background-independent loop quantization of gravity.
While a Fock quantization would fit better into the particle
picture of the previous sections, the loop quantization of
a Yang-Mills action with an underlying gauge symmetry
group G is already well understood (see, for instance,
Refs. [26,27]). However, the corresponding G-holonomies
decouple from the gravitational holonomies such that the
spin interaction character of the particles is lost and the
classical derivation would be inconsistent with the quantum
theory discussed above. Note that not only on a quantum

level do the two perspectives yield different theories but also
the classical theories turn out to be inequivalent (see
Appendix C for details).

A. Dirac spinors

In a gravity theory of fermionic matter, we can achieve a
Hamiltonian formulation. The Dirac action for a spin 1

2

particle Ψ and its conjugate momentum Π ≔
ffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞp

Ψ†

reads

SDirac ¼
i
2

Z
ℳ
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgÞ

p
ðΨ̄γαeμα∇μΨ −∇μΨγαe

μ
αΨÞ;

ð4:2Þ
with Ψ̄ ¼ Ψ†γ0, eμα being the tetrad field and ∇ the
covariant derivative which annihilates e. The spatial part
of the corresponding connection can later be identified with
the Ashtekar connection A [5]. If we now introduce a
foliation described by lapse function N and shift vector
field Na via nμ ¼ 1

N ðTμ − NμÞ and nα ¼ −δ0α, we can then
write the tetrad as

eμα ¼ i�ðeÞμα − nαnμ; ð4:3Þ
with the triad eai ≔ i�ðeÞai being the pullback of the tetrad
onto the spatial hypersurface Σ. We also decompose the
Dirac spinor into two chiral components Ψ ¼ ðψ ; ηÞ, which
are both Weyl spinors. Plugging in all these quantities and
splitting up the derivatives into the ones along the time vector
field Tμ and the spatial derivativesDa, the Dirac action takes
the form of a constrained system with Dirac contributions to
the Gauss, diffeomorphism, and Hamilton constraints [5].
The canonical variables are now given by the chiral

components ðψ ; ηÞ and their conjugate momenta ðπψ ; πηÞ ¼
i

ffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞp ðψ†; η†Þ satisfying the anti-Poisson relations,

fψAðxÞ;ψBðyÞg� ¼ 0; fπψAðxÞ; πψBðyÞg� ¼ 0; ð4:4Þ

fψAðxÞ; πψBðyÞg� ¼ δABδx;y; ð4:5Þ

and similar for η. Also the anti-Poisson relations which mix
ψ and η vanish. Note that the momenta πψ gowith a relative

factor
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp

in comparison to the matter fields ψ . It turns
out that the discussion is being simplified by transforming
the (spacetime scalar) Weyl spinors to half-densities [4],

ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ4

p
ψ and ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ4

p
η: ð4:6Þ

As a consequence, the conjugate momenta πξ, πρ are also
half-densities. They satisfy the simple reality conditions

πξ ¼ iξ†; πρ ¼ iρ†: ð4:7Þ
With both contributions, Holst and Dirac, the constraints
can be written in the following form:
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Gi ¼
1

κ
DaEa

i þ iðξ†τiξþ ρ†τiρÞ; ð4:8Þ

Va ¼
1

κ
Fi
abE

b
i þ

i
2
ðξ†Daξþ ρ†Daρ − c:c:Þ; ð4:9Þ

H ¼ 1

2κ
ffiffiffi
q

p ðð2½Ka; Kb�i − Fi
abÞ½Ea; Eb�iÞ

þ Ea
i

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp ðDaðξ†σiξþ ρ†σiρÞ

þ iðξ†σiDaξ − ρ†σiDaρ − c:c:Þ
− Ki

aðξ†ξ − ρ†ρÞÞ; ð4:10Þ

where the constant κ has to be taken into account since
SHolst and SDirac carry different units.
The constraints can then be interpreted as the generators

of gauge transformations as in matter-free loop quantum
gravity. The kinematical Hilbert space can then be finally
set up as a tensor product space of cylindrical functions of
holonomies he together with the antisymmetric Fock space
F−ðhðjÞÞ as discussed in Sec. II. For a way to write the
Fock space in which the states are (wave) functions, in
keeping with the gravitational Hilbert space, see [4].

B. Integral spin quantum fields

1. The spin 0 field

Before we consider higher spin quantum fields, we want
to shortly discuss the classical theory of a spin 0 and a spin
1 field explicitly. As a first step, let us take a look at the real,
massless Klein-Gordon field described by the Klein-
Gordon action

SKG ¼ −
1

2

Z
ℳ
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgÞ

p
gμνDμϕDνϕ: ð4:11Þ

Since the matter fields ϕ are spacetime and SU(2) scalars,
the covariant derivatives can also be replaced by partial
derivatives.
We can perform a Legendre transformation, going over

to Arnowitt-Deser-Misner (ADM) variables [28] for the
metric and to ϕ and its conjugate momentum

π ¼ ∂L
∂ð∂0ϕÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp
N

ð−∂0ϕþ Na∂aϕÞ: ð4:12Þ

The term π _ϕ can be manipulated in such a way that the
canonical variables are both half-densities,

ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ4

p
ϕ and πξ ¼

πffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ4

p : ð4:13Þ

In this case, we will have to keep the covariant derivatives
in order to absorb the half-density factor inside the matter

field ϕ. However, the transformation to the half-density ξ
changes the symplectic structure. We can go back to
canonical variables by redefining the Ashtekar connection.
In the symplectic structure, we gather the following excess
term due to the product rule:

π _ϕ ¼ πξ _ξ − πξξ
Ltð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ4

p Þffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ4

p : ð4:14Þ

The excess term can be reformulated in terms of the flux
variable _Ea

i . In order to arrive there, we write

Ltð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ4

p Þffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ4

p ¼ 1

4
qab _qab ¼ −

1

2
_eai e

i
a: ð4:15Þ

We can use both expressions of (4.15) in the following
linear combination:

Ltð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ4

p Þffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ4

p ¼
�
3

2
−
1

2

�
Ltð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ4

p Þffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ4

p
¼ 3

2
·
1

4
qab _qab þ

1

2
·
1

2
_eai e

i
a

¼ eia
4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp _Ea

i : ð4:16Þ

We can combine the term (4.16) with the symplectic term
− _Ea

i Ai
a coming from the gravity action. Finally, the new

canonical variable, which is conjugate to E, reads

Ai
a ↦ Ãi

a ¼ Ai
a þ πξξ

eia
4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp : ð4:17Þ

This also means that every appearance of the Ashtekar
connection A in the Holst contributions of the constraints
has to be replaced by the new connection Ã minus the
excess term.
We can finally write down the constraints in terms of the

new canonical variables

Va ¼ πξDaξ; ð4:18Þ

H ¼ 1

2
ðqabDaξDbξþ π2ξÞ: ð4:19Þ

In these equations, Da is the covariant derivative using the
Levi-Civita connection, which can be expressed in terms of
Ea
i . One can see that—as expected for a spin 0 field—there

is no contribution to the Gauss constraint; hence the gauge
transformation of ϕ is trivial. The diffeomorphism con-
straint takes a similar form as in the Dirac case and can be
proven to generate spatial diffeomorphisms. From this
point on, we can follow the same steps as in the Dirac
case and describe the quantum theory by a tensor product of
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the vacuum spin network states with a Fock space of spin 0
particles. Finally, we end up with a rather boring theory,
since there is no constraint on the entanglement of the spin
0 particles with the gravitational holonomies but rather the
particles may be placed at any point in Σ, also displaced
from the spin network graph γ. As the spin 0 particle is
gauge invariant, we would not expect anything different.

