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In this note we analyze the equations of motion of a minimally coupled Rarita-Schwinger field near the
horizon of an anti–de Sitter-Schwarzschild geometry. We find that at special complex values of the
frequency and momentum there exist two independent regular solutions that are ingoing at the horizon.
These special points in Fourier space are associated with the “pole skipping” phenomenon in thermal two-
point functions of operators that are holographically dual to the bulk fields. We find that the leading pole-
skipping point is located at a positive imaginary frequency with the distance from the origin being equal to
half of the Lyapunov exponent for maximally chaotic theories.
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I. INTRODUCTION

Retarded Green’s functions are one of the main objects
of interest in field theories as they encode the response of a
system in equilibrium to small perturbations. In a theory
with a dual gravitational description [1] one can calculate
such correlators at finite temperature by studying the
equations of motion of bulk fields in a black hole geometry
which asymptotes to anti–de Sitter (AdS) spacetime [2,3].
In Lorentzian signature, one is prescribed to take the
solution that is ingoing at the horizon [4] which uniquely
determines the retarded Green’s function of the dual
boundary operators. Finding the precise form of the
correlation function is generically difficult as the full
solutions to the to the bulk equations of motion depend
on the details of the background geometry.
However, some features of the Green’s functions are

encoded in the behavior of the bulk fields in the near-
horizon region of the geometry. The most prominent
example is the hydrodynamic description of holographic
theories, described by the low-frequency and low-momen-
tum limit (see for example [5,6]), where one finds that the
radial evolution of the bulk fields becomes trivial [7] and
leads to universal results such as the ratio of the shear
viscosity and the entropy density [8].

Interestingly, the horizon region also contains informa-
tion about the correlator away from the origin of Fourier
space. Namely, at certain imaginary values of the frequency
and (generically) complex values of the momentum, all
solutions to the equations of motion become ingoing at the
horizon. This phenomenon was called “pole skipping” as at
such points in momentum space the associated boundary
Green’s function effectively skips a pole: at these locations
a zero and a pole of the correlator coincide.
Pole skipping was initially observed in the energy

density correlator which is obtained by solving the linear-
ized Einstein’s equations in the bulk. More generally, one
finds that for the sound channel of the energy-momentum
tensor [9] the leading pole-skipping point, that is the pole-
skipping point at the most positive imaginary frequency
(see Fig. 1), is located at [10–14]

ω� ¼ þiλL; k� ¼ i
λL
vB

; ð1Þ

where λL ¼ 2πT is the Lyapunov exponent for holographic
theories and vB is the butterfly velocity. Thus this location
seems to be connected to the chaotic properties of holo-
graphic systems [15–17],1 which is the case even in the
presence of stringy corrections [20] (see [21–25] for further
examples).
Correlators associated to the remaining channels of the

energy-momentum tensor and correlators of lower-spin
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1Pole skipping in theories which are not maximally chaotic has
been discussed in [18,19]. In such theories the relation to chaos is
not straightforward and the applicability of pole skipping as a
diagnostic for chaos might be limited to only imposing bounds on
chaos.
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bulk fields also exhibit pole-skipping, albeit at different
imaginary frequencies. In the case of scalar fields all pole-
skipping points are located in the lower-half of the complex
frequency plane at (imaginary) bosonic Matsubara frequen-
cies ωB

n ¼ −2πiTn, where n ¼ 1; 2;…. The same applies
for the shear and scalar channels of the energy-momentum
tensor and the transverse channel of the Uð1Þ gauge field,
while in the longitudinal channel of the gauge field there
exists an additional “hydrodynamic” pole-skipping point
located at ω ¼ 0 and k ¼ 0 [13,14] (see also [26–30]). Note
that such an infinite tower of pole-skipping points at
negative imaginary Matsubara frequencies can also be
found in the energy density correlator [14]. Similarly, for
fermion fields all pole-skipping points are on the lower-half
of the complex frequency plane [31], but they are located at
fermionic Matsubara frequencies ωF

n ¼ −2πiTðn − 1=2Þ
where n ¼ 1; 2;….
Note that there is a relationship between the spins of bulk

fields and the frequency values of the leading pole-skipping
points as depicted in Fig. 1, where we always pick the
channel whose leading pole-skipping point has the largest
imaginary frequency. The locations on the complex
ω-plane are given by ω0;s ¼ 2πiTðs − 1Þ, where s denotes
the spin of the bulk field.2 We note that Fig. 1 is a
compilation of several independent results. However, the
analysis for spin-3