2. The spin 1 field

A more interesting theory emerges from an action of the
spin 1 particle. For the reasons discussed in the beginning
of this section, we will refrain from starting with a
Yang-Mills theory, although most of the experimentally
confirmed matter theories are Yang-Mills theories of
connection 1-forms in classical field theory of integral
spin matter fields. Rather we choose a minimal action for a
spin 1 particle inspired by the Klein-Gordon action. A
massive spin 1 particle can be described by a rank 1 tensor
ϕI , I ∈ f0; 1; 2; 3g and the action [29]

S ¼
Z
ℳ
d4x

N
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p
½−gμνηIJ∇μϕI∇νϕJ

−m2ϕIϕ
I þ eμI∇μϕ

IeνJ∇νϕ
J�; ð4:20Þ

where we lower and raise internal indices I; J;…, with the
Minkowski metric η and ∇ is the covariant derivative with
the spin connection ωμ

I
J, which defines a parallel transport

of the spin 1 representations and is compatible with the
tetrad eIμ.
Note that it is important for the following analysis that

we consider matter fields with internal structure ϕI rather
than spacetime tensors Aμ. We show in Appendix C that the
two theories are inequivalent in the presence of gravity.
The action of the spin 1 field (4.20) yields the equations

of motion

gμν∇μ∇νϕI −m2ϕI − eμI e
ν
J∇μ∇νϕ

J ¼ 0: ð4:21Þ

If we contract (4.21) with ∇ρe
ρ
Kη

KI ≕∇I , then we get the
so-called Lorentz condition

m2eμI η
IJ∇μϕJ ≕m2∇JϕJ ¼ 0: ð4:22Þ

The Lorentz condition reduces the degrees of freedom by 1,
such that we end up with 3 degrees of freedom as expected
for a spin 1 particle. Note, however, that this formulation is
valid only if we impose m2 ≠ 0. If we insert the Lorentz
condition (4.22) into the equations of motion (4.21), we can
derive the spin 1 equivalent of the Klein Gordon equation

gμν∇μ∇νϕI −m2ϕI ¼ 0: ð4:23Þ
We can perform a Legendre transformation analogous to
the spin 0 case before. The action can be written again in
terms of three constraints

S ¼
Z
ℳ
d4xπI _ϕI −

�
ω0

J
Iπ

IϕJ þ NaπI∇aϕI

−
N
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p �
qabηIJ∇aϕI∇bϕJ þ

πIπI
detðqÞ

þm2ϕIϕ
I − eai∇aϕ

i∇IϕI − π0∇IϕI

��
; ð4:24Þ

where we again used the metric in terms of the shift vector
field Na and the lapse function N being the Lagrange
multipliers for the diffeomorphism and Hamilton con-
straints and denoted the conjugate momentum to ϕI by
πI . As in the spin 0 case, we can then rearrange the half-
density weights

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ4

p
to define the new half-density

matter field ξ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ4

p
ϕ and its conjugate momentum

πξ ¼ πffiffiffiffiffiffiffiffiffi
detðqÞ4

p by extending the Ashtekar connection by an

adequate excess term analog to (4.17) to make the
symplectic structure invariant under this transformation.
If we take a closer look at the variables ϕI and πI , it turns
out that 1 of the 4 degrees of freedom is fixed by a
constraint. These couple with the constraints arising for the
spin connection ω.
In Appendix D, we list these technical hurdles in detail.

Although a satisfying solution to these problems is not
known yet, reminiscent structures from previously dis-
cussed theories appear. This lets us conjecture the spin 1
field contributions to the Gauss, diffeomorphism, and
Hamilton constraints to take a similar form compared to
the previous matter theories, namely

Gi ¼ ϵij
kπjξξk; ð4:25Þ

Va ¼ πiξDaξi; ð4:26Þ

H ¼ 1

2
ðqabDaξiDbξ

i þ πiξπξi þm2ξiξ
iÞ; ð4:27Þ

where the covariant derivative D contains the Ashtekar
connection A and is compatible with the triad e. In order to
formulate the constraints in terms of the extended Ashtekar
connection Ã, one would have to choose another covariant
derivative and collect correction terms. Note that we
already left out the terms in the Hamilton constraint arising
from the additional term ð∇ϕÞ2 of the action (4.20). The
Gauss constraintGi can now be interpreted as the generator
of gauge transformations of the spin 1 particle ξ. To see
this, we calculate the Poisson bracket of the canonical
variables ðπξ; ξÞ with the smeared Gauss constraint GðΛÞ,

fGðΛÞ;ϕig ¼ −Λjϵij
kϕk; ð4:28Þ

fGðΛÞ; πig ¼ Λkϵkj
iπj: ð4:29Þ
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The vector constraint Va and Hamilton constraintH, on the
other hand, take a similar form as in the previous theories.

3. Higher integral spin fields

Although there is still work to be done in the case of spin
1, this gives rise to the conjecture that similar matter
theories with higher spin can be treated in a similar way.
However, in general the introduction of auxiliary fields is
needed to derive a generalized Klein-Gordon equation and
the Lorentz conditions

gμν∇μ∇νϕI1���Ij ¼ 0; ð4:30Þ

ηI1JeμJ∇μϕI1���Ij ¼ 0; ð4:31Þ

with ϕ being a symmetric tensor field, which describes an
integral spin j field when the Lorentz conditions (4.31) are
imposed. The auxiliary fields vanish on shell as long as we
do not add potential terms. In addition to that, the minimal
Lagrangian for an arbitrary integral spin j field contains the
terms (4.20) in addition to terms which are proportional to
the auxiliary fields. According to [29] the Lagrangian for
particles with integral spin reads

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgÞ

p 1

2
ϕðjÞ
I1���Ijðgμν∇μ∇ν −m2ÞϕðjÞI1���Ij

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgÞ

p j
2
ð∇ϕðjÞÞI2���Ijð∇ϕðjÞÞI2���Ij

þOðϕðj−1ÞÞ; ð4:32Þ

where we pull internal indices with the Minkowski metric η

and defined ð∇ϕðjÞÞI1���Ij−1 ¼ ηIJeμI∇μϕ
ðjÞ
JI1���Ij−1 . The Landau

symbol Oðϕðj−1ÞÞ collects all the terms that are at least
linear in the introduced auxiliary fields ϕðj−qÞ with
j ≥ q > 0. These auxiliary fields vanish on shell. More-
over, the additional term ð∇ϕðjÞÞ2 reduces the number of
degrees of freedom of the matter field ϕðjÞ to 2jþ 1. Note
that this method only works for massive fields withm2 ≠ 0.
We see from the first term of (4.32) that we recover the
same terms as before in the Gauss, diffeomorphism, and
Hamilton constraints when doing a constraint analysis. The
remaining terms all contain at least one auxiliary field.
Since we can reformulate the classical equations of motion
in a way that the auxiliary fields vanish,

ϕðj−qÞ ¼ 0 ∀ j ≥ q > 0; ð4:33Þ

we will end up with the exact same form of the constraints
(4.25)–(4.27) after we implemented the conditions (4.33).
We conjecture that the most general form of the constraints
will read

Gi ¼ π
I1���Ij
ξ τi

J1���Jj
I1���IjξJ1���Jj þOðϕðj−qÞÞ; ð4:34Þ

Va ¼ π
I1���Ij
ξ DaξI1���Ij þOðϕðj−qÞÞ; ð4:35Þ

H ¼ qabDaξI1���IjDbξ
I1���Ij þ πξI1���Ijπ

I1���Ij
ξ

þm2ξI1���Ijξ
I1���Ij − eaiDaξ

iI2���IjDIξII2���Ij

− π
0I2���Ij
ξ DIξII2���Ij þOðϕðj−qÞÞ; ð4:36Þ

where we denoted any function of the auxiliary fields ϕj−q

which vanishes when implementing the on-shell conditions
(4.33) by Oðϕðj−qÞÞ and τi being the basis elements of the
Lie algebra suð2Þ in the spin j representation.
Note that the order of implementing the constraints

becomes important now. Since we would like to imple-
ment the Gauss constraint as the generator of SU(2)
gauge transformations, we can simplify this discussion
by first projecting onto the subspace where (4.33)
holds. Otherwise, we would have to deal with the
definition of a Fock space, in particular creation and
annihilation operators for each of the auxiliary fields
ϕ̂ðj−qÞ and the action of the Gauss constraint would be
more complicated.
The covariant phase space formalism [30] seems par-

ticularly useful for this endeavor, as it clearly brings out the
points in the construction of the phase space in which the
equations of motion can be used.

C. Half-integral spin quantum fields

We finally suggest a general theory of loop quantum
gravity with particles of spin j ∈ 2N0þ1

2
. We are looking for

a theory of gravity minimally interacting with matter
fields; i.e., we want to find an action which yields the
same equations of motion as in the free theory with
covariant derivatives. Even on the classical level, the
interacting theories of higher spin particles is a current
topic of interest [31–34]. There are several unsolved
problems including no-go theorems for certain theories
of higher spin particles. The very idea of a free theory of a
half-integral spin particle can be traced back to [25],
which is in turn based on [24]. The systematic approach
based on this work needs the introduction of auxiliary
matter fields, which vanish on shell in the free theory but
not necessarily in an interacting theory.
There, a half-integer spin nþ 1

2
∈ N0 þ 1

2
particle is

described by a ð1
2
ðnþ 1Þ; 1

2
nÞ ⊕ ð1

2
n; 1

2
ðnþ 1ÞÞ represen-

tation of the Lorentz group ψ I1���In with the Weyl index
being suppressed. ψ is a symmetric tensor and satisfies the
spinor trace condition

γJψJI2���In ¼ 0 ð4:37Þ

with the Dirac matrices γI . Equation (4.37) reduces the
total number of degrees of freedom in the chiral com-
ponents of ψ to 2ðnþ 1

2
Þ þ 1 as expected for a spin nþ 1

2
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representation.4 To run the program of loop quantum gravity
for half-integral spin fields, we would need a Lagrangian
from which we can derive the generalization of the Dirac
equation

ð−ieμI γIDμ þmÞψ I1���In ¼ 0; ð4:38Þ
ηIJeμIDμψJI2���In ¼ 0; ð4:39Þ

where we carefully intertwine four-dimensional representa-
tion space indices I; J;…, with four-dimensional spacetime
indices μ; ν;…, nontrivially via the tetrad eμI [cf. (4.2)].
Unfortunately, Eq. (4.39) is not an Euler-Lagrange equation;
i.e., it cannot be derived from an action by a variational
principle unlesswe introduce auxiliarymatter fields [35]. For
a spin 3

2
particle, for instance, the Lagrangian density which

yields Eqs. (4.38) and (4.39) for the massless case reads

L ¼ β

2
ηIJψ IðiγKeμKDμ −mÞψJ −

2

3
βχðeμI ηIJDμψJÞ

−
1

3
βχðiγKeμKDμ þ 2mÞχ; ð4:40Þ

where we introduced an auxiliary Dirac spinor field χ. The
corresponding Euler-Lagrange equations can be written in
the following form [35]:

ð−iγKeνKDν þmÞψ I þ i
2
γIeμKDμψ

K

¼ 2

3

�
eμJη

IJDμ þ
1

4
γIγKeμKDμ

�
χ; ð4:41Þ

eμIDμψ
I ¼ −ðiγKeμKDμ þ 2mÞχ: ð4:42Þ

The coefficients in front of each of the terms in (4.40) are
chosen such that the auxiliary spinor field vanishes on shell.
The equation χ ¼ 0 can be obtained by contracting (4.41)
with eμIDμ and substituting (4.42) therein. This reproduces
Eqs. (4.38) and (4.39) for the special case of a spin 3

2
particle.

For higher spins, the Lagrangian yielding the equations of
motion (4.38) and (4.39) can be constructed in a similar way
[35]. For the spin 3

2
particle, however, there is a way to write

the Lagrangianwithout the necessity of introducing auxiliary
matter fields. The Rarita-Schwinger Lagrangian [25] takes
the compact form

LRS ¼ ψ̄ IðγIJKeμJDμ − imσIKÞψK

with γIJK ¼ 1

3!
γ½IγJγK� and σIK ¼ ½γI; γK�:

ð4:43Þ
In the canonical theory, the Rarita Schwinger field is descri-
bed by Ψi and the corresponding canonical momentum,

which is linear in Ψ̄0 [36–38]. Again it turns out to be
advantageous to go over to density weight 1

2
fields. On the

kinematical level, the four-dimensional Rarita Schwinger
field can thus be quantized as a triple of Dirac fields. One can
perform the analog constraint analysis as in the Dirac case
and again arrive at contributions to Gauss, diffeomorphism,
and Hamilton constraints, as well as new constraints coming
from the fact that Ψ0 turns out to be nondynamical.
The classical theory of higher half-integral spin quantum

fields can also be systematically constructed similar to
(4.32). Again, we refrain from writing out the whole
Lagrangian, but indicate the dependence of L on the
auxiliary fields [35]

L ¼ β

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgÞ

p
ψ ðjÞ
I1���Inðie

μ
I γ

I∇μ −mÞψ ðjÞI1���In

þOðψ ðj−1ÞÞ ð4:44Þ
with n ¼ j − 1

2
and the matter degrees of freedom described

by the symmetric tensor field ψ ðjÞ, which also carries a
Dirac spinor representation. Also here, the important term
yielding the desired constraints is the first one in (4.44),
while the other terms vanish if we implement the on-shell
conditions. The Gauss and diffeomorphism constraints
finally have the same form as (4.34) and (4.35). The
Hamilton constraint, on the other hand, will have the form

H ¼ eaIϕ
I1���InγIDaϕI1���In þm2ϕI1���Inϕ

I1���In

þOðψ ðj−qÞÞ: ð4:45Þ

The Hamilton constraint differs from the integral case by its
linear dispersion relation. In the case of the half-integral
spin, we conjecture that it will be possible to introduce half-
densities ξ describing the matter field without changing the
symplectic structure. This is harder in the case of integral
spin, but an adequate redefinition of the connection also
yielded a formulation in terms of half-densities in the spin
0 case.