2
fields has been missing from the

literature. In this note, by analyzing the Rarita-
Schwinger field in the near-horizon region of an AdS-
Schwarzschild black hole, we show that indeed the relation
between the spin and value of the frequency of the leading
pole-skipping point holds for any (half)-integer spin
with s ≤ 2.
In addition to the locations of the pole-skipping points,

the near-horizon analysis also predicts the form of the
Green’s function near such special points. Typically, the
correlator near a generic pole-skipping location ðωps; kpsÞ
takes the form [12,14,31,34]

GRðωps þ δω; kps þ δkÞ ∝ δω − ðδωδkÞzδk
δω − ðδωδkÞpδk

; ð2Þ

where ðδω=δkÞp;z denote the slope of the line of poles and
line of zeros passing through the pole-skipping point.3 The
Green’s function of all leading pole-skipping points
depicted in Fig. 1 has the form (2) and similarly we show
that the near-horizon analysis predicts that the correspond-
ing correlator at the leading pole-skipping point of the
Rarita-Schwinger field takes on the same form.

II. GRAVITATIONAL SETUP

Let the bulk theory be described by the Einstein-Hilbert
action with a negative cosmological constant

S ¼
Z

ddþ2x
ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ; ð3Þ

where Λ ¼ −dðdþ 1Þ=2L2 and L denotes the radius of
AdS which we set to L ¼ 1 in all further expressions. The
resulting equations of motion admit a planar black hole
solution that is asymptotically AdS and is described by the
line element

ds2 ¼ −r2fðrÞdv2 þ 2dvdrþ hðrÞdxidxi: ð4Þ

We are using the ingoing Eddington-Finkelstein co-
ordinates where r denotes the radial direction with
the boundary of AdS located at r → ∞. The usual time
coordinate can be recovered using the relation v ¼ tþ r�,
where dr� ¼ dr=ðr2fðrÞÞ, in which case one can see that

FIG. 1. Location of the leading pole-skipping point on the
frequency plane for bulk fields of various spin. If the fields
decompose into multiple channels, we depict the pole-skipping
point of the channel with the most positive imaginary value. This
paper focuses on the spin-3

2
case.

2We thank Richard Davison for bringing this order of leading
pole-skipping points to our attention. This kind of relation
between the frequency and spin has also appeared in the analysis
of [32], where holographic correlators (and correlation functions
in theories with added higher spin currents) were studied.
Similarly, in [29] (see also [33]) the exchange of vector and
scalar fields in a four-point correlation function on a hyperbolic
space was considered and the leading Regge behavior contained
the same relation between the spin and the (imaginary) expo-
nential coefficient multiplying the time coordinate.

3A more thorough analysis of [34] showed that there exist
other forms that a Green’s function can have near the special
locations. In their language, pole-skipping points at which the
correlator takes on the form (2) are called Type-I. Type-II pole-
skipping points are associated with points that were previously
denoted as anomalous points and are most commonly associated
with locations at which the near-horizon analysis predicts two
coincident pole-skipping points. Type-III pole-skipping points
are associated with non-(half)-integer imaginary Matsubara
frequencies and cannot be predicted from the near-horizon
analysis (see also [35]).
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ft; xig, with i ¼ 1…d, are the coordinates of the dþ 1
dimensional Minkowski space at a fixed value of r.
The two functions appearing in the metric are given by

fðrÞ ¼ 1 −
�
r0
r

�
dþ1

; hðrÞ ¼ r2; ð5Þ

meaning that there is a nondegenerate horizon at a finite
radius r ¼ r0 where fðrÞ vanishes. However as we are
using the ingoing Eddington-Finkelstein coordinates,
such a point is a regular point of the metric. The associated
(non-vanishing) Hawking temperature is given by
4πT ¼ r20f