V. ELECTROMAGNETIC CHARGE AND
ANTIPARTICLES

In this last section, we want to challenge the extension of
loop quantum gravity with matter fields by a U(1) gauge
field. This is used to describe the electromagnetic charge
and interaction among particles as well as between particles
and spacetime. Therefore, it yields a better suiting descrip-
tion of most particles of the standard model of particle
physics.
On the level of loop quantum gravity without matter

fields, there have already been investigations on the loop
quantization of a U(1) theory [13,26], and also [4]
discussed that case implicitly in the context of spin 1

2

particles. We want to review these results and combine
them with our previous results.

4The number of possible independent values of ψ is given by
the number of partitions of n identical blocks into four parts.
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We will start with a formulation of the constraint algebra
of the U(1) and SU(2) Gauss constraints as well as the
diffeomorphism and Hamilton constraints. Subsequently,
we can define creation and annihilation operators for
particles and antiparticles analogously to the path observ-
ables of Sec. II.

A. A kinematical Hilbert space for charged fermions

We will start with the Yang-Mills action for a U(1)
connection 1-form Aμ on curved spacetime

SYM ¼ −
1

4

Z
dt

Z
Σ
d3x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgÞ

p
FμνFρσgμρgνσ; ð5:1Þ

with the curvature Fμν ¼ ∂μAν − ∂νAμ. In Fμν, we can
replace the partial derivatives by covariant derivatives D
corresponding to the Levi-Civita connection Γ for the
transport of spacetime structures, the Ashtekar connection
for SU(2) structures, and the U(1) connection Aμ for U(1)
structures.
Performing a Legendre transformation of (5.1) with

respect to Aμ and the conjugate momentum

Eμ ¼ ∂L
∂ð∂0AμÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgÞ

p
Fμ0; ð5:2Þ

we end up with a Hamiltonian consisting of the following
constraints only [5]:

Gi ¼ DaEa
i þ iðξ†τiξþ ρ†τiρÞ; ð5:3Þ

G ¼ DaEa þ ðξ†ξþ ρ†ρÞ; ð5:4Þ

Va ¼Fi
abE

b
i þFabEbþ i

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p
ðξ†Daξþ ρ†Daρ− c:c:Þ;

ð5:5Þ

H ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp ½ð2½Ka; Kb�i − Fi

abÞ½Ea; Eb�i

þ Ea
jDaðξ†σjξþ ρ†σjρÞ

− iEa
j ðξ†σjDaξ − ρ†σjDaρ − c:c:Þ

þ Ea
jK

j
aðξ†ξ − ρ†ρÞ þ qabðEaEb þ BaBbÞ�; ð5:6Þ

where we defined Ba ≔ 1
2
ϵbcaFbc. The U(1) Gauss con-

straint corresponds to the Lagrange multiplier A0. Also the
diffeomorphism and Hamilton constraints arise from the
action in an analogous manner. This is not surprising, since
we can express gravity theory in terms of Ashtekar’s
variables [39] as an SU(2) Yang-Mills theory as well. A
more elegant, geometric approach to the constraint analysis
of the U(1) Yang-Mills theory is derived by [40,41].
The U(1) Gauss constraint generates U(1) gauge trans-

formations. Note that both ξ and ρ have the same sign in the
U(1) gauge constraint, which corresponds to the same sign
of electromagnetic charge. Importantly, the two Gauss

constraints decouple, which can be seen by calculating
the Poisson brackets between the smeared SU(2) and U(1)
Gauss constraints,

fGðΛÞ; GðΛÞg ¼ 0: ð5:7Þ

Also, since Λ is Abelian, one can show

fGðΛÞ; GðΛ0Þg ¼ 0: ð5:8Þ
As for the vector constraint Va, we can reformulate it in the
same way as before yielding the constraint WðN⃗Þ, which
generates spatial diffeomorphisms. This constraint behaves
similarly as an element of the Poisson algebra. The
commutator with the U(1) Gauss constraint takes the form

fGðΛÞ;WðN⃗Þg

¼
Z
Σ
d3xfΛDaEa; ðspLN⃗AÞbEbg

þ fΛðξ†ξþ ρ†ρÞ; iNaðξ†∂aξþ ρ†∂aρ − c:c:Þg
¼ GðN⃗ðΛÞÞ ¼ GðspLN⃗ΛÞ; ð5:9Þ

which is analog to fGðΛÞ;WðN⃗Þg ¼ GðspLN⃗ΛÞ [15]. The
Poisson relations excluding the U(1) Gauss constraint
GðΛÞ remain untouched. This ensures that the kinematical
Hilbert space with the two Gauss constraints and the
diffeomorphism constraint being implemented is stable
under the action of the constraint operators, since the
constraint algebra is closed under the Poisson bracket.
Let us also review the unconstrained Hilbert space of the

theory including U(1) representations [13]. We build the
Hilbert space additionally with U(1) holonomies

heðAÞ ≔ P exp
Z
e
A ∈ Uð1Þ; ð5:10Þ

which satisfies the same properties as the SU(2) holono-
mies in addition to the fact that they are Abelian. These
will build up our Hilbert space, as we can formulate a �
algebra with them together with the electric fields E and
E [13].
Hence, we define the Hilbert space of charged matter

fields on loop quantum gravity as the Cauchy completion of
the span of smooth cylindrical functions with respect to
both connections A and A

H ≔ ⨁
γ
H0

γ;

Hγ ≔ spanfΨγ½A; A� ∈ Cyl∞γ g; ð5:11Þ

where we now call a function of A and A cylindrical if it can
be written as a function of holonomies

Ψ½A; A� ¼ fðhe1 ;…; heN ; he1 ;…; heN Þ ∈ Uð1Þ: ð5:12Þ
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The prime 0 in H0
γ denotes that we only consider the

orthogonal components of each of theHγ; i.e.,H0
γ does not

include cylindrical functions which are also cylindrical
with respect to a graph γ̃ ⊊ γ which is strictly included in γ.
The inner product can be constructed just as the

Ashtekar-Lewandowski inner product but using the Haar
measure of SUð2Þ × Uð1Þ instead of SU(2). The orthogonal
components are further decomposed into the irreducible
representations of SU(2) labeled by spin quantum numbers
j ∈ N0

2
and U(1) labeled by charge quantum numbers

n ∈ Z. This yields the decomposition

H0
γ ≅ ⨁

j⃗;⃗l;n⃗

H0
γ;j⃗;⃗l;n⃗

; ð5:13Þ

where the spin vectors j⃗ and ⃗l encode the spin representa-
tions of the SU(2) holonomies, n⃗ encodes the representa-
tion of the U(1) holonomies, and the H0

γ;j⃗;⃗l;n⃗
only contain

cylindrical functions admitting the respective spin or charge
representations of the SU(2) and U(1) holonomies.
In order to solve the U(1) Gauss constraint, note that the

n representation of he transforms as a holonomy

πnðheÞ ↦ πnðgðeð0ÞÞÞπnðheÞπnðg−1ðeð1ÞÞÞ
¼ e−inϕðeð0ÞÞπnðheÞeinϕðeð1ÞÞ; ð5:14Þ

with ϕ∶Σ → uð1Þ. Taking into account the matter fields,
we find the transformation