0ðr0Þ ¼ ðdþ 1Þr0. In what follows, we keep
both fðrÞ and hðrÞ generic which allows us to identify the
source of the contributions when analysing the location of
pole-skipping points. Furthermore, it allows for an easier
generalization of our results to a larger class of background
geometries, such as geometries with an additional matter
content deforming the background [36,37], even though
our derivation applies only when fðrÞ and hðrÞ take the
form (5).
The aim of this note is the analysis of the near-horizon

behavior of a minimally coupled spin-3
2

field. In an
AdS=CFT context, such fields were first considered in
[38–42] and have later been used to study the properties of
the charged current in the dual boundary theory (see for
example [43–46]). For a summary and discussion of recent
results see [47].
The action describing the massive Rarita-Schwinger

field ΨM is given by4

SRS ∝
Z

ddþ2x
ffiffiffiffiffiffi
−g

p
Ψ̄MðΓMNP∇N −mΓMPÞΨP: ð6Þ

Since we are only interested in the bulk equations of
motion, we do not need the precise details of the overall
normalization factor or the additional boundary terms.5 The
antisymmetrized products of curved space gamma matrices
ΓMP and ΓMNP act on the spinor index of the Rarita-
Schwinger field, which we suppress throughout the note.
The covariant derivative acting on the spin-3

2
field

is given by ∇MΨP ¼ ∂MΨP − Γ̃N
MPΨN þ 1

4
ðωabÞMΓabΨP,

where Γ̃N
MP are the Christoffel symbols and ωM is the spin

connection one form.
The equation of motion derived from (6) is

ΓMNP∇NΨP −mΓMNΨN ¼ 0; ð7Þ

however since the background metric satisfies the vacuum
Einstein’s equation one can show (see for example [45])
that the above equation of motion is equivalent to

ð=∇þmÞΨN ¼ 0; ð8Þ

with additional constraints

ΓMΨM ¼ 0; ∇MΨM ¼ 0; ð9Þ

where we defined =∇ ¼ ΓM∇M. Note that while (8) looks
like a Dirac equation, it actually couples different vector
components of the field due to the term involving the
Christoffel symbols in the covariant derivative, which is not
present if the covariant derivative is acting on a Dirac field.
In deriving (8) we assume that the mass takes on a generic
positive value in which case the constraints (9) follow
naturally from the equations of motion (7). If m ¼ d=2, the
spin-3

2
field is physically massless [48] (the nonzero value

of m is a consequence of the curvature of spacetime) and
the conditions (9) are not imposed by the equations of
motion, but can be considered as a choice of gauge.

III. POLE SKIPPING

We now show that at a specific complex value of the
frequency and momentum the equations of motion (8) and
the associated constraints admit two independent solutions
that are regular at the horizon. We use the following
orthonormal frame6

Ev ¼ 1þ fðrÞ
2

rdv −
dr
r
; Er ¼ 1 − fðrÞ

2
rdvþ dr

r
;

Ei ¼
ffiffiffiffiffiffiffiffiffi
hðrÞ

p
dxi; ð10Þ

in which case the line element (4) can be written as ds2 ¼
ηabEaEb with ηab ¼ diagð−1; 1; 1;…; 1Þ.
Next we use the fact that the metric components depend

only on the r coordinate and introduce a plane wave ansatz
ΨMðv; r; xiÞ ¼ ψMðrÞe−iωvþikixi in which case the equa-
tions of motion reduce to a system of coupled first order
ordinary differential equations for ψMðrÞ. To separate these
equations into tractable subsystems we decompose the
components of the field based on its eigenvalues under the
action of Γr and Γð2Þ ≡ k̂iΓvi, where k̂i ¼ ki=k is the
normalized Euclidean vector in d-dimensional flat space

and k≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

d
i¼1 k

2
i

q
its magnitude. These two matrices

commute and their eigenvalues are equal to �1, hence
all vector components of the Rarita-Schwinger field can be
decomposed as

4Throughout this note we use upper case Latin letters
(M;N;…) to denote the curved spacetime indices, whereas
lower case Latin letters (a; b;…) to denote the flat space indices.

5We note that another mass termm0gMNΨ̄MΨN can be added to
the action. This introduces a spin-1

2
degree of freedom in the

Rarita-Schwinger field (see e.g., [47]) which may change the
structure of pole skipping. We do not consider such a term here.

6We use underlined indices to indicate specific flat space
indices (a ¼ v; r;…) and distinguish them from particular curved
space indices which are not underlined (M ¼ v; r;…).
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ψM ¼
X
α1¼�

X
α2¼�

ψ ðα1;α2Þ
M ð11Þ

where the indices in the bracket denote the eigenvalues
under the action of the gamma matrices as

Γrψ ðα1;α2Þ
M ¼ α1ψ

ðα1;α2Þ
M ; Γð2Þψ ðα1;α2Þ

M ¼ α2ψ
ðα1;α2Þ
M ; ð12Þ

with α1;2 ¼ �. Each of the components in the decom-
position contains a quarter of the total degrees of freedom
of the spinor.
The leading pole-skipping point for the energy-density

correlator is found by considering the vv-component of the
dual bulk excitation [10–12]. Similarly, the location of the
leading pole-skipping point for the Uð1Þ gauge field is
uncovered by considering the v-component of the bulk
field [14]. Expecting similar behavior, we focus on the ψv
component of the Rarita-Schwinger field. By using the
constraints (9), we find that only ψ r couples to ψv so we
focus on that subsystem of equations. This subsystem then
separates into two decoupled sets of differential equation—
one containing components whose Γr and Γð2Þ eigenvalues
are equal, and one with components whose eigenvalues
under the action of the aforementioned matrices are
opposite. But the two decoupled systems of differential
equations are related by k → −k. We can thus focus only on
one and obtain the results for the other by a reversal of the
momentum k. For concreteness, we choose the subsystem
dealing with the components whose eigenvalues under Γr

and Γð2Þ are equal. These equations are given in full detail in
the Appendix [see (A5)], together with some additional
information about their derivation.
In our analysis the detailed form of the equations of

motion is not needed as we are merely interested in their
near-horizon expansion. Because in the ingoing Eddington-
Finkelstein coordinates the horizon is a regular point, we
can expand the field components in a series as

ψ ðα1;α2Þ
M ðrÞ ¼

X∞
l¼0

ψ ðα1;α2Þ
M;l ðr − r0Þl; ð13Þ

where ψ ðα1;α2Þ
M;l are constant coefficients. Similarly, the

equations of motion themselves can be expanded in a
series at the horizon after which solving the differential
equations translates into solving a system of algebraic
equations at each order of the series expansion.
At a generic point in Fourier space these algebraic

equations halve the number of free parameters in the
Rarita-Schwinger field which corresponds to choosing
the solution to the equations of motion that is ingoing at
the horizon. For example, by evaluating the equations of
motion directly at the horizon, one finds, among others, the
following equation [see (A7)]

�
−2mr0 − 4iωþ 2ikr0ffiffiffiffiffiffiffiffiffiffiffi

hðr0Þ
p − r20f

0ðr0Þ
�
Γvψ ð−;−Þ

v;0

þ
�
2mr0 − 4iω −

2ikr0ffiffiffiffiffiffiffiffiffiffiffi
hðr0Þ

p − r20f
0ðr0Þ

�
ψ ðþ;þÞ
v;0 ¼ 0;

ð14Þ

which for generic ω and k relates ψ ð−;−Þ
v;0 to ψ ðþ;þÞ

v;0 .
Similarly, equations of motion at higher order in the
near-horizon expansion relate all other coefficients
(including those involving ψ r components) to the ones
appearing in (14) allowing us to perturbatively construct a
solution with half of the total number of degrees of
freedom.
Equation (14) is trivially satisfied if both coefficients in

the square brackets vanish, which is the case if the
frequency and momentum are precisely

ω≡ ω0 ¼
ir20f

0ðr0Þ
4

¼ iπT; ð15aÞ

k≡ k0 ¼ −im
ffiffiffiffiffiffiffiffiffiffiffi
hðr0Þ

p
¼ −

4m
dþ 1

iπT: ð15bÞ

Then both ψ ðþ;þÞ
v;0 and ψ ð−;−Þ

v;0 remain unconstrained and by
using other algebraic equations from the near horizon
expansion of the equations of motion we can construct
two linearly independent solutions that are regular at the
horizon.7

The plots in Fig. 2 show the location of poles of the
boundary Green’s function in the complex ω-plane at
different values of the momentum, calculated using the
Leaver method [49]. We see that at the special point (15b)
there is a pole located exactly at (15a)—this is the pole
predicted by the near-horizon analysis.
Finally, recall that there exists an additional pole-skip-

ping point at the same frequency (15a) but at the opposite
momentum to (15b) that is obtained from the near-horizon
analysis of the components, whose Γr and Γð2Þ eigenvalues
are opposite.
As is known from previous results [11,12,14,29,31,34],

a location in Fourier space where there exist multiple
independent ingoing solutions at the horizon corresponds
to a point where a pole and a zero of the boundary retarded
Green’s function coincide. As such, (15) is the first
location at which we observe pole skipping for the
Rarita-Schwinger field. Most notably, this point is located