θp ↦ e−inθϕðpÞθp: ð5:15Þ

If we consider gauge invariant cylindrical functions only,
all the exponents in the gauge transformation of (5.14) and
(5.15) have to cancel. The U(1) invariance can hence be
translated into the simple condition

X
e∈EðvÞ
eð1Þ¼v

ne −
X
e∈EðvÞ
eð0Þ¼v

ne −
X

θ∈ΘðvÞ
nθ ¼ 0 ∀ v ∈ VðγÞ; ð5:16Þ

where EðvÞ denotes the set of edges which start or end
at the vertex v ∈ VðγÞ and ΘðvÞ the set of matter fields
which are attached to v. Note that nθ is fixed for a fixed
particle type θ. In particular for spin 1

2
fermions, it holds that

nθ ¼ nω as pointed out before. All the quantum states
which satisfy (5.16) in addition to being SU(2) invariant
define the Hilbert space HG of gauge invariant quantum
states. However, for U(1) invariance we need the notion of
antiparticles, which is not yet present in our discussion. Let
us consider the following U(1) variant example.
Example V.1. Consider two charged fermions of spin

1
2
and charge n ¼ 1 connected by an edge e,

ð5:17Þ

Since the two particles carry the same charge, a total
electromagnetic charge of 2 quanta is flowing out of the
two fermion system.
The particles θ carry an intrinsic charge and therefore can

be seen as sources (or sinks for the opposite sign,
respectively) of electromagnetic charge. The U(1) holon-
omies, on the other hand, do not provide a source of charge
because the same amount of electromagnetic charge flows
through every point along the holonomy.
For U(1) invariant states, the U(1) Gauss constraint states

that the overall electromagnetic flux of the quantum state
vanishes. Therefore, there has to be either vacuum or both
positively and negatively charged particles in order to
balance each other. This raises the question of how to
describe antiparticles (i.e., particles of the same type with an
electromagnetic charge of opposite sign) within our theory.

B. Antiparticles

From the classical action, the concept of antiparticles is
not manifest. Indeed, also in flat spacetimes, antiparticles
appear first in the Fourier transform of the quantum fields.
In loop quantum gravity, however, we cannot access this
tool, but may define an analog version of the particle-
antiparticle pair inspired by flat quantum field theory,

θ̂ ¼ 1ffiffiffi
2

p ðθ̂þ þ π̂θ−Þ; ð5:18Þ

π̂θ ¼
1ffiffiffi
2

p ðθ̂− þ π̂θþÞ; ð5:19Þ

and similar for ω. Here, we defined the creation θ̂� and
annihilation operators θ† ¼ −iπ̂θ� for particles (þ) and
antiparticles (−).
The chiral components of the Dirac spinor are both,

creating a particle, but also annihilating an antiparticle if we
are serious about the analogy in flat quantum field theory.
The momenta πθ and πω, on the other hand, should also
create an antiparticle in addition to annihilating a particle.
The definitions (5.18) and (5.19) are moreover compatible
with the reality conditions πθ ¼ iθ† and impose the new
reality conditions

πθ� ¼ iθ†�: ð5:20Þ
Another way of recovering particle and antiparticle as Weyl
spinors in the theory is achieved by switching the terms θ
and θ† for one of the two Weyl components [42]. This way,
also the electromagnetic charge of one of the chiral
components is flipped. This does not change the
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anticommutation relations and is therefore a freedom of
choice in the quantum theory. Let us finally look at the U(1)
invariant version of example V.1.
Example V.2. Consider the particle-antiparticle pair

connected by an SU(2) and a U(1) holonomy

ð5:21Þ

The antiparticle is depicted by an empty circle. Note that

the former annihilation operator θ̂† does not annihilate the
vacuum anymore, but the operators θ†� do. Because of that,
only the creation operators θ̂� survive when acting on the
vacuum state. Moreover, since we have both a source and a
sink of electromagnetic charge, the U(1) Gauss constraint is
satisfied.
Example V.2 shows that we can define the path observ-

ables creating elements of gauge invariant quantum states
also for SUð2Þ × Uð1Þ gauge theory. The path observable in
Example V.1 carries a total charge of 2 quanta and thus
cannot be made U(1) invariant without introducing extra
structure. Instead, we would have to add a second pair of
antiparticles, which absorbs the excess charge. This might
look as follows.
Example V.3. Consider a pair of particles and a pair of

antiparticles each connected by an edge with spin 1
2
and

charge 1. Furthermore, the two pairs are connected by
another edge, which does not carry any spin but neutralizes
the charge of the two pairs. The pictorial representation reads

ð5:22Þ

Example V.3 can be further generalized using an
arbitrary gauge invariant generalized spin network state
the same way as in the uncharged case. The fact that we
need as many particles as antiparticles (or equivalently
positive and negative charges) is also in agreement with flat
quantum field theory.

VI. SUMMARY AND OUTLOOK

In this work, we have studied various kinematical aspects
of the coupling of quantum matter to loop quantum gravity.
Following [4,5], but using the language of Fock spaces,

we defined the Hilbert space H and basic operators for a
quantum theory of spin 1

2
fields, and we generalized it to

higher spin quantum fields in a straightforward way. An
orthonormal basis for the gauge invariant states inH can be
found by the generalization of the notion of spin network

states known from matter-free loop quantum gravity. This
generalization contains matter fields which can be located
at the vertices of the underlying spin network graph γ.
Inspired by the gauge invariant observables defined by
[1,3], we were able to introduce a closed (anti)commutator
algebra of creation and annihilation operators for gauge
invariant generalized spin network states.
While the Gauss constraint could be directly understood

to ensure the gauge invariance of the states, one has to add a
phase space dependent generator of a gauge transformation
to the diffeomorphism constraint before it generates spatial
deformations without gauge transformations (Appendix A).
We have checked that this is possible at least locally, which is
enough for the further considerations in the present work. It
also fixes the order of implementation of the constraints,
since the action of the diffeomorphism constraint would
generate terms proportional to the Gauss constraint
otherwise.
The implementation of the diffeomorphism constraint on

the space of gauge invariant generalized spin network states
was performed with the group averaging technique in
analogy to the matter-free case [10,18]. We paid special
attention to the interplay between the (anti)symmetrization
imposed on quantum states that are based on graphs with
symmetries by the diffeomorphism constraint on the one
hand, and the (anti)symmetrization of the state due to the
statistics of the matter field on the other. The fact that (anti)
symmetry is imposed in some cases due to the diffeo-
morphism constraint is a novel feature in loop quantum
gravity. In special symmetric cases and by consideration of
particle exchange generated by a graph symmetry, we have
found simple rules that characterize whether a state is
annihilated by the diffeomorphism averaging or not. For
these considerations, we assumed a spin-statistics connec-
tion motivated by the fact that a spin-statistics theorem
exists for quantum field theories on curved spacetime [22].
While we found that it is straightforward to generalize

the quantum kinematics of [4,6] to matter theories with
higher spin, it is an important question whether this
quantum theory can be derived from a classical higher
spin action. These actions contain auxiliary matter fields
which have no physical significance whatsoever as they
vanish on shell. Using this technique, the kinematical
constraints on the classical phase space could be elaborated
and indeed take a similar form as in the lower spin case.
Although we completely discussed the case of spin 0 and