7If we set ω ¼ iπT but leave k generic, the complete near-
horizon expansions, such as (13), contain additional logarithmic
terms logðr − r0Þ similar to the terms appearing in the scalar [14]
or fermion [31] field expansions. However, one finds that by
imposing the equations of motion, all coefficients multiplying
terms with a logarithmic divergence at the horizon have to
vanish, unless the momentum is finely tuned to the pole-skipping
value (15b).
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at a positive imaginary frequency. Up to now, the only
other example of a pole-skipping point being found on the
upper complex ω half-plane is the leading pole-skipping
location for the energy-density correlator, in which case
the precise location in Fourier space has been conjectured
to be related to the chaotic properties of the theory, as
seen in (1).
For the Rarita-Schwinger field, the modulus (15a) is

exactly half the value of the maximal Lyapunov exponent
bound of [17]. In our opinion this suggests that there is little
relation to chaos, despite the seeming exponential growth
of the solution, if the values (15) are inserted into the plane-
wave ansatz. This is further substantiated by the fact that
the value of the momentum at which pole skipping occurs

depends on the mass of the field and thus the location is
sensitive both to the background and the probe.
Finally, recall that the equations of motion near the

horizon also predict the form of the Green’s function
near the pole-skipping point. To that end evaluate (14) at
a nearby point in Fourier space, which we denote by
ω ¼ ω0 þ ϵδω and k ¼ k0 þ ϵδk, where ϵ > 0 is a small
number used as a bookkeeping device and we keep the
direction of the momentum k̂ fixed. The analysis of [31]
applies to this case and we refer the reader to that reference
for a detailed calculation. The final result of [31] applies
here as well: working at linear order in ϵ, one finds that near
(15) the retarded Green’s function takes the pole-skipping
form (2).

IV. DISCUSSION

It has recently been shown that quantum chaos in field
theories with holographic duals manifests itself in the
thermal energy density two-point functions. These corre-
lators exhibit the pole-skipping phenomenon at special
(imaginary) values of the frequency and momentum. At
such points poles and zeroes collide and the Green’s
function becomes ill-defined. It was found [10–12] that
the pole-skipping frequency lies at ω ¼ þ2πiT. The
modulus jωj ¼ 2πT is thought to be related to the maximal
Lyapunov exponent [17].
For bulk fields with spins other than two, the corre-

sponding boundary two-point functions also show pole
skipping at certain Matsubara frequencies. Scalar fields
first exhibit poleskipping at ω ¼ −2πiT, while for con-
served currents this occurs at ω ¼ 0 [14]. Fermionic fields
show pole skipping at ω ¼ −πiT, i.e., at the first negative
fermionic Matsubara frequency [31]. The calculations rely
on an analysis of the near-horizon region of the bulk
geometry and give nontrivial constraints on Green’s func-
tions at frequencies ω ∼ T.
Although the relevant pole-skipping momenta do not

seem to be universal, there is a definite structure in pole-
skipping frequencies; see Fig. 1. Namely, there is a
relationship between the frequency of the first pole-skip-
ping point and the spin of the bulk field.
In this paper we have dealt with the spin-3

2
case which has

been missing from previous analyses. In particular, we have
shown from a bulk perspective that a Rarita-Schwinger
field in an AdS-Schwarzschild background exhibits pole-
skipping precisely at the expected first fermionic
Matsubara frequency on the upper-half plane. Since the
analysis only concerned the near-horizon region, we expect
that the results can be extended to more general spacetimes
with regular horizons. With this result, we complete the
hierarchy of pole-skipping locations for various fields of
different spin.
It is important to note that the results for individual fields

were calculated independently and in no way relied
on supersymmetry. Furthermore, the above mentioned

FIG. 2. Numerical analysis of the poles of the retarded Green’s
function in AdS4 for a Rarita-Schwinger field with massm ¼ 3.4.
The poles are calculated using the methods presented in [49]
adapted to the spin-3=2 case. The top figure depicts the motion of
the poles on the complex ω-plane near the value of the
momentum where pole-skipping is observed. The momentum
is varied linearly as k ¼ k0 þ ϵe

iπ
4 , where ϵ ∈ R. We notice that

the red curve passes through ω0 as ϵ ¼ 0 which we denote with a
red square. In blue we depict two additional poles which pass
through ω ¼ −3πi as ϵ → 0. These correspond to higher order
pole-skipping points which are discussed in the Appendix. The
bottom figure shows the location of the poles as the momentum is
varied as k ¼ k0eiϵ. Pole skipping occurs at the filled squares.
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locations are merely the first pole-skipping points and in
some sense are the simplest ones—the locations in momen-
tum space depend only on the values of the background
metric at the horizon and/or the nearby region through first
derivatives, whereas higher order pole-skipping points
generically depend on higher order derivatives as
well [14]. Thus it is enticing to conjecture that the hierarchy
is the property of the near-horizon region of spacetime
itself.
It would be interesting to investigate the origin of this

hierarchy (for a CFTanalysis, see [35,50,51]). Note that the
pole-skipping points are located at (imaginary) Matsubara
frequencies which means that the static bulk has a
Euclidean counterpart (obtained by Wick-rotation). Since
the geometry smoothly caps off, a shift along the Euclidean
time circle translates into a rotation at the tip (which is the
Euclidean analog of the event horizon). Fourier modes are
therefore connected to spin, providing an explanation for
the observed hierarchy of pole-skipping points.
In the above analysis we have merely shown the

existence of a single pole-skipping point, but previous
results on other fields would suggest that there exists an
entire tower of higher-order pole-skipping points at neg-
ative imaginary frequencies, which we have not focused on.
Furthermore, the above analysis can be expanded to include
matter fields or allow for an additional mass term in the
action of the Rarita-Schwinger field. It would be interesting
to see if there exists a configuration at which the pole-
skipping points vanish.
Finally, the Rarita-Schwinger fields in backgrounds with

simple horizons have been used in calculations of fermionic
currents [43–46]. It would be interesting to study the pole-
skipping points in that context and see the consequences on
the spectral function of the dual fermionic currents in the
boundary theory.
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APPENDIX: EQUATIONS OF MOTION

In this Appendix we spell out some of the details that
have been omitted in the main part of this note. We keep the
same notational conventions as in the main text. In addition,
throughout the note we use the following convention for the
flat space Clifford algebra

fΓa;Γbg ¼ 2ηab; ðA1Þ

where ηab ¼ diagð−1;þ1;…;þ1Þ, which most importantly
implies that Γv squares to −1 while all others square to 1.

We start at the rewritten equations of motion (8). We again
want to point out that we keep hðrÞ and fðrÞ unevaluated to
keep track of the origin of individual terms in the final
expressions. However, in deriving (8) from (7), one assumes
that the Ricci tensor and the Ricci scalar satisfy

RMN ¼ −ðdþ 1ÞgMN; R ¼ −ðdþ 1Þðdþ 2Þ; ðA2Þ

which is the case if the two aforementioned functions take
the form (5), as for example for a black brane solution. So
while the results presented in this note hold only for
backgrounds that satisfy (A2), we believe that the generali-
zation of our results to more complicated backgrounds
should be straightforward and that the findings would
resemble those of this note.
Recall that due to the presence of the Christoffel terms in

the covariant derivative, different vector components of the
Rarita-Schwinger field are coupled. We can make this
explicit by putting such terms on the right-hand side,
resulting in

ð=DþmÞΨM ¼ ΓNΓ̃P
MNΨP; ðA3Þ

where DM ¼ ∂M þ 1
4
ðωabÞMΓab denotes the covariant

derivative acting on a spinor field. The left-hand side of
Eq. (A3) with the choice of vielbein (10) has been worked
out in [31]. One can then use the gamma-traceless condition
(9) to arrive at two coupled equations containing only the
components Ψv and Ψr

ð=DþmÞΨv ¼
∂rðr2fðrÞÞ

2r

�
½Γv þ Γr�Ψv

þ r2

2
½ð1þ fðrÞÞΓv − ð1 − fðrÞÞΓr�Ψr

�
;

ðA4aÞ

ð=DþmÞΨr ¼ −
∂rðr2fðrÞÞ

2r
½Γv þ Γr�Ψr −

∂rhðrÞ
2rhðrÞ

×

�
½Γv þ Γr�Ψv þ

r2

2
½ð1þ fðrÞÞΓr

− ð1 − fðrÞÞΓv�Ψr

�
: ðA4bÞ

Since the components of the metric depend only on the
coordinate r, one can write the field in the form of a plane
waveΨMðrÞ ¼ ψMðrÞe−iωvþikixi , and insert this ansatz into
the above equations. After decomposing the spinors in
terms of their behavior under the action of Γr and
Γð2Þ ≡ k̂iΓvi matrices, as described in (11) and (12), one
obtains eight coupled first order ordinary differential
equations for the different components of ψv and ψ r.
The system of equations can be split into two decoupled
subsystems of 4 equations, with one describing the
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components whose Γr and Γð2Þ2 eigenvalues are equal and
the other containing the components with opposite eigen-
values under the action of the two matrices. The two
subsystems of equations are related by k → −k, so it is
sufficient to analyze only one of the subsystems and