1
2
only, we can conjecture a general behavior by solving the

on-shell conditions for the auxiliary fields in the higher spin
case. However, it is not clear how to consistently solve the
second class constraint with the Lagrange multiplier −Aa in
order to get from the SO(3, 1) connection ω to an SU(2)
connection A. In addition, in the four-dimensional repre-
sentation of the spin 1 particle we encountered further
second class constraints, since the 0 component of the
momentum π0 seems not to be an independent variable. For
the simplified situation of flat spacetime, solving the
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additional constraints yields nonlocal dependencies, and
hence a complicated theory. In any case, this should be
further investigated before tackling even higher spins.
Finally, we briefly considered charged Dirac fermions

coupled to gravity and U(1) Yang-Mills theory, and
rederived earlier results [5,26]. We found a way to represent
both particle and antiparticle on the Fock space. Due to the
requirement of gauge invariance, the creation of particles
goes hand in hand with that of antiparticles. We have
sketched the consequences for the gauge invariant observ-
ables introduced earlier. We note that it would not be easy
to tackle the classical theory of electromagnetically charged
higher spin fields. The problem here is that it is not clear
whether the vanishing conditions for the auxiliary fields
still hold. There is already existing work on a Lagrangian
formulation of higher spin theories including an electro-
magnetic field [24,33], which might be used to extend the
available theory to gravitationally and electromagnetically
interacting theories.
Altogether we found that there is a very simple and

elegant kinematics for coupling quantummatter of arbitrary
spin to loop quantum gravity. Implementation of the Gauss
constraint leads to a tight coupling between matter and
gravity already at the kinematical level, and the diffeo-
morphism constraint imposes interesting symmetry proper-
ties on the joint quantum states in certain situations. But
obviously there are still many open problems on this path to
a unified theory of matter and gravity.
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APPENDIX A: THE GENERATOR OF PURELY
SPATIAL TRANSFORMATIONS

From the combined action of Holst gravity [43] with
Dirac fermions we can read off the smeared diffeomor-
phism constraint [5],

VðN⃗Þ ¼
Z
Σ
dx3NaVa

¼
Z
Σ
dx3Na

�
1

κ
Eb
i F

i
ab

þ i
2
ðξ†Daξþ ρ†Daρ − c:c:Þ

�
; ðA1Þ

where ξ and ρ are left- and right-handed half-density
spinors in the Weyl representation as defined in [4] and
D is the SU(2) covariant derivative. However, following the
standard discussions of the vacuum theory [15,18], we do
not stick to (A1) as a diffeomorphism constraint. We will
rather add a term proportional to the Gauss constraint, with
which we might define a new constraint within the same
constraint algebra. Using integration by parts and vanishing
boundary conditions, we find the following form of the new
constraint:

WðN⃗Þ ¼
Z
Σ
dx3ðNaVa − NaAi

aGiÞ

¼
Z
Σ
dx3

�
Ea
i ð∂aNbAi

b þ Nb∂bAi
aÞ

þ i
2
Naðξ†∂aξþ ρ†∂aρ − c:c:Þ

�
: ðA2Þ

The constraint WðN⃗Þ is what is often called the diffeo-
morphism constraint in the literature [15,44,45]. The reason
for this name becomes apparent when calculating the action
of (A2) on the phase space variables. Furthermore, it is
important to note that the constraint WðN⃗Þ is dependent
on a section in the principal fiber bundle, which is in
general only defined locally. Hence, we cannot subtract the
terms encoding the gauge transformations for any diffeo-
morphism but only on those with a support in an open
neighborhood around a given point.5 The Poisson brackets
of the constraint with respect to the phase space coordinates
ðEa

i ; ξ; ρ; A
i
a; iξ†; iρ†Þ read

fWðN⃗Þ; Ea
i g ¼ Nb∂bEa

i − ∂bNaEb
i þ ∂bNbEa

i

¼ ðspLN⃗EÞai ; ðA3Þ

fWðN⃗Þ; Ai
ag ¼ ∂aNbAi

b þ Nb∂bAi
a

¼ ðspLN⃗AÞia; ðA4Þ

fWðN⃗Þ; ξg ¼ Na∂aξþ
1

2
∂aNaξ

¼ spLN⃗ξ; ðA5Þ

fWðN⃗Þ; iξ†g ¼ Na∂aðiξ†Þ þ
1

2
∂aNaðiξ†Þ

¼ spLN⃗iξ; ðA6Þ

and analogously for ρ and ρ†. The right-hand sides of (A3)–
(A6) describe the infinitesimal action of a finite spatial
diffeomorphism, which is in particular the flow of the
vector field N⃗. This is why we call the right-hand sides of
(A3)–(A6) the Lie derivative [6,15]. The Lie derivative has

5As a matter of fact, this might yield nontrivial effects
depending on the topology of Σ.
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been chosen to act trivially in the local trivialization chosen
for the connection and the fields as E in associated bundles.
In the chosen trivializations, the constraint WðN⃗Þ thus
“ignores” the internal structure of the phase space variables
completely.
For the original vector constraint VðN⃗Þ we find the

following Poisson relations:

fVðN⃗Þ; Ea
i g ¼ spLN⃗E

a
i þ ϵij

kNbAj
bE

a
k − NaGi

¼ LN⃗E
a
i − NaGi; ðA7Þ

fVðN⃗Þ; Ai
ag ¼ spLN⃗A

i
a þDaðNbAi

bÞ
¼ LN⃗A

i
a; ðA8Þ

fVðN⃗Þ; ξg ¼ spLN⃗ξþ NbAj
bτjξ

¼ LN⃗ξ; ðA9Þ

fVðN⃗Þ; iξ†g ¼ spLN⃗ðiξ†Þ þ NbAj
bτjðiξ†Þ

¼ LN⃗ðiξ†Þ: ðA10Þ

We see that VðN⃗Þ gives the desired Poisson relations which
are gauge covariant Lie derivatives of the canonical
variables except in (A7). Here, we have a term left which
is proportional to the Gauss constraint. From a classical
point of view, at least all the phase space variables which lie
on the constraint hypersurface are transformed by VðN⃗Þ as
expected for a gauge covariant diffeomorphism. If we
consider the complete phase space a priori, then we will
see that Ea

i is transformed as a spacetime vector density and
a gauge covector plus a term which is proportional to its
covariant divergence.
We conclude by pointing out the difference of the actions

of the spatial diffeomorphism constraint WðN⃗Þ and the
gauge covariant diffeomorphism constraint VðN⃗Þ. While
WðN⃗Þ generates the action (via pullback) of diffeomor-
phisms of Σ on phase space functions [see (A3)–(A6)], the
action of VðN⃗Þ is more subtle and involves changes in the
internal space. In particular, since it is gauge invariant in
itself, its action on holonomies cannot change the position
of their end points. Rather it will generate diffeomorphisms
that leave these end points fixed. Since the constraints
VðN⃗Þ and WðN⃗Þ only differ by a term proportional to Gi,
they generate the same closed constraint algebra. This
becomes apparent when looking at the Poisson relations
involving GðΛÞ and WðN⃗Þ, for instance,

fGðΛÞ; GðΛ0Þg ¼ Gð½Λ;Λ0�Þ; ðA11Þ

fGðΛÞ;WðN⃗Þg ¼ −GðspLN⃗ΛÞ; ðA12Þ

fWðN⃗Þ;WðM⃗ÞÞg ¼ Wð½N⃗; M⃗�Þ: ðA13Þ

The Poisson brackets involving GðΛÞ and VðN⃗Þ are also
closed.6 These take the same form as in matter-free loop
quantum gravity [39,46]. Therefore, in the quantum theory
we will implement the symmetry group DiffðMÞ consisting
of spatial diffeomorphisms only.