infer the results of the other by simply reversing the
momentum.
Hence in what follows we focus at the system of

equations that involve ψ ð�;�Þ
v and ψ ð�;�Þ

r which are given,
after some algebra, by equations

S1 ¼
�
r2fðrÞ∂r − iω −

2rfðrÞ þ r2f0ðrÞ
4

þ dr2fðrÞh0ðrÞ
4hðrÞ þmrð1þ fðrÞÞ

2
−
ikrð1 − fðrÞÞ

2
ffiffiffiffiffiffiffiffiffi
hðrÞp

�
ψ ðþ;þÞ
v

þ Γv

�
−iω −

4rfðrÞ þ r2f0ðrÞ
4

−
mrð1 − fðrÞÞ

2
þ ikrð1þ fðrÞÞ

2
ffiffiffiffiffiffiffiffiffi
hðrÞp

�
ψ ð−;−Þ
v −

r2fðrÞ
2

∂rðr2fðrÞÞΓvψ ð−;−Þ
r ; ðA5aÞ

S2 ¼ Γv

�
r2fðrÞ∂r − iω −

2rfðrÞ þ r2f0ðrÞ
4

þ dr2fðrÞh0ðrÞ
4hðrÞ −

mrð1þ fðrÞÞ
2

þ ikrð1 − fðrÞÞ
2

ffiffiffiffiffiffiffiffiffi
hðrÞp

�
ψ ð−;−Þ
v

þ
�
−iω −

4rfðrÞ þ r2f0ðrÞ
4

þmrð1 − fðrÞÞ
2

−
ikrð1þ fðrÞÞ

2
ffiffiffiffiffiffiffiffiffi
hðrÞp

�
ψ ðþ;þÞ
v −

r2fðrÞ
2

∂rðr2fðrÞÞψ ðþ;þÞ
r ; ðA5bÞ

S3 ¼
�
r2fðrÞ∂r − iωþ 3ð2rfðrÞ þ r2f0ðrÞÞ

4
þ ðdþ 2Þr2fðrÞh0ðrÞ

4hðrÞ þmrð1þ fðrÞÞ
2

−
ikrð1 − fðrÞÞ

2
ffiffiffiffiffiffiffiffiffi
hðrÞp

�
ψ ðþ;þÞ
r

þ Γv

�
−iωþ 4rfðrÞ þ 3r2f0ðrÞ

4
−
mrð1 − fðrÞÞ

2
þ ikrð1þ fðrÞÞ

2
ffiffiffiffiffiffiffiffiffi
hðrÞp

�
ψ ð−;−Þ
r þ h0ðrÞ

2hðrÞ ðψ
ðþ;þÞ
v þ Γvψ ð−;−Þ

v Þ; ðA5cÞ

S4 ¼ Γv

�
r2fðrÞ∂r − iωþ 3ð2rfðrÞ þ r2f0ðrÞÞ

4
þ ðdþ 2Þr2fðrÞh0ðrÞ

4hðrÞ −
mrð1þ fðrÞÞ

2
þ ikrð1 − fðrÞÞ

2
ffiffiffiffiffiffiffiffiffi
hðrÞp

�
ψ ð−;−Þ
r

þ
�
−iωþ 4rfðrÞ þ 3r2f0ðrÞ

4
þmrð1 − fðrÞÞ

2
−
ikrð1þ fðrÞÞ

2
ffiffiffiffiffiffiffiffiffi
hðrÞp

�
ψ ðþ;þÞ
r þ h0ðrÞ

2hðrÞ ðψ
ðþ;þÞ
v þ Γvψ ð−;−Þ

v Þ: ðA5dÞ

For later convenience we have labelled them as Si, with
i ¼ 1, 2, 3, 4, so that the equations of motion can be
summarized in a compact way as Si ¼ 0.
We are interested in the near-horizon expansion of these

equations. As we are working with the ingoing Eddington-
Finkelstein coordinates in which the horizon is a regular
point, we assume that all functions and fields can
be expanded in a series around the horizon at r ¼ r0.
The expansion of (5) is trivial and we use the field
expansion (13). Then (A5) also get expanded around
the horizon