APPENDIX B: DIFFEOMORPHISM SYMMETRIC
GENERAL SPIN NETWORK STATES WITH

GRAPH SYMMETRY

In this Appendix, we want to study the behavior of
generic spin network states which admit two particles and a
graph symmetry which exchanges the particles. The exam-
ple of Sec. III B can be generalized by coupling the two
spin 1

2
holonomies to spin 1 and by closing the graph gauge

invariantly. We get

ðB1Þ

where ðσrÞi are the Pauli matrices, which couple 1
2
⊗ 1

2
⊗ 1

at r ∈ Σ, and Fi denotes an arbitrary spin network graph,
which couples the rest gauge invariantly, and is invariant
with respect to a diffeomorphism ϕ1, which rotates p to q
and he1 to he2 and vice versa. This state is the loop
quantum gravity analog of the triplet state in flat quantum
field theory [47]. If we act with the graph symmetry ϕ, we
get

ÛϕΨsymm;1 ¼ θAqϵABπ1
2
ðhe2ÞBCðσrÞiCD

× π1
2
ðhe1ÞEDϵEFθFpFi

¼ −Ψsymm;1;

where we used the antisymmetry of the two Levi-Civita
symbols ϵAB and the symmetry of σAB and anticommuted
the two fermions. We deduce that this state will not
survive the group averaging procedure, if we stick to the
spin-statistics connection. If there is a triplet state in loop
quantum gravity, it better not have a graph symmetry as
described above.
From the previous calculations, it becomes clear that

given a spin network graph which has a suitable graph
symmetry the resulting sign is determined by the edge or
vertex, respectively, which intersects the symmetry axis.

6We also stay with a closed Poisson algebra when taking into
consideration the Hamilton constraint HðNÞ.
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Let us sketch the most general such spin network graph
including two particles

ðB2Þ

The graph symmetry ϕgeneral will exchange the two particles
and map the edge ei to en−iþ1 and vice versa as well as the
points where the intertwiner ιi lies to ιn−i and vice versa. In
principle, there is also the possibility that ei is mapped to
e−1n−i (and vice versa) for some i. This case is present when
the direction of these edges is flipped by ϕgeneral, which can,
however, be transformed to the previous case by inserting
two intertwiners ι,

πjðheÞAB ¼ ð−1Þ2jιBCπjðh−1e ÞCDιDA: ðB3Þ
The sign of (B3) appears twice as long as en−i ≠ ei and
similar for the contribution of the intertwiner. Therefore,
the only contribution to the sign may arise from the object
attached to the center of the graph. If n is odd, enþ1

2

determines whether the state will survive the group aver-
aging, whereas for n even, ιn

2
determines whether the state

will survive the group averaging.
Let us discuss the case for odd n first. With (B3), we can

prepare the state such that we only have to consider how to
resolve enþ1

2
→ e−1nþ1

2

. By preparing the direction of the edges

symmetrically around enþ1
2
, there has to be one nontrivial 2-

valent intertwiner ιAB, which takes care of the direction of
the edges, at the beginning- or at the endpoint, but not at
both points of the holonomy πjðhenþ1

2

Þ. For instance, the
edges en−1

2
; enþ1

2
and enþ3

2
may take the form

,
ðB4Þ

which needs an intertwiner ιAB at the left vertex but none at
the right one. Alternatively, one can invert the directions of
en−1

2
and enþ3

2
and get an intertwiner ιAB at the right vertex.

The same argument holds for every other edge, too. We can
use (B3) again, to reformulate

ιACπj
	
henþ1

2



C
B ↦ ιACπj

	
h−1enþ1

2



C
B

¼ ð−1Þ2jιBCπj
	
henþ1

2



C
A: ðB5Þ

Unfortunately, we cannot control what spin couples to the
many intertwiners in between the two particles. Hence, the
spin j of the holonomy lying in the center and the correspond-
ing arising sign is not determined by the spin of the particles θ.
That way, the spin of the holonomy intersecting the symmetry
axis of ϕgeneral has to be of the same type (half-integral or
integral) as the spin of the particles θ.
If we have an intertwiner intersecting the symmetry axis,

the result is even more subtle. Let us sketch the most
general such intertwiner

ðB6Þ

where we depicted the rotation symmetry axis by a dashed
blue line. As we can see, holonomies which lie on the
opposite of the symmetry axis must carry the same spin.
Apart from that, holonomies might also lie on the sym-
metry axis. Their spin is arbitrary and does not underlie
symmetry constraints, since they are invariant under
ϕgeneral. Let the intertwiner (B6) be of the form

ιn
2
∶j1 ⊗ j1 ⊗ � � � ⊗ jn ⊗ jn ⊗ jnþ1 ⊗ jnþ2 → 0; ðB7Þ

where the spins j1;…; jn appear double for they are
corresponding to the holonomies with reflections, whereas
jnþ1 and jnþ2 represent the holonomies which lie on the
symmetry axis and hence appear only once. Without loss of
generality, we can ignore jnþ1 and jnþ2 in the following
considerations, as they do not contribute to a possibly
resulting sign. We can now expand the intertwiner ιn

2
into a

linear combination of intertwiners of 3-valent vertices,
where we can freely choose the coupling scheme [48].
Consider the following expansion:

ðB8Þ
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where the black dashed lines depict SU(2) representations
without simultaneously describing a parallel transport in Σ;
i.e., its beginning and end points coincide. Note that the
spin quantum numbers l1;…; ln as well as the k1;…; kn−1
are always integers. The intertwiners of the 3-valent
vertices represent the building blocks of (B8) and are
described by the Wigner 3j-symbols [48,49], which satisfy
a number of symmetry identities, in particular

�
j j l

m1 m2 m3

�
¼ ð−1Þ2jþl

�
j j l

m2 m1 m3

�
: ðB9Þ

This means that under the exchange of two identical spins
under ϕgeneral, we gather a sign from the ith branch if 2ji
and li are not both odd or both even. Consequently, all the
contributions are multiplied. Obviously, this is again not a
very strong statement, as we can produce arbitrary signs
within the span of (B8).
This indefiniteness can be illustrated with the following

example:

ðB10Þ

with n ¼ 3 and j1 ¼ j2 ¼ j3 ¼ 1
2
, which is the case of a 6-

valent vertex with six spin 1
2
holonomies. It holds that 2ji ¼

1 for all i ¼ 1; 2; 3. Hence, the sign depends on the choice
of the li. However, we can choose l1 ¼ l2 ¼ l3 ¼ 1 on the
one hand, and l1 ¼ l2 ¼ 1, l3 ¼ 0 on the other hand. The
first intertwiner will not gather a phase when applying
Ûϕgeneral

, whereas the second intertwiner gathers a sign −1
when doing so.
Given a generic spin network state such as (B2) and an

intertwiner intersecting the symmetry axis together with its
expansion into the basis (B8), we can tell from the statistics
of the particles θ which components will survive or vanish
after group averaging. Specifically, fermions will let those
components survive which gather a total minus sign and
bosons will let those components survive which are
invariant under the diffeomorphism ϕgeneral.
If we would extend the group of diffeomorphisms to

include also diffeomorphisms which are smooth except at a
finite number of points suggested by [19], the group of
graph symmetries of the spin network state (B10) is also
significantly extended. It is possible to exchange any two of
the edges at the vertex (B10), for instance. However, this

would generate both signs for l1 ¼ l2 ¼ 1 and l3 ¼ 0; i.e.,
the state does not survive the group averaging irrespective
of the statistics of the matter fields. Apparently, this
extended diffeomorphism group defines another theory
and makes clear that the initial choice of the symmetry
group is crucial for the analysis of the kinematical
Hilbert space.

APPENDIX C: AN ALTERNATIVE
SPIN 1 ACTION

In Sec. IV B, we discuss a spin 1 particle described by a
tensor with an SU(2) structure ϕI . If we were to consider a
U(1) Yang-Mills theory7 instead, we might identify the
connection 1-form Aμ with ϕ in the following way:

Aμ ¼ eIμϕI: ðC1Þ

This transformation does not describe a symplectomor-
phism, since the symplectic structure is not conserved,

Eμ _Aμ ¼ eμIπ
Ið_eJμϕJ þ eJμ _ϕJÞ ¼ πI _ϕI þ eμI _e

J
μπ

IϕJ; ðC2Þ

where πI denotes the conjugate momentum to ϕI and Eμ the
conjugate momentum to Aμ. The first term in (C2) is the
desired one, but the second one is odd. Note that in flat
spacetime where we require eIμ ¼ δIμ, the transformation is
indeed a symplectomorphism. In (C2) we used the identity

Eμ ¼ ∂L
∂ _Aμ

¼ ∂L
∂ _ϕI

∂ _ϕI

∂ _Aμ

¼ πIeμI : ðC3Þ

This brings us to the conclusion that the two theories to
describe a spin 1 field are not equivalent. Since the Yang-
Mills connection Aμ does not admit an SU(2) structure,
there is no interaction term including A and ω, albeit it is
there for the action for the spin 1 field ϕ. The matter field A
hence decouples from the SU(2) holonomies, which appear
in matter-free loop quantum gravity.

APPENDIX D: CONSTRAINTS OF THE
SPIN 1 ACTION

The action (4.20) resembles very much the Klein-
Gordon action but now includes a nontrivial SU(2) inter-
action. We want to mention some technical details and
hurdles which arise when studying the classical constraints.
As in the matter-free theory, ω0 still has to be reformulated
to yield the Lagrange multiplier for the Gauss constraint.
The conjugate momentum π reads

7The theory is, however, not U(1) invariant, since we include a
mass term.
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πI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p �
1

N
∇0ϕ

I −
Na

N
∇aϕ

I þ η0I∇KϕK

�
: ðD1Þ

We can read off that π0 is independent of the time derivative
of ϕ0 since the first term and part of the third term in (D1)
cancel. We get

π0 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p
eai∇aϕ

i: ðD2Þ
As a consequence, we get an additional constraint,

fðXÞ ≔
Z
Σ
d3xXf ¼

Z
Σ
d3xXðπ0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p
eai∇aϕ

iÞ;

ðD3Þ
which we have to add to the action (4.24). X here acts as the
Lagrange multiplier. As we can see, the term ∇IϕI · f
already appears in the Hamilton constraint and can there-
fore be left out when doing the constraint analysis. For this,
we would have to calculate the Poisson brackets of fðXÞ
with the other constraints to identify possible secondary
constraints.8

At last, we express the spin connection ω by the
Ashtekar connection A. In the matter-free theory, the spin
connection can be written in terms of two variables,

ω0i
a ¼ 1

2γ
ðAi

a − −Ai
aÞ; ðD4Þ

ϵijkωjk
a ¼ 1

2
ðAi

a þ −Ai
aÞ; ðD5Þ

where Aa is the Ashtekar connection and −Aa is non-
dynamical [43]. Next to the lapse function and the
shift vector field, we hence also have the Lagrange multi-
pliers ω0i

0 , ω
jk
0 , and

−Aa. In the vacuum theory, hence, the
following constraints:

∂L
∂ðω0i

0 Þ
¼ 0;

∂L
∂ðωjk

0 Þ
¼ 0;

∂L
∂ð−Ai

aÞ
¼ 0; ðD6Þ

hold and yield the well-known Gauss constraint next
to defining relations for the Lagrange multiplier ω0i

0 ¼
ω0i
0 ðA;Γ; N; NaÞ and the connection Γi

a ¼ Γi
aðEÞ such

that

−Ai
a ¼ Ai

a −
2

γ
Γi
a: ðD7Þ

If we include the spin 1 field, however, we get the
constraints

∂L
∂ðω0i

0 Þ
¼ −∂aEa

i − ϵkliEa
k

�
γ2 þ 1

2γ
− Al

a −
γ2 − 1

2γ
Al
a

�
þ 2ϕ½0πi� ¼ 0; ðD8Þ

∂L
∂ðωjk

0 Þ
¼ γ

2
ϵi jk∂aEa

i − Ea½jAk�
a þ 2ϕ½jπk� ¼ 0; ðD9Þ

∂L
∂ð−Ai

aÞ
¼ −

γ2 þ 1

2γ
ϵkimEa

kω
0m
0 þ γ2 þ 1

2γ
ϵabceb½ijedjj�NdðAj

c þ −Aj
cÞ

−
γ2 þ 1

2γ
ϵabc∂bðNeciÞ þ

γ2 þ 1

2γ2
ϵabcϵijkNejbðAk

c − −Ak
cÞ

þ Nað2ϵijkϕjπk − 2ϕ½0πi�Þ − qabNðϵijkϕj∇bϕk − ϕ½0∇bϕi�Þ

− ea½jjðϵijkϕjk�∇lϕl þ δjiϕj0�∇lϕlÞ −
1

2
ea½jjðϵijkϕjk�∇0ϕ0 þ δjiϕj0�∇0ϕ0Þ

þ π0ea½jjðϵijkϕjk� þ δjiϕj0�Þ ¼ 0: ðD10Þ
It becomes apparent that the split of the indices of the spin connection ωa into 0 and i makes it troublesome to recover the
desired information from (D8)–(D10). When including the spin 1 field, we only get a contribution of the j component of the
matter field. The 0 component, on the other hand, does not appear in the Gauss constraint but rather in the defining relations
for Γ and ω0i

0 if we follow the same steps as in the matter-free case.

8The constraint analysis for a spin 1 particle in flat spacetime yields a secondary constraint gðYÞ ¼ R
Σ d

3xYð∂iπ
i − ð∂a∂a −m2Þϕ0Þ.

Its Poisson bracket with fðXÞ is constant, so fðXÞ and gðYÞ form a second class pair. The constraint algebra is closed, but the variables
π0 and ϕ0 are determined by the solution of f and g, namely π0 ¼ −∂iϕ

i and ϕ0 ¼ −ð∂a∂a −m2Þ−1∂iπ
i. ϕ0 hence is nonlocal.
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