Si ¼
X∞
l¼0

SðlÞ
i ðr − r0Þl ¼ 0;⇒ SðlÞ

i ¼ 0; i ¼ 1; 2; 3; 4;

ðA6Þ

in which case the equations of motion become an infinite
set of algebraic equations that we can solve order by order.
Our main interest lies in evaluating the equations of

motion directly at the horizon, or in other words, the zeroth
order equations Sð0Þ

i ¼ 0. While the four equations in (A5)
are independent in general, one finds that directly at the

horizon there are only two independent equations as

Sð0Þ
1 ¼ Sð0Þ

2 and Sð0Þ
3 ¼ Sð0Þ

4 , with

Sð0Þ
1 ¼

�
−2mr0 − 4iωþ 2ikr0ffiffiffiffiffiffiffiffiffiffiffi

hðr0Þ
p − r20f

0ðr0Þ
�
Γvψ ð−;−Þ

v;0

þ
�
2mr0 − 4iω −

2ikr0ffiffiffiffiffiffiffiffiffiffiffi
hðr0Þ

p − r20f
0ðr0Þ

�
ψ ðþ;þÞ
v;0 ¼ 0;

ðA7aÞ

Sð0Þ
3 ¼

�
−2mr0 − 4iωþ 2ikr0ffiffiffiffiffiffiffiffiffiffiffi

hðr0Þ
p þ 3r20f

0ðr0Þ
�
Γvψ ð−;−Þ

r;0

þ
�
2mr0 − 4iω −

2ikr0ffiffiffiffiffiffiffiffiffiffiffi
hðr0Þ

p þ 3r20f
0ðr0Þ

�
ψ ðþ;þÞ
r;0

þ 2h0ðr0Þ
hðr0Þ

ðψ ðþ;þÞ
v;0 þ Γvψ ð−;#1Þ

v;0 Þ ¼ 0: ðA7bÞ

In fact (A7a) is presented in the main text as (14).
In order to find the locations of pole-skipping points, we

need to look for the values of ω and k at which (A7) and
their higher-order analogues do not impose enough
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constraints on the solutions of the equations of motion to
uniquely determine the retarded Green’s function of the
boundary theory. The determination of the leading
pole-skipping point is described in the main text [see the
discussion around Eq. (15)], but in fact there also exists an
infinite tower of pole-skipping points at negative imaginary
fermionic Matsubara frequencies ωF

n ¼ −2πiTðn − 1=2Þ
where n ¼ 1; 2;….
The procedure of identifying such locations mimics the

analysis presented for the fermion case [31], but with some
additional caveats, and will not be discussed in detail here.
We just report some partial results which explain the
additional poles found in the numerical analysis that we
present in Fig. 2. In order to find the pole-skipping points at
ωF
1 ¼ −iπT, one needs to analyze the equations at linear

order in the expansion (A6) and the locations are obtained
by looking for points at which a linear combination of

ψ ðþ;þÞ
v;1 and ψ ð−;−Þ

v;1 represents an additional free parameter of
the solutions to the equations of motion. We find that for a
generic value of the mass m there are three pole-skipping
points at this value of the frequency.

Pole-skipping points at ωF
2 ¼ −3iπT are perhaps more

interesting as they arise due to both ψ ðα1;α2Þ
v;2 and ψ ðα1;α2Þ

r;0 . In
fact, one finds that two special points coincide at

ω ¼ −
3i
4
r20f

0ðr0Þ ¼ −3iπT; ðA8aÞ

k ¼ −im
ffiffiffiffiffiffiffiffiffiffiffi
hðr0Þ

p
¼ −

4iπ
dþ 1

mT; ðA8bÞ

and are thus responsible for the additional two poles that
can be seen in Fig. 2. A simple way to confirm that this is
indeed the case is to insert these values into (A7) and
observe that the prefactors in the square brackets (A7b)

vanish, hence leaving ψ ðþ;þÞ
r;0 and ψ ð−;−Þ

r;0 unconstrained.
Furthermore, one finds that at these values of the frequency
and momentum (A7a) and (A7b) give equivalent con-
straints. We have not investigated the significance of this
“double” pole-skipping point (see the analysis of [34]), but
we attribute this occurrence to the interplay between the ψ r
and ψv components in the equations of motion.
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